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Abstract

Recently it is shown that learning radiance fields with depth rendering and depth1

supervision can effectively promote the view synthesis quality and convergence.2

But this paradigm requires input RGB-D sequences to be synchronized, hindering3

its usage in the UAV city modeling scenario. To this end, we propose to jointly4

learn large-scale depth-regularized radiance fields and calibrate the mismatch5

between RGB-D frames. Although this joint learning problem can be simply6

addressed by adding new variables, we exploit the prior that RGB-D frames are7

actually sampled from the same physical trajectory. As such, we propose a novel8

time-pose function, which is an implicit network that maps timestamps to SE(3)9

elements. Our algorithm is designed in an alternative way consisting of three10

steps: (1) time-pose function fitting; (2) radiance field bootstrapping; (3) joint11

pose error compensation and radiance field refinement. In order to systematically12

evaluate under this new problem setting, we propose a large synthetic dataset with13

diverse controlled mismatch and ground truth. Through extensive experiments,14

we demonstrate that our method outperforms strong baselines. We also show15

qualitatively improved results on a real-world asynchronous RGB-D sequence16

captured by drones. Codes, data, and models will be made publicly available.17

1 Introduction18

Incorporating depth rendering and depth supervision into radiance fields has been demonstrated as19

a helpful regularization technique in several recent studies [2, 21, 32, 20]. However, this technique20

has not yet been successfully introduced into radiance field learning from UAV (Unmanned Aerial21

Vehicle) images, despite it’s a typical choice in city modeling. A closer look at the aforementioned22

works reveals that they assume synchronized RGB and depth signals, which is hard to guarantee in23

UAV vision due to the lack of suitable synchronized sensors for long sensing ranges. So we study the24

problem of learning depth-regularized radiance fields from asynchronous RGB-D sequences.25

As a recap, the canonical radiance field [15] learns a neural network parameterized by θ that represents26

a 3D scene, from input images I and their intrinsic/extrinsic parameters TI. To alleviate the reliance27

on TI, some works [30, 11, 8] aim to resolve a different problem that self-calibrates TI. In other28

words, they jointly learn θ and TI from input images I . Similarly, the formulation considered here is29

to learn scene representation θ, camera parameters TI and TD from inputs images I and depths D.30

It is natural to develop the joint learning formulation to resolve the problem, as it amounts to adding31

new parameters to existing methods [30, 11, 8]. However, an important prior is ignored that RGB-D32

frames are actually sampled from the same physical trajectory. As conceptually shown in Fig. 1-a/b,33

TI and TD can be considered as samples from a function that maps timestamps to SE(3) elements.34

We name this function as time-pose function and model it with a neural network parameterized by35

ϕ. As such, we address the problem with a new formulation that learns scene representation θ and36
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Figure 1: The problem of interest is to learn a depth-regularized radiance field using asynchronous
RGB-D sequences (a). We proposed a time-pose function as conceptually shown in (b) to leverage
the prior that RGB-D seuqnces are actually sampled from the same physical underlying trajectory.
For a novel view (c), our method can render a better depth map (d) than Mega-NeRF (e).

time-pose function ϕ from inputs RGB images I and depths D. An interesting fact is that both θ and37

ϕ are implicit neural representation networks (or say coordinate-based networks) that allow fully38

differentiable training. To our knowledge, this new formulation has not been proposed before.39

We also propose an effective learning scheme designed in an alternative manner. In the first stage, we40

fit the time-pose function ϕ using one modality (e.g., RGB images) and infer the poses of the other,41

using a balanced pose regression loss and a speed regularization term. Secondly, we bootstrap a large-42

scale radiance field θ based upon Mega-NeRF [29] using the outputs of the trained time-pose function.43

Thanks to the first step, depth regularization can be imposed here in spite of RGB-D misalignment.44

Finally, thanks to the cascade of two fully differentiable implicit representation networks, we jointly45

optimize the 3D scene representation θ and compensate pose errors by updating ϕ.46

Since the problem considered is new, we contribute a synthetic dataset (named AUS) for systematic47

evaluation. Using six large-scale 3D scenes, realistic drone trajectories of different difficulty levels48

are generated. Specifically speaking, simple trajectories are heuristically designed with a zig-zag49

pattern while complicated ones are generated by manual control signals in simulation. We also50

control the mismatch between RGB-D sequences using different protocols, to cover as many as51

possible scenarios that the algorithm may encounter in reality. Through a set of comprehensive52

experiments, we show the proposed method outperforms several state-of-the-art counterparts and53

our design choices contribute positively to performance. Last but not least, we present a real-world54

evaluation using asynchronous sensors on drones. Our depth rendering results (on unseen viewpoint)55

is shown in Fig. 1-d, which is much better than the result of Mega-NeRF shown in Fig. 1-e. This56

success is credited to the usage of depth regularization as made possible by our novel algorithm.57

To summarize, we have the following contributions in this paper: (1) We formalize the new problem58

of learning depth-regularized radiance fields from asynchronous RGB-D sequences, which is rooted59

in UAV city modeling. (2) We identify an important domain-specific prior in this problem: RGB-D60

frames are sampled from the same underlying trajectory. We instantiate this prior into a novel time-61

pose function and develop a cascaded fully differentiable implicit representation network. (3) In order62

to systematically study the problem, we contribute a photo-realistically rendered synthetic dataset63

that simulates different types of mismatch. (4) Through a comprehensive benchmarking on this new64

dataset and real-world asynchronous RGB-D sequences, we demonstrate that our method can promote65

performance over strong prior arts. Anonynous code: https://anonymous.4open.science/r/async-nerf66

2 Related Works67

Large-scale Radiance Fields. Neural Radiance Field (NeRF) [15] has shown impressive results in68

neural reconstruction and rendering. However, its capacity to model large-scale unbounded 3D scenes69

is limited. Several strategies [29, 26, 32, 14, 35] have been proposed to address this limitation, with a70

common principle of dividing large scenes into blocks or decomposing the scene into multiple levels.71

Block-NeRF [26] clusters images by dividing the whole scene according to street blocks. Mega-NeRF72

[29] utilizes a clustering algorithm that partitions sampled 3D points into different NeRF submodules.73

BungeeNeRF [32] trains NeRFs using a growing model of residual blocks with predefined multiple74

scales of data. Switch-NeRF [14] designs a gating network to jointly learn the scene decomposition75

and NeRFs without any priors of 3D scene shape or geometric distribution. However, these prior76

works fail to leverage the rich geometric information in depth images for effective regularization.77
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Depth-regularized Radiance Fields. Volumetric rendering requires extensive samples and sufficient78

views to effectively differentiate between empty space and opaque surfaces. Depth maps can79

serve as geometric cues, providing regularization constraints and sampling prior, which accelerates80

NeRF’s convergence towards the correct geometry. DS-NeRF [3] enhances this process using depth81

supervision from 3D point clouds, estimated by structure-from-motion, and a specific loss for rendered82

ray termination distribution. Mono-SDF [38] and Dense-Depth Prior [21] further supplement this83

with a pretrained dense monocular depth estimator for less-observed and textureless areas. To adapt84

NeRF for outdoor scenarios, URF [20] rasterizes a pre-built LiDAR point cloud map to generate85

dense depth images and alleviates floating elements by penalizing floaters in the free space. Moreover,86

S-NeRF [34] completes depth on sparse LiDAR point clouds using a confidence map, effectively87

handling street-view scenes with limited perspectives. However, those methods are not readily88

applicable to UAV captured images due to the lack of suitable synchronized sensors for long ranges.89

Broader UAV Vision and Synchronization. Like autonomous driving, UAV vision is drawing90

increasing attention due to its unique characteristics. Broader UAV vision covers many topics like91

counting [31][7], trajectory forecasting [18], intention prediction [33], object tracking [16], physics92

understanding [39], next-best-view prediction [6], 3D reconstruction [41], and calibration [19].93

Sensor synchronization is challenging for UAV vision (and other settings) and several works address94

the problem from an algorithmic perspective. One possibility is to adopt tailored hardware designs or95

software protocols [1] to synchronize all the devices. Another branch of sensor-agnostic methods96

utilizes temporal priors by using Sum-of-Gaussians [4] or parametric interpolation functions [36].97

98

(i)
(ii) (iii)

Figure 2: Three-step Optimization. (i) A time-pose function parameterized by ϕ is trained to predict
camera poses from timestamps; (ii) The neural radiance field parameterized by θ is bootstrapped with
pure RGB losses; (iii) Both of the parameters θ, ϕ are jointly optimized with RGB-D supervision.

3 Problem Formulation and Optimization Pipline99

Problem & Challenge. Our goal is to learn a neural radiance field parameterized by θ for large-scale100

scene representation from UAV images as done in prior works [29, 32]. However, these prior works101

fail to leverage depth supervision, which is known [3, 21] as useful for training floater-less NeRFs.102

To our knowledge, there are no easily accessible synchronized RGB-D sensor suites for large-scale103

outdoor scenes, and trivially synchronizing them according to timestamp1 cannot fully address the104

misalignment issue. Instead of using expensive hardware, we take an algorithmic perspective.105

Input & output. There are some prior works on large-scale scene modeling using aerial images106

[32, 29, 5, 6]. In this study, we assume an input RGB-D stream captured by drones: a set of107

RGB camera images {I(i)}NI
i=1 and a set of depth maps {D(j)}ND

j=1 (shown in Fig. 1-a) and we aim108

to recover the spatiotemporal transformations between them. Given that our focus is on relative109

transformation, it is viable to consider either the RGB or the depth stream as the reference without110

compromising generality. For convenience, we assume a set of camera poses {T (i)
I }NI

i=1 for color111

images are obtained by an SfM algorithm. The neural scene representation parameterized by θ112

outputs an image Î as well as a depth map D̂ at a given perspective camera pose T .113

Observation. Note that all the sensor data are captured with a drone on the same trajectory2, we114

can model the relationship between capture time t and sensor poses T with an implicit time-pose115

function as ϕ : t → T̂ = [ x̂, q̂ ], where t is the timestamp of capture, and the estimated pose T̂ is116

represented by a translation vector x̂ ∈ R3 and a quaternion q̂ ∈ R4.117

Pipeline overview. We formulate our method as a 3-step optimization problem (as shown in Fig. 2).118

First, since the time-pose relationship for the RGB captures are given, we can train a time-pose119

1The so-called soft synchronization.
2but they are not necessarily synchronized in terms of acquisition time.
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Figure 3: Method Pipeline. The time-pose function is modeled using a 1-D multi-resolution hash
grid with direct and speed losses. After bootstrapping the scene representation networks with pure
RGB signals, the predicted depth sensor poses are used for jointly optimizing the NeRFs’ parameters
θ. At each timestamp (ti from RGB sequence or tj from depth sequence), only one modality of
sensor signals is provided, thus only one loss term is activated (shown on the right).

function on the RGB sequence (Fig. 2-(i)). Then, to train the neural radiance field, we first bootstrap120

the network with pure RGB supervision (Fig. 2-(ii)). To further enable training with RGB-D121

supervision, we can use the previously trained time-pose function to estimate the corresponding depth122

camera poses {T (j)
D } of the depth timestamps {t(j)D }. Since both of the networks are differentiable,123

we jointly optimize the networks in an end-to-end manner in the third stage (Fig. 2-(iii)).124

4 Method125

We introduce in Section 4.1 the details of learning an implicit time-pose function. In Section 4.2, we126

describe our neural scene representation networks and the bootstrapping strategy. In Section 4.3, we127

adopt depth supervision and jointly train the time-pose function with RGB-D pairs.128

4.1 Time-Pose Function129

We represent the camera trajectory as an implicit time-pose function ϕ whose input is a timestamp t,130

and whose output is a 6-DoF pose T that consists of a 3-D translation xi and a 4-D quaternion qi.131

Network Overview The time-pose function (shown in the left part of Fig. 3) is approximated with132

a compact 1-D multi-resolution hash grid {G(l)}Ll=1, followed by an MLP decoder. The hash grid133

consists of L levels of separate feature grids with trainable hash encodings [17]. The reason why we134

choose this architecture is as follows: The time-pose function is a coordinate-based function that may135

contain coarse and fine-level feature components 3[27], and this architecture allows us to sample the136

hash encodings from each grid layer with different resolutions and perform quadratic interpolation on137

the extracted encodings to obtain a feature vector Vi when querying a specific timestamp t that is in138

the range of all timestamps. This design choice is also empirically validated in Table. 3.139

After obtaining the interpolated feature vector, an MLP with two separated decoder heads is used140

to predict the output translation x̂i and rotation q̂i vectors respectively. The forward pass can be141

expressed in the following equations:142

Vi = FMLP
(

concat{interp(h(t;πl), Gl
θ}Ll=1; ΦMLP

)
, (1)

T̂i = [x̂i, q̂i] = ltrans(Vi; Φtrans), lrot(Vi; Φrot), (2)
where interp denotes interpolation, h is the hash function parameterized by πl, FMLP, ltrans, lrot are the143

MLP networks and the decoder heads, with ΦMLP,Φtrans,Φrot representing their parameters.144

Depth-pose Prediction Since both the depth maps and the RGB images are collected by the same145

drone on the same flight, they cover the same spatial-temporal footprints except for the difference146

in the placement of the two sensors on the aircraft. For every depth frame, we first predict the147

RGB camera pose using the capture timestamps of the depth sensor with the time-pose function148

then transform the predicted RGB camera pose to the depth sensor pose with a pre-calibrated pose149

transformation TRGB→D between sensors.150

To optimize the Time-Pose Function, we propose the following objective function:151

L = λtransLtrans + λrotLrot + λspeedLspeed, (3)
3This is shown by the ground truth trajectory in Fig. 4 and the predicted trajectory in the supplementary.
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where Ltrans,Lrot,Lspeed are translation, rotation and speed losses respectively as shown in the left152

panel of Fig. 3. and λtrans, λrot, λspeed are the weighting parameters. Note that λtrans and λrot are153

automatically adjusted as explained in a later paragraph.154

Pose Representation. There are some common choices to represent rotation for optimizing camera155

poses like rotation matrices [37] or Euler-angles [25, 28]. However, they are not continuous for156

representing rotation [42] due to their non-homeomorphic representation space to SO(3). We choose157

to use unit quaternion as our raw rotation representation because arbitrary 4-D vectors can be easily158

mapped to legitimate rotations by normalizing them to the unit length [10].159

Optimization of Translation and Rotation. We optimize the translation and the rotation vectors by160

minimizing the mean square error (MSE) between the estimated and ground-truth camera poses:161

Ltrans =
1

n

n∑
i=1

(xi − x̂i)
2, Lrot =

1

n

n∑
i=1

(qi − q̂i)
2. (4)

Since x and q are in different units, the scaling factor λtrans and λrot play an important role in balancing162

the losses. To prevent translation and rotation from negatively influencing each other in training and to163

tap into possible mutual facilitation, we make the weighting factors learnable by using homoscedastic164

uncertainty [9] as Lσ = Ltrans exp(−ŝtrans) + ŝtrans + Lrot exp(−ŝrot) + ŝrot, where ŝ are learnable165

parameters, thus the loss terms are balanced during training course4.166

Optimization of Motion Speed. Observing that the time-pose function is essentially a function of167

translational displacement and angular displacement with respect to time, we can use the average168

linear velocity5 to supervise the gradient of the network output, with regard to the input vectors.169

Since the linear velocity variation is small and the angular velocity variation is relatively larger in the170

scenes captured by the drone, only the average linear velocity is used to supervise the neural network171

and the latter is not supervised in our method:172

Lspeed = MSE(v(ti), v̂(ti)) =
1

n

n∑
i=1

(v(ti)−
∂x̂

∂t
(ti))

2, v(ti) =
∂x

∂t

∣∣∣∣
t=ti

≈ xi − xi−1

ti − ti−1
(5)

4.2 Bootstrapping Large-scale Neural Radiance Fields173

In this part, we introduce our proposed scene representation (right half of Fig. 3) that is bootstrapped174

in the second phase of the optimization process (Fig. 2-(ii)). Due to the limited capacity of MLPs,175

we follow Mega-NeRF[29] and partition the scene map into a series of equal-sized blocks in terms176

of spatial scope, and each block learns its individual scene representation with an implicit field. In177

this stage, we optimize the scene representation with pure RGB data. Specifically, the radiance field178

is denoted as {f (i)
NeRF}

Nx×Ny

i=1 , where Nx, Ny denotes the spatial grid size. Each implicit function179

represents a geographic region with xcentroid
i as its centroid. The kth scene model can be written as:180

f (k)
NeRF(γ(xpts), γ(d)) → (ĉ, σ), (6)

where k = argmin
j

||xpts − xcentroid
j ||2 and γ is the positional encoding function.181

For view synthesis, we adopt volume rendering techniques to synthesize color image Î and depth182

map D̂. To be specific, we sample a set of points for each emitted camera ray in a coarse-to-fine183

manner [15] and accumulate the radiance and the distance along the corresponding ray to calculate the184

rendered color Î and depth D̂. To obtain the radiance of a spatial point xpts, we use the nearest scene185

model for prediction. A set of per-image appearance embedding [13] is also optimized simultaneously186

in the training.187

Î(o,d) =

∫ far

near
T (t)σ(k)(x(t)) · c(k)(x(t),d)dt, D̂(o,d) =

∫ far

near
T (t)σ(k)(x(t)) · tdt, (7)

where o and d denote the position and orientation of the sampled ray, x(t) = o + td represents188

the sampled point coordinates in the world space, and T (t) = exp
(
−
∫ t

near σ
(k)(x(s))ds

)
is the189

4Manual selection of weights requires laborious tuning, but comparable performance can be achieved.
5Note that the average velocity refers to the mean value calculated from the ground-truth camera pose of the

current frame and the two adjacent frames, rather than the average value in the whole sequence.
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accumulated transmittance. We optimize the scene representation model with only the photometric190

error as Lbootstrarp = MSE(I, Î). We empirically observe that this bootstrapping is critical to the191

challenging third stage which jointly learns θ and ϕ using asynchronous RGB-D data.192

4.3 Joint Optimization193

While the time-pose function learns a good initialization from the RGB sequence, there are still errors194

to be compensated. In this section, we describe how we perform simultaneous mapping and pose195

optimization, which compensates for the initial error of the time-pose function.196

We jointly optimize the inaccurate camera poses and the implicit maps: when fitting parameters197

Θ
(k)
NeRF of the scene representation, the estimated depth camera poses T̂ (j)

D ∈ SE(3) (where t ∈ R3198

and q ∈ SO(3)) will be simultaneously optimized on the manifold:199

θ, {T̂D} = argmin
θ,T ∈SE(3)

L({I(i)}, {D(j)} | θ, {T̂D}), (8)

where L is the objective function we demonstrate in the next paragraph.200

To train the implicit representation to obtain photo-realistic RGB rendering maps and accurate depth201

map estimation, we update the mapping losses as:202

L = λcolor

∑
i

MSE(I(i), Î(i)) + λdepth(α)
∑
j

MSE(D(j), D̂(j)), (9)

where λcolor and λdepth(α) are weighting hyper-parameters for color and depth loss, in which the203

depth loss weight starts to grow from zero gradually with the training process α.204

To compensate for the error from the time-pose function extracted poses, we jointly optimize two205

implicit representation networks thanks to the end-to-end differentiable nature.206

5 Asynchronous Urban Scene (AUS) Dataset207

RGBD sequence

Sampled RGB

Sampled Depth 
with fixed offset

RGBD sequence

Sampled RGB

Sampled Depth 
with random offset

Figure 4: We propose a photo-realistically rendered dataset named Asynchronous Urban Scene (AUS)
for evaluation. (a/b) are large-scale city scenes designed according to New York and San Francisco
while (c) is (relatively) small-scale scenes provided by UrbanScene3D. Drone trajectories of different
difficulty levels are visualized in (a-c). On these trajectories, we first capture an RGB-D sequence
with an enough high framerate. Then we exploit two resampling strategies: fixed offset (d) and
random offset (e). x equals 30 in (d) for every RGB-D pair. x equals 30 while y equals 50 in (e).

Dataset Collection. Our Asynchronous Urban Scene (AUS) dataset as illustrated in Fig.4 is generated208

using Airsim [23], a simulator plug-in for Unreal Engine. With 3D city models loaded in Unreal209

Engine, the simulator can output photorealistic and high-resolution RGB images with synchronized210

depth images (resampled later) according to the a drone trajectory and a capture framerate. We choose211

Airsim as it strikes a good balance between rendering quality and dynamics modeling flexibility.212

6



Scene Method PSNR ↑ SSIM ↑ LPIPS ↓ RMSE ↓ RMSE log ↓ δ1(%) ↑ δ2(%) ↑ δ3(%) ↑
NeRF-W 23.32 0.8105 0.2249 17.40 0.2630 80.17 90.11 94.72

Mega-NeRF 23.53 0.8375 0.1920 23.99 0.2943 80.11 88.77 92.87NY
Mean Ours 24.33 0.8346 0.1833 6.15 0.0816 94.85 98.23 99.22

NeRF-W 19.21 0.6610 0.3632 24.93 0.1877 81.81 91.54 96.93
Mega-NeRF 20.53 0.7334 0.2619 23.56 0.1713 88.58 94.74 96.83SF

Mean Ours 22.14 0.7930 0.2620 7.64 0.0789 96.34 98.80 99.70
NeRF-W 26.79 0.8053 0.2438 131.88 1.2277 53.76 61.57 58.98

Mega-NeRF 27.98 0.8674 0.1548 120.41 1.3246 69.10 72.54 73.17Bridge
Ours 29.06 0.8751 0.1952 26.56 0.3248 93.24 96.32 98.26

NeRF-W 21.32 0.6208 0.4088 132.70 1.4640 44.89 55.68 57.90
Mega-NeRF 24.69 0.7305 0.3103 129.50 1.4240 54.54 59.18 57.90Town

Ours 25.32 0.7675 0.2631 15.61 0.4632 91.92 96.89 98.49
NeRF-W 19.69 0.5715 0.4453 88.83 0.9365 61.73 72.58 75.80

Mega-NeRF 25.57 0.7739 0.3191 63.10 0.7651 77.18 85.02 86.69School
Ours 26.51 0.7971 0.3175 21.19 0.2083 92.87 95.78 97.51

NeRF-W 22.63 0.7443 0.2557 78.18 0.8651 75.72 79.26 81.11
Mega-NeRF 28.06 0.9053 0.1159 54.99 0.6167 79.69 83.59 87.43Castle

Ours 28.21 0.8976 0.1113 16.66 0.3565 93.12 97.23 98.45
NeRF-W 21.80 0.7156 0.3118 55.86 0.5846 72.20 81.40 84.88

Mega-NeRF 23.85 0.7990 0.2262 51.06 0.5527 78.66 85.09 87.43
24.85 0.8220 0.2223 12.14 0.1834 94.47 97.73 98.95Mean

Ours (+1.00) (+0.0230) (-0.0039) (-38.92) (-0.3693) (+15.11) (+12.64) (+11.52)
Table 1: We quantitatively evaluate our method on the AUS dataset. Our method can synthesize more
realistic images and more accurate depth maps than the baseline methods. For the NY and SF, we
only report the mean performances on all sequences (Simple / Hard / Manual) due to limited space
and more detailed results are in the supplementary materials.

3D City Scene Models. To generate the AUS dataset, we exploit a total of six scene models, covering213

two large-scale ones shown in Fig. 4-a/b and four (relatively) small-scale ones shown in Fig. 4-c. The214

former uses the New York and San Francisco city scenes provided by Kirill Sibiriakov [24], in which215

AUS-NewYork covers a 250 × 150m2 area with many detailed buildings and AUS-SanFrancisco216

consists of a 500×250m2 area near the Golden Gate Bridge. The latter uses four model files provided217

in the UrbanScene3D dataset [12]. As such, at the scene level, AUS features a good coverage of both218

large-scale modern cities and smaller cultural heritage sites.219

Trajectory Generation. Trajectory complexity matters for our problem. On one hand, in many220

real-world applications, photographers may manually control drones to capture a city. On the other221

hand, simple trajectories can be modeled by simple functions, rendering the neural time-pose function222

unnecessary. To build a meaningful and comprehensive benchmark, we use three types of trajectories:223

a trivial Zig-Zag trajectory (simple in Fig. 4), a more complex randomly generated trajectory (hard in224

Fig. 4), and a very complex manually controlled trajectory (manual in Fig. 4). In AUS-Small, we225

only provide manually controlled trajectories, since the scene sizes are relatively small and using the226

former two trajectory strategies leads to an unrealistically large overlap between frames.227

Mismatch Resampling. We first sample synchronized RGB-D sequences in the simulator at a high228

frequency (50fps) then re-sample RGB and depth images with various offsets to create asynchronous229

RGB-D sequences. As shown in Fig. 4-d/e, we exploit two settings for the AUS dataset. In Fig. 4-d,230

every RGB-D pair is resampled according to a fixed offset denoted by x%. For example, we sample231

the RGB image at 5fps or say every 10 frames and x = 30 means every depth image is 3 frames232

later than the RGB counterpart. In Fig. 4-e, the offset between an RGB-D pair is randomly selected,233

simulating a challenging real-world asynchronous sequence. Offset ablation will be shown later.234

6 Experiments235

In this section, we show the effectiveness of our 3-step optimization pipeline by qualitatively and236

quantitatively evaluating our proposed methods and comparing with baseline methods.237

6.1 Results238

We evaluate our proposed method against NeRF-W [13] and city-scale Mega-NeRF [29] and present239

the quantitative results in Table 1 and Table 2. NeRF-W is the baseline from which we borrow240

the aforementioned idea of per-image appearance embedding and Mega-NeRF is a state-of-the-art241

(SOTA) large-scale scene modeling framework which our network is built upon.242

7



Scene Time-Pose Function Joint Optimzation
Rot. (◦) Trans. (m) Rot. (◦) Trans. (m)

NY Full 0.66 / 0.59 / 3.70 1.84 / 1.12 / 0.46 0.13 / 0.09 / 1.47 0.34 / 0.56 / 0.20
SF Full 0.17 / 0.67 / 0.65 1.34 / 1.45 / 0.94 0.05 / 0.41 / 0.02 0.32 / 1.09 / 0.66
Small 1.51 / 0.68 / 0.70 / 1.05 0.95 / 1.35 / 0.89 / 0.38 0.49 / 0.36 / 0.68 / 0.38 0.57 / 0.85 / 0.56 / 0.12
Mean 1.04 1.07 0.41 (-0.63) 0.53 (-0.54)

Table 2: We show that the time-pose function learns an accurate implicit trajectory from the RGB
sequence that can estimate accurate poses for depth frames. By further tuning the time-pose function
jointly with the scene representation network, the accuracy of the predicted depth sensor poses can be
improved. The results of Simple / Hard / Manual on NY and SF are shown in the first two lines. The
results of the 4 small scenes of (Bridge / Town / School / Castle) are shown at the bottom.
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Figure 5: Qualitative Results. Our method can render photo-realistic novel views and the best depth
estimation results. Please zoom in to see details using an electornic verion.

RGB-D View Synthesis The standard metrics for novel view synthesis and depth estimation are243

used for evaluation. For RGB view synthesis, metrics including PSNR, SSIM, and the VGG244

implementation of LPIPS [40] are used. For depth estimation, RMSE, RMSE log, δ1,2,3 are used. In245

Table 1, we quantitatively show on the RGB view synthesis task that, together with depth supervision,246

our method can generate more photo-realistic images than two SOTA baselines, and show on the247

depth estimation tasks that our method significantly improves the learned geometry of the scene248

representation network. We also present the RGB-D view synthesis results qualitatively in Fig.5 in249

which our method synthesize photo-realistic images and accurate depth maps, while baseline methods250

fail at predicting reliable depth maps (e.g. in the School scene, they mispredict the void space as a251

dense surface; in NY hard, the depth values around glasses are obviously inaccurate).252

Depth Pose Estimation We evaluate the performance of our time-pose function in Table 2, or say253

specifically the accuracy of our method to localize depth sensor poses. As shown quantitatively, our254

method can achieve an average pose error of 1.04m and 1.07◦ in the first stage, where only time-pose255

pairs from the RGB sequence are used to optimize the network. After joint optimization in the third256

stage, our method cuts half the errors to 0.53m and 0.41◦.257

Real-world Evaluation. In the real-world experiments, we use the DJI M300 UAV (equipped with a258

high-definition RGB camera and LiDAR to collect real data, where the RGB camera collects images259

at the frame rate of 30fps and the LiDAR collects depth information at 240Hz. The poses of the RGB260

images are provided by COLMAP [22]. The fixed transformations between sensors are provided by261

the producer or can be calibrated manually. A qualitative comparison is provided in Fig. 1 and more262

results are in the supplementary.263

6.2 Ablation Studies264

Time-Pose Function Network Structure. We compared our proposed time-pose function implemen-265

tation with several commonly used implicit representation architectures on the localization accuracy266
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Method Rotation (◦) Translation (m)

Mean Median Mean Median
MLP 26.62 17.53 8.23 7.50
Feature Grid 15.86 14.56 8.53 7.48
Ours (L=1) 24.24 12.99 9.20 8.01
Ours w/o speed 11.96 11.21 19.95 12.28
Ours 11.36 11.17 6.29 4.03

Table 3: Ablation on different network struc-
tures and the use of speed optimization.

Offset Rotation (◦) Translation (m)

Mean Median Mean Median

10% 0.66 0.26 3.42 1.88
20% 0.94 0.55 4.96 3.90
30% 1.24 0.79 6.41 5.78
40% 1.41 0.75 7.26 6.61
50% 1.50 0.84 7.53 6.51

Random 1.12 0.52 5.17 4.05

Table 4: Results on the ablation of
different sampling offset strategies.

(Tab. 3). In order to highlight the gap between different methods, we downsample the dataset to267

increase the difficulty. (a) Pure MLP architecture : processing the positional-encoded [15] input268

timestamps with an MLP; (b) 1-D Feature Grid: storing a feature vector for each second in the269

timestamp span and performing linear feature interpolation in the query’s neighborhood. (c) Ours:270

our proposed 1-D multi-resolution hash grid with different resolution layers. The results (Table 3)271

show that our proposed multi-resolution architecture outperforms other network architectures in272

accuracy. The network structures are further detailed in the supplementary materials.273

Speed Loss. We compared our method’s localization accuracy with and without the optimization of274

motion speed (see the comparison of ’Ours’ and ’Ours w/o speed’ in Tab. 3). The results show that275

minimizing the gradient error (i.e., speed loss) help a lot in improving the accuracy of the translation276

(from 20m to 6.3m).277

Different Sampling Offsets. To show the robustness of our proposed time-pose function, we compare278

the localization accuracy of implicit trajectory representations under different sampling offsets, whose279

definition is described in Fig. 4-d/e. The quantitative results (Table. 4) indicate that the network’s280

output exhibits a controllable margin of error as the data offset increases.281

Scene Ours Mega-NeRF Mega-NeRF-Depth
PSNR ↑ RMSE ↓ PSNR ↑ RMSE ↓ PSNR ↑ RMSE ↓

NY Mean 24.24 5.93 24.03 42.15 19.70 15.94
SF Mean 22.70 7.26 20.00 32.17 19.07 11.39
Bridge 29.06 26.55 27.98 120.41 22.35 96.16
Town 25.32 15.61 24.69 129.50 20.14 81.99
School 26.51 21.19 25.57 63.10 21.91 42.74
Castle 28.22 16.66 28.06 54.99 23.23 38.90
Mean 26.01 15.53 25.01 73.72 21.07 47.85

Table 5: Ablation on the joint optimization stage. We show that jointly optimizing the time-pose
function and the scene representation significantly helps reduce geometric error.

Joint Optimization for Pose Error Compensation. To demonstrate the importance of rectifying282

erroneous poses of depth images in asynchronous RGB-D sequences using the time-pose function,283

we train a Mega-NeRF[29] with depth supervision but disabled the joint optimization stage. From284

the evaluation results (Table 5), we observe its substantial impact on the rendering quality (PSNR for285

RGB and RMSE for depth). Due to limited space, qualitative results are in the supplementary.286

7 Conclusion287

In this paper, we present a method to learn depth-supervised neural radiance fields from asynchronous288

RGB-D sequences. We leverage an important prior that the sensors cover the same spatial-temporal289

footprints and propose to utilize this prior with an implicit time-pose function. With a 3-staged290

optimization pipeline, our method calibrates the RGB-D poses and trains a large-scale implicit scene291

representation. Our experiments on a newly proposed large-scale dataset show that our method can292

effectively register depth camera poses and learns the 3D scene representation for photo-realistic293

novel view synthesis and accurate depth estimations. Broader impact and limitations: Large-scale294

scene modelling can be used for potential military use, which the method is not intended for.295
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