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ABSTRACT

Amortized simulation-based inference (SBI) methods train neural networks on
simulated data to perform Bayesian inference. While this strategy avoids the need
for tractable likelihoods, it often requires a large number of simulations and has
been challenging to scale to time series data. Scientific simulators frequently em-
ulate real-world dynamics through thousands of single-state transitions over time.
We propose an SBI approach that can exploit such Markovian simulators by lo-
cally identifying parameters consistent with individual state transitions. We then
compose these local results to obtain a posterior over parameters that align with the
entire time series observation. We focus on applying this approach to neural poste-
rior score estimation but also show how it can be applied, e.g., to neural likelihood
(ratio) estimation. We demonstrate that our approach is more simulation-efficient
than directly estimating the global posterior on several synthetic benchmark tasks
and simulators used in ecology and epidemiology. Finally, we validate scalability
and simulation efficiency of our approach by applying it to a high-dimensional
Kolmogorov flow simulator with around one million dimensions in the data do-
main.

1 INTRODUCTION

Numerical simulations are a central approach for tackling problems in a wide range of scientific and
engineering disciplines, including physics (Brehmer & Cranmer, 2022; Dax et al., 2021), molecular
dynamics (Hollingsworth & Dror, 2018), neuroscience (Gonçalves et al., 2020) and climate sci-
ence (Watson-Parris et al., 2021). Simulators often include at least some parameters that cannot be
measured experimentally. Inferring such parameters from observed data is a fundamental challenge.
Bayesian inference provides a principled approach to identifying parameters that align with empiri-
cal observations (Gelman et al., 2020). Standard algorithms for Bayesian inference, such as Markov
Chain Monte Carlo (MCMC) (Gilks et al., 1995) and variational inference (Beal, 2003), generally
require access to the likelihoods p(x|θ). However, for many simulators, directly evaluating the
likelihood remains intractable, rendering conventional Bayesian approaches inapplicable. Yet, gen-
erating synthetic data x ∼ p(x|θ) is feasible for numerical simulators. Simulation-based inference
(SBI) methods offer a powerful alternative to perform Bayesian inference for such simulator models
with intractable likelihoods (Cranmer et al., 2020).

Classical SBI methods, such as Approximate Bayesian Computation (ABC) (Beaumont et al., 2002)
and synthetic likelihoods (Wood, 2010), struggle to effectively scale to high-dimensional simula-
tions. To address this, SBI methods using neural networks have been developed, which train net-
works to represent likelihoods (Papamakarios et al., 2019; Glöckler et al., 2022; Boelts et al., 2022),
likelihood ratios (Durkan et al., 2020; Hermans et al., 2020; 2022; Miller et al., 2022), posteri-
ors (Papamakarios & Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019; Deistler et al.,
2022; Geffner et al., 2023; Wildberger et al., 2023; Sharrock et al., 2024) or target several properties
at once (Radev et al., 2023; Gloeckler et al., 2024b). These methods allow for parameter inference
without requiring additional simulations after training, making them more efficient than traditional
approaches (Lueckmann et al., 2021): they effectively amortize the cost of the simulation, and/or
the full inference approach (Gershman & Goodman, 2014; Le et al., 2017).

However, applying these neural amortized methods to time series simulations can be challenging
due to the high computational cost of repeated simulator calls. Running numerous time series
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Fig 1: Illustration of Factorized Neural Score Estimation (FNSE). The goal is to perform param-
eter inference on a full time series model. The training process uses a smaller subsets of single-state
transitions initialized at arbitrary proposal p̃(xt), with parameters sampled from a prior distribution.
During inference, the time series is divided into single state transitions, and each state transition is
evaluated by the neural network to estimate local posterior scores. These local estimates are then
aggregated to form a global approximation, which is subsequently used to sample from the overall
posterior distribution. Here, a denotes the diffusion time, and θa is the associated noisy parameter.

simulations—possibly with varying sequence lengths—can be computationally prohibitive or at
least wasteful. Instead, it seems advantageous to exploit the temporal structure of these simulators:
Many—if not most—scientific simulators for time series data are based on (stochastic) differential
equations that model dynamics of a system through state transitions over time (e.g., Sedlmeier et al.
(2016); Goswami et al. (2006); Strauss & Effenberger (2017); Sirur et al. (2016)), or directly model
processes which are iteratively updated at each time-step. As a consequence, such simulators have
an inherently Markovian structure, which can be leveraged for efficient inference! In particular, we
can approach the problem on the level of single-state transitions, a simpler task that can be tackled
with fewer simulations. For instance, in the Kolmogorov Flow simulator (Sec. 4.4), the simulation
outputs reach nearly one million dimensions for a time series of length hundred, which is out of
range for most direct SBI approaches. In contrast, the dimensionality of single state transitions is
only a few thousand.

In this work, we propose a method for efficient simulation-based inference for Markovian time
series simulators. Unlike other neural SBI methods that require long sequences for training, our
approach locally estimates parameters consistent with a single state transition. By aggregating these
local solutions, we recover a global posterior approximation for time series of arbitrary length,
significantly reducing simulation costs (Fig. 1). We focus on applying our strategy to posterior
score-based approaches (FNSE, Factorized Neural Score Estimation) and additionally apply it to
likelihood(-ratio) estimation methods (FNLE and FNRE). A related challenge has been addressed
in prior studies (Geffner et al., 2023; Linhart et al., 2024; Boelts et al., 2022) which had focused on
efficient inference of i.i.d. (independently and identically distributed) observations. We here show
that these approaches can be extended to Markovian simulators—arguably the dominant model-
class for mechanistic simulators for time-series—and empirically evaluate our approach on a series
of synthetic benchmark tasks, as well as simulators from ecology and epidemiology. Finally, we
demonstrate the scalability and efficiency of this approach on the high-dimensional Kolmogorov
flow problem.

2 PRELIMINARIES

2.1 PROBLEM SETTING

We target simulators p(x0:T |θ) that output time series x0:T := (x0, ...,xT ) ∈ RT×d. Many simu-
lators in scientific fields are implemented using (stochastic) differential equations, which inherently
satisfy the Markov property. We focus on this class of simulators, where the likelihood takes the
following form

p(x0:T |θ) = p(x0|θ)
T−1∏
t=0

p(xt+1|xt,θ). (1)
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To simplify the exposition, we constrain the initial condition to be independent of the parameter,
p(x0|θ) = p(x0), and assume that the simulation transition p(xt+1|xt,θ) does not depend on
time t. We relax both of these assumptions in Appendix A.2, and also address the general case of
higher-order Markov chains in Appendix A.2.3. We assume one can sample from the state-transition
function xt+1 ∼ T (xt+1|xt,θ), but not evaluate its probability density.

2.2 AMORTIZED METHODS FOR SIMULATION-BASED INFERENCE

Neural Posterior Estimation (NPE): Neural Posterior Estimation (NPE; Papamakarios & Murray
(2016); Lueckmann et al. (2017); Greenberg et al. (2019); Wildberger et al. (2023)) methods typ-
ically use a conditional neural density estimator, e.g., a normalizing flow (Rezende & Mohamed,
2015; Papamakarios et al., 2017; Durkan et al., 2019) to approximate the target posterior distribu-
tion. The model qϕ(θ|x0:T ) is trained via maximum likelihood to estimate p(θ|x0:T ) from a dataset
of parameter-data pairs {(θi,x0:T

i )}i=1, where (θi,x
0:T
i ) ∼ p(θ)p(x0:T |θ). For observations of

inhomogeneous size, NPE often incorporates an embedding network. Embedding networks can be
designed as recurrent networks (Lueckmann et al., 2017), permutation-invariant architectures (Chan
et al., 2018; Radev et al., 2020), or attention-based models (Schmitt et al., 2023) to respect known
invariances in the data. At inference time, NPE yields an amortized approximation of the posterior
for any observation x0:T

o therefore offering rapid evaluations or samples of the posterior.

Neural likelihood(-ratio) estimation (NLE, NRE): Neural Likelihood(-Ratio) Estimation
(NLE (Papamakarios et al., 2019), NRE (Hermans et al., 2020; 2022; Miller et al., 2022)) meth-
ods do not directly approximate the posterior distribution but instead train a surrogate qψ(x

0:T
i |θ)

for the likelihood p(x0:T
i |θ) or likelihood ratio p(x0:T

i |θ)/p(x0:T
i ). Once the likelihood is accessi-

ble via the surrogate, standard techniques such as MCMC or variational inference can be applied to
perform inference. These approaches circumvent the problem of not having access to the likelihood,
but still leaves us with the drawbacks of standard inference methods, i.e., slow sampling and po-
tential failure modes such as robustly handling multimodality (Glöckler et al., 2022). Nonetheless,
they also inherit the flexibility of standard inference techniques, such as the ability to handle mul-
tiple independent (or conditionally independent) observations by simply multiplying the likelihood
terms (Boelts et al., 2022).

Neural score estimation (NSE): Score-based diffusion models are a powerful tool for generating
samples from a target distribution. Common diffusion models (Song & Ermon, 2019; Song et al.,
2021; Ho et al., 2020) are based on stochastic differential equations (SDEs) that can be expressed
as dθa = f(a)θada + g(a)dw1 with w being a standard Wiener process. The drift and diffu-
sion coefficients f and g are chosen such that the solution to this SDE defines a diffusion process
that transforms any initial distribution into a simple noise distribution pA(θA) = N (θA, µA, σ

2
AI).

Samples from any target, such as the posterior p(θ|x0:T ), can then be obtained by simulating the
reverse diffusion process (Anderson, 1982)

dθa =
{
f(a)− g2(a) · ∇θa

log p(θa|x0:T )
}
da+ g(a)dw̃, (2)

where w̃ is a backward-in-time Wiener process. In practice, we can not access the analytic form of
the score s(θa|x0:T ) = ∇θa log p(θa|x0:T ), but we can estimate it from samples using conditional
denoising score-matching (Hyvärinen & Dayan, 2005; Song et al., 2021)

L(ϕ) = Ea,θ,θa,x0:T

[
λ(a)||sϕ(θa|x0:T )−∇θa log p(θa|θ)||22

]
where λ denotes a positive weighting function and p(θa|θ) = N (θa; s(a)θ, σ(a)

2I).

This recently proposed approach has been highly successful across various tasks (Geffner et al.,
2023; Wildberger et al., 2023; Sharrock et al., 2024; Gloeckler et al., 2024b). It offers a trade-off be-
tween the efficiency of the static NPE method and the flexibility of slower but more flexible NL(R)E
method. By enabling feasible post-hoc modifications and composability through appropriate adjust-
ments to the backward diffusion process, it bridges the gap between these two approaches (Geffner
et al., 2023; Gloeckler et al., 2024b).

1The diffusion time is denoted by a, against convention, to distinguish it from t in the time series.
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Algorithm 1 Training

1: Input: prior p(θ), proposal p̃(xt), tran-
sition function T (xt+1|xt,θ), score net
sϕ.

2: D = ∅ // Generate training dataset
3: for i = 1 to N do
4: θi ∼ p(θ); xti ∼ p̃(xt)
5: xt+1

i ∼ T (xt+1|xti,θi)
6: D = D ∪ {(θi,xti,x

t+1
i )}

7: end for
8: Train sϕ by minimizing Eq. 4 using D

Algorithm 2 Evaluation

1: Input: prior p(θ), observation x0:T
o ,

compose method (see Sec. 3.2.2).
2:
3: def sglob(θa,x

0:T
o ):

4: slocal = []
5: for t = 0 to T do
6: slocal += [sϕ(θa,xt,t+1

o )]
7: sglob =compose(slocal, p(θ))
8: return sglob

9: Sample p(θ|x0:T
o ) via sglob

3 METHODS

3.1 GLOBAL INFERENCE FROM SINGLE-STEP TRANSITIONS

Direct estimation of the global target distribution (i.e., the posterior p(θ|x0:T ) in NPE or the like-
lihood p(x0:T |θ) in NLE; Sec. 2.2) often requires a large number of simulations of the entire time
series, leading to intractable, or at least very expensive, estimation problems. We mitigate the prob-
lem of expensive simulation calls by leveraging the Markov factorization of the forward model:
Since the simulator is completely specified by its state-transition probabilities, p(xt+1|xt,θ), these
also contain all relevant information about the parameters. It is therefore possible to recover the
global target distribution (e.g., the posterior) for a time series of variable size given a dataset of
single-step transitions. Building on this observation, we aim to estimate local target scores slocal
using single-step transition simulation data D = {(θi,xt:t+1

i )}Ni=1 (Alg. 1, Sec. 3.2.1). Afterwards,
we recover the global target distribution by aggregating these local solutions using a composition
rule (compose, Alg. 2, Sec. 3.2.2). In the following, we apply this approach to NSE, NLE, and
NRE (Sec. 3.2, 3.3) and discuss the design of the required proposal p̃(xt) (Sec. 3.4) for sampling
single-state transitions.

3.2 FACTORIZED NEURAL SCORE ESTIMATION (FNSE)

3.2.1 LOCAL SCORE ESTIMATION

Assuming that p(x0:T |θ) satisfies Eq. 1 and p(x0|θ) = p(x0), the global target ∇θ log p(θ|x0:T )
in NSE can be factorized as

∇θ log p(θ|x0:T
o ) =

T−1∑
t=0

∇θ log p̃(θ|xto,xt+1
o )− (T − 1) · ∇θ log p(θ). (3)

Here, p̃(θ|xt,xt+1) is a posterior with xt following any proposal distribution xt ∼ p̃(xt) and xt+1

following the state transition xt+1 ∼ T (xt+1|xt,θ) (Appendix Sec. A.1). The factorization (3)
implies that global posterior is fully characterized by s(θ|xt,xt+1) = ∇θ log p̃(θ|xt,xt+1). We
can estimate this quantity using only single-state transitions by minimizing the loss

L(ϕ) = Ea,θ,θa,xt,xt+1

[
λ(a)||sϕ(θa|xt,xt+1)−∇θa

log p(θa|θ)||22
]
, (4)

given a proposal distribution xt ∼ p̃(xt). As a result, we can learn a local score estimator by
empirically minimizing this loss given a dataset of single-step simulations (Alg. 1). For a globally
amortized posterior approximation, the proposal distribution must at least satisfy two properties:
(i) it must have support at any point xt the simulator can attain, (ii) the proposed point xt must
be independent of the parameter θ involved in the transition to xt+1 to ensure Eq. 3 remains valid
(Appendix Sec. A.1). These constraints leave quite some flexibility in the choice of the proposal.
Its choice will have a significant impact, given a finite simulation budget (Sec. 3.4). Our approach
can readily be extended to higher-order Markov chains, which require proposing multiple past ob-
servations (Appendix Sec. A.2.3). Between the two extreme cases of learning from single-state
transitions, or full time series, there is a continuum of approaches, similarly to what was shown in
Geffner et al. (2023) for independent observations. We can extend our results to amortizing over any
finite number of transitions, leading to a partially factorized approach (Appendix Sec. A.2.4).
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3.2.2 LOCAL SCORE COMPOSITION

At inference time, we need to recover the global score sglob(θa|x0:T
o ) = ∇θa

log p(θa|x0:T
o ), by

composing all local scores slocal(θa|xt:t+1
o ) = ∇θa

log p(θa|xt:t+1
o ) estimated by the network,

thereby defining the compose function in Alg. 2. Finally, the composed global score sglob will
be passed to a diffusion sampler to obtain samples from the target posterior p(θ|x0:T

o ).

While the composition as introduced in Eq. 3 is valid for a = 0, it becomes invalid for any a > 0
(i.e., each noisy posterior). The reason for this is the following: The likelihood for the ‘noisy’
parameter p(x0:T |θa) no longer satisfies the Markov property, even if p(x0:T |θ) does (Weilbach
et al., 2023; Gloeckler et al., 2024b; Geffner et al., 2023; Rozet & Louppe, 2023). In the i.i.d. setting,
this issue has been tackled by Linhart et al. (2024), and we will adapt their approach to the Markov
setting. They showed that the global score is intractable, but proposed an approximation which can
be directly adapted to Markovian time series:

∇θa
log p(θa|x0:T ) ≈ Λ(θa)

−1

(
T−1∑
t=0

Σ−1
a,t,t+1sϕ(θa|xt,xt+1) + (1− T )Σ−1

a ∇θa
log p(θa)

)
,

where Λ(θa) =
∑T−1
t=0 Σ−1

a,t,t+1 +(1−T )Σ−1
a . Here Σa denotes the covariance matrix of p(θ|θa)

(usually tractable) and Σa,t,t+1 denotes the covariance matrix of p(θ|θa,xt,t+1), which need to
be estimated. This can be done from samples of the local posteriors obtained via the diffusion
model, referred to as GAUSS. Unless otherwise specified, we use this approximation as the default
composition rule for FNSE. Alternatively, we can estimate it via Tweedie’s moment projection using
the Jacobian of the score estimator, referred to as JAC (Linhart et al. (2024), see Appendix B for
details). In contrast, Geffner et al. (2023) addressed this issue (in the i.i.d. setting) through post-
hoc sampling corrections (we referred to this uncorrected variant as FNPE, Appendix Sec. B.2 for
details)

3.3 FACTORIZED LIKELIHOOD(-RATIO) ESTIMATION (FNLE, FNRE)

For likelihood(-ratio) estimation, applying our approach is straightforward: by assumption, the like-
lihood factorizes as shown in Eq. 1. As a consequence, we can directly learn the transition density
p(xt+1|xt,θ), similarly to the method described in Alg. 1, by replacing the score matching loss
with the appropriate likelihood (or likelihood-ratio) loss (Papamakarios et al., 2019; Hermans et al.,
2020; 2022; Miller et al., 2022). Once the transition density is obtained, the global log-likelihood
approximation ℓglob can be computed directly from Eq. 1 (i.e., by simply summing up the local
approximations). Classical MCMC techniques can be employed for sampling. We use reference
implementations of NLE and NRE as implemented in the sbi package (Tejero-Cantero et al., 2020),
adapted to the Markovian setting.

3.4 CONSTRUCTION OF THE PROPOSAL DISTRIBUTION

A proposal p̃(xt) for single state transitions needs to satisfy conditions (i) and (ii) in Sec. 3.2.1,
but solely relying on these properties does not necessarily make up a “good” proposal. Essentially,
it specifies which regions of the data domain are represented in the training dataset. Therefore,
a better posterior approximation is expected for states that are more likely to be generated by the
proposal compared to those that are less likely. This provides an opportunity and challenge to design
appropriate proposals for a given simulator.

For an amortized posterior approximation, the proposal distribution design should be guided by the
prior predictive distribution. The resulting trajectories x0:T ∼ p(x0:T ) encompass likely states xt
and we can use this to construct a reasonable proposal p̃(xt) (e.g. by simply proposing these at
random)—however, this approach comes at the cost of upfront simulations. Alternatively, we can
construct the proposal p̃(xt) based on observations available prior to training. This will focus sim-
ulation resources on the intended application but might not yield a good amortized approximation.
For further details on proposal design, see Appendix Sec. C.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 EMPIRICAL RESULTS

4.1 EVALUATION APPROACH

We empirically assess the accuracy and computational efficiency of the proposed approach, com-
paring it against non-factorized NPE with an appropriately chosen embedding net as a baseline. We
note that the simulation budget is not determined by the number of simulator calls N , but rather by
the number of calls to the state-transition function, i.e., T · N . We, therefore, configure the NPE
baseline with a Tmax = 10 steps, i.e., if the simulation budget is 10k, the NPE baseline used 1000
simulations, each of which is simulated for 10 steps (experiments with longer segments in Appendix
E). We additionally use data augmentation by duplicating shortened variants (T < Tmax) of these
simulations. This aims to help the RNN embedding net to generalize to different sequence lengths.
To also amortize over different initial conditions, the initial condition for each ten-step simulation
was drawn from the proposal also used in the factorized methods. As main metrics for comparison,
we use sliced Wasserstein distance (sW1) and Classifier two sample test accuracy (C2ST) on refer-
ence posterior samples (Lopez-Paz & Oquab, 2016; Kolouri et al., 2019; Bischoff et al., 2024). We
average the estimated value over a total of 10 randomly drawn observations. The whole process, i.e.,
training, sampling, and evaluation, was repeated five times, starting from different random seeds.

We begin by evaluating the methods on a set of newly designed benchmark tasks for Markovian
simulators (Sec. 4.2). Next, we apply the approach to classical models from ecology and epidemi-
ology, including the stochastic Lotka-Volterra and SIR models (Sec. 4.3). Finally, we demonstrate
the scalability of the method on a large-scale Kolmogorov flow task, where we perform inference on
very high-dimensional data using only 200k simulator steps (Sec. 4.4).

4.2 BENCHMARKS

To investigate several properties of the proposed approach, we develop several synthetic tasks
of first-order Markovian time series with associated reference posterior samplers (details in Ap-
pendix D.1).

Gaussian RW: A Gaussian Random Walk of form xt+1 = α · xt + θ + ϵ for ϵ ∼ N (0, I), α < 1.
with xt ∈ Rd and θ ∈ Rd. This simple task offers an analytic Gaussian posterior.

Mixture RW: A Mixture of Gaussian Random Walk of form xt+1 = xt + u · θ + ϵ for ϵ ∼
N (0, I), u ∼ Unif({−1., 1.}) and xt,θ ∈ Rd. By design, this task has a mixture of Gaussian
transition density and a non-Gaussian bimodal posterior.

Periodic/Linear SDE: Both tasks are governed by the linear SDE dxt = A(θ)xt + B(θ)dwt.
The periodic SDE is oscillatory with θ,xt ∈ R2 and a posterior with four modes. The linear SDE
involves A and B with xt ∈ R3 and θ ∈ R18.

Double well: A nonlinear SDE dxt = θ1x
t+ θ2 (x

t)
3
+ σdwt, which samples from a double-well

potential with modes position depending on θ1, θ2 (Singer, 2002; Cai et al., 2023).

We first examine the scalability of all evaluated methods as a function of the length and dimension-
ality of the time series while maintaining a fixed simulation budget. Specifically, we assess each
method on the Gaussian random walk (RW) example in 1, 2, and 10 dimensions, using a total of
10k simulations (Fig. 2a). Both FNLE and FNSE show better simulation efficiency than the NPE
baselines. FNRE is more sensitive to local errors, leading to a decline in performance over a long
time series. A similar observation was made by Geffner et al. (2023) for i.i.d. data. Notably, this
issue is reduced in the FNLE approach, which was not analyzed in their work but successfully ap-
plied by Boelts et al. (2022). On the other hand, the computational cost escalates significantly on
long time series, as evaluating the global likelihood requires T forward passes for each iteration
of MCMC sampling, making FNLE and FNRE relatively slow (especially NLE, as a forward pass
through the normalizing flow in FNLE is more costly than the classifier used in FNRE, Fig. 2a). In
contrast, the sampling cost for FSNE remains moderate due to its more efficient sampling method,
while performance remains similar to or better than FNLE.

In contrast to FNLE and FNRE, the approximative score composition (for a > 0) might impact the
sampling quality for FNSE. Therefore, we investigate the scaling behavior of different score compo-
sition techniques for long time series (Fig. 2b, Appendix Fig. 8b). Previous work within the i.i.d case
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Fig 2: Benchmarks: We validate our method on a Gaussian Random Walk with different dimen-
sions for different lengths (i.e. Transitions), also tracking sampling times (a). We assess FNSE
score accumulation over Gaussian RW and Periodic SDE tasks using a fixed Euler–Maruyama sam-
pler (b). We compare methods across tasks and transition steps (c). Finally, we examine the effect
of the proposal on NFSE trained with 10k simulations from a normal proposal of varying standard
deviation (d).

did not investigate performance beyond thirty samples (Geffner et al., 2023; Linhart et al., 2024).
Specifically, for time series exceeding a length of T > 100, the FNPE method starts to become
numerically unstable due to diverging trajectories. Although the assumptions of the GAUSS/JAC
approximations are violated (as the Mixture RW has a non-Gaussian posterior), these methods still
tend to perform well in practice in our implementation. Even when Langevin corrections (Song
et al., 2021; Geffner et al., 2023) are introduced, the GAUSS and JAC method remain superior,
especially for large T (Fig. A10, Appendix Sec. B.2).

Next, we conducted benchmarks across several tasks. Overall, FNSE and FNLE show higher ac-
curacy compared to FNRE and NPE in most tasks (Fig. 2c, Appendix Fig. 8c). An exception is
the double-well task, where NPE performs relatively well due to the SDE’s rapid convergence to
a stationary distribution, enabling the RNN to learn a generalizable summary statistic for infer-
ence. FNSE strongly outperforms other methods in cases of multimodal transition densities (e.g.,
Mixture RW) and performs comparably to likelihood-based approaches in simpler cases (e.g., Peri-
odic/Linear SDE) even if the posterior is strongly multimodal (Periodic SDE). Learning from single-
step transitions is the extreme end of a spectrum of possibilities. We, therefore, also evaluate this
benchmark on partially factorized variants using five transitions each (Appendix Fig. 9). Overall,
this could improve (e.g., Double Well) or hurt (e.g., Mixture RW) performance relative to the NPE
baseline. We also compared method to a broader spectrum of applicable baselines (Chen et al.
(2021; 2023); Sharrock et al. (2024), Appendix Table A3, A4), and plot our results also against
training budget (Appendix Fig. A6).

Finally, we investigate the impact of the proposal distribution, specifically for the FNSE method
trained over 10k simulation steps (Fig. 2d, extended results in Fig. A11). We use a Normal dis-
tribution centered at zero, adjusting its standard deviation ranging from σ = 0.1 (too narrow) to
σ = 1000 (too wide). Our results indicate a relatively broad range of standard deviations of the pro-
posal that result in good performance. If the distribution is too narrow, the observation may reach
values outside the training domain, while if it is too wide, the model is trained on values not observed
during evaluation. In addition, we compared our default choice to proposals constructed using prior
predictive samples (using a subset of the simulation budget, Sec. 3.4, Appendix Sec. E.4). Overall,
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Fig 3: Lotka Volterra and SIR experiments : The FNSE approximate posterior (predictive) of the
best performing FNSE model using 100k transition steps to train, visualized on subsequences from a
fixed observation and associated true parameter. (a, b). We then show the quantitative performance
in terms of C2ST and sW1 for each task on ten randomly selected observations; each run is repeated
five times (c, d).

this leads to similar results even if the simulation budget used to construct the proposal is subtracted
from the training budget (Tab. 1)

4.3 LOTKA VOLTERRA AND SIR

To further evaluate our method, we tested it on two famous models from ecology and epidemiology:
the Lotka-Volterra and Susceptible-Infected-Recovered (SIR) simulators. The Lotka-Volterra simu-
lator models predator-prey dynamics through four parameters that govern prey and predator growth,
hunting rates, and mortality. The SIR simulator is a fundamental model for understanding infectious
disease spread. Although commonly used for benchmarking SBI on fixed-size observations Lueck-
mann et al. (2021), we adapted these models for our analysis (details in Appendix Sec. D.1).

We begin by demonstrating how the posteriors evolve as more time points are observed using the
NFSE method (Fig. 3ab). In both tasks, we find that the posteriors converge to the true parameter
values, and the posterior predictive simulations increasingly align with the time series observation.
Notably, unlike in previous i.i.d. scenarios (Geffner et al., 2023; Linhart et al., 2024), the poste-
rior uncertainty about the parameters does not necessarily decrease as additional time points are
included. This is particularly evident in the SIR task, where the posterior remains largely unchanged
between T = 10 and T = 100 (Fig. 3b). This can be explained by the fact that the initial dy-
namics contain significant information about the parameters, while the later dynamics do not, i.e.,
the infected population consistently declines to zero, and the susceptible and recovered populations
converge to steady-state values that are independent of the parameterization.

We trained all methods on this task using 100k transition simulations. We then evaluate the accuracy
of all models for performing inference on sequences of length T = 1, 10, 100. For both tasks, we see
that the factorized methods (except FNRE in Lotka Volterra) generally outperform the NPE baseline
(Fig. 3cd, also Appendix Fig. 6 per training budget, Appendix Tab. 3 for additional baselines).
NFSE, in particular, significantly outperforms all other approaches on the SIR task. We additionally
performed a simulation-based calibration analysis (Talts et al., 2018) for FNSE and NPE, which,
in line with these results, showed that FNSE is better calibrated than NPE (Fig. A7.). Notably,
on the SIR task, we found NPE—in contrast to FNSE—to be unable to generalize to longer time

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

x10 x20 x30 x40 x50 x60 x70 x80 x90 x100

0.8 1.2ρ
−3

3
R
e θ*

T=10

0.8 1.2ρ
−3

3

R
e θ*

0 104|x − x |i o

prior
post.

0 2 ⋅104|x − x |i o

prior
post.

T=100

a

b

Fig 4: Kolmogorov flow experiment: Single example observation of length hundred (top row). We
visualize the posterior distribution condition on the observation up to t = 10 (a, left top), along with
a quantitative comparison of the mean absolute error (MAE) between posterior predictive samples
and prior predictive samples on fifty different observations (left, bottom), including the one shown
above. The vorticity of two selected predictive samples is visualized on the right. This analysis is
then repeated for the entire observation (b).

series. In addition, we compared our default proposal to one constructed using simulations. For the
Lotka Volterra task, this constructed proposal performed significantly better than our simple default
(Appendix Tab. 2, Fig. 5).

4.4 KOLMOGOROV FLOW

Finally, we consider a task with very high dimensional observations, previously considered in the
context of data-assimilation (Rozet & Louppe, 2023). The simulator models incompressible fluid
dynamics governed by the Navier-Stokes equations:

∂u

∂t
= −u · ∇u+

1

Re
∇2u− 1

ρ
∇p+ f ∇ · u = 0,

where u is the velocity field, Re is the Reynolds number, ρ is the fluid density, p is the pressure
field, and f is the external forcing. We added Gaussian noise with standard deviation σ = 5 · 10−3

after each transition. Following Kochkov et al. (2021); Rozet & Louppe (2023), we consider a
two-dimensional domain [0, 2π]2 with periodic boundary conditions and an external forcing f that
corresponds to Kolmogorov forcing with linear damping Chandler & Kerswell (2013); Boffetta &
Ecke (2012). We take the Reynolds number and density as free parameters θ = (Re, ρ).

In contrast to Rozet & Louppe (2023), we consider the problem of parameter inference on θ. We
apply FNSE to this problem, using only 200k transition evaluations, which successfully recovers an
amortized posterior estimator that generalizes to long-term observations (Fig. 4). Notably, in such a
high-dimensional state space, a simple proposal distribution would be ineffective. But, we can use
both the initial distribution and simulator to propose a variety of feasible states (details in Appendix
Sec. E.5). The posterior distributions for observations with both T = 10 and T = 100 are well-
concentrated around the true parameter values that generated the specific observations (Fig. 4a,b).
Posterior predictive samples are, on average, significantly closer to the observed data compared to
prior predictives (in mean absolute error calculated over 1000 predictive samples from 50 differ-
ent observations). Although the difference is less pronounced for T = 100, this is primarily due
to the divergence for slight parameter modification on long simulations. To further investigate the
performance, we perform a simulation-based calibration analysis (Talts et al., 2020) (Fig. 12). Over-
all, given the constraints on the simulation budget, the posterior calibration is okay but deteriorates
for larger time series, indicating more simulations might be necessary to improve performance on
T = 100.
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5 DISCUSSION

5.1 RELATED WORK

We build upon previous work in the i.i.d. observation setting (Geffner et al., 2023; Linhart et al.,
2024; Boelts et al., 2022), extending these methods to Markovian time series. In the context of data
assimilation, Rozet & Louppe (2023) introduced a method to learn a local score network to estimate
p(x0:T ) using a neighborhood xt−k:t+k. In contrast, we focus on solving a local inverse problem
that leads to a global solution. Other work aims to incorporate the task structure (approximately)
into the estimating neural network architecture (Weilbach et al., 2020; 2023; Gloeckler et al., 2024a).
A different line of work aims to tackle high-dimensional SBI using summary statistics. These can
be handcrafted (Alsing & Wandelt, 2018), learned (Chen et al., 2021; 2023) or based on path sig-
natures (Dyer et al., 2021; 2022). However, estimating statistics that generalize across sequence
lengths from sparse training can be challenging. We enhance the simulation efficiency of amortized
SBI by leveraging the Markovian structure, which is different from sequential training schemes
(Glöckler et al., 2022; Sharrock et al., 2024; Greenberg et al., 2019; Durkan et al., 2020; Deistler
et al., 2022; Gutmann et al., 2016), which adaptively make simulations more informative for spe-
cific observations (but are thus not amortized). The simulation efficiency of our approach could be
further enhanced by incorporating such sequential training schemes. Recently, a simulation-based
conditional kernel density approximation for inference in SDEs was proposed (Cai et al., 2023),
which can be viewed as a special case of FNLE, substituting normalizing flows with kernel density
estimation.

Moreover, any Kalman filtering method (Kalman, 1960; Wan & Van Der Merwe, 2000; Arasaratnam
& Haykin, 2009; Julier & Uhlmann, 1997) is inherently related to FNLE, as these methods can
approximate the marginal log-likelihood in an online (non-amortized) manner, but do require the
availability of likelihoods (and are used to perform inference e.g. (Brouste et al., 2014)). The field
of amortized inference with tractable likelihoods is inherently related (Le et al., 2017; Choi et al.,
2019; Ganguly et al., 2023; Margossian & Blei, 2024).

5.2 LIMITATIONS AND FUTURE WORK

Our primary focus here was on inference for Markovian stochastic processes that share the same
transition distribution across time. We also sketched extensions to cases where it varies with time,
as well as to processes with parameterized initial distributions. We note that Hidden Markov Mod-
els, although widely applied in practical scenarios, do not fall within the scope of our method. In
combination with data assimilation techniques (Rozet & Louppe, 2023) the Markovian hidden state
can be recovered to which our technique can be directly applied. Extending our approach to more
general probabilistic models remains a direction for future research.

The score corrections caused by score aggregation described in Subsection 3.2.2 could be further
improved. In their methods, Linhart et al. (2024) approximates the data distribution by a single
Gaussian distribution, which can be violated in real-world scenarios. Our results demonstrate that
this approximation empirically still performs well even if these assumptions are violated.

5.3 CONCLUSIONS

We introduced a simulation-efficient approach for amortized inference in Markovian simulators. Al-
though flexible embedding networks are commonly used for high-dimensional time series (Lueck-
mann et al., 2017; Radev et al., 2020; Schmitt et al., 2023), they often demand extensive amounts
of simulations and can be fragile when faced with data perturbations (Cannon et al., 2022; Gloeck-
ler et al., 2023). Success in these methods hinges on the embedding network’s ability to capture
robust and generalizable representations. In contrast, our approach decomposes the inference task
into smaller, locally solvable problems, reducing computational costs and enhancing scalability for
large-scale, complex simulations.
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A METHODS

A.1 DERIVATION OF SCORE FACTORIZATION (3)

For x0:T following the simulator p(x0:T |θ), the global score ∇θ log p(θ|x0:T ) is given by

∇θ log p(θ|x0:T ) = ∇θ log
{
p(θ|x0:T ) · p(x0:T )

}
= ∇θ log

{
p(θ) · p(x0:T |θ)

}
= ∇θ log

{
p(θ) · p(x0|θ)

T−1∏
t=0

p(xt+1|xt,θ)

}

= ∇θ log
{
p(θ) · p(x0|θ)

}
+∇θ log

T−1∏
t=0

p(xt+1|xt,θ)

= ∇θ log
{
p(θ|x0) · p(x0)

}
+∇θ log

T−1∏
t=0

p(xt+1|xt,θ)

= ∇θ log p(θ|x0) +

T−1∑
t=0

∇θ log p(x
t+1|xt,θ). (5)

Let xt follow any proposal distribution p̃(xt), and xt+1 follow the simulation transition
p(xt+1|xt,θ) given xt. Noting that the replacement does not affect the conditional distribution
p(xt+1|xt,θ), we may assume xt ∼ p̃(xt) in (5).

By Chain Rule, we have
p̃(xt+1,θ|xt) = p(xt+1|xt,θ) · p̃(θ|xt) (6)

= p̃(θ|xt+1,xt) · p̃(xt+1|xt),
where p̃ means xt follows the proposal p̃(xt). This leads us to the equality

p(xt+1|xt,θ) = p̃(θ|xt+1,xt) · p̃(xt+1|xt)
p̃(θ|xt)

=
p̃(θ|xt+1,xt) · p̃(xt+1|xt)

p(θ)
.

Here, the second equality is derived from the equality p̃(θ|xt) = p(θ), to which the fact that p̃(xt)
does not involve a parameter leads. Substituting this equality into Eq. (5), we have

(5) = ∇θ log p(θ|x0) +

T−1∑
t=0

∇θ log
p̃(θ|xt+1,xt) · p̃(xt+1|xt)

p(θ)

= ∇θ log p(θ|x0) +

T−1∑
t=0

∇θ log p̃(θ|xt+1,xt)− T · ∇θ log p(θ) (7)

=

T−1∑
t=0

∇θ log p̃(θ|xt+1,xt)− (T − 1) · ∇θ log p(θ).

It concludes the proof. Here, the final equality is derived from the the assumption p(x0|θ) = p(x0).

A.2 EXTENSIONS

A.2.1 TIME INHOMOGENEOUS SIMULATION

The assumption that p(xt+1|xt+1,θ) does not depend on t, referred to as time-homogeneous transi-
tion simulations, in the main manuscript can be relaxed. Regarding FSNE, the score decomposition
(3) also holds for a time-inhomogeneous simulators where p(xt+1|xt+1,θ) varies among the time;
the score ∇θ log p̃(θ|xt,xt+1), however, then depends on time t. To address the issue, we train a
time-inhomogeneous score sϕ(θa|xt,xt+1, t) using training data D =

{
(θi,x

ti
i ,x

ti
i , ti)

}
, where

ti is drawn from a random number generator, xtii is drawn from a proposal distribution p̃(x), and
xti+1
i ∼ T (xti+1|xtii ,θi). FNPE and FNRE can be handled in the same way as FNLE by adding t

as a variable. Experimental evaluations are presented in Appendix E.6.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.2.2 INITIAL PARAMETER ESTIMATION

The condition on initial state p(x0|θ) can also be relaxed. Regarding FNSE, the global score
∇θ log p(θ|x0:T

o ) can be factorized by

∇θ log p(θ|x0:T
o ) = ∇θ log p(θ|x0

o)

+

T−1∑
t=0

∇θ log p̃(θ|xto,xt+1
o )− T · ∇θ log p(θ)

as proven in Eq. (7). This implies that the global score is obtained by estimating the two scores
∇θ log p(θa|x0

o) and ∇θ log p̃(θa|xto,xt+1
o ) separately. The estimation of these two scores can be

combined by modeling a score function that outputs different scores depending on the number of
input variables. FNPE and FNRE can be extended by estimating the two likelihoods p(x0

o|θ) and
p(xt+1

o |xto,θ), similar to FNSE.

A.2.3 HIGHER ORDER MARKOV CHAINS

Our proposal can be generalized to simulators with high order markov chain

p(x0:T |θ) = p(x0:m−1|θ)
T−1∏
t=m−1

p(xt+1|xt−m+1:t+1,θ) (8)

with its degree m. Under the setting, the score ∇θ log p(θ|x0:T ) has the factorization

∇θ log p(θ|x0:T
o ) = ∇θ log p(θ|x0:m−1

o )

+

T−m−1∑
t=m−1

∇θ log p̃(θ|xt−m+1:t+1
0 )− (T −m+ 1) · ∇θ log p(θ),

which implies that the global score can be recovered by the two scores ∇θ log p(θ|x0:m−1) and
∇θ log p̃(θ|xt−m+1:t+1). Here, xt−m:t+1 follows a proposal p̃(xt−m:t+1) and xt−m+1 follows the
simulation transition p(xt−m+1|xt−m:t+1,θ) in the score ∇θ log p̃(θ|xt−m+1:t+1). The estimation
of these two scores can be merged same as the initial parameter estimation case in the last section.

A.2.4 PARTIAL FACTORIZATION

Instead of considering just a single transition, the methodology naturally extends to multi-
ple transitions, as also explored by Geffner et al. (2023). In PFNSE with M , we target
∇θ log p(θ|xt, . . . ,xt+M ), while in PFNLE or PFNRE, we target p(xt, . . . ,xt+M |θ) (up to con-
stants), using a dataset of M -step simulations. A key advantage of partially factorized methods is
that they require fewer network evaluations for inference on a fixed-size observation, which can ac-
celerate sampling and reduce the accumulation of local errors over time. Moreover, longer training
simulations potentially lead to superior performance in long-term predictions as fewer local errors
can accumulate. However, they may require more simulations for effective training in return for
these desirable properties.

A.2.5 MISSING VALUES IN TIME SERIES OBSERVATION

Our method is capable of handling missing data. The proposed factorization leverages the Markov
properties of time series simulators at observation points, which remain intact even in the presence
of missing data. To preserve the amortized property regarding missing points, we can include the
time step size ∆t as an additional input variable to the model. This allows to skip over timepoints
that are missing and generally allows for irregular time grids.

B SCORE COMPOSITION RULES

Our score decomposition (3) relies on the Markov assumption of the simulator p(x0:T |θ) as shown
in its proof (Appendix A.1). On the other hand, p(x0:T |θa) =

∫
p(x0:T |θ)p(θ|θa)dθ no longer
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satisfies the Markov property for a > 0, which renders Eq. 3 invalid for any a > 0. In this section,
we review the two existing remedies for tackling this problem.

B.1 METHOD BY GEFFNER ET AL. (2023)

Geffner et al. (2023) avoids the issue by constructing an alternative sequence of distributions qa (0 ≤
a ≤ A) that satisfies q0 = p(θ|x0:T ) and qA = N (θ;µA,

σ2
A

T I). Adapting their proposal to the
Markovian case, we obtain

∇θa
log q(θa|x0:T ) =

T−1∑
t=0

sϕ(θa|xt,xt+1) +
(1− T )(A− a)

A
∇θ log p(θ).

While this approach is generally applicable, it renders the backward SDE (Eq. 2) invalid as the
marginals no longer follow the corresponding forward diffusion process. This requires the use of
MCMC-based sampling corrections (in the sense of predictor-correct diffusion samplers (Song et al.,
2021)), such as unadjusted Langevin dynamics (Geffner et al., 2023) or similar approaches (Sjöberg
et al., 2024).

B.2 METHOD BY LINHART ET AL. (2024)

Linhart et al. (2024) have recently proposed an alternative approach by approximating the marginal
scores derived from the forward diffusion process. This enables the utilization of the reverse SDE
and consequently allows for the application of standard diffusion-based sampling techniques. They
showed that the correct score could indeed be written as suggested in Eq. 3 plus an additional but
intractable correction term of the form

∇θℓ(θ,x
0:T
o ) = log

∫
p(θ|θa)1−T

T∏
t=1

p(θ|θa,xt,xt+1)dθ

To estimate it analytically, they employed Gaussian approximations,

p(θ|θa,xt,xt+1) := N (θ;µa,t,t+1(θa,x
t,xt+1),Σa,t,t+1(θa,x

t,xt+1))

p(θ|θa) := N (θ;µa(θa),Σa),

making the additional terms tractable. Eventually, we have

∇θa
log p(θa|x0:T ) ≈ Λ(θa)

−1

(
T−1∑
t=0

Σ−1
a,t,t+1sϕ(θa|xt,xt+1) + (1− T )Σ−1

a ∇θa
log p(θa),

)

where Λ(θa) =
∑T−1
t=0 Σ−1

a,t,t+1 + (1 − T )Σ−1
a . This approach requires specifying two “hyper-

parameters”: the denoising prior covariance Σa in p(θ|θa) and denoising posterior covariance
Σa,t,t+1 in p(θ|θa,xt,xt+1). The denoising prior covariance is typically known analytically, along
with the marginal prior score. Specifically, given a Gaussian prior with covariance Σθ we have
Σa = (Σ−1

θ + s(a)2/σ(a)2I)−1 by Gaussian marginalization rules with the perturbation kernel
p(θa|θ) = N (θa, s(a)θ, σ(a)

2I) specific to the diffusion model (i.e. see Appendix Sec. D.2).

In contrast, the denoising posterior covariance must be estimated. To address this, GAUSS assumes
a Gaussian *clean* posterior (i.e., at a = 0) and analytically computes the denoising posterior co-
variances (analogous to the prior, but with an estimate of Σθ|xt,xt+1 ). This estimate can be obtained
through samples, given that we have a diffusion model that indeed can sample from p(θ|xt,xt+1.
Alternatively, JAC directly estimates the denoising covariance iteratively using Tweedie’s Moment
projection (Boys et al., 2024), leveraging the Jacobian of the score network:

Σa,xt,xt+1 =
m(a)2

s(a)2
(
I+ σ(a)2∇θa

sϕ(θa|xt,xt+1)
)−1

If the Gaussian assumption is satisfied, both approaches are theoretically equivalent (neglecting
numerical approximation errors). Yet, if these are violated, these yield different approximations to
the denoising covariance matrices and hence will behave differently.
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Fig 5: Proposal:A set of trajectories within the *phase space* of the Lotka Volterra task for different
parameterizations sampled from the prior (constructed using a total of 5k simulation steps) (a). The
proposal was constructed by randomly sampling noisy points from the state space trajectories (b).
Posterior approximation in sliced Wasserstein distance constructed by improved proposal compared
to our “naively” chosen baseline (c).

B.3 PRACTICAL IMPLEMENTATION DETAILS

The GAUSS and JAC approximation is only valid if Λ is positive definite, as the derivation of this
form depends on it. Ignoring this can lead to numerical instabilities. Unlike Linhart et al. (2024),
we do not clip the diffusion process to a specific prior range to avoid numerical issues; we adapt all
estimated posterior precision matrices to ensure positive definiteness of Λ. This adaptation resolves
the problem even for long time series (i.e., T > 100; see Appendix E.3 for details). Importantly,
since the GAUSS method is derived under Gaussian assumptions, it presupposes that the poste-
rior covariance matrices (and their corresponding scores) are smaller than those of the prior due
to observational constraints. This assumption may not hold true, particularly in multi-modal tasks.
For instance, in the Periodic SDE task, four modes are symmetrically positioned around the origin.
While the variances of each mode may decrease, the total variance often still increases, especially
when the modes are distant from the origin. This situation can render Λ(θa) non-positive definite,
thus invalidating the approximation. Similarly, for JAC, the estimated posterior covariance might
not even be positive and definite as the Jacobian of the scoring network might badly represent the
Jacobian of the true score.

To address these challenges, we make minimal adjustments to the initially estimated Σ−1
a,t,t+1 to

ensure that Λ(θa) remains positive definite. We achieve this by considering its eigenvalue decom-
position Λ = V AV −1, allowing us to identify the minimal adjustment required to enforce positive
definiteness: Λ− = −V min(A, 0)V −1. Consequently, we update Σ̂−1

a,t,t+1 = Σ−1
a,t,t+1 +

Λ−
T + ϵI

for a small nugget ϵ. The Λ computed with these adjusted covariance matrices is guaranteed to be
positive definite. The JAC method encounters similar issues, and we apply an analogous adjustment
to its initial estimates.

We utilize the GAUSS composition rule as our default method: We estimate the posterior precision
matrices Σ−1

a,t,t+1 as recommended by Linhart et al. (2024). For each posterior p(θ|xt,xt+1), we
produce 500 · dimθ samples in parallel from the diffusion model. These samples are then used
to estimate the associated covariance matrix. Although this approach introduces a slight constant
overhead prior to each sampling run, it does not require the iterative estimation of Jacobians, as
is necessary with the JAC method. On the other hand, within our settings, the dimension of the
parameter is often much smaller than the data dimension, rendering computation of the Jacobian not
too expensive.

C PRACTICAL GUIDE TO PROPOSAL CONSTRUCTION

In this section, we provided a practical guideline for constructing the proposal p̃(xt). In general,
the proposal will be task-specific. For an amortized approximation, a valid proposal p̃(xt) should
satisfy the conditions: (i) It must have support at any point xt the simulator can attain (at evaluation
time). (ii) The proposed point xt must be independent of the parameter θ involved in the transition
to xt+1 to ensure Eq. 3 remains valid (Appendix Sec. A.1). But solely relying on these properties
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Task Periodic SDE Linear SDE Mixture RW Double Well

T=1 T=11 T=101 T=1 T=11 T=101 T=1 T=11 T=101 T=1 T=11 T=101

FNSE 0.53 0.60 0.76 0.53 0.70 0.90 0.52 0.69 0.69 0.50 0.59 0.81
FNSE (pred. prop) 0.53 0.60 0.71 0.53 0.70 0.90 0.52 0.69 0.75 0.50 0.57 0.80

Table 1: Predictive proposal: Posterior approximation for different proposals given as C2ST metric
for each benchmark task. Here, we compare our default proposal (trained with 100k step simula-
tions), chosen by domain knowledge, and the prior predictive construction (using 5k simulation
steps) training on the remaining 95k step simulations.

Lotka Volterra SIR

T=1 T=11 T=101 T=1 T=11 T=101

FNSE 0.57 0.78 0.94 0.67 0.78 0.74
FNSE (pred. prop) 0.52 0.65 0.88 0.67 0.79 0.74

Table 2: Predictive proposal: Posterior approximation for different proposals given as C2ST metric
for Lotka Voletrra and SIR. Here, we compare our default proposal (trained with 100k step simu-
lations), chosen by domain knowledge, and the prior predictive construction (using 5k simulation)
trained on 95k step simulations.

does not necessarily make up a “good” proposal. Essentially, the proposal specifies which regions of
the data domain are represented in the training dataset. On a finite simulation budget we thus would
expect a better posterior approximation for states that are more likely to be generated by the proposal
compared to those that are less likely. This provides an opportunity and challenge to improve the
proposal distribution design for a given simulator.

This interpretation makes it fairly intuitive to know what might be a good proposal and domain
knowledge can be used to design a proposal from scratch. If applicants know that the dynamics
are bounded (or at least likely contained) within a certain region, then one can design a proposal
that roughly covers it. If the applicant knows that the simulator has stationary distributions, then
these would serve as good proposals. Yet, in general, it might be hard or suboptimal to construct a
proposal in this naive way. The default proposals used in our analysis are indeed simple distributions
(e.g., Gaussians) chosen based on such knowledge. Yet we here also provide some more general
approaches to select reasonable proposals in Sec. C.1 and Sec. C.2.

C.1 PRIOR PREDICTIVE CONSTRUCTION

Condition (ii) does not generally exclude the use of the simulator to construct a good proposal
and we hence can use some simulation outputs to construct a good proposal. As an example, let’s
consider the Lotka-Volterra task. By sampling from the prior predictive (i.e., sampling parameters
from the prior and simulating data), we can visualize the trajectories x0:T of simulation outputs
within its phase space (Fig. 5a). These states are likely to encompass most states, and we can use
this to construct an effective proposal for our factorized methods, e.g., by simply sampling noisy
points on phase space trajectories uniformly (Fig. 5b). For example, one can:

(A) Sample a few parameters {θi}Ni=1 from the prior p(θ).

(B) Perform time series simulations x0:T
i ∼ p(x0:T |θi) for each parameters until a certain time

xTi .
(C) Estimate the proposal p̃(xt), e.g., by randomly selecting a state xti from N · (T + 1) states

with some noise (which corresponds to a kernel density estimate).

What condition (ii) prevents is that we cannot directly leverage transition from prior predictive sim-
ulations (θi,x

0:T
i ) as each transition will depend on the same parameter, and thus, each triplet

(θi,x
t
i,x

t+1
i ) will not satisfy that xti is independent of θi. By constructing the proposal as above,

apriori, we avoid this problem. Many time series simulators are often designed to ensure that their
outputs change minimally for large T (Hayashi et al., 2022; Khatiwala, 2024; Ormeño & General,
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2024) (a.k.a. reach stable states or stationarity), a number of simulation trajectories for not too many
transitions can, thus, be sufficient to explore the phase space.

Attentive readers might recognize that doing so will itself cost simulations. A quantity we aimed to
reduce. To investigate if a better proposal is worth this cost, we tested this on the Lotka Volterra task,
comparing it with our default proposal xt ∼ Unif(0, 10), heuristically chosen by domain knowledge
that trajectories will likely oscillate between zero and ten. We equalized the simulation costs for both
experiments: 100k simulation steps are used to train the model in the heuristic proposal, whereas,
for the prior predictive approach, 5k are allocated to construct the proposal, and 95k for training.
The prior predictive construction further improved the performance, even if this cost is subtracted
from the training budget (Fig. 5c). We further ran this experiment for all other tasks, which showed
that this approach indeed leads to proposals that perform similarly, sometimes better, than the default
proposals chosen by us (Tab. 1, Tab. 2). An alternative and related approach, also designed to explore
the phase space (but not requiring additional simulations), is the routine applied in the Kolmogorov
flow experiment (Appendix Sec. E.5). Here, we simply use a different parameter each time we
perform a transition hence avoiding violating condition (ii).

C.2 TARGET-BASED CONSTRUCTION

We can also predict the proposal p̃(xt) using an observation x0:T
o accessible prior to training; it

enables to construct a proposal, analogously to Sec. C.1, for amortized inference. Even we have no
observations prior to training, but if we are only interested in inference for a single observation as
in a sequential SBI setting (Papamakarios & Murray, 2016; Greenberg et al., 2019; Sharrock et al.,
2024; Deistler et al., 2022), we can construct the proposal using the single observation, while the
amortization property is lost.

D EXPERIMENT DETAIL

D.1 TASKS

In this section, we elaborate on all tasks used in the analysis in detail. For all tasks, we used a
standard normal prior but eventually reparameterized them to certain constraints if necessary for the
task (see individual tasks for specification).

Note that the training aims to also amortize over the initial distribution p(x0). We evaluate the
performance always on a specific and fixed initial distribution (see individual tasks for specification),
which is also different from the proposal p̃(xt).

Gaussian RW: This task serves as a simple baseline. It serves as an extension of the Gaussian
Linear task introduced by Lueckmann et al. (2021) to the Markovian case. It is defined by a Gaussian
Random Walk of form

xt+1 = α · xt + θ + ϵ for ϵ ∼ N (0, I), α = 0.9,

with xt,θ ∈ Rd and θ ∈ Rd. This task offers an analytic solution for the posterior, which is
Gaussian. Dimension can be set as wanted, we choose d = 1, 2, 10. As a proposal, we choose
p̃(xt) = N (xt;0,

√
10I), which is motivated by the fact that it is the variance of the corresponding

stationary distribution. For evaluation, we fixed p(x0) = δ(x0) (i.e., a point mass at zero).

Mixture RW: A Mixture of Gaussian Random Walk of form

xt+1 = xt + u · θ + ϵ for ϵ ∼ N (0, I), u ∼ Unif({−1, 1}),

with xt,θ ∈ Rd. We choose d = 2, 5. As proposal, we choose p̃(xt) = N (xt;0,
√
10I). For

evaluation, we fixed p(x0) = δ(x0) (i.e., a point mass at zero).

By design, this task has a tractable transition density, which is a mixture of Gaussians, hence allow-
ing exact computation of the marginal log-likelihood. In contrast to the previous task, this offers a
non-Gaussian bimodal posterior. We generate reference posterior samples using Hamiltonian Monte
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Carlo (HMC, (Betancourt, 2017)) with 5 integration steps. To avoid mode collapse, we run 100 par-
allel chains, each initialized on different samples obtained by importance resampling of 50 initial
samples from the prior. We run the sampler for 600 burn-in iterations, during which the integration
step size is adapted to accept around 80% of the proposed steps. We additionally thin the accepted
samples in the chain by a factor of six to avoid autocorrelation.

Periodic SDE: The periodic SDE is a linear SDE parameterized as follows

dxt =

(
0 θ22
θ21 0

)
xt dt+ 0.1I dwt,

which gives us a stochastic oscillator. Each transition corresponds to simulating this SDE for 0.1
ms, using 20 Euler Maruyama steps. As proposal, we choose p̃(xt) = N (xt;0, I). For evaluation,
we fixed the initial distribution to p(x0) = δ((−0.5, 0.5)T ), to quickly start with oscillations.

The corresponding marginal log-likelihood is computed using a Kalman filter Kalman (1960). Ref-
erence posterior samples are obtained in combination with HMC, using a procedure similar to the
one discussed above. This task offers a multimodal posterior (4 modes) with all modes being point
symmetric around the origin.

Linear SDE: The linear SDE task is given by

xt = (A(θ)− 2I)xtdt+ (0.5B(θ) + 0.5I)dwt

where every entry of A and B is directly parameterized by θ ∈ R18 and xt ∈ R3. Reference
posterior samples are obtained in the same way as for the previous task. As proposal we choose
p̃(xt) = N (xt,0, I). For evaluation, we fixed the initial distribution to p(x0) = δ(0).

Double well: This is a nonlinear SDE

dxt = θ1x
t dt+ θ2

(
xt
)3

dt+ σ dwt,

which samples from a double-well potential with modes position depending on θ1, θ2 (Singer,
2002). As proposal we use p(xt) = Unif(−2.5, 2.5), as intial distirbution we at evaluation we
use p(x0) = δ((1,−1, 1,−1)T ) We use a combination of particle filter (Doucet et al., 2009) and
pseudo-marginal-like Metropolis-Hastings MCMC (Andrieu & Roberts, 2009) sampler to generate
reference posterior samples.

Lotka-Volterra: We use a stochastic Lotka-Volterra model, a classic system of differential equa-
tions used to describe predator-prey interactions. We use a stochastic variant, where the amount
of noise also depends on the population of each species. The model dynamics are given by the
following equations:

dxt

dt
= α · xt − β · xt · ytdt+ σxtytdwt1,

dyt

dt
= −γ · yt + δ · xt · ytdt+ σxtytdwt2,

where x represents the prey population and y represents the predator population. The parameters
α, β, γ, and δ control the interaction between the species. The noise hyperparameter σ was set to
0.05. The dynamic are constrained to remain positive. As a proposal we use p̃(xt) = Unif(0, 10).
As evaluation time the initial distribution was fixed to p(x0) = δ(x0 − (1., 0.5)T ).

To sample from the posterior by traditional means, we use a Particle Filter to obtain a stochas-
tic estimator of the marginal likelihood. We use this stochastic estimator in a pseudo-marginal-
like Metropolis-Hastings MCMC algorithm to obtain reference samples from the posterior distribu-
tion (Doucet et al., 2009; Andrieu & Roberts, 2009).

SIR: We use a stochastic SIR method defined through the following equations:
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dSt

dt
= −βS · I + 0.01dwt1,

dIt

dt
= βS · I − γI + 0.1 · Idwt2,

dRt

dt
= γI + 0.01dwt3.

here S, I , and R represent the susceptible, infected, and recovered populations. We use as a proposal
p̃(xt) = Unif(0, 5). As an initial distribution, we sample S0 ∼ Unif(2.5, 5.), I0 ∼ Unif(0., 2.5)
and R0 ∼ δ(R0).

To sample from the posterior by traditional means, we use a Particle Filter to obtain a stochastic
estimator of the marginal likelihood. We use this stochastic estimator in a pseudo-marginal-like
Metropolis-Hastings MCMC algorithm to obtain reference samples from the posterior distribution.

D.2 TRAINING AND EVALUATION

For the NPE baseline, we utilize a 5-layer neural spline flow (Durkan et al., 2019), with each layer
parameterized by a 2-layer MLP having a hidden dimension of 50. Additionally, we employ a Gated
Recurrent Unit (GRU) network Cho et al. (2014) as the embedding network, also with a hidden
dimension of 50. To enhance the RNN embedding network’s ability to generalize across different
sequence lengths, we apply data augmentation. Specifically, for each subsequence T < Tmax = 10,
we duplicate 10% of randomly selected parameter-data pairs and shorten the corresponding data
time series to length T . This does not add any more simulation calls but directly trains the neural
net for sequences T < Tmax.

For FNLE and FNRE we use adapted reference implementation as implemented in the sbi pack-
age (Tejero-Cantero et al., 2020). In FNLE, we use a 5-layer Masked Autoregressive Flow (Papa-
makarios et al., 2017), each parameterized by a 2-layer MLP with a hidden dimension of 50. In
FNRE we use resnet classifier with two blocks each considering 2 layers with hidden dimension of
50. As MCMC sampling algorithm we use a per-axis slice sampling algorithm. To avoid mode-
collapse, we run 100 parallel chains.

Both approaches are trained with a training batch size of 1000 until convergence, as determined by
the default early stopping routine.

For FNSE we use a custom implementation in JAX (Bradbury et al., 2018). In all experiments, we
use the Variance Preserving SDE (Song et al., 2021) using

f(t) = −0.5 · (βmin + t · (βmax − βmin)), g(t) =
√

βmin + t · (βmax − βmin)

We set βmin = 0.1, and βmax = 10 for all experiments. Both for the time interval [10−2, 1.]. The
associated conditional means and variances can be derived from this SDE (Song et al., 2021).

For the score estimation network, we use a 5-layer MLP with a hidden dimension of 50 and GELU
activations. The diffusion time is embedded using a random Fourier embedding. Precondition to the
scoring network by performing time-dependent z-scoring (Karras et al., 2022). We use the denoising
score matching loss with weighting function as in Song et al. (2021).

We use an AdamW optimizer with a learning rate of 5 · 10−4 with a cosine schedule and a training
batch size of 1000. Similar to the SBI routine, we use early stopping, but with a maximum number
of 5000 epochs.

E ADDITIONAL EXPERIMENTS

E.1 EXTENDED EXPERIMENTAL COMPARISON

In this section, we extended the empirical evaluation and collected the results in Table 3 and 4. We
additionally added the following baseline comparisons:
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• NPE’ has an alternative embedding network (no RNN). Inspired by the fact that our fac-
torized methods work on all windows (xt, xt+1), we embed all such windows into 200
dim feature vectors (using an MLP). All feature vectors are accumulated (using a summa-
tion) and mapped into a final 50-dim summary statistics (using another MLP). This can be
thought of as similar to the embedding networks used in the i.i.d. case (Zaheer et al., 2018).

• NPE50 corresponds to our standard NPE with RNN embedding net. But we do train NPE
on sequences of length ten by default; here, we extended this to 50 (although this means
that the number of joint samples decreases accordingly, i.e., for 10k, only 200 for 100k
2000).

• NPE+ with pre-trained neural sufficient summary statistic. We follow (Chen et al., 2021)
infomax learning approach using the distance correlation objective to pre-train the embed-
ding net.

• NPE++ with pre-trained sliced neural sufficient summary statistic (Chen et al., 2023).
• NLE+: NLE with neural sufficient summary statistic (Chen et al., 2021).
• NLE++: NLE with neural sliced sufficient summary statistic (Chen et al., 2023).
• NSE Neural posterior score estimation (Sharrock et al., 2024; Geffner et al., 2023)(analo-

gous to our standard NPE baseline, but with score estimation).

Task Periodic SDE Linear SDE Mixture RW Double Well

T=1 T=10 T=100 T=1 T=10 T=100 T=1 T=10 T=100 T=1 T=10 T=100

NPE 0.82 0.84 0.96 0.72 0.93 0.97 0.92 0.99 1.00 0.64 0.67 0.81
NPE’ 0.78 0.91 0.99 0.70 0.93 0.99 0.91 0.99 1.00 0.55 0.72 0.99
NPE50 0.80 0.93 0.98 0.75 0.93 0.97 0.92 0.99 1.00 0.58 0.68 0.85
NPE+ 0.80 0.89 0.99 0.75 0.92 0.97 0.91 0.99 1.00 0.67 0.65 0.91
NPE++ 0.79 0.90 0.97 0.74 0.92 0.97 0.91 0.99 1.00 0.64 0.64 0.83
NLE+ 0.80 0.88 0.97 0.76 0.92 0.97 0.96 0.99 1.00 0.69 0.64 0.78
NLE++ 0.75 0.93 0.98 0.76 0.93 0.97 0.95 0.99 1.00 0.55 0.60 0.81
NSE 0.77 0.92 0.97 0.68 0.93 0.97 0.91 0.99 1.00 0.60 0.59 0.79
FNLE 0.57 0.66 0.83 0.57 0.78 0.98 0.71 0.89 0.98 0.52 0.64 0.87
FNRE 0.63 0.89 0.98 0.69 0.92 0.99 0.91 0.99 1.00 0.64 0.89 0.97
FNSE 0.56 0.65 0.85 0.56 0.82 0.97 0.57 0.78 0.92 0.52 0.68 0.89

NPE 0.68 0.63 0.95 0.70 0.84 0.96 0.91 0.99 1.00 0.62 0.64 0.76
NPE’ 0.62 0.62 0.99 0.67 0.74 1.00 0.91 0.99 1.00 0.62 0.62 0.99
NPE50 0.81 0.83 0.87 0.71 0.92 0.97 0.91 0.99 1.00 0.63 0.69 0.76
NPE+ 0.72 0.69 0.99 0.66 0.89 0.96 0.91 0.99 1.00 0.60 0.60 0.80
NPE++ 0.67 0.65 0.95 0.71 0.91 0.97 0.91 0.99 1.00 0.65 0.61 0.78
NLE+ 0.67 0.82 0.97 0.71 0.91 0.97 0.91 0.99 1.00 0.55 0.58 0.81
NLE++ 0.73 0.8 0.96 0.70 0.92 0.97 0.92 0.99 1.00 0.55 0.58 0.79
NSE 0.71 0.65 0.96 0.66 0.77 0.93 0.91 0.99 1.00 0.54 0.54 0.77
FNLE 0.54 0.60 0.72 0.53 0.69 0.89 0.61 0.76 0.89 0.50 0.54 0.75
FNRE 0.55 0.75 0.92 0.54 0.81 0.99 0.70 0.86 0.93 0.50 0.74 0.90
FNSE 0.53 0.60 0.76 0.53 0.70 0.90 0.52 0.69 0.69 0.50 0.59 0.81

Table 3: Extended baseline comparission: Performance per method given as C2ST metric for each
benchmark task. The top half of the table reports results trained on 10k step simulations, and the
bottom half on 100k. Best performing methods are marked in bold.

Overall, all “global” methods that aim to reduce the time series into a statically sized summary
statistic do behave similarly within our evaluation suite (Table 3, 4). A fundamental challenge
with these approaches is sequence length generalization, i.e., finding statistics that generalize to
larger lengths than observed in training, which is a challenging task Ray Chowdhury & Caragea
(2024); Zhang et al. (2022). In contrast, factorized methods do not have this problem. Instead,
their main source of error is due to the accumulation of local approximation errors. This can lead
to deteriorating performance and is especially visible for NRE within our evaluation. Notably, an
increase in C2ST is, to some degree, expected, given that posteriors with more observations likely
contract, making slight deviations easier to detect by a classifier. In addition, results are often
plotted against the training budget within SBI benchmark (Lueckmann et al., 2017) and not by
observation size. We thus visualize our results also in this more similar fashion (see Fig. A6). We
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Lotka Volterra SIR

T=1 T=10 T=100 T=1 T=10 T=100

NPE 0.88 0.96 0.99 0.98 0.99 1.00
NPE’ 0.84 0.96 1.00 0.97 0.99 1.00
NPE+ 0.91 0.95 0.99 0.98 0.99 1.00
NPE++ 0.88 0.95 0.99 0.98 1.00 1.00
NLE+ 0.92 0.96 1.00 0.98 0.99 1.00
NLE++ 0.85 0.96 0.99 0.97 0.99 1.00
NSE 0.84 0.95 0.99 0.97 0.99 1.00
FNLE 0.75 0.89 0.98 0.93 0.96 0.96
FNRE 0.83 0.99 0.99 0.94 0.98 1.00
FNSE 0.66 0.90 0.99 0.84 0.89 0.85
NPE 0.85 0.93 0.99 0.96 0.95 1.00
NPE’ 0.83 0.87 0.99 0.98 0.99 1.00
NPE+ 0.87 0.86 0.99 0.96 0.95 1.00
NPE++ 0.87 0.91 0.99 0.96 0.92 1.00
NLE+ 0.87 0.92 0.99 0.96 0.96 1.00
NLE++ 0.84 0.95 0.99 0.96 0.97 1.00
NSE 0.84 0.93 0.99 0.96 0.95 1.00
FNLE 0.60 0.78 0.96 0.93 0.95 0.97
FNRE 0.71 0.98 0.99 0.81 0.89 0.93
FNSE 0.57 0.78 0.94 0.67 0.78 0.74

Table 4: Extended baseline comparison for Lotka Volterra and SIR:Performance per method
given as C2ST metric for Lotka Volterra and SIR task. The top half of the table reports results
trained on 10k step simulations, and the bottom half on 100k. Best performing methods are marked
in bold.
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Fig 6: Posterior approximation plotted against training budget: Each column corresponds to a
task. Each row shows the performance in sliced Wasserstein distance for test observations generated
using 1,10, and 100 transitions. In contrast to the main figures, we see the x-axis now specifies the
training budget, i.e., the number of transition evaluations that can be used to simulate the training
data.

performed this on a training budget (equaling the number of transition step evaluations) of 104, 105,
and 106 (which corresponds to 103, 104, and 105 “full” simulation for NPE)

E.2 CALIBRATION ANALYSIS LOTKA VOLTERRA AND SIR

We performed a simulation-based calibration analysis (Talts et al., 2018) for the Lotka-Volterra
and SIR tasks. Consistent with our evaluation using C2ST and sW, we observe that FNSE is bet-
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Fig 7: We perform a simulation-based calibration analysis (SBC) (Talts et al., 2018) for the Lotka
Volterra and SIR task trained using 100k step simulations using FNSE and NPE. We used 1000
test simulations for evaluation. The shaded Grey area indicates the expected results under the true
posterior. Colors indicate the number of transitions of the test simulations.

ter calibrated than NPE across different sequence lengths (Fig. 7ab). This difference is especially
pronounced in the SIR task, where NPE completely fails to generalize to sequence lengths larger
than those observed during training (T > 10). In contrast, the effect is less prominent in the Lotka-
Volterra task. We hypothesize that due to the periodic nature of the Lotka-Volterra dynamics, the em-
bedding network more easily identifies representations that generalize well across sequence lengths.

E.3 COMPOSITION METHODS

We compared the results of the different implemented score composition methods. Overall this
showed a clear advantage of our implementations of GAUSS/JAC over FNPE (Fig. 10). Even if
Langevin corrections are introduced FNPE does tend to perform worse and diverge given a larger
number of observations.

The performance of both the GAUSS and JAC methods is quite similar (Fig. 10, first column), espe-
cially in the Gaussian RW task. This is expected as both are equivalent if Gaussian assumptions are
not violated. Notably, for samplers with fewer steps on non-Gaussian tasks, JAC tends to perform
slightly better than GAUSS on long time series (Fig. 10b, columns two onwards). The imposed reg-
ularity conditions on the posterior covariances appear to resolve the numerical challenges associated
with this approach, as observed by Linhart et al. (2024).

E.4 PROPOSAL DISTRIBUTION

The choice of proposal distribution can have a significant impact on a finite simulation budget. In
our benchmark tasks, we primarily selected simple yet reasonable distributions based on our prior
knowledge of the dynamics involved. However, we examine the impact of this choice more closely
in the Gaussian RW and Mixture RW tasks (see Fig. 11).

We set the proposal distribution to a Gaussian with a zero mean and variable variance, ranging from
very narrow to quite wide. Importantly, at evaluation, we initialize the distribution as a point mass
at zero. For a very narrow proposal, we thus anticipate strong performance at T = 1. However, as
T increases, performance may decline because the time series dynamics could extend beyond the
high-probability support of the proposal. Conversely, excessively wide proposals may also hinder
performance if the values at the observation time fall outside the training set. It is crucial to note that
this performance evaluation is relative to our specific evaluation pipeline. In both tasks, evaluations
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are conducted on random walks that consistently start from zero, thus constraining the range of
attainable values given a maximum number of steps.

Overall, there is indeed an optimal proposal for all tasks, which is close to, but not identical to,
our intuitively chosen options. As expected, the significance of the proposal also increases with
dimensionality.

It is important to emphasize that the proposals we utilized are generally not optimal. Other tasks,
such as the Periodic/Linear SDE, Double Well, SIR, and Lotka-Volterra models, exhibit a high
correlation among different variables, which the proposal we chose does not capture. See Appendix
Sec. 3.4 for some examples. Nevertheless, to ensure a fair comparison with the NPE baseline, we
opted for relatively simple proposals.

E.5 KOLMOGOROV FLOW

For the Kolmogorov flow, we modify the score architecture. We utilize a convolutional embedding
network composed of four blocks, each containing a Conv2D layer, GroupNorm, and GeLU activa-
tion. The output is then processed by a two-layer MLP to produce a 100-dimensional embedding.
This embedding is generated from the two frames passed to the score network and subsequently
concatenated. On this embedding, we employ the same five-layer MLP that we use for all other
tasks, but we increase the hidden dimension to 400.

It is important to note that in the NPE approach, we would need to construct an embedding network
not only for individual “images” but also for a complete video of arbitrary length, which poses
significant challenges.

As an initial distribution, we utilize a filtered velocity field provided by jax cfd library, with a
maximum velocity and peak wave number of three. Our approach closely follows the methodology
outlined by Rozet & Louppe (2023). The simulator performs 100 solve steps per transition, with a
step size of 10−3 seconds; each transition thus emulates 10 milliseconds. To introduce stochasticity
into the PDE, we add small amounts of Gaussian noise with a standard deviation of 5 · 10−3 after
each transition. We used the jax-cfd library (Kochkov et al., 2021) to solve the Navier-Stokes
equations on a 64× 64 grid.

Designing an effective proposal distribution in a high-dimensional setting is challenging. Simply
using the initial distribution is unlikely to yield satisfactory performance, as the dynamics evolve
over time. Ideally, we would like to obtain samples from p(xt) for a range of different t; however,
this approach would require a significant simulation budget to step to each t.

To address this challenge while still generating a diverse set of simulations, we employ the following
scheme:

(i) Sample an initial value x0 ∼ p(x0)

(ii) For t = 0, . . . , T :
– Sample θi ∼ p(θ)

– Perform a transition xt+1 ∼ T (xt+1|xt,θi)

Notably, this procedure does not violate the requirement that p̃(xT ) is independent of θ, as each
transition is performed with a different, independent parameter. This approach is motivated by the
fact that, at best, we would like proper samples from the associated prior predictive distribution
(Appendix Sec. C).

For 1,000 initializations, we run this procedure for 100 steps, and for 10,000 initializations, we run
it for 10 steps, totaling exactly 200,000 transition emulations.

To assess the average performance across different observations and observation lengths, we con-
ducted a simulation-based calibration analysis (Talts et al., 2018) (see Fig. 12). This analysis eval-
uates whether the true parameter ranks across posterior samples are uniformly distributed, as would
be expected under the true posterior distribution. In other words, it examines whether the estimated
posteriors adequately cover the true parameters. The results indicate a generally good, though not
perfect, calibration of the estimated posteriors. However, the calibration tends to deteriorate with
longer observation lengths. In this scenario, the posterior becomes very narrow, making the metric
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sensitive to such narrow distributions (which increases the likelihood of missing the true posterior).
Furthermore, this suggests that for certain observations, the approximate posterior may be biased.
Given the limited amount of training data, such outcomes are to be expected.

E.6 TIME-INHOMOGENOUS GAUSSIAN RANDOM WORK

To evaluate the performance of the time-inhomogeneous extension described in Appendix A.2.1, we
consider the Time-Inhomogeneous Gaussian Random Walk (TI Gaussian RW)

xt+1 =

(
α+

1

t+ 1

)
· xt + θ + ϵ for ϵ ∼ N (0, I), α = 0.9,xt,θ ∈ Rd

with xt multiplied by the time-inhomogeneous coefficient
(
α+ 1

t+1

)
. We demonstrate the scal-

ability of our methods with dimension d ranging from 1, 2, to 10, and the number of observation
transitions ranging from 1, 10, to 100. As a comparison metric, we use C2ST. The simulation bud-
get is fixed at 10k and 100k, consistent with the problem settings in the main section. Note that the
training data include the time variable t, and therefore, the training data for estimating the transi-
tion distribution p(xt+1|xt,θ) are reduced to 1

100 compared to the time-homogeneous setting in the
main section. The maximum time length Tmax in training is set to 100.

The experimental results are presented in Fig. 13. We can confirm that the proposed methods out-
perform the NPE baseline overall. In particular, it has been confirmed that FNSE scales better for
longer observation times compared to other methods.
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Fig 8: Benchmark with C2ST metric: We validate our method on a Gaussian Random Walk
with different dimensions for different lengths (i.e. Transitions), also tracking sampling times (a).
We assess FNSE score accumulation over Gaussian RW and Periodic SDE tasks using a fixed Eu-
ler–Maruyama sampler (b). We compare methods across tasks and transition steps (c). Finally, we
examine the effect of the proposal on NFSE trained with 10k simulations from a normal proposal of
varying standard deviation (d).
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Fig 9: Benchmark partially factorized methods: We show the benchmark performance using
partially factorized methods PFNLE, PFNRE, and PFNSE. Each is trained with 5 steps. The perfor-
mance is shown with respect to C2ST (a) and sliced Wasserstein distance (b).
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Fig 10: Benchmark score composition methods: Performance of score estimators trained with
10k simulations using different diffusion samplers (default and fewer steps) and score composition
methods. Each column corresponds to a different task, and each row represents either a standard
Euler-Maruyama diffusion sampler or one equipped with a Langevin corrector, both performing 5
steps. The analysis is conducted for two time discretizations: (a) 500 steps and (b) 100 steps.
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Fig 11: Benchmark proposal sensitivity: Each column represents a different task. The top row
displays results using the C2ST metric, while the bottom row shows the sliced Wasserstein distance.
FNSE models are trained with a fixed budget of 10k simulations, with each using different proposal
distributions characterized by a mean of zero and varying standard deviations (x-axis).
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Fig 12: Simulation-based calibration Kolmogorov flow: The simulation-based calibration results
present the empirical cumulative density functions (CDF) of the ground-truth parameters, ranked
according to the inferred posteriors derived from 100 different observations. A well-calibrated pos-
terior should exhibit uniformly distributed ranks, as highlighted by the shaded gray area. Repeated
for data emulated for T=1,10,20,50,100 steps).
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