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Abstract
Modeling temporal and sequential patterns in temporal graphs

is a critical research challenge in the development of time-aware

GNNs. We propose a significance test based on a graph null model

where timestamps are randomly shuffled to identify significant

time-respecting paths, i.e., sequences of time-stamped edges that

follow a temporal order. By combining this inference method with

graph learning, we develop a two-step model, SIT-GNN, capable

of capturing significant sequences in time-respecting paths. We

demonstrate this novel capability with synthetic data and explain

the enhanced classification performance in empirical data through

an analysis with respect to the significance test. To the best of our

knowledge, our work is the first to introduce statistically informed

GNNs that leverage sequential patterns in terms of time-respecting

paths. SIT-GNN represents a step towards bridging the gap between

statistical graph inference and neural graph representation learning,

with potential applications to static GNNs.

CCS Concepts
• Computing methodologies→ Neural networks; Supervised
learning by classification; Anomaly detection.

Keywords
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1 Introduction
Temporal graphs are graphs where time-stamped edges represent

events between nodes that occur at specific times. They find wide

application in various domains, including social networks [51, 55],

analysis of epidemic spreading [37], and fraud detection [9]. This

work focuses on classifying static node properties, i.e., properties

that that do not change throughout the observation period such

as, e.g., the role of nodes. For most methods, either time-stamped

edges are aggregated in a static graph, and static labels are assigned,

or both the graph and the node labels are considered dynamic. In

this work, we consider dynamic aspects of the graph but seek to

assign node labels that are static. We focus on two key aspects

overlooked by most techniques: (1) capturing sequential patterns

in time-respecting paths by employing a specialized graph repre-

sentation and (2) incorporating the statistical significance of these

patterns in temporal graph learning.

(1) In addition to the underlying temporal component, time-

stamped edges also contains an overarching structural ordering

that is overlooked when only considering edge frequencies on its

own. The arrow of time imposes a time dependent relationship on

time-stamped edges between nodes. Information can only flow from

one node to another through an intermediary if the time-stamped

edges are temporally ordered. If the event order is shuffled, the

intermediary might lose the information because it interacted with

the subsequent member beforehand.

(2) The absolute frequency of time-stamped edges alone is often

insufficient for successful classification. For instance, when con-

sidering time-stamped interactions at a workplace, assigning roles

based solely on the absolute number of interactions can lead to

incorrect labeling. Let us assume managers are characterized by a

higher number of interactions with other managers. By using the

absolute frequency of pairwise interactions only, a standard graph

algorithm may fail to correctly classify managers with an overall

small number of interactions (e.g., introverted managers). In fact,

a more effective metric should consider the relative importance

of interactions by accounting for an individual’s lower overall in-

teraction frequency, rather than focusing exclusively on absolute

counts.

In this work we address both aspects for the static node classifi-

cation task in temporal graphs. We propose a two-step approach

that integrates statistical inference with deep graph learning. Our

architecture enhances classification performance in scenarios char-

acterized by non-trivial patterns in the temporal ordering of edges.

Importantly, it accounts for edge patterns that cannot be adequately

captured by absolute frequencies alone, but require analysis of the

statistical significance of temporally ordered edges. Our contribu-

tions are as follows:

(i) We introduce a temporal graph neural network designed

for static classification that produces state-of-the-art clas-

sification results by effectively managing time-respecting

paths, with statistically significant sequences.

(ii) We analyze five empirical temporal datasets, and create

two synthetic ones, to investigate the patterns in temporal

ordering and statistical significance that our method relies

on to improve on the state-of-the-art.

(iii) We leverage the synergy between statistical inference meth-

ods and deep graph learning, supporting the claims on the

fruitfulness of the approach recently suggested in [4].
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Throughout the article, we substantiate our contributions by

validating the following claims:

(C1) Utilizing edges based on their statistical significance, rather

than raw frequency, increases network homophily — a topo-

logical property known to enhance GNN performance [68].

(C2) Our method is more efficient than standard temporal GNNs

that rely on higher-order line-graphs or directly work with

raw temporal event data.

(C3) Through statistical significance testing, our method cap-

tures fine-grained temporal patterns in time-respecting

paths that remain undetectable even to existing temporal-

order-aware approaches.

(C4) Consequently, it outperforms SOTA techniques in static

node classification tasks on temporal graphs.

2 Related work
As our work addresses temporal graph data, it is related to the

field of temporal GNNs. Temporal GNNs have been developed for

both discrete- and continuous-time settings [38]. Discrete-time ap-

proaches segment the temporal data into time windows [23, 36, 52],

thus aggregating temporal time-stamped edges and losing informa-

tion on time-respecting paths within those time windows.

In contrast to the discrete-time setting, continuous-time ap-

proaches produce time-evolving node embeddings, focusing on

the temporal variability of network activity at different time points,

rather than on the patterns occurring across temporally-ordered

event sequences [12, 34, 49].

These methods are commonly evaluated based on the prediction

of dynamically changing node labels, which differs from our focus

on predicting static node labels using temporal information. Our

research area aligns with [47], which leverages sequential corre-

lations in high-resolution timestamped data. In this context, the

graph evolves dynamically, but the prediction target remains static.

This contrasts with benchmarks used for temporal dynamic node

prediction (TGB [27]) or non-temporal classification (OGB [25]).

We specifically address static classification in temporal graphs, as

exemplified by the social patterns datasets ([16, 19, 57]).

Furthermore, our method emphasize the importance of time-

respecting paths, by applying structural changes to the graph, for

accurately capturing the temporal dynamics relevant to static clas-

sification tasks. Data augmentation for graphs has been explored

from various directions with the goal of allowing machine learning

models to better generalize and attend to signal over noise [66].

Many methods have utilized heuristic graph modification strate-

gies like randomly removing nodes [15], edges [48], or subgraphs [59,

62] to improve performance and generalizability. Other works have

considered adding virtual nodes [28, 46] or rewiring the network

topology, which also addresses oversquashing [1, 56], with graph

transformers operating on a fully connected topology representing

an extreme case [33, 41, 61]. Additionally, it has been shown that

using graph diffusion convolutions instead of raw neighborhoods

alleviates problems from noisy and arbitrarily defined edges in

real-world graphs [18].

Network data augmentation has also been explored by going

beyond pairwise connections, either through mediating node in-

teractions via subgraphs [3, 11, 43, 65] or by utilizing higher-order

graphs. Examples of higher-order approaches include simplicial net-

works [6], cellular complexes [5, 22], hypergraphs [10, 20, 26], and

higher-order De Bruijn graphs modeling time-respecting paths [47].

Another area of research focused on learning the graph aug-

mentations from the data. One approach is to perform graph aug-

mentation as a preprocessing step, completely separate from the

downstream task, where the graph structure is cleaned before be-

ing used as input to the GNN [30, 67]. Others embed the augmen-

tation strategy into an end-to-end differentiable pipeline, jointly

learning the optimal graph representation and the downstream

task [14, 17, 29, 31, 39].

3 Approach
Before introducing our approach, we first clearly state the prob-

lem. Our work focuses on high-resolution temporal graph data

that consist of time-stamped edges between nodes. We address the

static classification task, which involves classifying nodes based

on the information derived from these time-stamped edges. This

task is significant due to its wide range of applications, such as

predicting user roles in social networks, detecting fraudulent mem-

bers in financial transactions, and identifying influential nodes in

communication networks. Most successful solutions, such as those

compared in [47], encode time-stamped edges in a static graph, as

illustrated in Figure 1a. Here edges are static and weights count the

number of time-stamped edges between two nodes. However, this

approach ignores the temporal aspect of the data and the signifi-

cance of time-stamped edge activation frequencies with respect to

a random baseline distribution.

We base our method on two concepts: We first introduce a sta-

tistical inference technique using random graph ensembles that are

based on the node and edge statistics in a temporal graph. We then

specifically show how to encode significantly over-represented

time-respecting paths in a temporal graph as time-respecting edges
in higher-order De Bruijn graphs [63], which we can use as basis

for a graph neural network. This leads to the definition of signifi-
cant edges that form the base of our Significance Inferring Temporal
Graph Neural Network (SIT-GNN) model.

3.1 Statistical inference with random graph
ensembles

Random graph ensembles are a powerful tool for statistical infer-

ence in network analysis. They allow to generate a distribution of

graphs that share certain aggregate properties with the observed

network, providing a baseline for comparison. By comparing the

observed network with a random graph ensemble, we can identify

significant edges that deviate from randomness. This information

about the significance of the edges can then be used as input to a

graph neural network, enhancing its performance.

To this end, we employ the configuration model [42] that ran-

domly connects node stubs. Manually connecting the node stubs

for all possible solutions is not analytically tractable. Therefore,

we use the soft configuration model [7] that only fixes expected

node degrees, allowing the problem to be reformulated as an urn

problem. By using hypergeometric distributions as described in

[35], we can perform statistical tests to determine if edges are over-

or under-represented with respect to the underlying node degrees.
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(a) Static time aggregated edges. For
both datasets the time-stamped edges
are converted to the same static graph
by counting the occurrences. There is
a path DA, AF in both time aggregated
graphs.
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(b) Time-respecting paths. A time-
respecting path or an edge in the
second-order De Bruijn graph respects
the temporal order of time-stamped
edges such that edge DAF only exists
for dataset (1).
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(c) Significant edges. Considering time-aggregated 2nd-
order edge frequencies leads to the assumption that edge
DAF is more important than FDB. However, the underly-
ing 1st-order edges of DAF are also more present. FDB is
more significant because it is less frequent but covers its
1st-order edges better.

Figure 1: Illustrative example of our approach, highlighting that less frequent time-stamped edgesmay bemore over-represented
than more frequent time-stamped edges.

An edge is over-represented if it is observed more frequently than

would be expected by chance.

In our case, only over-represented edges are significant for the

graph neural network since they encode edges that stand out from

randomness. We compute the significance 𝑠 (𝑒𝑖 𝑗 ) of the edge 𝑒𝑖 𝑗
using the probability mass function for the hypergeometric distri-

bution:

𝑠 (𝑒𝑖 𝑗 ) = Pr(𝑋𝑖 𝑗 ≤ 𝐴𝑖 𝑗 ), with Pr(𝑋𝑖 𝑗 = 𝐴𝑖 𝑗 ) =

(Ξ𝑖 𝑗

𝐴𝑖 𝑗

) (𝑀−Ξ𝑖 𝑗

𝑚−𝐴𝑖 𝑗

)(𝑀
𝑚

)
(1)

where 𝑠 (𝑒𝑖 𝑗 ) is the probability of edge 𝑒𝑖 𝑗 being over-represented,

𝐴𝑖 𝑗 is the observed frequency of edge 𝑒𝑖 𝑗 and 𝑋𝑖 𝑗 is any random

instance of the ensemble. To obtain a random instance, we could

sample𝑚 =
∑
𝑖, 𝑗∈𝑉 𝐴𝑖 𝑗 equiprobable edges without replacement

from the multi-set of size𝑀 =
∑
𝑖, 𝑗∈𝑉 Ξ𝑖 𝑗 of in- and out-stub pairs,

where the total number of stub combinations between two vertices

𝑖, 𝑗 is given by Ξ𝑖 𝑗 = 𝑑out
𝑖

𝑑 in
𝑗
. Here, 𝑑out

𝑖
and 𝑑 in

𝑗
are the out- and in-

degrees of nodes 𝑖 and 𝑗 , respectively. However, this formula follows

a hypergeometric distribution such that we solve it analytically.

To ensure that non-existent edges are excluded from considera-

tion, we adapt Ξ by redistributing the stub-pairs as described in

[35]. We call an edge significant edge if the observed frequency is

over-represented with respect to a given predefined threshold, e.g.,

𝑠 (𝑒𝑖 𝑗 ) ≥ 0.95.

3.2 Encoding time-respecting paths in
higher-order De Bruijn graphs

A graph 𝐺 = (𝑉 , 𝐸) is defined as a set of nodes 𝑉 representing

the elements of the system, and a set of edges 𝐸 ⊆ 𝑉 × 𝑉 repre-

senting their direct connections. However, it is often important to

consider how nodes influence one another through a path, which
is an ordered sequence (𝑣1, 𝑣2, . . . , 𝑣𝑙 ) of nodes 𝑣𝑖 ∈ 𝑉 . In a path,

all node transitions must correspond to edges in the graph, i.e.,

𝑒𝑖 = (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸;∀𝑖 ∈ [0, 𝑙 − 1].

Paths are often inferred from edges based on a transitivity as-
sumption. This assumption states that if there is an edge (𝑣0, 𝑣1)
with transition probability 𝛼 , and an edge (𝑣1, 𝑣2) with transition

probability 𝛽 , then the path (𝑣0, 𝑣1, 𝑣2) will be observed with prob-

ability 𝛼 · 𝛽 . In other words, the transitions are considered to be

independent.

The transitivity assumption simplifies the modeling of a path

by expressing its probability as the product of the individual edge

transition probabilities. However, this assumption often fails in tem-

poral networks 𝐺𝑡 = (𝑉 , 𝐸𝑡 ), where 𝐸𝑡 ⊆ 𝑉 ×𝑉 × N as edges have

timestamps. In temporal networks, the ordering of edges can play

an important role in determining the likelihood of observing cer-

tain paths. A time-respecting path is defined as a sequence of edges

((𝑣0, 𝑣1, 𝑡1), . . . , (𝑣𝑖 , 𝑣𝑖+1, 𝑡𝑖 ), . . . , (𝑣𝑛−1, 𝑣𝑛, 𝑡𝑛)) that ∀𝑖 ∈ [0, 𝑙 − 1]
respects two conditions: (i) transitions respect the order of time

𝑡𝑖 > 𝑡𝑖−1, and (ii) 𝑡𝑖 − 𝑡𝑖−1 ≤ 𝛿 , where 𝛿 is a parameter controlling

the maximum time distance for considering interactions temporally

adjacent. Therefore, different fromwhat we would get by discarding

time and using the transitivity assumption, the two edges (𝑣,𝑤, 𝑡1)
and (𝑢, 𝑣, 𝑡2) form a time-respecting path only if 𝑡2 > 𝑡1.

To capture time-respecting sequential patterns, higher-order De

Bruijn graphs model the probabilities of path sequences explicitly.

These models construct a representation that respects the topology

of the original graph and the frequencies of observed paths of a

given length𝑘 . Specifically, a higher-order network of the k-th order

is defined as an ordered pair𝐺 (𝑘 ) = (𝑉 (𝑘 ) , 𝐸 (𝑘 ) ), where𝑉 (𝑘 ) ⊆ 𝑉𝑘

are the higher-order vertices, and 𝐸 (𝑘 ) ⊆ 𝑉 (𝑘 )×𝑉 (𝑘 )
are the higher-

order edges. Each higher-order vertex 𝑣 =: ⟨𝑣0𝑣1 . . . 𝑣𝑘−1⟩ ∈ 𝑉 (𝑘 )

is an ordered tuple of 𝑘 vertices 𝑣𝑖 ∈ 𝑉 from the original graph. The

higher-order edges connect higher-order nodes that overlap in ex-

actly 𝑘 − 1 vertices, similar to the construction of high-dimensional

De Bruijn graphs [13]. The weights of the higher-order edges in

𝐺 (𝑘 )
represent the frequency of paths of length 𝑘 in the original

graph. Specifically, the weight of the edge (⟨𝑣0 . . . 𝑣𝑘−1⟩, ⟨𝑣1 . . . 𝑣𝑘 ⟩)
counts how often the path ⟨𝑣0 . . . 𝑣𝑘 ⟩ of length 𝑘 occurs. By explic-

itly modeling the probabilities of these higher-order path sequences,
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the higher-order network representation can capture patterns and

dependencies that may be missed when relying on the transitivity

assumption [54]. Figure 1b illustrates the time-respecting paths.

3.3 Significant time-respecting paths
We combine the two concepts of significant edges and time-respecting

paths by applying the statistical inference method to the higher-

order De Bruijn graph. Here, the significance of a time respecting-

path ⟨𝑣0, 𝑣1, 𝑣2⟩ is determined with respect to the frequency of the

time respecting sub-paths ⟨𝑣0, 𝑣1⟩ and ⟨𝑣1, 𝑣2⟩. The path ⟨𝑣0, 𝑣1, 𝑣2⟩
is described by the edges in a second-order De Bruijn graph and

the sub-paths are its nodes. As a result, the inference method can

directly be applied to the second-order edges of the De Bruijn graph

to obtain the significant edges that encode time-respecting paths.

Figure 1c illustrates 𝑠 (𝑒𝑖 𝑗 ) for second-order edges and shows how

the significance score differs from the absolute frequency of the

edges.

3.4 SIT-GNN: Significance Inferring Temporal
Graph Neural Network

We combine the two key concepts of significant and time-respecting

De Bruijn graph edges in our model, SIT-GNN. The model is de-

signed to handle the static classification task for temporal graphs. It

consists of two main components: the statistical inference module

and the deep graph neural network.

Figure 2 illustrates the architecture of our model. In a prepro-

cessing step, we transform time-stamped edges into a static time-

aggregated graph 𝐺 = (𝑉 , 𝐸, 𝐹 ) and a second-order De Bruijn

graph 𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 , 𝐹𝑡 ), containing time-stamped edge and time-

respecting paths with their observed frequencies 𝐹 and 𝐹𝑡 , re-

spectively. For both graphs, we calculate the significance of edges

𝑆 = {𝑠 (𝑒𝑖 𝑗 ) ∀𝑒𝑖 𝑗 ∈ 𝐸} and 𝑆𝑡 = {𝑠 (𝑒𝑖 𝑗 ) ∀𝑒𝑖 𝑗 ∈ 𝐸𝑡 } using the statisti-
cal inference module that solves Equation (1). Edges in the graphs

are attributed with these probabilities, leading to the significant

graph 𝐺 = (𝑉 , 𝐸, 𝑆) and the significant second-order De Bruijn

graph 𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 , 𝑆𝑡 ).
The learnable model consists of two GNNs that operate on𝐺 and

𝐺𝑡 . We encode the significance as edge weights such that the impact

of insignificant edges is reduced during message passing. For the

used empirical datasets, the significance values 𝑆 and 𝑆𝑡 are mostly

either 0 or 1 (Figure 4), such that insignificant edges are ignored

during message passing. For simplicity, we use a three-layer GCN,

but any GNN that supports edge weights can be integrated into our

approach. Following [32], we define the propagation rule with the

normalization constant 𝑐𝑖 𝑗 and include the significance 𝑠 (𝑒𝑖 𝑗 ):

ℎ𝑣𝑖 = 𝜎
©­«

∑︁
𝑣𝑗 ∈N(𝑣𝑖 )

𝑠 (𝑒𝑖 𝑗 )
𝑐𝑖 𝑗

𝑓𝑣𝑗𝑊
ª®¬ ∀ 𝑣𝑖 ∈ 𝑉 , (2)

ℎ𝑡𝑣𝑖 = 𝜎
©­«

∑︁
𝑣𝑗 ∈N(𝑣𝑖 )

𝑠 (𝑒𝑖 𝑗 )
𝑐𝑖 𝑗

𝑓𝑡𝑣𝑗𝑊𝑐
ª®¬ ∀ 𝑣𝑖 ∈ 𝑉𝑡 (3)

Our model utilizes provided features 𝑓 ∈ 𝑋 (not to confuse with

the random variable 𝑋𝑖 𝑗 ) in both GNNs to obtain node embeddings

𝐻 and 𝐻𝑐 , respectively. Since most datasets contain only first-order

features, we design a lift operation based on a bipartite graph 𝐵𝑙 =

(𝑉 ,𝑉𝑡 , 𝐸𝑙 ) to map the features 𝑓 to the second-order graph as 𝑓𝑡 .

We take a Markovian perspective and map each node 𝑣𝑖 ∈ 𝑉 to the

nodes 𝑣𝑖 𝑗 ∈ 𝑉𝑡 that represent an edge 𝑒𝑖 𝑗 ∈ 𝐸 starting in node 𝑣𝑖 .

After message passing on the time-respecting graph, the features

are lifted back to the first-order graph and merged with the inverse

bipartite graph 𝐵𝑚 = (𝑉 ,𝑉𝑡 , 𝐸𝑚). The lift and merge operations

are again defined with a GNN applied to the bipartite graphs 𝐵𝑙
and 𝐵𝑚 :

𝑓𝑡𝑣𝑖 = 𝜎
(
F

(
{𝑓𝑢𝑖 |𝑢𝑖 ∈ 𝑉 ∧ (𝑢𝑖 , 𝑣𝑖 ) ∈ 𝐸𝑙 }

)
𝑊𝑙

)
∀ 𝑣𝑖 ∈ 𝑉𝑡 (4)

ℎ𝑚𝑣𝑖
= 𝜎

(
F

(
{ℎ𝑣𝑖 + ℎ𝑚𝑢𝑖

|𝑢𝑖 ∈ 𝑉𝑡 ∧ (𝑢𝑖 , 𝑣𝑖 ) ∈ 𝐸𝑚}
)
𝑊𝑚

)
∀ 𝑣𝑖 ∈ 𝑉

(5)

We use MEAN as the aggregation function F . Finally, the merged

embedding 𝐻𝑚 is linearly transformed to produce the class out-

put 𝑌 ′
.

The core idea of our model is the integration of statistical in-

ference with deep graph learning. The resulting model respects

time-respecting paths and emphasizes significant edges during the

message passing process in a higher-order De Bruijn graph. In the

following sections, we evaluate the effectiveness of these properties

and assess the performance of our model on the static classification

task for temporal graphs with high-resolution time-stamped edges.

4 Analysis
Before evaluating the classification performance of SIT-GNN, we

analyze the impact of significance testing on the available data (C1)
and discuss the efficiency of our method (C2). To this end, we em-

ploy various benchmark datasets from SocioPatterns (Hospital [57],
Student [53],Workplace [19], School11 and School12 [16]). Details
about these datasets are provided in Appendix A.

4.1 Increased homophily through significance
testing (C1)

First, we address claim C1, that using only significant edges reveals
homophilic structures and thus supports our method. As we are

interested in the impact for our method, we focus on the edges in

the datasets that facilitate message passing in GCNs. They update a

node’s embedding based on information from its neighboring nodes.

Classification is more straightforward for GCNs when the neigh-

boring nodes are of the same class [68], indicating a homophilic

network. As defined in [45], the node homophilic ratio (NHR) is

based on the node’s 𝑣 neighborhood N(𝑣):

NHR =
1

|V|
∑︁
𝑣∈V

|{(𝑢, 𝑣) : 𝑢 ∈ N (𝑣) |𝑦𝑢 = 𝑦𝑣}|
|N (𝑣) | (6)

Figure 3a shows that considering only edges with at least 50%

significance increases the NHR for all datasets except for Student.
However, this ratio does not account for class sizes and ignores

edge weights, even though most GCNs can handle them. To address

this, we introduce a node homophily ratio considering balanced
class weights𝑤𝑐 and edge weights 𝑤 (𝑢, 𝑣):

BWNHR =
1

|C|
∑︁
𝑐∈C

𝑤𝑐


1

|V𝑐 |
∑︁
𝑣∈V𝑐

∑
𝑢∈N(𝑣) |𝑦𝑢=𝑦𝑣 𝑤 (𝑢, 𝑣)∑

𝑢∈N(𝑣) 𝑤 (𝑢, 𝑣)

 , (7)
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Figure 2: The SIT-GNN architecture consist of two main components: the statistical inference module and the deep graph
neural network. Both parts are applied to the original static graph and to the time-respecting encoding De Bruijn graph. Lift
and merge operations transform the features and embeddings in the desired space.

(a) NHR for original graphs compared to graphs with only sufficient
significant (𝑠 (𝑒𝑖 𝑗 ) > 0.5) edges.

(b) BWNHR for original graphs without edge weights compared to
edges with significance score 𝑠 (𝑒𝑖 𝑗 ) .

Figure 3: Considering the significance for the impact of edges leads to an increase of homophily, measured in NHR and BWNHR,
for most of the used empirical datasets.

with 𝑤𝑐 = |V|/(|V𝑐 | |C|). Using this score, we assess whether

weighting the edges with the significance score results in nodes

having, on average, more adjacent nodes of the same class. Fig-

ure 3b demonstrates that weighting with the significance score

yields a higher BWNHR for all datasets except Student. Notably,
for Hospital and Workplace, the differences are substantial, with an

increase of nearly 0.2. This indicates that most datasets contain a

homophilic relationship revealed by the significance test. There-

fore, we anticipate that our model will perform best on Hospital
andWorkplace.

Both scores lead to similar results even though for one score we

consider a pruning at 𝑠 (𝑒𝑖 𝑗 ) > 0.5 and for the other we consider the

significance score as edge weight. Considering Figure 4 we observe

that the significance scores are mostly either 0 or 1, such that they

effectively prune edges. For the Student dataset the distribution

is more uniform, preventing an increase of homophily through

pruning.

It is worth noting that the Student dataset is the only dataset

based on real link data, whereas the other datasets are derived

from proximity data. Hence, the noise in the other dataset is more

pronounced, and it disguises the homophily because the noise con-

sist of predominantly heterophilic edges. This explains why re-

moving noisy edges with the significance test effectively increases

homophily.

4.2 Runtime complexity (C2)
In this section, we address claim C2 that our method works effi-

ciently on empirical data and is in particular more efficient than

standard temporal GNNs relying on higher-order line-graphs or

raw observations of time-stamped edges. We first discuss theoret-

ical arguments limiting the runtime and then provide empirical

observations to support our claims. In the performance evaluation,

we measure that our approach has a runtime in the same or lower

order of magnitude as the used baselines.

Our method involves message passing on both first-order graphs

and second-order De Bruijn graphs. Thus, the runtime is primarily

influenced by the potentially larger second-order De Bruijn graph. A

line graph represents an upper bound for the De Bruijn graph with

a complexity of |𝐸line | = |𝐸 |2 = 𝑂 ( |𝑉 |4). However, the De Bruijn
graph only includes time-respecting paths of length two, reducing

the complexity further to 𝑂 ( |𝑉 |3), which is significantly lower

than that of a line graph. Typically for empirical data, first-order

graphs are sparse, with |𝐸 | = 𝑂 ( |𝑉 |), leading to |𝐸 |2 = 𝑂 ( |𝑉 |2).
Consequently, for sparse graphs, the number of edges in a second-

order De Bruijn graph has an upper limit significant lower than

𝑂 ( |𝑉 |2), or even 𝑂 ( |𝑉 |) depending on the temporal patterns in

the graphs. [47] further refine this by noting that these edges are

bounded by

∑
𝑖 𝑗 𝐴

2

𝑖 𝑗
≤ |𝑉 |2, where 𝐴2

is the second power of the

binary adjacency matrix 𝐴 of the first-order graph.

While these theoretical upper bounds provide an idea of the

worst-case limits, we now consider statistics from empirical data.

In Figure 5, we compare the major drivers for runtime complex-

ity of baseline methods used in Section 5.2 with respect to the

datasets. These include the node count |𝑉 |, first-order edge count
|𝐸 |, second-order De Bruijn graph edge count |𝐸 (2) |, and number of

5
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Figure 4: Distribution of first-order edges with respect to the significance scores 𝑠 (𝑒𝑖 𝑗 ).

Figure 5: This graph shows howoftenmessage passing (MP) is
performed in each epoch. TGNperformsMP event-wise, GCN
for each edge and DBGNN for each edge in the second-order
De Bruijn graph. Our method relies on the second-order De
Bruijn graph but only considers significant edges. As a result,
our method performs MP in the same order of magnitude as
GCN for the given empirical datasets.

time-stamped edges, respectively events, |𝑇 |. We also include statis-

tics for the graphs with insignificant edges removed |𝐸 (2) | and for

the upper limit of the line graph |𝐸 |2. Note that for most methods

including ours the number of time-stamped edges does not impact

the complexity because they are aggregated for each underlying

edge and transformed to a significance score in a preprocessing

step. For the datasets considered, the higher-order De Bruijn graph

with pruned insignificant edges is of the same magnitude as the

first-order graph or even smaller for very sparse data. This is due

to the sparsity of the first-order graph and the pruning of non-time-

respecting paths. Pruning insignificant edges significantly reduces

the edge count, making our method as efficient as previous works.

The effective speedup depends on the pruning constraint, here

0.95. Even without pruning, our method’s worst-case runtime is

bounded by DBGNN [47], making it significantly more efficient

than both TGN [12] and LGNN [24]. In the experimental evaluation,

we confirm this observation by measuring the method’s per epoch

training time (Table 1).

Other commonly used benchmark datasets, such as TGB [27] or

OGB [25], often have a larger number of time-stamped edges and/or

nods but still result in sparse graphs. Therefore, we do not anticipate

10
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1
9
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10
1

1

10

95 1043

Frequency

1
0.0

1.0

95 103 4

Significance

Figure 6: Small synthetic example showing two-step transi-
tions between nodes of two classes. The frequency of intra
(orange, blue) and inter (pink) class transitions are indis-
tinguishable. Considering the one-step transitions as base
distribution leads to significance values that makes it possi-
ble to distinguish between intra and inter class transitions.
Thus, a transductive classification where the class is deter-
mined based on a subset of known nodes becomes simpler
due to the stronger association of same class nodes.

that applying our method to these tasks will be constrained by

runtime complexity. Instead, the main challenge lies in adapting

our method to different tasks as presented in those datasets, which

is an area for future work.

5 Experimental Evaluation
Previously, we have shown that significance testing reveals a more

homophilic relationship in empirical data. Next, we further pinpoint

this observation to a concrete synthetic example to address whether

this significance test also increases the learning capabilities of our

model. Lastly, we show that our approach is also valid in empirical

data leading to superior performance.

5.1 Capturing temporal patterns (C3)
We claim (C3) that our model can learn patterns that other models

cannot. To demonstrate this, we generate synthetic data with a

specific pattern that is published with our code.

To give a connection to a practicable case: We identify the role

of managers in workplace based on their communication. Even

though the managers interact mainly with other managers the raw

6
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interaction count between them is not meaningful enough because

the total interaction activity of the managers varies heavily.

Formally, we address a transductive node classification task for a

graph where node activations (in terms of degrees), edges, and time-

respecting edge frequencies vary. We bias time-respecting edges

towards predominant class association patterns, meaning nodes

of the same class are more often connected by a time-respecting

edge. The dataset is published together with the code (Appendix B).

Our hypothesis is that our model can learn this pattern and classify

unseen nodes based on dominant time-respecting paths, whereas

other methods relying on mere edge frequency fail due to the vary-

ing frequencies.

Figure 6 illustrates a reduced examplewith varying time-respecting

edge frequencies. Distinguishing associative from non-associative

edges based on frequency alone is impossible. However, associative

time-respecting second-order edges appear more frequently than

expected when considering underlying first-order edge frequencies,

making them detectable with a cutoff value.

Figure 7 shows that only our model can learn this distinction and

separate the two node classes. Randomizing edge order removes the

bias in terms of significant time-respecting information, making

the data purely random and reducing our model’s performance to

random guessing. This confirms that our model learns the encoded

temporal pattern and not random fluctuations in the data.

5.2 Evaluation on empirical data (C4)
To address claim (C4), we compare SIT-GNN to competitive base-

lines on five common empirical datasets for static node classification

on temporal graphs. We consider baselines from the deep learn-

ing and representation learning domains, as well as methods from

other domains, such as static node classification and dynamic node

classification.

HONEM [60] and EVO [2] are two representation learning meth-

ods specifically designed for temporal graphs. LGNN [8] and DB-

GNN [47] are deep learning methods tailored for temporal graphs.

We adapt the static node classification methods Node2Vec and GCN

to the temporal setting by considering the temporal graph as a

static graph. This helps to understand whether considering tem-

poral information is beneficial for solving the task. GAT [58] is

added to understand if the attention mechanism can replicate the

performance of our significance testing GNN.

Models for dynamic node classification need to be thoroughly

adapted to the static setting, as they are designed for a different

task. This is a challenging problem on its own, but for reference,

we consider an adaption of TGN [49], which is currently state-of-

the-art in the TGB [27] leaderboard, except for the simple Moving

Average heuristic, which cannot be mapped to our task. This helps

to understand whether dynamic methods are relevant for the static

temporal case.

We conduct an extensive parameter search for all models to

ensure fair comparison. For the representation learning models

Node2Vec and EVO we adhere to the original configurations, i.e.

we use an embedding size of 𝑑 = 128 and a random walk length

of 𝑙 = 80, repeated 𝑟 = 10 times. As context size we use 𝑘 = 10.

For Node2Vec we select the return parameter (𝑝) and the in-out

parameter (𝑞) from the set 0.25, 0.5, 1, 2, 4. The deep learning models

(GCN, GAT, LGNN, DBGNN, and our proposed model) consist of

three layers. Following the approach of [47], we set the size of the

last layer to ℎ2 = 16, while the sizes of the preceding layers are

determined during model selection. The study range for ℎ0 and

ℎ1 encompasses 4, 8, 16, 32 over a maximum of 5000 epochs as per

[47]. The time-respecting path length is fixed to 𝑘 = 2 for SIT-

GNN and DBGNN because it is shown as optimal in [47] for the

given datasets. Stochastic Gradient Descent (SGD) serves as our

optimization function, with the learning rate set to 0.001, which

showed the best performances on average for all tested models. We

use dropout regularization with a dropout rate of 0.4 to mitigate

overfitting and we incorporate class weights in the loss function to

address imbalanced training datasets.

To compare various GNN architectures, we adopt a conventional

approach. We split the data into a 10% test set and a 90% train-

ing set, which is further divided into a training and validation set

(80%/20%). Subsequently, we select the best-performing model and

epoch based on its validation set performance. Finally, we evaluate

the chosen model’s performance on the test set, reporting the mean

and standard deviation of the balanced accuracy across all 10 repe-

titions. We evaluate the models using the balanced accuracy metric

to account for class imbalance. For comparability, we use the same

folds and splits for all experiments. Besides the random splits, the

random initialization of the model also contributes to the variability

captured by the standard deviation. For reproducibility, we fix the

random splits and reuse a common seed in every repetition for

the random initialization of model weights and dropout candidates.

Additional details about the models and experiments are outlined in

Appendix B and C, including an ablation study about the different

edge types.

Table 1 shows the results. Our model outperforms all other mod-

els on all datasets except for the Student dataset where it is on par

with the best model. This confirms the analysis from section 4.1

and meets our expectations. The observed gain is strongest for

the hospital and workplace datasets. Except for Student, neither
static nor dynamic methods are competitive, indicating that the

temporal aspect is crucial for the task. Complementing our analysis

in section 4.2, we also show that the training time of our method is

in the same order of magnitude as for static GNNs and significantly

lower than for competing baseline methods.

5.3 Limitations
In this work, we focus on sequences of time-stamped edges, but

do not incorporate additional temporal features or edge attributes

that could further enhance our method. We made a limited use

of the framework of hypergeometric statistical ensemble, which

can be extended with non-homogeneous edge propensities [7].

Additionally, time-respecting edges of order 𝑘 > 2 could be con-

sidered even though 𝑘 = 2 has been shown to be optimal for these

datasets [47]. Other random graph ensembles may be explored to

introduce domain-specific, non-trivial biases. We demonstrate that

our approach also increases homophily in static first-order graphs,

suggesting that applying this method to non-temporal static graphs

is a promising direction for future research. Our inference method

performs particularly well on temporal graphs for static classifi-

cation; Future work could explore augmenting standard temporal
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(a) Data set with biased temporal order of edges towards predominant class association. (b) Randomized

Figure 7: Test balanced accuracy (BAcc) and t-SNE plot of learned embeddings (train split is gray). Only our method successfully
learns the pattern in the synthetic data. When the data is randomized, our method’s performance drops to random guessing,
indicating that it effectively captures the underlying pattern, which is disrupted by randomization.

Table 1: Model per epoch training time and performance in terms of balanced accuracy (BAcc) for the temporal static node
classification task (temp.) across various empirical datasets. We mark the best models in bold and second in italic. We include a
diverse set of baselines, comprising deep learning (deep) and representation learning (emb.) methods. For reference, we also
adapt and include methods from other domains, such as static node classification (static) and dynamic node classification (dyn.).

Method Hospital School11 School12 Student Workplace

Model Type Graph BAcc (%) Time (ms) BAcc (%) Time (ms) BAcc (%) Time (ms) BAcc (%) Time (ms) BAcc (%) Time (ms)

Node2Vec emb. static 56.0 ± 7.4 8.9 ± 0.6 54.0 ± 5.5 11.7 ± 0.7 59.0 ± 10.6 13.6 ± 0.9 56.1 ± 2.5 41.9 ± 6.0 76.5 ± 2.9 10.1 ± 0.2

GCN deep static 42.8 ± 2.5 2.7 ± 0.6 48.8 ± 5.5 3.3 ± 0.2 61.3 ± 4.8 4.0 ± 0.3 56.5 ± 5.1 3.2 ± 0.4 30.6 ± 8.8 3.2 ± 0.1

GAT deep static 24.6 ± 0.6 5.5 ± 0.3 54.7 ± 5.9 4.8 ± 0.3 44.0 ± 12.0 5.4 ± 0.4 62.9 ± 6.3 5.2 ± 0.2 28.8 ± 9.2 4.8 ± 0.3

TGN deep dyn. 39.1 ± 6.2 1173.7 ± 184.2 55.2 ± 6.2 1225.7 ± 40.3 52.1 ± 12.4 2147.0 ± 285.4 49.3 ± 5.0 1360.8 ± 40.9 54.9 ± 14.9 454.8 ± 10.6

EVO emb. temp. 26.5 ± 5.4 12.2 ± 0.6 52.2 ± 7.1 12.8 ± 1.7 50.7 ± 8.2 18.6 ± 1.4 45.8 ± 2.96 48.5 ± 10.1 19.7 ± 6.3 13.6 ± 1.5

HONEM emb. temp. 48.8 ± 6.0 173.9 ± 9.4 57.9 ± 6.7 246.3 ± 26.2 53.3 ± 5.9 480.1 ± 54.1 57.9 ± 3.56 289.5 ± 37.4 75.1 ± 8.9 170.7 ± 69.5

LGNN deep temp. 44.3 ± 5.7 15.4 ± 0.9 55.1 ± 8.7 14.7 ± 0.3 48.1 ± 7.5 15.9 ± 1.1 56.8 ± 5.54 15.4 ± 1.3 75.1 ± 7.2 15.1 ± 0.7

DBGNN deep temp. 40.3 ± 5.9 4.0 ± 0.6 39.8 ± 8.2 4.7 ± 0.7 59.1 ± 9.1 5.0 ± 0.4 51.2 ± 6.17 4.7 ± 0.7 69.2 ± 3.7 4.6 ± 0.1

SIT-GNN deep temp. 58.8 ± 6.2 6.8 ± 0.1 58.7 ± 5.5 6.1 ± 0.2 63.77 ± 9.47 6.9 ± 0.4 62.6 ± 4.2 5.7 ± 1.4 78.0 ± 8.2 5.5 ± 0.2

GNN architectures. For such cases, a suitable null model for the

evolving graph structure is needed, ideally one that fits into an

online inference setup.

6 Conclusion
In this work, we deepen the synergy between statistical inference

methods and deep graph learning, leading to the proposal of SIT-

GNN, a novel deep graph learning architecture that accounts for

time-respecting paths and significant edges in high resolution tem-

poral graph data. Unlike existing graph learning methods that em-

ploy message passing on temporal data, our method facilitates a

two-step approach. First, it infers significant sequential patterns

based on an analytically traceable null model that preserves both

topology and frequency, but not the temporal ordering of time-

stamped edges. Second, we capture these significant patterns in

a De Bruijn graph that encodes time-respecting paths, enabling

our model to learn significant sequences in time-respecting paths.

We demonstrate this novel capability on a synthetic dataset and

explain the additional benefit of increased homophily on empirical

datasets. An empirical evaluation shows that our proposed method

reliably improves node classification performance over competi-

tive baselines, with peak performance observed in datasets that

experience the largest increase in homophily through significance

testing. This finding highlights that the innovative combination

of statistical inference and neural message passing, which is the

key contribution of our work, leads to considerable advantages for

temporal graph learning.

Bridging the gap between the application of statistical graph

ensembles in network science and deep graph learning, we finally

argue that our work opens broader perspectives for the integration

of statistical graph inference, graph augmentation, and neural mes-

sage passing. In particular, applying our method to the inference of

(first-order) edges in static graphs could be a promising approach

to address the issue that empirical graphs are rarely unspoiled re-

flections of reality, but are often subject to measurement errors and

noise. Our analysis highlights the homophily-enhancing properties

of our method, which also extend to first-order graphs, paving the

way for further research. The need to combine graph inference

techniques with neural message passing [40, 44, 64] has recently

been identified as a major challenge for deep graph learning, and

our work can be seen as a step in this direction.
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A Properties of used datasets
We use five datasets from the SocioPatterns repository and two

synthetic datasets. The datasets are collected from real-world so-

cial interactions and are publicly available. We perform the same

preprocessing as in [47] to obtain the first-order graph and the

second-order De Bruijn graph. The datasets are summarized in

Table 2. All preprocessed datasets are included with the code.

B Details for the experimental evaluation
We compare our architecture with graph representation learning

methods (EVO [2], HONEM [50], and Node2Vec [21]) and deep

graph learning methods (GCN [32], GAT [58], LGNN [8] and

DBGNN [47]). Finally, we also consider the state of the art dynamic

node prediction method TGN [49]. This method was developed

for predicting changes of nodes labels over time, and not for the

prediction of static node labels that depend on the sequences of

interactions. Therefore, we adapt the original training procedure

to fit the static task as outlined in Appendix B.2.

B.1 Experiment resources and reproducibility
We performed the experiments on NVIDIA L40 GPUs with 48 GB

memory. The training time is listed in the evaluation tables.

To reproduce the experiments, we provide a reference implemen-

tation at https://github.com/jvpichowski-research/2025-SIT-GNN

together with synthetic and empirical datasets and their splits and

licenses. For the implementations of the baselines we attribute the

reused implementations from the DBGNN reference paper [47].

They also parsed and provide the used empirical datasets.

B.2 TGN adaptations
We implement TGN as proposed in [49]. Instead of a link prediction

layer, we add a node prediction layer as the last stage. The embed-

ding size is fixed to 32, the maximum for the other models. For

TGN the training procedure is adapted due to its dynamic origin.

The proposed training procedure for dynamic node predictions

splits the time-stamped edges into fixed-size temporal batches and

predicts the next node state for the nodes affected by the time-

stamped edges. The batches are temporally divided into train and

test batches. Opposing, the static prediction task splits the nodes

into train and test sets. We try to keep as much from the original

training procedure as possible to favor the memory based archi-

tecture. Hence, we train the model on all event batches of size 200

but restrict the training nodes to the train set with fixed class. The

last prediction for the given test nodes is used to evaluate the per-

formance. This is not necessary in the last batch of time-stamped

edges. Averaging the predictions over all event batches to obtain

an increase in performance turned out to be non trivial. This again

shows that dynamic models are not easily transferred to the static

case and leads to new open questions for further work. For the

synthetic data the batch size is increased to 200.000 since each of

the 2
23

time-stamped edges has its own timestamps which leads to

infeasible training time with lower batch sizes. Compared to the

other deep learning methods the model losses are updated more

often because they are updated for every event batch and not only

for every node batch. Consequently, we adapt the learning rate
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Table 2: Overview of time series data and ground truth node classes used in the experiments. 𝛿 describes the maximum time
difference for edges to be considered part of a casual walk.

Dataset Ref. Time-stamped edges |𝑉 | |𝐸 | |𝑉 (2) | |𝐸 (2) | Classes (Sizes) 𝛿

School11 [16] 28561 126 3355 3042 17141 2 (85/41) 4

School12 [16] 45047 180 4399 3965 20614 2 (132/48) 4

Hospital [57] 32424 75 2052 2028 15500 4 (29/27/11/8) 4

Student [53] 24333 429 1160 733 846 2 (314/115) 40

Workplace [19] 9827 92 1491 1431 7121 5 (34/26/15/13/4) 4

Synthetic Ours 8388608 20 400 400 1600 2 (10/10) 1

Synthetic Randomized Ours 8388608 20 400 400 1600 2 (10/10) 1

Table 3: Model per epoch training time and performance in terms of balanced accuracy for the temporal static node classification
task (temp.) across various empirical datasets. The best-performing models are marked in bold.

Edges Hosptial School11 School12 Student Workplace

Time-respecting Significant BAcc (%) Time (ms) BAcc (%) Time (ms) BAcc (%) Time (ms) BAcc (%) Time (ms) BAcc (%) Time (ms)

✗ ✗ 42.83 ± 2.51 2.79 ± 0.61 48.89 ± 5.53 3.35 ± 0.29 61.38 ± 4.82 4.09 ± 0.34 56.58 ± 5.18 3.28 ± 0.49 30.67 ± 8.89 3.28 ± 0.16

✓ ✗ 40.33 ± 5.95 4.09 ± 0.60 39.86 ± 8.21 4.72 ± 0.72 59.15 ± 9.10 5.03 ± 0.43 51.29 ± 6.17 4.71 ± 0.72 69.22 ± 3.79 4.63 ± 0.09

✓ ✓ 58.83 ± 6.27 6.87 ± 0.18 58.75 ± 5.57 6.15 ± 0.25 63.77 ± 9.47 6.95 ± 0.41 62.60 ± 4.26 5.76 ± 1.43 78.06 ± 8.27 5.50 ± 0.20

Table 4: Experiment results (BAcc) with 10-fold cross-
validation evaluation procedure.

Model School11 School12 Hospital Student Workplace

Node2Vec 54.64 ± 17.70 49.65 ± 12.97 24.58 ± 10.92 52.31 ± 7.70 20.54 ± 9.51

GCN 55.00 ± 13.37 59.35 ± 11.13 43.47 ± 9.03 54.50 ± 6.40 73.33 ± 12.60

GAT 58.80 ± 13.44 52.92 ± 16.66 27.50 ± 4.02 64.65 ± 6.25 54.08 ± 16.70

TGN 61.52 ± 11.25 41.52 ± 6.19 50.27 ± 14.83 50.67 ± 4.10 80.16 ± 18.71

EVO 43.68 ± 10.91 50.05 ± 7.30 25.83 ± 8.29 55.05 ± 6.39 26.50 ± 12.08

HONEM 59.00 ± 10.61 50.49 ± 9.31 39.44 ± 17.57 53.81 ± 7.28 83.17 ± 11.14

LGNN 57.72 ± 9.85 51.43 ± 17.94 44.03 ± 9.03 52.71 ± 6.63 84.83 ± 14.77

DBGNN 61.54 ± 11.13 64.93 ± 15.26 52.50 ± 19.27 57.72 ± 5.29 84.42 ± 15.59

SIT-GNN 63.25 ± 16.18 66.41 ± 10.24 76.39 ± 17.12 60.66 ± 6.11 88.29 ± 10.51

to 0.0001 and the optimizer to the originally used one (Adam) to

obtain improved results.

B.3 Experiments with cross-validation
evaluation procedure

Typically, for model evaluation, the dataset is split once, and the

models are repeatedly trained with different random initializations

on this fixed split. For instance, the OGB benchmark [25] provides

such a predefined split. We follow this widely used evaluation

procedure in the main body of the text.

However, we argue that the less commonly used 10-fold cross-

validation (CV) — which divides the dataset into 10 folds and uses a

different fold as the test set in each iteration — offers a more robust

evaluation method as it avoids the potential bias of a “lucky” initial

split. The primary drawback of this approach is a higher standard

deviation due to the varying test sets. In Table 4, we present the

same experiments using 10-fold CV. The results confirm the findings

from the main body of the text using the fixed splits.

C Ablation study about the impact of
time-respecting and significant edges

We conduct an ablation study to analyze the impact of time-respecting

and significant edges on the performance of our model. We consider

three different settings:

• Only static edges: We neither use time-respecting edges nor

apply a significance test.

• Time-respecting edges: We use all time-respecting edges but

do not apply a significance test.

• Time-respecting and significant edges: We use the time-

respecting edges that are significant according to the hyper-

geometric test.

The results are shown in Table 3. The results show that the model

performs best when using both time-respecting and significant

edges. When only using static or time-respecting edges, the per-

formance drops, indicating that the model relies on the significant

edges to learn the underlying patterns in the data. For some datasets

the performance drops when introducing time-respecting edges

compared to only using static edges. We assume that too many

insignificant time-respecting edges are introduced that dilute the

information or reduce homophily. The results confirm our hypothe-

sis that the model relies on significant edges to learn the underlying

patterns in the data.
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