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Abstract

Compositionality of communication is a prerequisite for robust reasoning. Despite1

overall impressive performance, LLMs appear to have fundamental issues with2

compositionality in reasoning tasks. Research of the emergence of languages in3

referential games demonstrates that compositionality can be achieved via com-4

bination of the game organization and constraints on communication protocols.5

In this contribution we propose and offer initial evaluation of the hypothesis that6

compositionality in reasoning tasks with LLMs can be improved by placing LLM7

agents in the referential games that coax compositionality of the communication.8

We describe a multi-stage chemical game including recognition, naming, and9

reconstruction of chemical structures by LLM agents without leveraging their10

pre-existing chemical knowledge.11

1 Introduction12

Reasoning is the hallmark of scientific process. Scientific applications of AI are yet to include13

seamless collaborative reasoning with human scientists. Specifically, compositionality appears to14

represent a big challenge even to the models with otherwise outstanding capabilities. We want to15

understand how much LLMs can be pushed before they reach a performance ceiling in reasoning16

tasks. Our approach is informed by the body of research of emergent communication in multi-agent17

reinforcement learning (MARL) [1]. It is established that compositionality of the emergent languages18

is an independent feature that requires via special constraints on the communication protocol and/or19

specific organization of the game where communication unfolds [2]. We hypothesize, that LLMs20

communication can be pushed towards higher compositionality if LLMs are trained or fine-tuned as21

they participate in a properly organized referential game. LLMs already have a handle on the natural22

human language and the game is not expected to produce a new language. The role of the game is to23

coax LLM agents to prioritize compositional communication over non-compositional [3, 4].24

LLMs struggle with composability of chemical structures and compositionality of reasoning about25

chemical structures at expert-level tasks. The issue is quite pressing because the majority of relevant26

chemical discovery workflows require a seamless, peer-like interaction of AI with human chemists27

about impact of structural modification on utility of molecules.[5]28

We are considering an asymmetric referential game[6] with two agents, the Sender and the Receiver.29

As the Sender is exposed to the objects in the world, it learns to represent these objects and to30

associate utterances with the representations. The Sender shares utterances with the Receiver over a31

communication channel which in our case is discrete, variable length, and noiseless. The Receiver32

learns to associate utterances with its own representation of the world objects and to reconstruct33

the world objects. In MARL settings, the agents are rewarded for each instance of communication34

where the Receiver correctly identified the object that the Sender was exposed to. In this contribution,35
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Figure 1: Complex referential games have been shown to support emergence of compositional
communication [4] about multi-attribute objects. Our nested referential game involves molecules
composed of functionally distinct fragments. Panel A. World objects are SMILES strings. SMILES
are split into substrings corresponding to the function-inducing groups (Fragments 1 and 2). Frag-
ments are assigned names in the first. Panel B. First sub-game: learning a shared vocabulary for
the library of molecular fragments. Panel C. Second sub-game: learning to decompose objects into
fragments. Panel D. Final nested referential game: learning to decompose a composable object
into fragments, naming the fragments, constructing the utterance (Sender’s side), and following the
reverse process (Receiver’s side).

we train LLM model via fine-tuning on the pairs object-representation, representation-utterance,36

utterance-representation, and representation-object. The general structure of our chemical referential37

game closely follows [4] and, by extension [7]. The world objects are SMILES strings that are38

concatenation of SMILES substrings. They are constructed as a combinatorial library from two sets39

of function-inducing groups. Each SMILES in the world is described with a message comprising two40

parts, each corresponding to a specific group following structure of multi-attribute referential games,41

cf. shape-color in [4].42

1.1 Related work43

Our effort exists at the intersection of three active areas of research: reasoning and compositional44

communication with LLMs, emergence of compositional languages in MARL, and application of45

LLMs in chemistry. It’s been demonstrated that while most invented languages are effective yet46

not interpretable or compositional [3]. This study showed development of the compositionality as a47

response to limiting vocabulary and eliminating memory of one of the communicating agents. Another48

study [4] reported achievement of emergent compositional communication in a complex signaling49

game [7]. Elicitation of compositional generalization capabilities from LLMs used prompting50

strategies, such as skills-in-context (SKiC) [8], and prompt-free approach Compositional Task51

Representations (CTR) [9]. Introduction of chemical benchmarks for LLMs ([10]) revealed general52

difficulties in comprehension of SMILES notation which translates into issues in downstream tasks.53

Focus of chemical applications of LLMs on instructions inevitably runs in the bottleneck of handling54

composability and compositionality of chemistry.[11]55

2 Methodology56

2.1 Data57

Molecular combinatorial library is constructed from two types of function-inducing groups including58

7 and 63 items. The groups are concatenation either in "group 1" + "group 2" pattern or "group59
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Train Test

LLM Sender
(Exact)

Sender
(Partial)

Receiver
(Exact)

Sender
(Exact)

Sender
(Partial)

Receiver
(Exact)

Phi-1.5 zero-shot 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Phi-1.5 2-shot 1.8% 3.5% 0.0% 0.0% 0.0% 0.0%
Phi-1.5 Fine-tuned 33.0% 71.3% 50.4% 0.0% 36.0% 32.1%
Mistral zero-shot 2.7% 36.3% 13.3% 3.4% 51.7% 6.5%
Mistral 2-shot 14.7% 66.5% 50.40% 12.1% 81.8% 15.8%
Mistral Fine-tuned 96.9% 99.6% 100.0% 72.2% 91.7% 68.6%

Table 1: Accuracy scores assessing Sender’s ability to construct Utterance from SMILES and
Receiver’s ability to reconstruct SMILES from Utterance. "Exact" measures if the Sender/Receiver’s
output fully matched expected output. "Partial" measures if Sender issued a partially correct Utterance.
Fine-tuned LLMs Phi-1.5 and Mistral-7B-Instruct-v0.2 shows significant improvement over base
model with zero-shot and two-shot prompts

1" + "group 2a" + "group 2b" pattern, producing total of 11042 SMILES strings suitable for LLM60

fine-tuning. Only the first pattern including two fragments per molecule is used in the referential61

game setting 1A following [1, 4].62

2.2 Game63

The first sub-game 1B is a simple signaling game where the Sender and the Receiver establish a64

shared vocabulary about a fixed set of fragments from the combinatorial library. In the studies of65

language emergence, the agents are free to converge on any arbitrary vocabulary. In our case, both66

LLM agents are exposed to the natural language, scientific terminology and even SMILES notation.67

However, LLM’s comprehension of SMILES is inconsistent so we proceed by asking the Sender to68

come up with short, unique names for the fragments that are not established chemical terms. The69

Receiver then needs to learn the correspondence between names and fragments. Effectively, the70

Receiver faces a supervised learning task on a small dataset, so for practical considerations we simply71

included the look-up table of fragments and names in the system prompts of both LLM agents and72

instructed the agents to use the table for search and retrieval of the relevant items.73

In the second sub-game 1C the Sender learns to split a SMILES string into the sub-strings that have74

matches in the shared vocabulary. This primary task implies the secondary task, where the Sender75

has to match the fragment strings produced during the split to the content of the look-up table in the76

system prompt, and if both fragments have exactly matching entries, the Sender has to retrieve the77

corresponding names from the table. The Receiver handles the similar inverse task, except that it78

needs to split a space-separated name shared by the Sender instead of a single SMILES string which79

is an enormous simplification.80

These sub-games are nested in complete referential game 1D. The Sender encounters a world object,81

represents it as a set of fragments that have exact matches in the shared vocabulary, retrieves names82

of these fragments, and combines the names into a message. The Receiver parses the message into83

names of the fragments, retrieves the fragments from the look-up table, and reconstructs the world84

object.85

2.3 Model training86

The language model used as the Sender and the Receiver was fine-tuned on a dataset derived from87

the data described in section 2.1. From the 11, 042 SMILES strings and associated performance +88

pendant group labels in the Molecular combinatorial library, we created a dataset of input and output89

texts. This dataset covers various tasks that help LLMs learn to: a) split an initial SMILES notation90

of a molecule into sub-structure SMILES, b) map sub-structure SMILES to fragment names, c) map91

fragment names to sub-structure SMILES, and d) construct a SMILES string from the sub-structure92

SMILES of its fragments. We used Meta-Llama-3-70B-Instruct [12] to create prompt variations for93

all four tasks, resulting in a dataset of 103, 300 entries for fine-tuning the LLMs.94

This work utilizes two different LLMs: 1) Phi-1.5 [13], a small-sized model with 1.3B parameters,95

and 2) Mistral-7B-Instruct-v0.2 [14], a medium-sized model with 7B parameters. Both models were96
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fine-tuned with LoRA [15], targeting the q proj, k proj, and v proj modules. The following LoRA97

parameters were used for fine-tuning: 1) rank of low-rank factorization (lora r) = 8, 2) scaling factor98

for the rank (lora alpha) = 32, and 3) lora dropout = 0.1. Additional fine-tuning parameters included:99

1) learning rate = 1e-4, 2) weight decay = 0.05, and 3) batch size = 96 (for Mistral-7B-Instruct-v0.2)100

and 128 (for Phi-1.5).101

3 Results and Discussion102

Development of the shared vocabulary is a good example how partial "skills" of LLMs need to be103

mitigated to help them operate in the desired manner. LLMs have familiarity with SMILES notation104

and chemical structure concepts. They are neither consistent, nor generalizable, nor exhaustive.105

To further assess the performance of LLMs in the Final referential chemical game, we used two106

language models: Phi-1.5 and Mistral-7B-Instruct-v0.2. For each LLM, we considered the base107

model with zero-shot and two-shot prompting techniques, as well as a fine-tuned model. Table 1108

presents the results from various models for the referential game. We measured the accuracy of the109

Sender generating Utterance and the Receiver reconstructing SMILES separately. In the Train and110

Test games, the fine-tuned Mistral model significantly outperformed other models in Sender and111

Receiver accuracy with 72.2% and 68.6% respectively for test split.112

The zero-shot and two-shot accuracy results for Phi-1.5 and Mistral models demonstrate the base113

models’ inability to parse and reason with SMILES notation of molecules. Mistral was able to114

understand SMILES better than the smaller Phi-1.5, as shown in the two-shot results. Fine-tuning115

with data created from the Molecular combinatorial library improved the capability of these models116

to understand, parse, and compose SMILES notation. Even after fine-tuning, Phi-1.5 was still unable117

to generate Utterance from SMILES, as indicated by the 0% Exact Match accuracy and only 36%118

Partial Match accuracy. However, Mistral handled SMILES notation much better after fine-tuning,119

with 72.2% and 91.7% accuracy in Exact Match and Partial Match, respectively.120

We evaluate compositionality of the communication as topographic similarity [1, 4, 16] - Spearman121

correlation of in-world distances between the objects (SMILES strings representing molecules) and122

their semantic distances. Semantic distances are evaluated as Cosine distances between embedding123

vectors of the names produced by the Sender. In-world distances are evaluated as Levenshtein editing124

distances between SMILES strings and Dice distances between Morgan fingerprints [17] of SMILES125

strings. Embeddings are obtained using all-MiniLM-L6-v2 sentence-transformer model [18]. With126

the base Mistral model (Mistral zero-shot), topographic similarity ρLevenshtein is 0.07 and ρDice is127

0.09. Performance improvement of the fine-tuned model (Mistral Fine-tuned) is accompanied by128

appreciable increase of topographic similarity: ρLevenshtein is 0.65 and ρDice is 0.82.129

4 Conclusion130

To our knowledge, this is the first attempt to leverage complex referential game setting to improve131

compositionality of communication between general-purpose LLMs.132

It is tempting to consider RL-like setting of the referential game involving LLMs, where instead of133

fine-tuning (either is RL manner or supervised learning manner) the desired behavior is reinforced134

via prompting. Success of this approach appears to be highly sensitive to the nature of the LLM, just135

like with other prompt-driven reasoning strategies.136

We would like to draw a deeper parallels with the field of emergent communication in MARL and137

notice that contemporary studies typically involve complex agent architectures with separate modules138

responsible for perception and communication. It seems that the demand for seamless communication139

with human agents calls for adoption of LLMs as enablers of shared grounding. Compositionality and140

reasoning, however, might be better delegated to the higher-level agents interacting with LLMs. In141

this case, the focus of communication games shifts from the emergence of language to the emergence142

of reasoning as a response to the complexity of the environment and interactions between agents.143
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