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Abstract. Aiming at the problems that most of the existing methods of construct-
ing 3D models of human body based on 2D human body surface pose points will
lead to continuous modeling jitter and local distortion of the modeling results, we
propose a 3D pose point detection method based on the skinned multiplayer linear
model (SMPL) in the human body, which maps the 2D pose points of the body to
3D pose points of the real scene in the multiview perspective through a cluster-
ing algorithm, and introduces Kalman filtering to de-noise the human body pose
points. The Kalman filter is introduced to denoise the human body posture points.
In the process of constructing a 3D model of the human body based on 3D pose
points, we construct an end-to-end human 3D modeling network (SMPL-VAE)
based on the correction of gradient descent regression network by the automatic
variational approach (VAE), which is more in line with the local modeling of
the human body’s motion structure while maintaining the overall proportion.The
results on open dataset Shelf show that our methods improve the quality of human
post point detection and modeling.

Keywords: Multi-Ocular Vision · Skinned Multi-Person Linear Modeling
(SMPL) · 3D Pose Detection

1 Introduction

With the continuous development of science and technology and the significant improve-
ment of urban informatization level, future robots and intelligent systems in the realworld
need to be able to perceive and understand human beings from visual inputs and interact
with the real world, such as digital twin modeling for intelligent factories and panoramic
imaging system for in-vehicle AVMs, and other technologies. Therefore, 3D modeling
of human body in three-dimensional space is of great significance.

Multi-target detection and 3Dmodeling generally refer to the detection of pedestrians
under the viewpoint of the device when the number of unknown targets is unknown, and
modeling in 3D space in order to carry out the subsequent trajectory prediction and
analysis. In practical application scenarios, multi-target detection not only needs to be
real-time, but also needs to be accomplished between different targets in each frame,
which puts forward higher requirements for detection andmodeling due to the respective
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differences between the targets as well as the intricate correlation situation between the
pose points. Most of the existing multi-target detection algorithms [1–4] start from the
surface of human body, and mainly improve on accuracy, computational resources and
algorithms [5–7]. However, they are unable to solve the problems of target occlusion
and target matching with pose points well. In terms of modeling, although the existing
methods [8–10] have achieved better modeling results in terms of reconstruction error,
floating point operations per second (FLOPs), etc., they are still prone to local pose
distortion and jitter in continuous modeling when there is more occlusion and the target
cascade relationship is more complex.

Aiming at the existing problem of detecting and modeling the 2D body surface pose
points of dense pedestrians under binocular vision, we propose a 3D pose point detection
method inside the human body based on the Skinned Multi-Person Linear Model [11]
(SMPL), and then construct an end-to-end SMPL-VAE human body regression model
by noise reduction and smoothing of 3D pose points inside the body through Kalman
Filtering: the step-by-step training and the joint training are combined, and the VAE
training results are used to correct the modeling results of the SMPL, to take into account
the overall proportion and at the same time to ensure that the local modeling results
conform to the structure of the human body movement more closely.

2 Related Works

Thanks to the wide application of deep learning technology, the field of 2D human
pose detection has made remarkable development. DeepPose [4] extends the AlexNet
[14] network, adopts DNN [15] to learn the human pose point feature representations,
and optimizes the results of the previous processing step through a cascade structure;
OpenPose proposes a PAF+ confidence-associated detection network that performs fea-
ture extraction on a single RGB image, which effectively solves problems such as low
accuracy of key human pose detection due to partial occlusion. However, associating
only the surface pose of 2D images cannot accurately reflect the complex body poses of
the human body, and the final 3D skeleton projection and body modeling will lose the
stereoscopic sense because of neglecting the thickness of the human body itself; more-
over, with the increase in the number of targets, the detection performance and efficiency
of 2D pose detection methods are poor in dealing with problems such as multi-person
occlusion.

Based on the inadequacy of 2D human pose detection techniques and the lack of
depth information, 3D human pose detection techniques [16–18] were developed.Tekin
[16] et al. established a deep learning regression framework by fusing convolutional
neural network CNNwith recurrent neural network RNN;Moon G et al. [17] proposed a
camera distance sensing framework to extract the target from a 2D image, using RootNet
to localize the root node of the human body and PoseNet to localize the relative root node
of the human body to maintain spatial consistency and obtain 3D human pose detection;
VoxelPose [18] operates directly in the 3D space, avoiding the case of misdetection for
each camera viewpoint. Although these methods achieve better detection results, they
still cannot effectively solve the problems of target occlusion as well as correlation and
matching between pose points when facing dense scenes.
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As 3D modeling of the human body continues to emerge as a promising application
in various fields, this technology is gradually attracting scholars to invest in research:
SMPLify [19] uses a CNN network to estimate the posture points on the 2D body
surface, and then uses a statistical model to fit them to the 2D joints; HMR, an end-
to-end human posture detection network proposed by Kanazawa et al. [20] adopts a
regressive approach, where images are processed through an encoder and then fed into a
3D regressionmodule aswell as a discriminator tominimize the reprojection error before
determining the authenticity of the human pose; MVPOSE [21] introduces a recursive
Bayesian filter function to detect each pedestrian individually as a way of reducing the
problem of correlation determination between the pedestrian’s 3D pose points. Although
these methods have also achieved fruitful results, when facing the situation of human
detection modeling in a huge state space, due to the poor treatment of local poses of
individuals in a dense state, there are still obvious distorted modeling results in some
wrist joints and other places.

3 Proposed Method

To address the problems ofmis-correlation andmatching of pose points, poor local poses,
and jitter in continuous modeling results caused by the complex cascading relationship
between dense pedestrians occluding each other under binocular vision in related work.
In this section, the method we proposed in this will be introduced in detail, which mainly
focuses on two major aspects of 3D intra-personal pose detection as well as modeling.

3.1 Multi-target Intra-personal 3D Pose Detection
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Fig. 1. 3D pose point detection framework.

In the actual multi-view pedestrian detection applications, there are differences in the
parameter models, shooting angles, and viewing angles of different cameras, as well as
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possible occlusion problems between different viewing angles, so it is difficult to obtain
accurate pose point data, which increases the complexity of tasks such as pedestrian
trajectory prediction and 3D modeling. Therefore, it is particularly important to further
improve the human posture detection methods to realize more realistic and effective
multi-view pedestrian association.

As shown in Fig. 1, we propose a 3D pose point detection method based on the
Skinned Multi-Person Linear Model (SMPL) for the interior of the human body, which
obtains the SMPL rendering model of a single view angle and the joint pose a priori
matrices through the MVSPIN model, and then computes the 3D predicted pose points
that contain the depth prediction information. In order to integrate the information of each
viewpoint and enhance the correlation, this paper adopts the camera matrix generated
by the weak perspective model to map the 3D predicted pose points, and obtains the 2D
pose points under the corresponding viewpoints; and then adopts the real camera matrix
to correlate the 2D pose points of each viewpoint, and returns to the 3D space; at the
same time, a Kalman filter is introduced to smooth the human pose points and solve the
jitter problem of continuous modeling, and finally realizes the multiview multiple pose
points under the spatial scene.

2D Image Pose Point Detection Based on MVSPIN. We use the MVSPIN pose dete-
ctionmodel to obtain the renderingmodel information of each target in the planar im-age,
and extract 6890 surface pose point coordinates, while obtaining the joint regres-sion
prior matrices from the SMPL basic model, which in turn computes the coordina-tes of
24 3D predicted pose points in the generalized human body model.

pose_pre_result = J_regressor_prior × v_posed (1)

where J_regressor_prior is the joint regression priormatrix, vposed is amatrix containing
24 3D pose points.

Since the MVSPIN model is based on a single view for 3D pose point detection,
the limitations that are present in the single view angle make errors in the longitudinal
depth direction. In addition, due to camera angle, occlusion, etc., there is also a deviation
between the images from different viewpoints for the predicted 3D pose and the original
image. To solve this problem, this paper considers eliminating the depth data predicted
for each view and restoring the 3Dcoordinates to the 2Dplane of the original image based
on the depth prediction matrix generated during the construction of each target model.
In this way, preparation is made for a more accurate restoration of the 3D information
on the image.

As shown in Fig. 2, (a) the camera prediction parameters are transformed into a 3
× 4 camera prediction matrix by a unit matrix; (b) the 3D pose points predicted by the
SMPLmodel are transformed into a 1× 24× 3× 1 posematrix; and (c) the twomatrices
are multiplied together to obtain the coordinates of the planar 2D pose point 1 × 24 × 2
× 1. In this paper, the predicted 3D pose points are matrix transformed by constructing
a 4 × 4 unit matrix and multiplied with the camera prediction matrix to obtain the
coordinates of the pose points in the camera direction of the image prediction.In order to
eliminate the error of depth prediction, we eliminate the depth component in the camera
direction to obtain the 2D pose point coordinates. This method ensures the completeness
of individual target pose points and takes the thickness of pedestrians into account, which
provides a good foundation for the following regression from 2D to 3D poses.
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Fig. 2. 2D pose point restoration under various viewing.

3D Pose Point Regression and Filtering Processing. We use the real camera matrix to
reproject the 2D pose points of all views into 3D spatial.Since 3D pose point detec-tion
is performed in multiple views, there is no need to obtain depth data. It is suffici-ent to
regress the 3D coordinates through the vertically projected 2D coordinates of each view
and the real camera matrix.
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Fig. 3. 3D coordinate regression.

As in Fig. 3, based on the 2D pose point coordinates calculated above, each view is
processedwith a real cameramatrix, and according to themonoclinic constraints existing
between the planes [22], the matching and reconstruction between the corresponding
points of the two planes are realized by triangular dissection [23] to obtain the 3D
pose point coordinates containing the thickness of the human body, in order to better
characterize the real position of the pedestrian in space.
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Since the changes of spatial targets in the application scenario are real-time dynamic,
the uncertainty of local body parts is high, and the flexibility is strong, some of the poses
may have short-time large changes, which will lead to the human body modeling error
becomes larger and damage the effect od modeling. Therefore, we regarded each pose
point (x, y, z) of the human body as a state, and Kalman filtering is used to estimate the
changes of these states.

Human actions have autonomous consciousness and are not subject to external inter-
vention and control, we introduce the control input B and the process noise covarianceQ
in the prediction and update them with the initial form of the zero matrix of 3 × 3, while
the observed state is directly measured by the measurement matrix H without passing
through a complex nonlinear transformation. Therefore H is also initialized to the unit
matrix of 3 × 3, the state vector is initialized with the initial observations, and the state
covariance matrix is set to a larger value to reflect the uncertainty about the initial state.

The whole filtering process is carried out in two major steps, prediction and update
[21], and the systemmodel is used to predict the state X

∧

k at the next time step as in Eq. 2.
The state covariance P

∧

k is also predicted to determine the uncertainty of the prediction
as in Eq. 3.

X
∧

k = F × X
∧

k−1 + B × uk (2)

Pk = F × Pk−1 × FT + Q (3)

where F is the state transfer matrix, B is the control input matrix, uk is the control input,
for which it is initialized as a one-dimensional row vector of length 3.

The update is also performed on the state and covariance, as in Eqs. 5 and 6 to correct
the predicted state estimate through the measurements zk as well as the Kalman gain Kk ,
and then the covariance is updated to keep track of the uncertainty in the state estimate
of the system, and to provide an optimal state estimate in the presence of uncertainty.

Kk = Pk × HT

H × Pk×FT + R
(4)

X
∧

k = X
∧

k + Kk ×
(
zk − H × X

∧

k

)
(5)

Pk = (I − Kk × H ) × Pk (6)

where I is the unit matrix, R is the measurement noise covariance matrix.
As shown in Fig. 4 for the comparison of Kalman filtering effect, we select 0-pelvis,

10-left foot, 11-right foot, 15-chin, 18-left elbow and 19-right elbow with a larger range
of activity for comparison of the pose points, which can be seen that the filtered trajectory
of the movement is smoother.

After the acquisition of 2D pose points from each viewpoint and 3D pose regression,
and then Kalman filtering, the 3D human pose points with good poses and smooth
continuousmodeling are finally obtained, which lays a good foundation for 3Dmodeling
of the human body.
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(a) Without Kalman filtering
(b) With Kalman filtering

Fig. 4. Comparison of Kalman filter processing effect

3.2 3D Modeling of Human Body Based on SMPL-VAE

Since the work in the section of 3.1 is global processing for each target as a whole and
no local processing is applied, if these pose points are directly used for 3D modeling of
the human body, the modeling of local poses of human joints will be distorted.

Therefore, for the problem of 3D modeling of the human body with processed pose
points, we refer to the idea of VAE [13] and propose the SMPL-VAEmodel, as shown in
Fig. 6, which combines step-by-step training with joint training to generate 3Dmodeling
results of the human body. The two-way step-by-step training processes the input pose
points in different ways, and then the finalmodeling results are obtained by joint training.

Step-by-step training I: The 3D pose point X finally obtained in the section of 3.1 is
taken as input, and the SMPL parameterΘS(θ, β) is trained by the iterative optimization
method of gradient descent [24] using the ground truth as a criterion, and the data is
continuously fitted to make it closer to the ground truth. Due to the high degree of
autonomy and irregularity of the target activity, a loss function that is robust to outliers
is needed, so we choose to use Smooth L1 Loss [25], whose strong robustness provides
more stable convergence and more reliable error gradients than other loss functions.
This loss function strikes a balance between the mean square error and the absolute
error, thus reducing the impact of large error values and ensuring a smoother and more
gradual optimization process as in Eq. 7.

LSmpl =
{

1
2

(
Xgt − J

)2
, if

∣
∣Xgt − J

∣
∣ < 1∣

∣Xgt − J
∣
∣ − 1

2 , if
∣
∣Xgt − J

∣
∣ ≥ 1

(7)

where J is the coordinates of the human joint points output by the model and Xgt is the
ground truth of the human joint points (Fig. 5).

In this way, we are able to obtain the human body’s mesh vertices verts and human
body joints coordinates J, where verts size is n × 6890 × 3, n is the number of targets
in the scene during modeling, and J size is n × 24 × 3. The essence of this method
lies in its ability to refine the model parameters during iteration, and more closely and
accurately represent the human body pose 3D step-by-step ground-truthing values. Up
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Fig. 5. Human body 3D modeling framework

to this point, step-by-step training one obtains preliminary human 3D modeling results,
but in the local joints of the human body, there is still a violation of the laws of human
kinematics, which still does not meet the final modeling needs.

Step-by-step training II: We use a Variable Auto-Encoder (VAE) framework to
encode and decode the filtered dataset.The VAE obtains the generated 3D human pose
points Xv by learning a latent space representation of the input data X, and then recon-
structing the inputs using this latent space.This process introduces a relaxation mecha-
nism designed to learn the substeps on the latent space, allowing for generation of new
samples, thus accommodating human pose transformations that conform to kinematic
constraints.

The encoding phase plays an important role by compressing X into a lower dimen-
sional space that captures the stepwise characteristics of the potential variables needed
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for reconstruction, and the decoding phase attempts to reconstruct the input data from
this compressed representation, preserving the critical structure without compromising
the global and local fidelity of the 3D modeling of the human body, as in Eqs. 8 and 9
respectively.

z ∼ q(z|X) (8)

X′
V ∼ p(X|z) (9)

where q(z|X) is the latent variable stepping defined by the encoder; p(X|z) is the
conditional stepping defined by the generator.

In the training process, then ΘV (φen, φde) is trained, which is done by maximizing
the likelihood of the data. However, solving the likelihood function directly is difficult
because the latent variables in VAE are continuous. To solve this problem, VAE uses
a regularization term that learns the distribution of latent variables to simplify solving
the likelihood function. The loss function consists of two parts: reconstruction loss and
regularization loss. The reconstruction loss is the difference between the output sample
and the original sample inVAEwhen the input sample is transformed into latent variables
by the encoder and then the output sample is generated by the decoder. The smaller the
reconstruction loss, the better the performance of the generator. Regularization loss, on
the other hand, refers to the difference between the substeps of the latent variables and
the a priori substeps in VAE by introducing the KL divergence [26]. This difference is
quantified by the KL divergence, with a smaller KL divergence indicating that the latent
variable is closer to the a priori substep. Taken together, the loss function of the VAE
can be tabulated as:

LVae = −E
[
log p(X |z)] + α · KL(q(z|X )||p(z)) (10)

where α is the tradeoff of the parameters, and p(z) is the prior step. Finally, the results of
step-by-step training I and step-by-step training II are fused for joint training. Using the
results of step-by-step training I as a starting point, the output of step-by-step training I
is corrected according to the results of step-by-step training II to better converge to the
actual situation. And the trained parameters Θ (ΘS ,ΘV ) in the step-by-step training are
still used for the second training using Smooth L1 Loss, as in Eq. 11, to obtain the final
trimmed human pose points X ′

end .

L =
{

1
2

(
X ′

end − J
)2

, if
∣
∣X ′

end − J
∣
∣ < 1∣

∣X ′
end − J

∣
∣ − 1

2 , if
∣
∣X ′

end − J
∣
∣ ≥ 1

(11)

where X ′
end is the final human joint point coordinates obtained after joint training.

This joint training model allows for knowledge transfer between the two methods.
The iterative refinement of the parameters is enhanced by the relaxed constraints imposed
by the VAE, and the excellent results of the overall model benefit from the ability to
adjust local modeling effects. This combined training approach not only improves the
accuracy of the pose estimation, but also ensures that the model adapts to the diversity
of human movements, contributing to a more natural and intuitive interaction between
humans and the digital environment.
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4 Experiments

4.1 Introduction to Public Datasets and Evaluation Metrics

The Shelf [27] dataset was used in this study as a benchmark for model testing. The
dataset contains an indoor scenewith four people carrying shelves in close proximity and
is equipped with five calibrated cameras. Each view presents a different degree of occlu-
sion and the pedestrians may appear to be added, completely disappeared, reappeared,
and other complexities, which provides favorable conditions for algorithm testing. The
dataset provides a more realistic representation of the pedestrians’ action postures, tak-
ing into account factors that may have an impact on the tasks of detection, tracking and
feature association.

In the process of human 3D pose detection and modeling, we take the ground truth
of the complete 3D pedestrian pose point coordinates as the standard in the training
process, and due to the problems of missing targets and ID errors in the real values
provided by Shelf, we re-labeled 1500 images of the dataset in 5 views based on the 24
bit-pose points of the SMPL model.

Considering that the mean positional error per joint [28] (MPJPE) is expressed in
terms of the physical positional errors of the joints,whichmakes the resultsmore intuitive
and easy to understand, the error per joint can help to analyze the model’s performance
in different parts, thus providing more detailed feedback. Therefore, the quantitative
evaluation metric we take is MPJPE, the smaller its value, the better the performance of
the model in estimating the joint positions, as in Eq. 12.

MPJPE = 1

N

∑N

i=1
‖pi − p

∧

i‖ (12)

where ‖ · ‖ is the Euclidean distance, i.e., the distance between the true joint position
and the model-predicted joint position, N is the 24 joint points of the human body, pi is
the true position of each joint point; and p

∧

i is the position predicted by the model.
Percentage of Correct Keypoints [29] (PCK) focuses on the location of keypoints,

provides an intuitive percentage representation of keypoint accuracy, applies to different
thresholds, is flexible and versatile, and facilitates the comparison of the performance
of different models on the same task, so we select PCK as an evaluation metric as in
Eq. 13.

PCK = 1

N

∑N

i=1

(‖pi − p
∧

i‖
D

≤ T

)

× 100% (13)

where T is the threshold value, which is selected as 160mm,D is the reference length,
which is set as the normalization factor of a single target, δ is the indicator function,
which takes the value of 1 if the condition is true and 0 otherwise.

As shown in Table 1, the method proposed in this paper has demonstrated
ideal test results. It improved by 3.88 on the MPJPE metric compared to the well-
performing Shape-Aware, and it improved by 3.50 on the PCK metric compared to the
well-performing SMPLify.
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Table 1. Comparison with previous work based on Shelf dataset.

method MPJPE PCK

SMPL 107.12 86.24

SMPLify 109.30 88.76

HMR 114.62 83.26

Shape-aware 105.62 85.35

our 101.74 92.26

4.2 Human Posture Detection and Modeling Experiment

The relative positions and occlusion patterns of targets vary greatly between different
viewpoints, and there are more ID matching errors and omissions in the detection algo-
rithms. In the context of dense pedestrians under binocular vision, we addresses the
issues of pedestrian pose point detection and association matching, jitter in continuous
modeling, and local pose distortion. Therefore, a few more critical images in the video
stream are extracted to demonstrate the operation effect of our method.

Fig. 6. 3D pose detection result in key frame

As shown in Fig. 6, comparing the algorithm we proposed with Shape-Aware, the
framework is able to stably and accurately detect human 3D pose points when dealing
with complex human interactions, and the algorithm still achieves better results even
when there is an occlusion or overlapping of pedestrians, but Shape-Aware may produce
different types of errors, such as (c) inwhich Shape-Aware gets a distorted pose detection
that is not realistic when dealing with the person in the border, and (d) and (e) both of
which appear to match the detected pose points to the wrong pedestrian target.

As shown in Fig. 7, the results of comparative and ablation experiments in model-
ing are presented. In subfigure (a), the 3D human body models constructed using the
Shape-Aware and SPEC methods exhibited localized postural distortions, such as upper
body deformation, leg shape distortion, and abnormal twisting of the feet. Although the
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Fig. 7. Human body 3D modeling results

SMPL method improved the modeling results to some extent, significant corrections
were achieved when incorporating the VAE module into the SMPL-VAE method. In
subfigure (b), the Shape-Aware method exhibited omissions, and the SPEC and SMPL
methods resulted in unnatural twists in the foot and head regions, respectively. These
issues were effectively optimized in the modeling process using SMPL-VAE. In sub-
figure (c), problems in the detection of human posture points using Shape-Aware led
to erroneous modeling results; SPEC and SMPL exhibited various degrees of model-
ing distortions (such as the orange model’s abdomen and the blue pedestrian’s upper
body) that did not align with the actual human form, all of which were improved in the
SMPL-VAE approach.

5 Conclusion

The 3D pose point detection method for the human body interior based on the skinned
multiplayer linearmodel (SMPL) achieves excellent performance, with a value of 101.74
in the average per-joint position error metric and 92.26 in the percentage of correct
keypoint metric, and alsomatches accurate pose points for different targets. For the noise
generated by the clustering algorithm that maps the 2D pose points inside the human
body from multiple viewpoints to the 3D pose points in the real scene, we remove the
noise by means of Kalman filtering, which effectively solves the problem of jitter in
the continuous modeling of pedestrians. The algorithm is based on the consideration
of global optimization modeling results on the basis of focusing on the optimization
of the local posture, through the automatic variational enconder (VAE) to the gradient
descent regression network to correct the construction of the end-to-end human body
3D modeling network (SMPL-VAE), in order to maintain the overall proportion at the
same time, more in line with the human body movement structure of the local modeling.
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