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ABSTRACT

The growing demand for real-time applications on edge devices underscores the
need for faster inference of complex deep neural network (DNN) models. Al-
though mobile devices increasingly incorporate specialized processors like GPUs
and TPUs, modern DNN models such as Whisper and Vision Transformers often
involve dynamic control flows and tensor operations that are incompatible and un-
supported on current frameworks with these mobile accelerators. CPU presents
the most viable option to improve inference latency on mobile devices due to their
widespread availability, substantial memory caches, and ability to support all types
of tensor operations. However, existing CPU optimization techniques focus on se-
quential execution, overlooking potential parallelization within Automatic Speech
Recognition (ASR) and transformer-based models, leading to inefficiencies. This
work introduces a novel runtime model analysis pipeline that extracts layer and
branch structures from DNN model graphs to identify parallelizable branches. We
propose BAP, a branch-aware memory allocation strategy that isolates memory
arenas for parallel branches, reducing contention and optimizing memory reuse
within each branch. Additionally, we leverage CPU multithreading to execute
these branches concurrently, optimizing thread management and memory access
to minimize overhead. Evaluated on ASR models and transformer-based models,
our approach reduces inference latency by up to 38.5%, decreases memory allo-
cation requirements by up to 15.6× and saves up to 20.2% energy cost compared
to the TFLite naive memory allocation.

1 INTRODUCTION

The growing demand for real-time machine learning (ML) applications, such as voice assistants,
live translation, and augmented reality, has intensified the need for faster deep learning inference on
edge devices like smartphones and single-board computers (Yang et al., 2021; Dong et al., 2022; Xu
et al., 2023; Rekesh et al., 2023). On-device inference offers significant benefits over cloud-based
alternatives, eliminating the need to send data to external servers, which introduces privacy risks and
delays. To address the demands of efficient edge inference, frameworks such as TensorFlow Lite
(TFLite) have been widely adopted (Abadi et al., 2015). TFLite, for instance, employs quantiza-
tion and operator fusion to optimize model size and computational efficiency (Nguyen et al., 2020;
Orăşan et al., 2022; Xu et al., 2021; Prasad et al., 2020), while leveraging hardware accelerators such
as GPUs, TPUs, and NPUs for static models (Park & Kim, 2023; Lee et al., 2019; Xu et al., 2022).
Similarly, MNN enhances inference speed by optimizing kernel execution and aggressively reusing
memory (Jiang et al., 2020). These frameworks have achieved notable success in tasks such as image
classification (e.g., MobileNet) and object detection (e.g., YOLO), where model structures are static
and predictable. Beyond these frameworks, many studies have further optimized edge inference.
Techniques such as co-execution of CPU and GPU tasks, memory-efficient transformations, and dy-
namic model partitioning across heterogeneous processors have made strides toward more efficient
inference (Kim et al., 2019; Jeong et al., 2022; Jia et al., 2022; Wang et al., 2018; Wei et al., 2023).
However, despite these optimizations, significant challenges arise when deploying models with dy-
namic control flows and tensor operations, such as ASR models and transformer-based architectures.
These models are incompatible with hardware accelerators optimized for static workloads on exist-
ing mobile inference frameworks, making traditional optimization techniques ineffective (Cordesius
et al., 2021). Furthermore, existing solutions often require extensive model refactoring or retraining,
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which is impractical for large pre-trained models and can degrade performance during deployment
(Kim et al., 2019; Wei et al., 2023). This highlights the need for new approaches that can handle the
unique challenges posed by these models on off-the-shelf edge devices.

CPUs remain the most practical option for executing ML models on edge devices due to their flexi-
bility in handling dynamic workloads and widespread availability (Zeng et al., 2023). Studies show
minimal performance differences between CPUs and GPUs on mobile devices (Zhang et al., 2023;
Wei et al., 2023; Bordawekar et al., 2010), reinforcing the viability of CPUs in this setting. ASR
and transformer-based models also bring additional advantages when paired with CPUs. These
models naturally lend themselves to parallel execution due to internal structures like multi-head at-
tention (Cao et al., 2012; Gulati et al., 2020; Vaswani, 2017). This built-in balance across different
computational branches reduces the synchronization overhead typically associated with parallel pro-
cessing. CPUs, with their robust multithreading capabilities, are well-equipped to take advantage
of this structural balance, distributing tasks efficiently across cores. This not only enhances the per-
formance of parallel tasks but also allows CPUs to manage both parallel and sequential operations
without the need for significant model modifications. Nevertheless, fully leveraging CPU-based
parallelism presents several challenges: (1) accurately analyzing model graphs to identify opera-
tions and branches that can be executed in parallel; (2) managing memory allocation in a way that
avoids data dependency conflicts, such as Read-After-Write (RAW) dependencies, where one oper-
ation might overwrite data that another operation still needs; (3) minimizing the overhead of parallel
execution, as unbalanced workloads or inefficient thread synchronization can negate the benefits of
parallelism; and (4) avoiding significant model refactoring, as this adds complexity and could hinder
the deployment process.

To address these challenges, we propose BAP, a novel optimization approach for ASR and trans-
former models on mobile CPUs. BAP dynamically identifies parallelizable branches in model com-
putational graphs via a runtime analysis pipeline. We introduce a branch-aware memory allocation
strategy that isolates memory arenas for parallel branches, reducing data conflicts and optimizing
cache locality. Leveraging CPU multithreading with optimized thread management and memory ac-
cess, our method ensures efficient parallel execution without modifying model structures, meeting
the critical need for real-time performance on mobile devices. Evaluated on devices like Dimen-
sity, Google Tensor, Kirin-powered Android devices, and Raspberry Pi 4B, BAP achieved a 38.5%
reduction in inference latency, up to 15.6× memory allocation improvements over TFLite’s naive
allocation, and up to 20.2% energy savings. Our contributions are as follows:

• We introduce BAP, a CPU-specific optimization system for ASR and transformer-based
models with dynamic control flows and tensor operations. BAP combines branch-aware
memory allocation and multithreading to optimize parallel execution and reduce latency.

• We develop a branch-aware memory allocation strategy that reduces data contention by iso-
lating memory arenas for parallel branches, enabling safe and efficient parallel execution.

• BAP delivers substantial improvements in latency, memory efficiency, and energy con-
sumption without requiring model refactoring, supporting practical real-time inference on
edge devices.

2 RELATED WORK

Model Optimization Strategies: The demand for optimizing ML inference on edge devices has led
to strategies like quantization, operator fusion, and pruning (Yao et al., 2020; Kim et al., 2022; Jiang
et al., 2022; Niu et al., 2021). Quantization reduces precision to shrink model size and computational
cost, lowering latency and energy consumption for static models. Operator fusion combines multiple
operations into a single step to minimize memory access overhead, while pruning removes less
essential components to reduce computational load. However, techniques like quantization-aware
training and post-training quantization often require access to validation datasets or retraining, which
may not always be feasible (Nguyen et al., 2020). Additionally, these methods can reduce accuracy
and depend on model-specific tuning, limiting their applicability when models must be deployed
without retraining or extensive infrastructure.

Another strategy optimizes model structures by replacing computationally expensive operations
with more efficient alternatives. Models like MobileNet (Howard, 2017) and MobileBERT (Sun
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et al., 2020) use techniques such as depthwise separable convolutions and attention-based pruning
to reduce parameters while maintaining accuracy. For example, MobileNet lowers FLOP counts by
splitting convolutions into depthwise and pointwise operations, and MobileBERT simplifies BERT’s
architecture with minimal performance loss. Similarly, LookupFFN replaces compute-heavy matrix
multiplications in transformers with memory-efficient lookup operations, improving suitability for
CPU inference (Zeng et al., 2023). However, these methods require careful design to balance effi-
ciency and accuracy, may be scenario-specific, and focus on single-threaded efficiency without fully
exploring parallelism within the computation graph on edge devices.

Hardware Acceleration and Heterogeneous Computing: As edge devices adopt heterogeneous
processors, hardware acceleration is key to improving inference speed (Symons et al., 2022). Frame-
works like TFLite and MNN offload tasks to accelerators like GPUs, TPUs, and NPUs, enhancing
performance for static models. Advanced techniques such as co-execution dynamically partition
tasks between CPUs and GPUs for better utilization. For instance, CoDL enables intra-operator
parallelism to optimize latency and energy efficiency (Jia et al., 2022), while NN-Stretch transforms
sequential models into parallel branches for independent execution across processors (Wei et al.,
2023). BAND manages concurrent DNN inference on heterogeneous processors (Jeong et al., 2022),
and methods like uLayer (Kim et al., 2019) and OPTiC (Wang et al., 2018) enhance CPU-GPU co-
execution. However, these approaches struggle with dynamic models like ASR and transformers due
to inefficient offloading, leading to CPU fallback. Additionally, co-execution methods often require
separate memory allocations to avoid conflicts, increasing memory usage (Wang et al., 2023). While
improving hardware utilization, these methods complicate memory management and often require
model modifications, hindering deployment and scalability.

Sequential Execution and Memory Management: SOTA frameworks like TFLite and MNN use
sequential execution strategies, traversing computation graphs node by node based on data depen-
dencies (Lee & Pisarchyk, 2020). While this simplifies memory reuse and ensures correctness, it
limits parallel execution, especially in models with branching structures like ASR and transform-
ers. These frameworks aggressively reuse memory to reduce the footprint, but this leads to data
dependency conflicts that hinder parallelism. As a result, despite being optimized for memory ef-
ficiency, they fail to fully exploit the parallelism in the computation graph, resulting in suboptimal
performance. To address these limitations and accelerate ASR models, we propose a CPU-based
parallelism framework with branch-aware memory allocation, optimizing inference on edge devices
without modifying the model.

3 BAP SYSTEM DESIGN

Our framework dynamically identifies parallelizable branches in DNN models through a runtime
graph analysis pipeline, as shown in Figure 1. This analysis enables branch-aware memory allo-
cation, which reduces memory conflicts and enhances execution efficiency. Additionally, efficient
multithreading ensures balanced workload distribution and minimizes overhead, resulting in signif-
icant latency and allocation improvements.

3.1 GRAPH ANALYSIS PIPELINE

Identifying parallelizable branches is essential for enabling efficient parallel. The main challenge
arises from the varied structures of model graphs G = (V,E), where V is the set of nodes and
E is the set of edges representing data dependencies. This complexity makes it difficult to ex-
tract parallelism without disrupting the data flow. Even when branches can be executed in parallel,
unbalanced workloads can reduce the benefits of parallelism, requiring careful criteria to identify
balanced branches. To address this, we design a graph analysis algorithm that splits the model
into layer-branch structures, isolating independent branches for parallel execution. This approach is
adaptable to various models, ensuring generalizability while assessing workload balance.

3.1.1 DEFINITIONS: LAYER AND BRANCH

In our graph analysis, we define two core concepts that are fundamental for isolating parallelizable
segments: branch and layer.
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Figure 1: BAP System Overview: (1) nodes are classified into categories (sequential, branching,
merging) and grouped into branches (e.g., b1, b2) for parallel execution, (2) a computational load
check and branch merging optimize resource use, (3) tensors T0, T1, etc., are allocated and man-
aged in branch-specific memory arenas to reduce conflicts due to dynamic memory reallocation
needs, and (4) efficient multithreading with thread pools and task stealing ensure balanced workload
distribution.

Branch: A branch b, or subgraph S, is a set of sequentially connected nodes {v1, v2, . . . , vk} within
a layer. A subgraph may have multiple inputs or outputs, but within the subgraph, the nodes are
strictly connected in a sequential manner. This ensures that each subgraph can be executed indepen-
dently of others within the same layer, provided there are no inter-branch dependencies.

Layer: A layer ℓ in the computation graph is a set of branches that can be executed concurrently,
with all dependencies resolved. Subgraphs in the same layer have no unmet dependencies, allowing
parallel execution, while outputs from one layer feed into the next, ensuring proper data flow and
execution order.

The motivation for this definition is to minimize interference between branches and layers and the
rest of the graph. This structure forms the foundation for enabling parallel execution, ensuring that
parallel branches do not disrupt data flow in other parts of the model.

3.1.2 NODE CLASSIFICATION AND SUBGRAPH PARTITIONING

Our algorithm, Algorithm 1, begins by classifying each node vi ∈ V in the graph into one of four
categories: (1) Sequential nodes have a single input and output, representing linear connection; (2)
Branching nodes have a single input but multiple outputs vi → {vj , vk, . . . }, indicating points where
the flow diverges into parallel paths; (3) Merging nodes have multiple inputs converging into a single
output {vj , vk, . . . } → vi, requiring synchronization of parallel paths; (4) Branching-merging nodes
combine both branching and merging behaviours, representing more complex graph structures that
require careful handling.

After classifying the nodes, we traverse the graph to group nodes into S. Starting from each unvisited
node, sequential nodes are added to the current S until a branching or merging node is encountered.
When a branching node is reached, the current group is finalized, and the branching node starts a new
S, allowing independent parallel execution. Similarly, encountering a merge node finalizes the group
to ensure proper synchronization. For branching-merging nodes, the current group is immediately
finalized, treating the node as an isolated branch due to its complexity. After forming each S, we
eliminate duplicates by comparing their structures, ensuring only unique execution groups remain.
This results in a set of independent Ss that can be executed sequentially or in parallel, depending on
their structure and dependencies.

3.1.3 TOPOLOGICAL SORTING AND PARALLELIZABLE LAYER IDENTIFICATION

After partitioning the G into Ss, we perform topological sorting to establish an execution order
that respects dependencies and maximizes parallel execution (Algorithm 2). The in-degree d[i] of
each S is calculated, where d[i] represents the number of unresolved dependencies for each S.
S with d[i] = 0 are added to the execution queue Q, and as they are processed, the in-degrees
of their dependents d[j] are reduced. This process ensures that independent Ss are grouped into
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Algorithm 1 Subgraph Partitioning
1: Input: Graph G = (V,E) with nodes and

connections
2: Output: Partitioned subgraphs Ss
3: for each node vi ∈ V do
4: Count incoming and outgoing edges
5: if in count > 1 and out count > 1 then
6: Mark as branching-merging
7: else if in count > 1 then
8: Mark as merging
9: else if out count > 1 then

10: Mark as branching
11: else
12: Mark as sequential
13: end if
14: end for
15: for each unvisited node vi ∈ V do
16: if vi is visited then
17: continue
18: end if
19: Initialize S, add vi
20: while unvisited neighbors exist do
21: if vi is branching or merging then
22: Finalize S, start new one
23: end if
24: Add vi to S
25: end while
26: end for
27: Remove duplicate Ss from S

Algorithm 2 Topological Sorting of Subgraphs
Input: Subgraphs S = {S1,S2, . . . ,Sn}
with dependencies.

2: Output: Layer-Branch Map P with sorted
layers.
Initialize in-degree d[i] = 0 for all Si.

4: for each dependency (Si,Sj) ∈ E do ▷
Build in-degrees

d[j]← d[j] + 1
6: end for

Initialize queue Q with all Si: d[i] = 0
8: while Q is not empty do

Initialize empty current layer ℓ
10: for each subgraph Si ∈ Q do

Add si to current layer ℓ
12: for each dependent subgraph Sj of
Si do

d[j]← d[j]− 1
14: if d[j] = 0 then ▷ Add to queue

when in-degree is zero
Add Sj to Q

16: end if
end for

18: end for
Add layer ℓ to layer-branch map P

20: end while

layers for concurrent execution. Within each layer, Ss are sorted by node index for consistency, and
consecutive layers with single S are merged to simplify the structure. This results in a layer-branch
map P = {ℓ1, ℓ2, . . . , ℓn} that organizes Ss into layers suitable for parallel or sequential execution.

For efficient parallel execution, we focus on layers with two or more branches containing enough
computationally intensive nodes, like matrix multiplications, to justify the overhead of parallelism.
Layers that don’t meet these criteria are processed sequentially, minimizing unnecessary thread
management and context switching. The resulting P forms the basis for efficient memory allocation,
enabling resource reuse without conflicts.

3.2 BRANCH-AWARE MEMORY ALLOCATION

Efficient memory management is essential for running DNNs on edge devices. SOTA frameworks
typically manage allocation via a memory arena in sequential execution, freeing intermediate tensors
after use. However, parallel execution complicates this due to uncertainties in tensor lifecycles.

3.2.1 ADDRESSING RAW DATA DEPENDENCIES

Challenge: In frameworks like TFLite, tensor lifecycles are typically tracked by identifying the first
and last nodes that use a given tensor (Lee & Pisarchyk, 2020). This approach assumes a sequential
execution process, where the last node in the lifecycle completes after all prior operations, allow-
ing for safe memory reuse. However, parallel execution disrupts this assumption, as the last node
may execute earlier than expected due to concurrent branch execution. This can lead to premature
memory reclamation, causing RAW conflicts when other nodes in the graph still require access to
the tensor.

Proposed Solution: To address these challenges, we propose a branch-aware memory allocation
strategy that isolates memory management at the granularity of layers and branches. Each branch-
specific memory arena is indexed by both layer and branch identifiers,ASi

ℓi
. Within each branch, we

ensure memory alignment to optimize access speed.
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We enhance tensor lifecycle tracking by encoding not only node-level dependencies but also the first
and last layers and branches that use each tensor. Each node is assigned a unique 32-bit identifier
that encodes its layer, branch, and local index (from P ) within the branch:

NodeID(i) = (LayerID(i)≪ 16) | (BranchID(i)≪ 8) | (LocalIndex(i)&0xFF )

where≪ denotes a bitwise left shift, | denotes a bitwise OR, and & denotes a bitwise AND operation.
This encoding allows for precise control over memory management across concurrent branches.
Tensors are allocated in the memory arena of the branch where they are first used. Specifically,
if a tensor Ti is first used in branch Si of layer ℓi, it is allocated in that branch’s memory arena:
Alloc(Ti) = ASi

ℓi
. Input tensors are preserved throughout their lifecycle since they may be needed by

multiple branches. Similarly, output tensors are protected until all relevant branches have completed
processing. For intermediate tensors used exclusively within a branch, memory can be reclaimed
once the operations in that branch are complete, without affecting tensors in other branches.

3.2.2 HANDLING DYNAMIC REALLOCATION

Challenge: Dynamic operations lack predefined tensor shapes until runtime, requiring temporary
memory allocation followed by reallocation when actual sizes are determined. In parallel execution,
this reallocation introduces synchronization bottlenecks, as threads must wait for memory availabil-
ity, negating the benefits of parallelism. Additionally, reallocating memory prematurely can cause
RAW conflicts by overwriting tensors still in use by other branches.

Proposed Solution: Our approach focuses on restricting reallocation to the current branch and its
subsequent layers. When a dynamic tensor’s size is determined, only the directly affected tensors
undergo reallocation, following these conditions:

Reallocate(Tj) ∀ j ∈ {current branch ∪ future layers} if size(Tj) ̸= known

This branch-specific reallocation prevents interference with other concurrently executing branches.
Unlike conventional frameworks, where reallocations in one part of the graph can disrupt other
branches, our method ensures independent branch execution. By minimizing synchronization bot-
tlenecks, other branches can continue uninterrupted, improving parallel execution efficiency.

3.3 MULTITHREADING EXECUTION

To efficiently execute parallel branches, we maintain a fixed thread pool to reduce overhead from
thread management. This allows threads to be dynamically assigned to tasks without additional
setup costs. To optimize CPU utilization, we implement task stealing, enabling idle threads to han-
dle tasks from busy ones, ensuring balanced workload distribution. By maintaining branch isolation
and minimizing synchronization points, we reduce contention between threads, particularly during
dynamic tensor reallocations. This approach maximizes parallelism while minimizing multithread-
ing overhead across devices.

4 EVALUATION

4.1 IMPLEMENTATION

We conducted experiments using pretrained SOTA transformer and ASR models from Huggingface
and GitHub without modifying architectures or weights. Parallel inference methods were integrated
into the latest TFLite 2.17.0 with key runtime modifications in the Invoke and InvokeImpl functions,
targeting Subgraph and Interpreter objects. These changes enabled branch-aware execution, isolat-
ing parallel branch processing from the original sequential model. We wrote 2, 116 lines of C++
code for model analysis algorithms and branch-aware memory allocation, identifying parallelizable
branches and optimizing memory usage during execution. Also, custom testing tools were created
to evaluate performance across platforms including Kirin, Dimensity and Google Tensor-powered
Android devices, as well as Raspberry Pi 4B, measuring inference latency, memory usage and esti-
mated energy consumption.
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Table 1: Test Platforms and Model Details. Cs: Cores; ℓs: Layers; PAR-ℓs: Layers that contain
multiple branches; MAX BR: Maximum branches; PARS: Parameters; PAR-Ops: Percentage of
parallelized operations.

TEST PLATFORMS MODEL DETAILS
DEVICE Cs FREQ. SOC MODEL ℓs PAR-ℓs MAX BR. PARS PAR-Ops
K50 8 2.85 GHz Dimensity 8100 Whisper 123 88 8 912M 61.43%
P30 Pro 8 2.60 GHz Kirin 980 Conformer CTC 37 18 3 67.7M 8.46%
Pixel 6 8 2.80 GHz Tensor MobileViT-S 19 9 3 130M 17.93%
Pi 4B 4 1.80 GHz BCM2711 MobileViT-XS 19 9 3 106M 17.93%

4.2 EXPERIMENTAL SETUP

Models: We evaluated four models to assess our method’s effectiveness: Whisper (INT8) and Con-
former CTC (FLOAT16) for ASR, and MobileViT-S (FLOAT16) and MobileViT-XS (FLOAT16)
for image recognition. These models vary significantly in size and complexity, with total layers
ranging from 19 to 123 and parallelizable layers from 9 to 88. Table 1 lists the maximum number of
parallelizable branches and the number of parameters (in millions) for each model, providing insight
into their resource demands. Compared to models like ResNet or EfficientNet, which have 11M to
32M parameters, the larger size and complexity of ASR models highlight the need for optimization.
Current solutions struggle to handle them on mobile devices, making BAP beneficial.

Devices: We tested these models on a diverse set of platforms, ranging from high-end smartphones
to single-board computer. The selected devices include the Xiaomi K50, Huawei P30 Pro, Google
Pixel 6, and Raspberry Pi 4B, all detailed in Table 1. Each device differs in CPU core count (Cs),
maximum clock frequency (FREQ.), and System-on-Chip (SOC) architecture, offering a compre-
hensive evaluation across different hardware configurations.

Performance Metrics: We evaluated our method by measuring runtime inference latency, mem-
ory usage, and power consumption, averaging each over five runs. Experiments utilized all avail-
able CPU cores, and we also tested different core counts for comparison. For MobileViT-XS and
MobileViT-S, we used 10 images from the TensorFlow Flowers dataset (Paul, 2023) with an input
size of 224 × 224. For Conformer CTC and Whisper, we used five audio samples (3–10 seconds
each) from the LibriSpeech dataset (Panayotov et al., 2015) at a 16 kHz sample rate. Inference la-
tency was tracked per inference pass using on-device profilers. Memory usage was monitored by
profiling peak runtime memory and measuring the memory allocation arena size. Power consump-
tion was measured using the Android BatteryManager API (Android Developers, 2024), capturing
current and voltage at 10 millisecond intervals to compute power and total energy.

Baselines: We compared our method against two memory plans in TFLite. First, we tested against
the standard TFLite runtime, which uses the Arena memory plan for aggressive sequential alloca-
tion reuse, and this plan was used for comparison in terms of performance metrics beyond memory.
Second, we evaluated TFLite’s naive memory plan, which assigns separate memory to each ten-
sor. While we compared allocation memory efficiency against both plans, we focused on comparing
other aspects like latency and energy consumption against the first, as it represents TFLite’s optimal
performance. Also, we did not include methods like CoDL or NN-Stretch, as they mainly focus
on DNNs without dynamic control flows and rely on heterogeneous processor co-execution. In this
case, the TFLite runtime remains the SOTA for CPU-only execution.

4.3 OVERALL RESULTS

Our method preserves the model’s weights and structure, ensuring that outputs and accuracy remain
identical to the original pretrained model during testing. While we focus on improving inference la-
tency, memory efficiency, and power consumption, the functional performance and accuracy remain
unchanged across all evaluations.

4.3.1 LATENCY

BAP consistently outperforms the state-of-the-art TFLite runtime across all tested models and de-
vices, achieving latency reductions ranging from 14% to 38%. For smaller models like MobileViT-
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Figure 2: Latency Comparison: BAP vs TFLite runtime.

Table 2: Memory Allocation Comparison for Different Methods (in MB)
MODEL Ours TFLite Naive TFLite Runtime

Conformer CTC 26.64 284.15 23.39
Whisper 227.27 3535.6 144.95
MobileViT-S 82.74 538.43 38.74
MobileViT-XS 77.98 437.76 31.15

XS, improvements are more pronounced on higher-end devices, with latency reductions of 38.5% on
the Google Pixel and 35.1% on the Xiaomi K50. Even on low-powered devices like the Raspberry
Pi 4B, we observed an 18.7% reduction in latency. Similarly, for MobileViT-S, latency improve-
ments were 16.1% on the Raspberry Pi and 31.4% on the Xiaomi K50, demonstrating our method’s
scalability across different hardware configurations (see Figure 2). Although TFLite also utilizes
multi-core processing, its multithreading support for floating-point models remains limited. Specif-
ically, TFLite’s parallelization is constrained to certain operations, leaving much of the computation
serialized and diminishing its ability to fully capitalize on multi-core architectures. In contrast, our
method optimizes parallel subgraph execution, leveraging all available CPU cores more effectively
to achieve greater latency reductions.

How does model complexity impact BAP? For ASR models, Conformer CTC showed consistent
but smaller improvements, with latency reductions ranging from 14.6% to 24.7%, with the high-
est gains on the Google Pixel. Whisper, the largest model tested, saw significant improvements
due to its highly parallelizable layers, achieving a 22.9% reduction on the Raspberry Pi and up to
31.7% on the Xiaomi K50. With 88 parallelizable layers, Whisper is well-suited for branch-aware
parallel execution, leading to noticeable performance gains. Our method also performs effectively
on transformer-based models with dynamic operations, like MobileViT, reducing latency by up to
38.5% on high-end devices.

How does hardware impact BAP? Devices with more CPU cores and higher clock speeds, such
as the Xiaomi K50 and Google Pixel, consistently achieved higher latency reductions, particularly
for models with extensive parallelizable branches, like Whisper and MobileViT. Lower-end devices,
such as the Raspberry Pi, still saw notable improvements, though their constrained hardware limits
the degree to which our method can parallelize execution.

4.3.2 MEMORY AND ENERGY CONSUMPTION

Peak Runtime Memory: For peak runtime memory (Figure 3), the differences between our method
and TFLite runtime remain modest across all devices, typically less than 5%. On the Raspberry
Pi 4B, the increase in memory usage for models like Conformer CTC and MobileViT-S was 5.93
MB (min.) and 11.37 MB (max.), respectively. The Xiaomi K50 showed a minimum increase for
MobileViT-S (0.39 MB), and Conformer CTC saw a larger rise of 19.34 MB (max.). On the Google
Pixel, Whisper exhibited an increase of 7.89 MB (max.). The Huawei P30 Pro recorded a peak
memory difference of 13.6 MB (max.) for Whisper. Overall, while our method introduces some
runtime memory overhead, this remains minor, even for the most complex models.
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Figure 3: Peak Runtime Memory Usage Comparison: BAP vs TFLite runtime

Allocation Memory: Our branch-aware memory plan significantly reduced memory allocations
compared to the naive strategy across various models. For Conformer CTC, it used 10.7× less
memory than the naive approach and was only 1.14× larger than the Arena plan. Whisper showed
the most drastic improvement, using 15.6× less memory than naive allocation and only 1.57×more
than the Arena plan. For MobileViT-S and MobileViT-XS, our method used 6.5× and 5.6× less
memory than the naive approach, respectively, and only 2.14× and 2.5× more than the Arena plan.
Although our method requires slightly more memory than the TFLite Arena plan due to limiting
tensor reuse within each branch, it enables safe and effective parallelism. Overall, our branch-
aware memory allocation efficiently reduces memory usage compared to the naive approach while
providing faster inference than TFLite Runtime

Figure 4: Power and Energy Comparison on Pixel 6 and K50: BAP vs TFLite runtime

Energy Analysis: Power and energy measurements on both Google Pixel and Xiaomi K50 showed
that, although BAP consumed more power than TFLite, it was more energy-efficient overall due to
significant reductions in inference time. On Google Pixel, BAP achieved energy savings of 16.07%
to 24.64%, while on the Xiaomi K50, energy consumption decreased by 7.94% to 20.19%, with the
largest gains seen for Whisper. This demonstrates that while BAP’s multithreading increases CPU
utilization and power draw, the improved efficiency in inference time ultimately leads to lower total
energy consumption (see Figure 4). This balance between higher power use and faster execution
highlights BAP’s effectiveness for energy-constrained, real-time applications on mobile devices.

The increase in memory and power consumption in our method aligns with findings from CoDL
(Jia et al., 2022), where higher power usage on edge devices is balanced by reduced total energy
consumption. Both approaches show that while power demand rises due to parallel processing,
significant reductions in inference time ultimately lead to improved energy efficiency. This trade-off
is essential for real-time, performance-sensitive applications, where the modest resource overhead
is outweighed by the performance gains.

4.3.3 PARALLELIZATION EVALUATION

Layer parallelism Analysis: Table 3 shows that our method significantly accelerates layers with
parallelizable branches in both MobileViT-XS and Whisper models, reducing inference time by up to
67.7% in Whisper and 58.1% in MobileViT-XS. Layers with three or more parallel branches—such
as Layer 2 in MobileViT-XS and Layer 1 in Whisper—benefit the most, showing substantial latency
reductions. Conversely, layers without parallelizable branches, where computation remains largely
sequential, experience slight latency increases due to multithreading overhead. However, this trade-
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Table 3: Layer-Wise Inference Latency Comparison on Google Pixel 6 (in ms)
MobileViT-XS

Layer ID TFLite BAP BR.
1 42.16 46.59 1
2 3.28 1.56 3
3 31.04 31.78 1
4 3.46 1.45 3
5 34.69 35.50 1
6 1.23 0.74 3

Whisper
Layer ID TFLite BAP BR.
1 48.54 15.69 4
2 11.90 16.59 1
3 41.27 16.59 3
4 5.19 2.51 8
14 62.55 66.13 1
16 139.00 155.05 1

off is minimal, as the performance gains in parallelizable layers far outweigh the minor overhead in
non-parallel layers, making our method highly effective in accelerating complex ASR inference.

Figure 5: Thread Count Impact on Google Pixel

Thread Count Impact: Figure 5 shows that increasing threads significantly reduces inference time
for all models up to 3 threads, which matches the maximum parallelizable branches for Conformer
CTC and MobileViT. For example, MobileViT-S drops from 373.6 ms to 247.4 ms, and Conformer
CTC from 210.6 ms to 170.1 ms with 3 threads. Whisper, with more parallelizable branches, im-
proves further, from 2,804.7 ms to 1,861.7 ms with 4 threads. After reaching maximum paralleliza-
tion, Conformer and MobileViT continue to benefit slightly due to task stealing, which efficiently
utilizes idle threads. Beyond 6 threads, improvements taper off, and slight increases occur, such as
MobileViT-S rising to 229.7 ms at 7 threads, due to multithreading overheads like context switching.
These results demonstrate that while our method effectively uses parallelization, there’s a trade-off
with multithreading overhead. Nonetheless, the latency reductions remain significant, underscoring
the effectiveness of BAP in multithreaded environments.

5 CONCLUSION AND FUTURE WORK

We introduce BAP, a system that accelerates inference on mobile devices for ASR and transformer
models. By employing CPU parallel execution, branch-aware memory allocation, and efficient mul-
tithreading management, BAP fully leverages CPU resources to reduce latency. BAP achieved la-
tency reductions of 18% to 38% across various models, averaging 27% to 30%, with maximum
improvements up to 38.5%. Memory allocation was reduced by an average of 4.1× to 8.6×, with
maximum savings up to 15.6× compared to TFLite’s naive plan. BAP also reduced energy con-
sumption by up to 24.64% on high-end devices due to faster inference. These results highlight
BAP’s effectiveness in enhancing real-time inference on mobile devices.

While BAP demonstrates strong performance improvements in inference latency and energy effi-
ciency, there are areas for further exploration. Our method focuses on CPU-based optimization, but
future work could extend this approach to heterogeneous computing environments, such as GPUs
and NPUs, as support for dynamic tensors becomes more widely available. Additionally, future
research could investigate adaptive task scheduling and dynamic workload balancing to further op-
timize both energy consumption and performance across different edge devices.
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