
Published as a conference paper at ICLR 2025

LOCALLY CONNECTED ECHO STATE NETWORKS
FOR TIME SERIES FORECASTING

Filip Matzner František Mráz
{filip.matzner, frantisek.mraz}@mff.cuni.cz
Charles University, Faculty of Mathematics and Physics

ABSTRACT

Echo State Networks (ESNs) are a class of recurrent neural networks in which
only a small readout regression layer is trained, while the weights of the recurrent
network, termed the reservoir, are randomly assigned and remain fixed. Our work
introduces the Locally Connected ESN (LCESN), a novel ESN variant with a locally
connected reservoir, forced memory, and a weight adaptation strategy. LCESN
significantly reduces the asymptotic time and space complexities compared to the
conventional ESN, enabling substantially larger networks. LCESN also improves
the memory properties of ESNs without affecting network stability. We evaluate
LCESN’s performance on the NARMA10 benchmark task and compare it to state-
of-the-art models on nine real-world datasets. Despite the simplicity of our model
and its one-shot training approach, LCESN achieves competitive results, even
surpassing several state-of-the-art models. LCESN introduces a fresh approach to
real-world time series forecasting and demonstrates that large, well-tuned random
recurrent networks can rival complex gradient-trained feedforward models. We
provide our GPU-based implementation of LCESN as an open-source library.

1 INTRODUCTION

The field of time series forecasting (TSF) is currently dominated by feedforward, gradient-based
neural networks, often based on the Transformer architecture introduced by Vaswani et al. (2017).
Recurrent neural networks (RNNs) lag behind feedforward models to the point where they are only
rarely compared in state-of-the-art papers (Nie et al., 2023). Despite being a natural fit for processing
and predicting time series data, RNNs tend to be challenging to train (Pascanu et al., 2013).

Multiple approaches have been developed to avoid gradient pitfalls and facilitate the training of
recurrent networks, with Long Short-Term Memory (LSTM) networks (Hochreiter and Schmidhuber,
1997) being one of the most popular methods. A lesser-known approach is the Echo State Network
(ESN) introduced by Jaeger (2001), which completely avoids gradient-based training by using a large
random recurrent network called a reservoir that remains untrained. The only trained component
in an ESN is a small linear readout layer computed via linear regression. The basic idea is that
the random reservoir generates a wide variety of complex combinations of input data, making the
extraction of almost any desired output a simple task.

The main advantages of ESNs over gradient-trained models are resistance to overfitting, a fast
(one-shot) training procedure, and a simple architecture (Lukoševičius, 2012; Jaeger, 2001). Since
the ESN is not trained via gradient descent, it can incorporate non-differentiable components and
formulas with unstable gradients. ESNs have been successfully used for sequence prediction and
sequence-to-sequence tasks, but on large real-world datasets, they have been overshadowed by modern
large-scale gradient-based networks. Over the years, many authors have suggested improvements in
reservoir topology and neuron design. In contrast, Matzner (2022) demonstrated that even a basic
ESN can surpass those improvements when its hyperparameters are properly tuned. Unfortunately,
even optimized ESNs have struggled to compete with state-of-the-art models.

We have identified the following two limitations of conventional ESN approaches. The first is the
quadratic time and space complexity of each ESN step, which, in practical terms, limits the network
size to hundreds or a few thousand neurons. The second is that reservoirs with long memory make
the network unstable and oversensitive to hyperparameter perturbations.
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1.1 RESEARCH OBJECTIVE

Our goal is to address the limitations of ESNs and make them competitive with state-of-the-art models
on real-world datasets. Rather than aiming for top rankings in every benchmark, we aim to create a
baseline recurrent model with a distinct architecture significantly different from the industry standard.
Furthermore, we deliberately choose to provide a model that can be built from scratch on consumer
hardware in a reasonable time.

2 RELATED WORK

Feedforward neural networks (multilayer perceptrons; MLPs) and recurrent neural networks (RNNs)
have both been used in time series forecasting (TSF) (Zhang et al., 1998; Lipton et al., 2015) and are
traditionally trained using gradient-based methods. However, as the context length and network size
increase, the gradient magnitude can decrease or increase uncontrollably. This effect is known as
the vanishing and exploding gradient, and it complicates the training process for deep models (Pas-
canu et al., 2013). To overcome these issues, Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) and its variants, such as Random Connectivity LSTM (RCLSTM) (Hua et al.,
2019), have been developed to facilitate long-term information retention. Despite their advantages,
these models are known for their computational complexity. Jaeger (2001) introduced the Echo State
Network (ESN) designed to mitigate the high computational costs and the issues of vanishing and
exploding gradients. ESNs are described in detail in Section 3.1.

Following the tremendous success of Transformer-based models in natural language process-
ing (Vaswani et al., 2017), Transformer-based models have been successfully adapted for TSF.
iTransformer (Liu et al., 2024) applies independent attention across variates to build time series
representations, which are combined using a feedforward network. PatchTST (Nie et al., 2023)
leverages self-supervised pre-training to represent fixed-length patches, enabling compressed input
processing and allowing efficient training while incorporating a longer history.

Multiple recent methods have explored time series decomposition, such as the Fourier transform
employed by FEDFormer (Zhou et al., 2022) and TimesNet (Wu et al., 2023). While FEDFormer
combines a Transformer with a seasonal-trend decomposition method, TimesNet transforms the
original 1-D input into a 2-D representation processed by 2-D kernels. AutoFormer (Wu et al., 2021)
introduces a novel decomposition architecture featuring an autocorrelation mechanism that discovers
dependencies at the subseries level.

Notably, Zeng et al. (2023) introduced a simple univariate one-layer linear model DLinear that
surprisingly outperformed the state-of-the-art transformer models by a large margin. RLinear (Li
et al., 2023) extended the linear approach of DLinear with RevIn (Kim et al., 2022), a model-agnostic
normalization-denormalization method capable of eliminating the distribution shift within time series.

Finally, the recent introduction of TSMixer (Chen et al., 2023) marks a significant advancement,
surpassing the aforementioned models. TSMixer alternates between time-mixing and feature-mixing
MLPs, akin to the transposition processes of iTransformer. However, it uses MLPs instead of
transformers with complex attention mechanisms.

3 METHODS

3.1 ECHO STATE NETWORKS

A basic Echo State Network with n neurons, nin inputs, and nout outputs consists of a reservoir
represented by a connectivity matrix W ∈ Rn×n, an input weight matrix Win ∈ Rn×nin , a readout
weight matrix Wout ∈ Rnout×n, and a feedback weight matrix Wfb ∈ Rn×nout (see Figure 1).
Neuron activations at time t are denoted by a(t) ∈ Rn, the input values by u(t) ∈ Rnin , the output
values by x(t) ∈ Rnout , and the target by y(t) ∈ Rnout . The following recurrence represents one
discrete step of an ESN, transitioning it to the next time point:

z(t) = Wa(t− 1) +Winu(t) +Wfbx(t− 1) + µb ,

a(t) = (1− γ)a(t− 1) + tanh(z(t)) ,
x(t) = Wouta(t) ,

(1)
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Figure 1: Overview of an Echo State Network.

where z(t) ∈ Rn represents the pre-activation potentials before being processed by the tanh activation
function, γ ∈ R is the leakage parameter, and µb ∈ R denotes a constant bias shared by all neurons.

The initial activation a(0) is set to zero. The reservoir weights W are generated from the uniform
distribution U(µres−σres, µres+σres), the input weights for the i-th input W i

in from U(−σi
in, σ

i
in),

and the feedback weights for the j-th output W j
fb from the uniform distribution U(−σj

fb, σ
j
fb), for

hyperparameters µres ∈ R, σres, σ
i
in, σ

j
fb ∈ R+. Note that we specify the parameters of uniform

distribution using its mean µ and spread σ, rather than its borders, to smooth the fitness space for
hyperparameter optimization. After feeding the training data into the network, the output matrix
Wout is trained using ridge regression to minimize the squared error between the predicted sequence
x(t) and the target sequence y(t) (more details in Appendix C). The network output is undefined
until the training procedure sets Wout. Until then, the feedback connections are driven by the target
sequence y(t). Using the target sequence instead of the network’s own output is known as teacher
forcing (Jaeger, 2001; Lukoševičius, 2012).

ESNs represent a dynamical system whose behavior can range from a stable, unchanging state to
a chaotic white noise generator, depending on their configuration (e.g., σres). Between these two
regimes lies the so-called edge of chaos, which, according to some authors, is the regime where
the network performs best (Bertschinger and Natschläger, 2004; Matzner, 2017; Boedecker et al.,
2011). In order to avoid the chaotic regime, the network has to exhibit the echo state property (also
called fading memory), meaning that its state depends only on a finite history of its inputs (Jaeger,
2001). One of the metrics used to measure chaoticity is called the Lyapunov exponent, which can be
estimated by introducing a tiny perturbation into the reservoir and measuring how much the perturbed
and unperturbed networks diverge. Negative Lyapunov values denote order, positive values denote
chaos, and zero indicates the edge of chaos. For more details on its properties and the estimation
algorithm, see Sprott (2003).

3.2 HYPERPARAMETER OPTIMIZATION

We use the hyperparameter tuning framework by Matzner (2022), based on the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) (Hansen and Ostermeier, 2001). For more details on
CMA-ES, see Hansen (2016), and consult Matzner (2022) for its use in ESN hyperparameter tuning.

The optimized hyperparameters include the reservoir scaling parameters σres, µres, the bias term µb,
the input scaling parameters σi

in for each input, the feedback scaling parameters σj
fb for each output

(only for sequence-to-sequence tasks), and the ridge regression regularization coefficient λ2 ∈ R+. In
total, this amounts to 4+ nin + nout hyperparameters, where nin and nout are the numbers of inputs
and outputs, respectively, and depend on the task. For details on optimizer settings and parameter
limits, please refer to Appendix D.

3.3 LOCAL TOPOLOGY

Conventional ESNs introduced by Jaeger (2001) use a fully connected reservoir, making the state
transition computationally expensive in both time and memory. Some authors have proposed reservoir
topologies with lower time complexity, such as ring or chain topologies (Rodan and Tino, 2011), but
these do not provide the same performance as conventional fully connected or sparse ESNs (Matzner,
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Figure 2: Demonstration of local topology on a grid of 4×6 neurons and 3×3 kernel. Two non-
overlapping kernels are visualized; one wraps around the top edge.

2022). Analysis of reservoirs designed using the HyperNEAT evolutionary algorithm (Stanley
et al., 2009) suggested that placing neurons on a grid and connecting each neuron only within its
neighborhood may be beneficial for increasing the network’s stability (Matzner, 2017). A similar
idea has also been proposed under the term small-world connectivity (Watts and Strogatz, 1998),
where, in addition to neighborhood connections, neurons occasionally form longer connections, thus
reducing the network’s diameter. Small-world reservoirs have also been studied, e.g., in the fields of
biologically plausible networks and neuromorphic hardware, where they provide better wiring cost
than fully connected networks (Kawai et al., 2017; Suárez et al., 2021; Daniels et al., 2022).

We propose a local topology that reduces the asymptotic time complexity of the ESN step without
compromising accuracy. This allows for larger reservoirs at the same computational cost. Neurons are
placed on a torus-shaped grid, limiting the maximum distance between them, similar to small-world
connectivity. Each neuron is connected to all neurons within its K ×K neighborhood (see Figure 2).
Adopting the notation of convolutional neural networks, we term the weights for this neighborhood a
kernel. However, contrary to convolutional layers, each neuron has its own kernel, and no weights are
shared. The weights are stored in a tensor Wk ∈ RN×M×K×K , where N×M represents the reservoir
dimensions (i.e., N rows and M columns, totaling NM = n neurons).

With a fully connected reservoir, the weights were stored in a larger matrix W ∈ RN×M×N×M .
Therefore, assuming a naive implementation of matrix multiplication, this technique reduces both
the time and space complexity of the ESN step from O((NM)2) to O(NMK2). Furthermore,
the proposed topology is designed with GPUs in mind, allowing efficient (coalesced) access to
GPU memory and avoiding the overhead of generic sparse matrix computation. According to our
measurements, our GPU implementation provides up to 15x speedup compared to a fully connected
reservoir on a consumer-grade GPU for a network of size 80× 100 and 7× 7 kernel. For details on
GPU implementation and comparison with other methods, please refer to Appendix F.

It may be tempting to use the same kernel for all neurons and turn the local topology into an even
more efficient “recurrent convolutional network”. Unfortunately, as presented in Appendix E.3, using
convolutional kernels does not provide the same performance as the proposed topology.

3.4 FORCED MEMORY

The stability of ESNs is intrinsically linked to their memory capacity. In a conventional ESN, the
network’s entire memory is implicitly encoded within its state, propagating sequentially from one time
step to the next. However, since the reservoir is composed of randomly initialized weights, it does
not differentiate between useful information and noise present in the data. As the memory capacity
of the network increases, its sensitivity to both signal and noise grows accordingly. Eventually, this
heightened sensitivity can lead to the network being overwhelmed by noise, pushing it into a chaotic
state. To prevent the network from crossing the edge of chaos, its memory capacity must be limited,
which unfortunately restricts the network’s ability to retain a longer context.

Many authors have proposed methods to improve memory capacity (MC). To give a few examples,
Holzmann and Hauser (2009) added trainable delays between the reservoir and the output layer, Echo
Memory-Augmented Network (EMAN) by Ma et al. (2021) employs a complex low-learning weight
attention mechanism, and Distance-Delayed-Networks (DDN) by Iacob and Dambre (2024) rely on
physics-inspired distance-based delays. Our approach is more straightforward. It simply gives each
neuron a lookback connection to its own historical state at a random fixed time horizon. Despite its
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m(t-1)
a(t-5) a(t-4) a(t-3) a(t-2) a(t-1) v(t)

Figure 3: An example of forced memory with maximum delay H = 5. The vector v(t), combining
memory m(t− 1) with last state a(t− 1), is used instead of a(t− 1) during state transition.

simplicity, this method avoids the need to propagate the entire memory through every step and helps
the network to remain in the stable regime.

Formally, in memory forcing, the activation a(t)i of neuron i at time t is directly combined with its
historical activation a(t− hi)i. The delay hi and the combination coefficient (wmem)i are randomly
chosen for each neuron separately and remain fixed. The recurrence equations (1) are modified as
follows, with Figure 3 illustrating this process.

v(t) = wmem ◦m(t− 1) + (1− wmem) ◦ a(t− 1) ,

z(t) = Wv(t) +Winu(t) +Wfbx(t− 1) + µb ,

a(t) = tanh(z(t)) ,
x(t) = Wouta(t) ,

m(t)i = a(t− hi)i ∀i ∈ {1, 2, . . . , n} ,

(2)

where ◦ denotes elementwise multiplication, m(t) ∈ Rn is the memory vector with each element
equal to a historical activation, wmem ∈ Rn represents the preference of the historical state over
the current state, and v(t) ∈ Rn denotes the state combined with its memory. The coefficients
wmem for the affine combination are generated from a uniform distribution U(−1, 1). The delays
hi are initialized as random integers from a uniform distribution U(0, H − 1), where H denotes the
maximum allowed delay (set to 100 in our experiments). Note that we have omitted the leakage
coefficient γ because its role is fulfilled by the memory vector; in fact, leakage can be simulated by
setting hi = 1 and (wmem)i = γ.

3.5 PREDICTION METHODOLOGY

To be comparable to the state-of-the-art feedforward models in TSF benchmarks, we have used the
same training/validation/testing split and the same data normalization technique (Nie et al., 2023).
However, the use of recurrent networks fundamentally differs from that of feedforward models.
Feedforward models expect an input of fixed length Lin and predict an output of fixed length Lout.
The dataset is created by extracting patches of length Lin + Lout from the original time series and
feeding them to the model independently. Having a fixed input and output length has a few benefits,
such as the ability to process many patches as a single GPU batch and the flexibility to feed random
patches to the model until training convergence. However, it also comes with a few downsides.
For instance, since the patches are independent, it is often necessary to encode the position of the
patch within the whole sequence (e.g., the day, week, and year in the case of real-world datasets).
Additionally, a separate model must be trained for each prediction horizon Lout.

RNNs, on the other hand, conventionally predict the immediately following time point, and the user
can repeat this step as many times as desired to predict the whole horizon. Unlike feedforward models,
ESNs inherently track their position in the input sequence, removing the need for explicit position
encoding due to their potentially unlimited context length. In fact, we do not enhance the input data
in any way; we pass them to the network in their raw form. However, a natural downside of recurrent
models with long memory is the necessity of feeding the entire time series up to the moment of
prediction (or at least a substantial part of it). Fortunately, in the case of ESNs, training and prediction
are rather fast, and we do not need to propagate any gradient through the whole sequence.
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Figure 4: Overview of the prediction procedure.

Ultimately, for a fair comparison with the state of the art, we need to evaluate our model on all
ℓ − Lout + 1 subsequences of the testing data while running solely a self-feeding loop (without
the ground truth data), where ℓ is the length of the test data. The testing procedure is demonstrated
in Figure 4 and works as follows. The network is fed with the washout sequence, and its outputs
and states are ignored. Afterwards, the network is fed with the training data (teacher forced) up to
the beginning of the first validation subsequence. Next, the output weights are trained via linear
regression (as described in Section 3.1). The network is now ready to be used for a self-feeding
prediction loop.

A temporary clone of the network is created and driven by its own output for Lout steps. That is, at
time t, it uses its own output x(t− 1) as input. Its outputs are recorded and compared with the target
sequence. The clone is destroyed, and the original network is fed with the next time point (one step
with teacher forcing). This process of cloning, prediction, and updating is repeated until the cloned
network reaches the end of the validation sequence.

An important topic is the output weights (Wout) adaptation strategy when feeding the validation
data with teacher forcing. Let us list a few options ordered by their computational and memory
complexities and their notation used throughout the paper.

1. LCESN: Keep the output weights fixed after the initial training.
2. LCESN-LMS: Update the weights via a simple signal filter. There are many approaches

addressing the online adaptation of ESNs, such as the popular Recursive Least Squares
method called FORCE (Sussillo and Abbott, 2009), more computationally effective
Backpropagation-Decorrelation (Steil, 2004), and many others (Lukoševičius, 2012). The
evaluation of all existing methods is beyond the scope of this paper, and we chose Normal-
ized Least Mean Squares (NLMS) (Haykin, 2002) as a minimalist baseline.

3. LCESN-LR100: Inherit the filtering from LCESN-LMS, and recalculate the full linear
regression after every 100 steps. This option balances speed and accuracy, and the results
will later show that a shorter interval would bring about a negligible effect.

4. LCESN-LR1: Recompute the linear regression before every self-feeding prediction loop.
This option requires impractical computational resources, but represents an upper bound on
the accuracy of online learning.

Note that all of these methods use the same hyperparameter-optimized network and only differ in the
evaluation procedure. Therefore, there is no need to repeat the hyperparameter optimization, which is
the most time-consuming part of the process. In Section 6, we will present practical measurements
on real hardware.

4 DATASETS

We use the NARMA10 dataset, widely used in ESN literature, along with nine real-world datasets
commonly utilized in state-of-the-art sequence forecasting studies. From longest to shortest, these
datasets are ETTm1, ETTm2 (Electricity Transformer Temperature), Weather, Solar Energy, Electric-
ity, Traffic, ETTh1, ETTh2, and Exchange. We focus only on the multivariate case, i.e., predicting all
available features. For a more detailed description of the datasets, please refer to Appendix A.
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Figure 5: Comparison of various network and kernel sizes on NARMA10 benchmark tasks. Each
violin represents the evaluation of 100 unique random sequences predicted by a network selected as
the best of five optimization runs.

5 EXPERIMENT

First, we test the basic LCESN without forced memory and weight adaptation on the NARMA10
benchmark to demonstrate the effect of the local topology. Second, we evaluate the performance
of LCESN in practical terms of consumed time and memory resources on a consumer-grade GPU.
Third, we evaluate the effect of forced memory on ETTm datasets and compare LCESN with the
conventional ESN. Finally, we compare the four full-featured LCESN variants presented in Section 3.5
with state-of-the-art models in time series forecasting on real-world datasets.

To enable building our model from scratch on consumer hardware, we limit each hyperparameter
optimization run to 2000 evaluations, ensuring it fits within a 24-hour deadline on an older NVIDIA
GTX 2080 Ti GPU (released in 2018) and a single core of an average desktop CPU. For a fair
comparison, we use the same hyperparameter optimization technique for baseline ESN and for
the proposed LCESN models. Further technical details of the experimental setup are provided in
Appendix D.

6 RESULTS AND DISCUSSION

6.1 EFFECT OF LOCAL TOPOLOGY

We evaluated a grid of network sizes from 1,000 to 16,000 neurons and kernel sizes from 3×3 to 19×19
on the widely used NARMA10 benchmark task. The model used is the vanilla LCESN without forced
memory and weight adaptation (i.e., a conventional ESN with local topology). As demonstrated in
Figure 5, when the network size increases, the error on NARMA10 drops by orders of magnitude.
Furthermore, the kernel size plays a much less significant role, with 7×7 kernel representing the best
accuracy while still providing acceptable computational demands. An important observation is that
increasing the kernel size further, and thus approaching the fully connected conventional ESN, has
not provided any benefit. In fact, the results with the 19×19 kernel are statistically significantly worse
(p < 0.05) compared to the 7×7 kernel for the two largest networks.

The results suggest that on the NARMA10 benchmark task, the widely used network sizes of 100
to 1,000 neurons are simply too small, and with proper hyperparameters, the performance depends
mostly on the size of the network. Needless to say, the error on NARMA10 is below an interesting
threshold, and it should no longer be used to compare state-of-the-art results in the Echo State
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Figure 6: Wall-clock time and memory resources required to evaluate the entire ETTh1 dataset using
the models presented in Section 3.5 with 7×7 kernel and known hyperparameters. The measurements
encapsulate all the evaluation phases: generating the network, the washout period, linear regression
training, and test set prediction. The ESN model represents the conventional ESN with a full
connectivity matrix; LCESN reduces it to local topology and adds forced memory; and LCESN-
LR100 additionally performs regression retraining every 100 teacher forced steps.

Network literature. However, it remains a convenient, hard-to-overfit benchmark for checking basic
properties of ESNs and validating new ideas for sequence-to-sequence tasks.

Note that as the network size increases, the improvement gradually diminishes. One possible
explanation is that the size of the training data (12,000 steps) is insufficient for the largest network
(16,000 neurons). However, further increasing the size of the training set has not significantly
improved the results (see Appendix E.1 for details). For comparing various state sizes and alternative
topologies, such as convolution, please refer to Appendices E.2 and E.3.

6.2 BENCHMARKING

The effect of the lower time complexity of the local topology is demonstrated in Figure 6. Notably, in
the case of large networks, the gain from the faster LCESN step fully compensates for the time needed
to recalculate the linear regression every 100 steps (LCESN-LR100). However, the recalculation
consumes a lot of memory resources; therefore, it must be used with caution on large networks and
datasets. The measurements were performed on an NVIDIA GTX 1080 Ti GPU (released in 2017)
supported by a single core of an Intel i7-4770 CPU. Training and evaluation took under 40 seconds
for a 40x50 network.

Building the network from scratch also requires careful tuning of its hyperparameters (Matzner, 2022).
In all our experiments and for all tested models, the optimizer is limited to 2,000 full evaluation cycles.
Each cycle consists of generating a new network, performing regression training, and predicting the
validation sequence. In the case of the ETTh1 dataset, this procedure took less than four hours. Each
of our models is selected as the best from five hyperparameter optimization runs (on the validation
set). Therefore, it took 20 hours in total to train the ETTh1 model.

For a more detailed decomposition and comparison with other models, please refer to Appendix G.

6.3 EFFECT OF FORCED MEMORY

In this experiment, we compared conventional ESN without forced memory and LCESN with
increasing forced memory horizons. None of the tested models uses weight adaptation, meaning that
the LCESN without forced memory denotes an ESN with local topology. The hyperparameters for all
models, including the baseline ESN, are optimized using the same procedure described in Section 3.2.

Figure 7 shows the validation errors of five separate hyperparameter optimization runs on the ETTm1
dataset. Disabling forced memory or setting its maximum horizon to less than 50 steps increases noise,
hindering the hyperparameter optimizer’s ability to estimate the gradient and leading to substantially

8



Published as a conference paper at ICLR 2025

ESN LCESN LCESN LCESN LCESN LCESN

0.5

0.6

0.7

M
SE

no memory no memory H=25 H=50 H=100 H=200

Figure 7: Comparison of the final MSE reached by the hyperparameter optimization on the validation
sequence for five separate runs on the ETTm1 dataset. H denotes the forced memory horizon limit.
The reservoir size is 40×50 with a 7×7 kernel.

0 25 50 100 200
H

−1.00

−0.75

−0.50

−0.25

0.00

Ly
ap
un

ov

Figure 8: Lyapunov exponent versus forced memory horizon for LCESN runs evaluated in Figure 7.

worse results with higher variance. Local topology is only supposed to reduce computational costs,
not increase the accuracy. Therefore, unsurprisingly, the ESN baseline has performed similarly to
LCESN with short memory horizons. As a side note, forced memory and local topology do not
appear to interact on the ETTm1 task (see Appendix E.4 for further details).

Figure 8 demonstrates the relation of forced memory and the network dynamics. Limiting the forced
memory horizon clearly pushes the network toward the edge of chaos. In contrast, longer forced
memory horizons allow the network to stay in a stable regime while still benefiting from long memory.
The right choice of maximum memory horizon depends on the dataset at hand. According to Figure 7,
for the ETTm1 dataset, a 50-step horizon limit would likely suffice, but other datasets may require
longer memory. Therefore, we will use a memory horizon limit of 100 steps for the rest of this work.

6.4 REAL-WORLD DATASETS

We adopted the results of third-party models from Nie et al. (2023) and Liu et al. (2024), except for
the results of the more recent TSMixer, which are obtained directly from its original paper Chen et al.
(2023). Furthermore, Liu et al. (2024) only provide results for a prediction length of 96 time points,
whereas Nie et al. (2023) provide stronger baselines by selecting the best results from six different
prediction lengths for the Transformer-based models. When both baselines are available, we opt for
the stronger results from Nie et al. (2023). TSMixer was not tested on the Solar Energy and Exchange
datasets in its original paper, so those results are omitted from the comparison table, and TSMixer is
not considered in their ranking. However, since it was the overall best-ranked model, it is possible
that it would also perform well on the omitted datasets.

The comparison with existing third-party models and conventional ESN is provided in Table 1. For
complete results with all prediction horizons and for relative ranking between models, see Appendix B.
All four introduced LCESN variants improved upon the conventional ESN on all datasets, highlighting
the effect of forced memory. The three weight adaptation methods implemented by LCESN-LMS,
LCESN-LR100, and LCESN-LR1 notably improve the results of the basic LCESN. Therefore, if
the data frequency and computational resources allow, as in the case of the evaluated real-world
datasets, regular retraining can yield better performance. LCESN-LR1, however, did not significantly
improve upon the results of LCESN-LR100, so its high computational demands have not proven to
be justifiable on the tested datasets. According to the relative ranking across all datasets and horizons
(Appendix B.2), LCESN-LR1 clinched the second place and LCESN-LR100 the third place among
all the evaluated models.
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Table 1: The results of the LCESN approach on real-world datasets compared to the results of other
authors. Every number is the average over four prediction horizons 96, 192, 336, and 720. The best
result is red and the second best is blue. The four LCESN variants and the ESN are not compared to
each other. The reservoir size for ESN and LCESNs is 40×50 with a 7×7 kernel. Datasets are sorted
from longest (top) to shortest (bottom).

Models ESN LCESN LCESN-LMS LCESN-LR100 LCESN-LR1 TSMixer DLinear PatchTST iTransformer FEDformer TimesNet RLinear Autoformer
(2001) Ours Ours Ours Ours (2023) (2023) (2023) (2024) (2022) (2023) (2023) (2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.540 0.527 0.412 0.430 0.364 0.393 0.362 0.392 0.359 0.390 0.347 0.375 0.403 0.407 0.387 0.400 0.407 0.410 0.382 0.422 0.400 0.406 0.414 0.408 0.515 0.493

ETTm2 0.380 0.424 0.283 0.354 0.275 0.332 0.257 0.326 0.255 0.326 0.267 0.322 0.350 0.401 0.281 0.326 0.288 0.332 0.292 0.343 0.291 0.332 0.286 0.327 0.310 0.357

Weather 0.255 0.298 0.232 0.279 0.236 0.272 0.221 0.264 0.221 0.264 0.224 0.264 0.265 0.317 0.258 0.280 0.258 0.278 0.310 0.357 0.259 0.286 0.272 0.291 0.335 0.379

Solar 0.268 0.384 0.202 0.277 0.202 0.268 0.201 0.273 0.201 0.274 N/A N/A 0.330 0.401 0.270 0.307 0.233 0.262 0.292 0.381 0.301 0.319 0.369 0.355 0.885 0.711

Electricity 0.264 0.351 0.225 0.329 0.197 0.308 0.184 0.294 0.183 0.293 0.160 0.257 0.212 0.300 0.205 0.290 0.178 0.270 0.207 0.321 0.192 0.295 0.218 0.298 0.214 0.326

Traffic 1.095 0.533 0.882 0.407 0.845 0.402 0.787 0.392 0.782 0.392 0.408 0.284 0.624 0.383 0.481 0.304 0.428 0.282 0.604 0.372 0.620 0.336 0.626 0.378 0.616 0.384

ETTh1 0.650 0.602 0.818 0.662 0.516 0.510 0.537 0.518 0.541 0.521 0.412 0.428 0.456 0.452 0.469 0.454 0.454 0.448 0.428 0.454 0.458 0.450 0.446 0.434 0.473 0.477

ETTh2 0.559 0.529 0.438 0.464 0.372 0.419 0.378 0.421 0.381 0.422 0.355 0.400 0.559 0.515 0.387 0.407 0.383 0.406 0.388 0.434 0.414 0.427 0.374 0.398 0.422 0.443

Exchange 0.703 0.575 0.889 0.661 0.718 0.602 0.656 0.574 0.639 0.566 N/A N/A 0.354 0.414 0.366 0.404 0.360 0.403 0.518 0.429 0.416 0.443 0.378 0.418 0.613 0.539

# 1st 0/9 0/9 1/9 0/9 1/9 0/9 3/9 1/9 3/9 1/9 5/7 5/7 1/9 0/9 0/9 0/9 0/9 3/9 0/9 0/9 0/9 0/9 0/9 1/9 0/9 0/9

LCESN variants were most successful on the ETTm1, ETTm2, Weather, and Solar Energy datasets,
even clinching first place in several cases. One of the reasons for the success on those particular
datasets might be their length, as they represent the four longest of the nine tested series, and the
difference in dataset length is substantial. Each of the four listed datasets has more than 52,000 time
points, while each of the remaining five has fewer than 27,000 time points. This suggests that to fully
utilize the potential of LCESN, tasks need to provide a sufficient amount of training data. For more
details on dataset properties, see Appendix A.

We used a medium-sized model of size 40×50 to reduce the experiment duration. Whether a smaller
or larger network could further improve the results remains an open question.

7 CONCLUSION

In recent years, recurrent neural networks (RNNs) have been overshadowed by gradient-trained
feedforward architectures, to the point that modern time series forecasting papers often do not even
include them in comparisons due to their lack of recent successes.

To revitalize research in this area, we revisited the Echo State Network (ESN) approach – an older,
often overlooked yet promising method – and addressed two of its limitations. First, introducing a lo-
cal topology allows for much larger networks at the same computational costs. Second, incorporating
forced memory facilitates longer time dependencies and enhances network stability.

The resulting Locally Connected Echo State Network (LCESN) is simple and free of gradient descent.
It is fast to train and infer after its hyperparameters are set, and can predict arbitrary horizons.
While not designed to surpass every existing method, it demonstrates competitive accuracy with
state-of-the-art models, even outperforming them on some of the longest of the tested datasets.

Our model can be built from scratch on consumer-grade hardware in under 24 hours, with most
of that time devoted to hyperparameter optimization – an area offering significant room for future
improvements. Once hyperparameters are known, training and inference typically take seconds or
minutes, depending on the dataset size.

We have released our C++/CUDA implementation of LCESN under a permissive license at our
GitHub repository (https://github.com/FloopCZ/echo-state-networks), together
with logs, network checkpoints, and fixed random seeds to ensure reproducibility.
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Table 2: Sizes of the real-world datasets measured in the number of time steps.
ETTm1/2 Weather Solar Electricity Traffic ETTh1/2 Exchange

Training 34560 36887 36792 18412 12280 8640 5311
Validation 11520 5270 5256 2632 1756 2880 760

Test 11520 10539 10512 5260 3508 2880 1517
Features 7 21 136 321 862 7 8

A DATASETS

A.1 NARMA10

In Nonlinear Autoregressive Moving Average of 10th order (NARMA10), each element is a nonlinear
combination of the last 10 inputs and outputs. Formally, the target sequence is defined as follows:

y(t+ 1) = 0.3y(t) + 0.05y(t)
∑9

i=0 y(t− i) + 1.5u(t− 10)u(t) + 0.1 ,

where u(t) is the random input sequence generated from uniform distribution U(0, 0.5) and y(t) is
the target sequence, both in time t. It should be mentioned that NARMA10 is a chaotic sequence that
can diverge (Kubota et al., 2019), in which case it has to be regenerated.

We use a washout period of 1000 steps, a training period of 12000 steps, and a testing period of 1000
steps. For evaluation, we generate 100 unique NARMA10 sequences (using a different initial random
seed).

A.2 REAL-WORLD DATASTETS

We use nine publicly available datasets ETTh1, ETTh2, ETTm1, and ETTm2 proposed by Zhou et al.
(2021), weather by Wu et al. (2021), and electricity, traffic, solar-energy, and exchange datasets used
by Lai et al. (2018). We focus only on the multivariate case, i.e., predicting all the provided features.
For a brief description of the contents of the datasets, see Appendix A.1 from Liu et al. (2024).

To be comparable to other works, we normalize each covariate in the training set independently to
zero mean and unit variance. We apply the normalization coefficients computed on the training set
to the rest of the data (validation and testing set). The reported results are based on the normalized
data (Chen et al., 2023). See Table 2 for the dataset sizes and consult the source code of the original
papers (Python) or ours (C++) for more details.

We noticed order-of-magnitude outliers in the weather dataset training data. It would be misleading to
fit those using the least squares method (Section C). Therefore, we preventively clip the normalized
training data and the network input to the interval [−10; 10] for all the datasets. The validation and
testing data are left untouched.
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B FULL RESULTS ON REAL-WORLD DATASETS

B.1 DETAILED VIEW

Table 3: The full results of LCESN approach on real-world datasets compared to the results of other
authors. The best result is red and the second best result is blue. The reservoir size for ESN and
LCESNs is 40×50 with a 7×7 kernel. The four LCESN variants and ESN baseline are not compared
to each other. Datasets are sorted from longest (top) to shortest (bottom).

Models ESN LCESN LCESN-LMS LCESN-LR100 LCESN-LR1 TSMixer PatchTST DLinear iTransformer FEDformer TimesNet RLinear Autoformer
(2001) Ours Ours Ours Ours (2023) (2023) (2023) (2024) (2022) (2023) (2023) (2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.392 0.425 0.307 0.360 0.297 0.350 0.291 0.344 0.289 0.343 0.285 0.339 0.329 0.367 0.345 0.372 0.334 0.368 0.326 0.390 0.338 0.375 0.355 0.376 0.510 0.492
192 0.475 0.483 0.363 0.397 0.341 0.377 0.335 0.372 0.332 0.371 0.327 0.365 0.367 0.385 0.380 0.389 0.377 0.391 0.365 0.415 0.374 0.387 0.391 0.392 0.514 0.495
336 0.558 0.544 0.425 0.440 0.379 0.402 0.374 0.400 0.371 0.398 0.356 0.382 0.399 0.410 0.413 0.413 0.426 0.420 0.392 0.425 0.410 0.411 0.424 0.415 0.510 0.492
720 0.734 0.656 0.554 0.524 0.442 0.442 0.449 0.453 0.443 0.450 0.419 0.414 0.454 0.439 0.474 0.453 0.491 0.459 0.446 0.458 0.478 0.450 0.487 0.450 0.527 0.493

Avg 0.540 0.527 0.412 0.430 0.364 0.393 0.362 0.392 0.359 0.390 0.347 0.375 0.387 0.400 0.403 0.407 0.407 0.410 0.382 0.422 0.400 0.406 0.414 0.408 0.515 0.493

E
T

T
m

2

96 0.196 0.301 0.170 0.269 0.166 0.259 0.162 0.256 0.162 0.256 0.163 0.252 0.175 0.259 0.193 0.292 0.180 0.264 0.180 0.271 0.187 0.267 0.182 0.265 0.205 0.293
192 0.292 0.375 0.231 0.318 0.223 0.301 0.218 0.299 0.218 0.299 0.216 0.290 0.241 0.302 0.284 0.362 0.250 0.309 0.252 0.318 0.249 0.309 0.246 0.304 0.278 0.336
336 0.402 0.449 0.295 0.368 0.283 0.342 0.272 0.339 0.271 0.339 0.268 0.324 0.305 0.343 0.369 0.427 0.311 0.348 0.324 0.364 0.321 0.351 0.307 0.342 0.343 0.379
720 0.630 0.573 0.436 0.462 0.427 0.427 0.374 0.410 0.371 0.409 0.420 0.422 0.402 0.400 0.554 0.522 0.412 0.407 0.410 0.420 0.408 0.403 0.407 0.398 0.414 0.419

Avg 0.380 0.424 0.283 0.354 0.275 0.332 0.257 0.326 0.255 0.326 0.267 0.322 0.281 0.326 0.350 0.401 0.288 0.332 0.292 0.343 0.291 0.332 0.286 0.327 0.310 0.357

W
ea

th
er

96 0.172 0.229 0.160 0.213 0.154 0.203 0.149 0.200 0.149 0.200 0.145 0.198 0.177 0.218 0.196 0.255 0.174 0.214 0.238 0.314 0.172 0.220 0.192 0.232 0.249 0.329
192 0.224 0.277 0.205 0.263 0.202 0.252 0.191 0.245 0.192 0.246 0.191 0.242 0.225 0.259 0.237 0.296 0.221 0.254 0.275 0.329 0.219 0.261 0.240 0.271 0.325 0.370
336 0.279 0.318 0.256 0.305 0.262 0.298 0.243 0.287 0.243 0.288 0.242 0.280 0.278 0.297 0.283 0.335 0.278 0.296 0.339 0.377 0.280 0.306 0.292 0.307 0.351 0.391
720 0.346 0.369 0.307 0.335 0.325 0.333 0.302 0.323 0.299 0.322 0.320 0.336 0.354 0.348 0.345 0.381 0.358 0.347 0.389 0.409 0.365 0.359 0.364 0.353 0.415 0.426

Avg 0.255 0.298 0.232 0.279 0.236 0.272 0.221 0.264 0.221 0.264 0.224 0.264 0.258 0.280 0.265 0.317 0.258 0.278 0.310 0.357 0.259 0.286 0.272 0.291 0.335 0.379

So
la

r

96 0.236 0.355 0.171 0.252 0.172 0.249 0.170 0.249 0.170 0.250 N/A N/A 0.234 0.286 0.290 0.378 0.203 0.237 0.242 0.342 0.250 0.292 0.322 0.339 0.884 0.711
192 0.254 0.369 0.195 0.267 0.197 0.262 0.195 0.263 0.195 0.264 N/A N/A 0.267 0.310 0.320 0.398 0.233 0.261 0.285 0.380 0.296 0.318 0.359 0.356 0.834 0.692
336 0.279 0.392 0.214 0.283 0.215 0.276 0.214 0.280 0.213 0.281 N/A N/A 0.290 0.315 0.353 0.415 0.248 0.273 0.282 0.376 0.319 0.330 0.397 0.369 0.941 0.723
720 0.304 0.422 0.228 0.306 0.225 0.286 0.226 0.300 0.225 0.301 N/A N/A 0.289 0.317 0.356 0.413 0.249 0.275 0.357 0.427 0.338 0.337 0.397 0.356 0.882 0.717

Avg 0.268 0.384 0.202 0.277 0.202 0.268 0.201 0.273 0.201 0.274 N/A N/A 0.270 0.307 0.330 0.401 0.233 0.262 0.292 0.381 0.301 0.319 0.369 0.355 0.885 0.711

E
le

ct
ri

ci
ty 96 0.247 0.337 0.219 0.325 0.189 0.301 0.166 0.278 0.164 0.276 0.131 0.229 0.181 0.270 0.197 0.282 0.148 0.240 0.186 0.302 0.168 0.272 0.201 0.281 0.196 0.313

192 0.260 0.346 0.220 0.325 0.190 0.302 0.174 0.286 0.172 0.284 0.151 0.246 0.188 0.274 0.196 0.285 0.162 0.253 0.197 0.311 0.184 0.289 0.201 0.283 0.211 0.324
336 0.268 0.353 0.221 0.326 0.194 0.307 0.184 0.297 0.183 0.295 0.161 0.261 0.204 0.293 0.209 0.301 0.178 0.269 0.213 0.328 0.198 0.300 0.215 0.298 0.214 0.327
720 0.282 0.365 0.240 0.339 0.213 0.320 0.212 0.317 0.212 0.317 0.197 0.293 0.246 0.324 0.245 0.333 0.225 0.317 0.233 0.344 0.220 0.320 0.257 0.331 0.236 0.342

Avg 0.264 0.351 0.225 0.329 0.197 0.308 0.184 0.294 0.183 0.293 0.160 0.257 0.205 0.290 0.212 0.300 0.178 0.270 0.207 0.321 0.192 0.295 0.218 0.298 0.214 0.326

Tr
af

fic

96 0.901 0.490 0.768 0.378 0.732 0.372 0.683 0.364 0.677 0.363 0.376 0.264 0.462 0.295 0.650 0.396 0.395 0.268 0.576 0.359 0.593 0.321 0.649 0.389 0.597 0.371
192 1.024 0.512 0.826 0.389 0.789 0.384 0.733 0.375 0.729 0.374 0.397 0.277 0.466 0.296 0.598 0.370 0.417 0.276 0.610 0.380 0.617 0.336 0.601 0.366 0.607 0.382
336 1.142 0.539 0.892 0.406 0.855 0.402 0.791 0.390 0.787 0.390 0.413 0.290 0.482 0.304 0.605 0.373 0.433 0.283 0.608 0.375 0.629 0.336 0.609 0.369 0.623 0.387
720 1.314 0.592 1.041 0.454 1.006 0.450 0.942 0.439 0.938 0.439 0.444 0.306 0.514 0.322 0.645 0.394 0.467 0.302 0.621 0.375 0.640 0.350 0.647 0.387 0.639 0.395

Avg 1.095 0.533 0.882 0.407 0.845 0.402 0.787 0.392 0.782 0.392 0.408 0.284 0.481 0.304 0.624 0.383 0.428 0.282 0.604 0.372 0.620 0.336 0.626 0.378 0.616 0.384

E
T

T
h1

96 0.460 0.471 0.515 0.510 0.411 0.437 0.407 0.431 0.407 0.431 0.361 0.392 0.414 0.419 0.386 0.400 0.386 0.405 0.376 0.415 0.384 0.402 0.386 0.395 0.435 0.446
192 0.581 0.557 0.708 0.613 0.482 0.485 0.481 0.482 0.483 0.483 0.404 0.418 0.460 0.445 0.437 0.432 0.441 0.436 0.423 0.446 0.436 0.429 0.437 0.424 0.456 0.457
336 0.701 0.640 0.920 0.711 0.543 0.525 0.559 0.532 0.563 0.535 0.420 0.431 0.501 0.466 0.481 0.459 0.487 0.458 0.444 0.462 0.491 0.469 0.479 0.446 0.486 0.487
720 0.857 0.743 1.129 0.813 0.627 0.591 0.700 0.628 0.710 0.633 0.463 0.472 0.500 0.488 0.519 0.516 0.503 0.491 0.469 0.492 0.521 0.500 0.481 0.470 0.515 0.517

Avg 0.650 0.602 0.818 0.662 0.516 0.510 0.537 0.518 0.541 0.521 0.412 0.428 0.469 0.454 0.456 0.452 0.454 0.448 0.428 0.454 0.458 0.450 0.446 0.434 0.473 0.477

E
T

T
h2

96 0.344 0.408 0.323 0.387 0.296 0.364 0.300 0.364 0.301 0.364 0.274 0.341 0.302 0.348 0.333 0.387 0.297 0.349 0.332 0.374 0.340 0.374 0.288 0.338 0.332 0.368
192 0.486 0.492 0.404 0.440 0.364 0.409 0.374 0.411 0.377 0.412 0.339 0.385 0.388 0.400 0.477 0.476 0.380 0.400 0.407 0.446 0.402 0.414 0.374 0.390 0.426 0.434
336 0.645 0.571 0.470 0.487 0.399 0.439 0.409 0.442 0.413 0.444 0.361 0.406 0.426 0.433 0.594 0.541 0.428 0.432 0.400 0.447 0.452 0.452 0.415 0.426 0.477 0.479
720 0.761 0.643 0.554 0.544 0.427 0.465 0.431 0.467 0.435 0.468 0.445 0.470 0.431 0.446 0.831 0.657 0.427 0.445 0.412 0.469 0.462 0.468 0.420 0.440 0.453 0.490

Avg 0.559 0.529 0.438 0.464 0.372 0.419 0.378 0.421 0.381 0.422 0.355 0.400 0.387 0.407 0.559 0.515 0.383 0.406 0.388 0.434 0.414 0.427 0.374 0.398 0.422 0.443

E
xc

ha
ng

e 96 0.417 0.413 0.636 0.535 0.417 0.447 0.335 0.399 0.308 0.382 N/A N/A 0.088 0.205 0.088 0.218 0.086 0.206 0.148 0.278 0.107 0.234 0.093 0.217 0.197 0.323
192 0.568 0.510 0.844 0.642 0.606 0.557 0.545 0.531 0.525 0.521 N/A N/A 0.176 0.299 0.176 0.315 0.177 0.299 0.271 0.315 0.226 0.344 0.184 0.307 0.300 0.369
336 0.825 0.644 1.176 0.778 0.945 0.714 0.842 0.678 0.820 0.670 N/A N/A 0.301 0.397 0.313 0.427 0.331 0.417 0.460 0.427 0.367 0.448 0.351 0.432 0.509 0.524
720 1.003 0.733 0.902 0.688 0.903 0.690 0.903 0.690 0.903 0.690 N/A N/A 0.901 0.714 0.839 0.695 0.847 0.691 1.195 0.695 0.964 0.746 0.886 0.714 1.447 0.941

Avg 0.703 0.575 0.889 0.661 0.718 0.602 0.656 0.574 0.639 0.566 N/A N/A 0.366 0.404 0.354 0.414 0.360 0.403 0.518 0.429 0.416 0.443 0.378 0.418 0.613 0.539

# 1st 0/36 0/36 5/36 2/36 4/36 2/36 8/36 2/36 7/36 2/36 24/28 20/28 2/36 3/36 2/36 0/36 1/36 8/36 1/36 0/36 0/36 0/36 0/36 4/36 0/36 0/36
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B.2 RELATIVE RANKING

Table 4: Relative ranking for models and datasets presented in Table 3. Value at i-th row and j-th
column represents the number of datasets and horizons on which model i outperformed model j.
Models are sorted from best (top) to worst (bottom).
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TSMixer 28 27 27 23 24 0 26 28 26 26 27 27 26 315
LCESN-LR1 36 34 26 19 0 4 24 24 19 23 25 26 21 281

LCESN-LR100 35 33 27 0 8 4 24 24 19 22 25 26 21 268
iTransformer 34 22 16 17 17 2 22 27 0 24 26 35 23 265

PatchTST 31 22 14 11 12 2 0 28 13 24 27 33 27 244
LCESN-LMS 33 30 0 8 8 1 22 24 19 22 22 25 21 235

FEDformer 27 20 14 14 13 2 12 23 11 0 19 34 22 211
TimesNet 29 21 14 11 11 1 9 25 10 17 0 29 19 196
RLinear 28 22 15 14 15 2 9 12 12 14 17 31 0 191
DLinear 28 17 12 12 12 0 6 0 8 13 11 24 22 165
LCESN 29 0 6 1 1 1 14 19 14 16 15 18 14 148

Autoformer 24 18 11 10 10 1 3 12 1 1 7 0 5 103
ESN 0 7 2 1 0 0 5 8 2 9 6 12 8 60
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Table 5: The list of optimized hyperparameters with their genotype-to-phenotype transformation,
initial values in the phenotype space, initial σ for CMA-ES in the genotype space, and their allowed
range in genotype space. nin denotes the average number of nonzero inputs to a neuron. σi

in and σi
fb

denote the coefficients for i-th input and feedback, respectively.
Hyperparameter Phenotype transform Initial value Initial σ Boundaries

σres x 7−→ e−50x 1/
√
2nin 0.01 [−0.1; 1.1]

µres x 7−→ 2x|x| 0 0.05 [−1.1; 1.1]
σi
in x 7−→ e−50x 1× 10−5 0.01 [−0.1; 2.0]

σi
fb x 7−→ e−50x 1× 10−5 0.01 [−0.1; 2.0]

µb x 7−→ 2x|x| 0 0.05 [−1.1; 1.1]
λ2 x 7−→ e−50x 1× 10−8 0.01 [−0.1; 2.0]

C TRAINING DETAILS

The network is driven by the training data U ∈ RT×nin (fed to the network row by row) with the
target data Y ∈ RT×nout , where T denotes the number of training time steps. Let us define matrix
A ∈ RT×n, whose i-th row is the vector of reservoir activations a(i). Afterward, the linear least
squares method with ridge regularization is used to find Wout as follows:

Wout = argminW ||AW − Y ||22 + λ2 ||W ||22 ,

where || · ||2 denotes the Euclidean norm and λ2 denotes the strength of the regularization.

D EXPERIMENTAL SETTINGS

To minimize the curse of dimensionality, we optimize only a restricted set of parameters. The
maximum memory length H is fixed at 100 because larger values require more GPU memory, and
the model would also require a longer washout sequence. Leakage is fixed at 1, because the optimizer
had a tendency to avoid leakage in the NARMA task, and the model already has the history of states
available through the memory mechanism described in 3.4. Sparsity is fixed at 0, because a randomly
pruned reservoir does not appear to have a significant impact even for fully connected networks
(Matzner, 2022). Furthermore, our topology is sparse by design. σnoise is set to zero because its
purpose is a regularization that is already covered by the ridge regression. The learning rate for
NLMS weight updates µlms is set arbitrarily at 1× 10−3.

We adopt the CMA-ES hyperparameter tuning framework by Matzner (2022), including genotype-to-
phenotype transformations. Generally, the hyperparameters that are supposed to be positive (e.g.,
σres) are optimized in the logarithmic space via x 7−→ e−50x, and hyperparameters that need to take
cautious steps around zero (e.g., µres) are optimized in square root space via x 7−→ 2x|x|. Parameters
denoting convex or affine combination coefficients are optimized directly. Table 5 summarizes the
optimized hyperparameters, the corresponding transformations, and their upper and lower bounds.

In contrast to Matzner (2022), we do not create a new random network for every fitness evaluation.
Instead, we reuse the same random seed, so the optimizer searches for the optimal scaling of a single
network. This technique reduces noise and makes the optimization more stable.

The initial neuron activation is set to zero, and the first 500 steps of training data are used as a washout
period to eliminate the effect of state initialization. Each task is optimized five times, each time with
a different random seed (in a reproducible manner). For NARMA10 validation, each optimization run
is followed by evaluating the best network on 100 new unique random NARMA10 sequences, and
the best result is reported (or visualized). For the real-world datasets, we select the hyperparameters
using the train and validation set, and the network with the best validation accuracy over the five
optimization runs is used for testing on the provided test set. We use a reservoir of 40×50 with a 7×7
kernel.

The models for all the real-world datasets comply with the same optimization rules. In fact, due to
the same random seed, they are the same reservoir, just scaled with different hyperparameters.
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Figure 9: Comparison of various training set sizes of LCESN with 4000 and 16000 neurons and 7×7
kernel on NARMA10. Each point in the scatter plot represents a single evaluation of one of the best
hyperparameters found during the NARMA10 experiments. The only parameter that is changing is
the number of train steps.

By far, the most time-consuming part of the whole training procedure is the hyperparameter optimiza-
tion. The hyperparameter tuning requires thousands of network evaluations, and thus, it is desired
to minimize its computational time even at the cost of a rougher approximation. Therefore, we use
the pure LCESN variant without linear regression recomputation and NLMS weight updates. We
optimize our network for a prediction horizon of 192 steps and validate only every 30th subsequence.

For sequence prediction tasks, the most important part of the sequence tends to be just before the
sequence to be predicted. To focus on this last part of the sequence, the training sample at time t is
weighted by et/T , where T is the number of samples.

In sequence-to-sequence experiments (e.g., NARMA10), the feedback connections dramatically
improve the results (Matzner, 2022) because the target sequence can be completely different from
the input sequence. Without the feedback, the network would not be able to utilize its own output.
On the other hand, sequence prediction tasks (e.g., our real-world datasets) already use the network
output as the input for the next step, so using feedback connections would be redundant.

E ABLATION STUDY

E.1 EFFECT OF TRAINING SIZE

According to the results presented in Section 6, larger networks seem to have a larger learning
capacity. An important topic is whether the size of the training data was sufficient for the largest
of the evaluated networks and whether their size also brings downsides to smaller training sets.
According to Figure 9, which compares networks of 4,000 and 6,000 neurons on various training set
sizes, larger network dominates the smaller network even with smaller training sets. As the training
set size increases, the smaller network reaches its limit, and the larger one keeps improving.

At least on the NARMA10 task, choosing a larger network does not appear to have negative conse-
quences, except for higher computational demands.

E.2 EFFECT OF STATE SIZE

The aspect ratio of the state size does not appear to play a significant role in the performance of the
network. Figure 10 demonstrates the effect of changing the aspect ratio of the state. Aspect ratio
denotes the ratio of height to width, spanning from a square shape (aspect ratio 1) to a prolonged
rectangle (aspect ratio 0). The state size 71×7 is significantly worse (p < 0.05) than all other
evaluated state sizes. However, the other ratios performed similarly except for an outlier 26×19.
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Figure 10: Comparison of various state aspect ratios of LCESN with 500 neurons and 7×7 kernel on
NARMA10. Each violin represents the evaluation of 100 unique random sequences predicted by a
network selected as the best of five optimization runs.
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Figure 11: Comparison of various topologies of 4000 neurons on NARMA10. LCESN uses a 7×7
kernel. Each violin represents the evaluation of 100 unique random sequences predicted by a network
selected as the best of five optimization runs.

According to the data, there is a chance that performance may be degraded in extreme cases where
the kernel covers the entire height or width of the network. To mitigate the risk, we use state sizes
closer to the 1:1 ratio.

E.3 ALTERNATIVE TOPOLOGIES

Figure 11 compares multiple reservoir topologies. The ring topology was presented in Rodan and
Tino (2011) as a minimum complexity ESN reservoir that does not affect performance. It simply
connects the neurons to form a circle. The permutation topology (as evaluated, e.g., by Gallicchio
and Micheli (2019) and Matzner (2022)) splits the neurons into multiple rings, each independent of
the others. The convolution topology uses the same kernel technique as LCESN, but the kernels for
all neurons are equal. In our experiments, LCESN significantly outperformed the three remaining
topologies (p < 0.05).

E.4 RELATION BETWEEN MEMORY HORIZON AND KERNEL SIZE

As discussed in Section 3.3, local connectivity does not inherently improve ESN accuracy when
the network size is constant and shows no such effect on NARMA10 tasks (Figure 5). Its primary
purpose is to reduce computational costs and enable larger networks. In contrast, forced memory is
designed to improve the accuracy for tasks requiring memory, independent of local connectivity. To
evaluate this empirically, Figure 12 presents a heatmap of various kernel sizes and forced memory
horizons on the ETTm1 benchmark. The results reveal a clear effect of longer memory horizons,
while showing minimal impact from kernel size variations. The findings suggest no clear dependency
between local topology and forced memory.
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Figure 12: A heatmap of forced memory horizon (H) vs. multiple kernel sizes for a 40x50 LCESN
network on ETTm1 dataset. The color represents the average MSE validation error over five
independent optimization runs.
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Figure 13: Average execution times of two different LCESN step implementations with a 7×7 kernel,
based on 10 000 evaluations. Sparse matrix multiplication is performed using the Arrayfire CUDA
library (Yalamanchili et al., 2022), utilizing the compressed sparse row (CSR) format. Experiments
were conducted on an NVIDIA GTX 1080Ti GPU and an Intel i7-4770 CPU.

F DETAILS ON GPU IMPLEMENTATION

The topology of LCESN was designed with GPU memory properties in mind. LCESNs leverage
that sparse reservoirs do not appear to harm accuracy (Matzner, 2022) while also providing op-
portunities for more efficient computation. Generic sparse matrix algorithms, however, inherently
suffer from significant overhead due to irregular memory access, which negatively impacts GPU
performance (Bell and Garland, 2009). To overcome these issues, we optimized our implementation
to fully leverage the proposed local topology, minimizing memory overhead and ensuring coalesced
GPU memory access (i.e., access in continuous blocks). The local connectivity is well-suited for GPU
parallelization, allowing each neuron’s state update to be handled independently by GPU threads,
while still effectively utilizing shared GPU memory.

F.1 PERFORMANCE

Our GPU implementation, tested on an NVIDIA GTX 1080 Ti, demonstrated a 14x speedup compared
to a conventional fully connected ESN and 15x speedup compared a CPU implementation (Intel
i7-4770), using a reservoir of 80x100 neurons and a 7x7 kernel.

The closest alternative to our custom implementation is sparse matrix multiplication. Figure 13
compares the execution times of the LCESN step implemented with our method versus the sparse
matrix method. For very small reservoirs, the performance difference is minimal. However, for larger
reservoirs of size 80×100 our implementation demonstrates an improvement of over 50%.

F.2 ALGORITHM OVERVIEW

The reservoir weights are stored in a tensor of dimensions N × M × K × K, where N × M
represents the size of the reservoir, and K × K represents the kernel size. The element at index
[i, j, k, l] corresponds to the connection weight from the neuron at position [i−K//2+k, j−K//2+l]
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to the neuron at position [i, j] of the reservoir. In other words, each kernel slice [i, j, :, :] stores the
connections directed inward to the neuron at position [i, j]. The reservoir activations are stored as a
tensor of dimensions N ×M . These tensors are stored in memory in the conventional column-wise
order.

The order of dimensions is a crucial aspect of the implementation. Subsequent indices in the first
dimension are contiguous in memory, while subsequent indices in other dimensions represent more
distant memory addresses. Specifically for the reservoir weights matrix, each kernel is intentionally
scattered across the memory.

The algorithm roughly consists of the following steps:

1. Allocate a perimeter of dimensions (N + K) × (M + K), which is the reservoir grid
padded by state activations from the opposite side of the reservoir. This ensures that every
neuron can access its entire kernel neighborhood locally, simulating a periodic (torus-shaped)
reservoir. Allocate this perimeter to shared GPU memory.

2. Use the GPU thread index to access the reservoir grid in a top-down, left-right manner. In
other words, allocate the GPU warp to subsequent neurons in the memory.

3. For each thread, traverse the weights of its kernel (top-down, left-right), multiply them by
the corresponding presynaptic activation found in the perimeter, and accumulate the result
in a local variable.

4. Write the accumulated result to the corresponding output in global memory.

By adhering to the specified dimension order and traversal sequence, GPU memory accesses are
coalesced, ensuring optimal performance. For a more detailed description, please refer to the source
code file lcnn_step_cuda.cu.

G DETAILED BENCHMARKS

One of the main benefits of ESNs is their fast training procedure and inference. However, LCESN, as
a recurrent model, differs from feedforward models in its usage (see Section 3.5). To clarify the most
suitable tasks for ESNs, we present a detailed analysis of the benchmarking results from Section 6.2
and compare LCESN with alternative approaches.

The majority of time is spent on hyperparameter optimization using the CMA-ES procedure described
in Section 3.2. We conducted 2,000 full evaluation cycles, which, in the case of the ETTh1 dataset,
took less than four hours. The model selected for testing was the one with the best validation error
across five independent hyperparameter runs, resulting in a total optimization time of 20 hours. While
this approach provides a robust lower bound on achievable performance, it is also the weakest aspect
of our method, offering significant opportunities for improvement. For example, early stopping
or more efficient optimization algorithms could reduce this time. We adhered to the framework
by Matzner (2022), leaving optimization improvements for future research.

It is rather difficult to compare running time of our model to others, because of hardware differences
and often complicated reproducibility. Using information from the TSMixer paper (Chen et al.,
2023), it is reported that the hyperparameter search grid required 1,600 training and validation cycles
for each dataset (400 for each of four time horizons), which is similar to our model. Additionally,
it is mentioned that a single training cycle of TSMixer took more than three hours on a high-end
NVIDIA Tesla V100 GPU on a large M5 dataset. It suggests that the hyperparameter tuning was
very time-consuming and may have required a cluster of GPUs. Although Transformers may appear
agnostic to hyperparameter perturbations, Liu et al. (2024) (Appendix C, Figure 9) noted considerable
sensitivity in the tested TSF datasets. Unfortunately, the work does not detail their hyperparameter
optimization procedure or its computational costs, making direct comparison challenging. To focus on
LCESN’s practical performance, we assume known hyperparameters in the subsequent experiments.

G.1 TRAINING AND INFERENCE TIME

Liu et al. (2024) (iTransformer) provided a quality code, and we were able to reproduce their results on
the same hardware (NVIDIA GTX 1080 Ti GPU supported by a single core of an Intel i7-4770 CPU).
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Figure 14: Decomposition of washout, training, and testing times on ETTh1 datasets for LCESN and
iTransformer for prediction horizon of 96 steps.

Table 6: Comparison of inference speed in low-latency (1-step) and high-throughput (96-steps)
scenarios for LCESN and iTransformer. In the 1-step scenario, only a single prediction is required
as soon as possible. In the 96-steps scenario, LCESN has to be run subsequently 96 times in a
self-feeding loop, while iTransformer predicts the entire horizon immediately. Both scenarios used
the same LCESN model, while iTransformer was trained for each of the scenarios separately.

horizon LCESN iTransformer

1-step 8361 steps/s 107 steps/s
96-steps 87 steps/s 97 steps/s

Since iTransformer was the second strongest competitor, we will use it as a baseline measurement.
Figure 14 illustrates the decomposition of training and testing times for LCESN and iTransformer on
the ETTh1 datasets with a prediction horizon of 96 steps. For LCESN, the linear regression training
procedure required just over two seconds, highlighting one of the strongest upsides of ESNs. The
testing procedure involved running a 96-step self-feeding loop for each testing data point, which is
inherently more time-consuming than training since the training phase traverses the data only once.

G.2 LATENCY VS. THROUGHPUT

Figure 14 does not show a complete picture. Feedforward models like iTranformer predict the entire
prediction horizon at once and support parallel batch processing, while LCESN only predicts the
next step. These differences offer distinct advantages. A fast 1-step prediction excels in low-latency
scenarios, where only the immediate next prediction matters and the others can wait (e.g., control
systems, trading, online signal filtering). In contrast, predicting the entire horizon and supporting
parallel batches provides higher throughput (e.g., processing offline datasets or predicting many
independent time series in parallel). Additionally, a 1-step prediction model like LCESN can handle
arbitrary horizons without retraining. Feedforward models like iTransformer, which predict fixed
horizons, are traditionally retrained for each desired horizon separately. Table 6 shows a comparison
of latency and throughput between LCESN and iTransformer.
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