
Published as a conference paper at ICLR 2023

CANIFE: CRAFTING CANARIES FOR EMPIRICAL PRI-
VACY MEASUREMENT IN FEDERATED LEARNING

Samuel Maddock∗

University of Warwick
Alexandre Sablayrolles
Meta AI

Pierre Stock
Meta AI

ABSTRACT

Federated Learning (FL) is a setting for training machine learning models in dis-
tributed environments where the clients do not share their raw data but instead
send model updates to a server. However, model updates can be subject to attacks
and leak private information. Differential Privacy (DP) is a leading mitigation
strategy which involves adding noise to clipped model updates, trading off perfor-
mance for strong theoretical privacy guarantees. Previous work has shown that the
threat model of DP is conservative and that the obtained guarantees may be vac-
uous or may overestimate information leakage in practice. In this paper, we aim
to achieve a tighter measurement of the model exposure by considering a realistic
threat model. We propose a novel method, CANIFE, that uses canaries—carefully
crafted samples by a strong adversary to evaluate the empirical privacy of a train-
ing round. We apply this attack to vision models trained on CIFAR-10 and CelebA
and to language models trained on Sent140 and Shakespeare. In particular, in re-
alistic FL scenarios, we demonstrate that the empirical per-round epsilon obtained
with CANIFE is 4 – 5× lower than the theoretical bound.

1 INTRODUCTION

Federated Learning (FL) has recently become a popular paradigm for training machine learning
models across a large number of clients, each holding local data samples (McMahan et al., 2017a).
The primary driver of FL’s adoption by the industry is its compatibility with the “privacy by
design” principle, since the clients’ raw data are not communicated to other parties during the
training procedure (Kairouz et al., 2019; Huba et al., 2022; Xu et al., 2022). Instead, clients train
the global model locally before sending back updates, which are aggregated by a central server.
However, model updates, in their individual or aggregate form, leak information about the client
local samples (Geiping et al., 2020; Gupta et al., 2022).

Differential Privacy (DP) (Dwork et al., 2006; Abadi et al., 2016) is a standard mitigation to such
privacy leakage. Its adaptation to the FL setting, DP-FEDAVG (McMahan et al., 2017b), provides
user-level guarantees by adding Gaussian noise to the aggregated clipped model updates received
by the server. In practice, training with strong privacy guarantees comes at the expense of model
utility (Bassily et al., 2014; Kairouz et al., 2019), notwithstanding efforts to close this gap, either
with public pre-training and partial model updates (Xu et al., 2022), accountants with better compo-
sitionality properties (Mironov, 2017) or DP variants such as DP-FTRL (Kairouz et al., 2021).

Hence, it is common in practical deployments of DP-FL to train with a high privacy budget ε re-
sulting in loose privacy guarantees (Ramaswamy et al., 2020). Such large privacy budgets often
provide vacuous guarantees on the information leakage, for instance, against membership inference
attacks (Mahloujifar et al., 2022). Encouragingly, recent work has shown that the information recov-
ered in practice using state-of-the-art attacks is less than what theoretical bounds may allow (Nasr
et al., 2021). This suggests that DP is conservative and that a tighter measurement of the model
exposure may be achieved by considering more realistic threat models.

In this paper, we propose to complement DP-FL training with a novel attack method, CANaries In
Federated Environments (CANIFE), to measure empirical privacy under a realistic threat model. We
assume that a rogue client wants to reconstruct data samples from the model updates. To make its job

∗Work done during an internship at Meta.

1

Published as a conference paper at ICLR 2023

0 2000 4000 6000 8000
Global Round (r)

0

10

20

30

40

50

Pr
iv

ac
y

B
ud

ge
t (

)
10
30
50

(a) Sent140 (2-layer LSTM)

0 500 1000 1500 2000 2500
Global Round (r)

0

10

20

30

40

50

Pr
iv

ac
y

B
ud

ge
t (

) 10
30
50

(b) CelebA (ResNet18)

0 100 200 300 400 500
Global Round (r)

0

10

20

30

40

50

Pr
iv

ac
y

B
ud

ge
t (

) 10
30
50

(c) Shakespeare (2-layer LSTM)
Figure 1: Empirical privacy measurements over the course of FL training for LEAF benchmarks
Sent140, CelebA and Shakespeare with ε ∈ {10, 30, 50}. We observe a notable gap between the
theoretical ε obtained with DP-FEDSGD and the empirical ε̂ obtained with CANIFE.

easier, this adversary is allowed to craft an outlier training sample, the canary. The training round
proceeds normally, after which the rogue client performs a statistical test to detect the canary in the
global noisy model update provided to the server by any secure aggregation protocol (see Figure 2).
Finally, we translate the attack results into a per round measure of empirical privacy (Jagielski et al.,
2020; Nasr et al., 2021) and propose a method using amplification by subsampling to compute the
empirical privacy incurred during training as depicted in Figure 1 for standard FL benchmarks.

Critically, our privacy attack is designed to approximate the worst-case data sample, not the worst-
case update vector. The rogue client seeks to undermine the privacy guarantee by manipulating its
input, which is consistent with FL environments using secure sandboxing to protect the integrity of
the training process (Frey, 2021). We additionally model the server as the honest party, not allowing
it to poison the global model in order to reconstruct training samples, in contrast with a recent line
of work (Fowl et al., 2021; Boenisch et al., 2021; Wen et al., 2022; Fowl et al., 2022).

In summary, our contributions are as follows:

• We propose CANIFE (Section 3), a novel and practical privacy attack on FL that injects
crafted canary samples. It augments the standard DP-FL training with a tight measure of
the model’s privacy exposure given a realistic yet conservative threat model.

• CANIFE is compatible with natural language and image modalities, lightweight and re-
quires little representative data and computation to be effective. As a sanity check, we
demonstrate that CANIFE tightly matches DP guarantees in a toy setup (Section 4.1) before
exploring how it behaves in the federated setting (Section 4.2).

• Our work highlights the gap between the practical privacy leakage and the DP guarantees in
various scenarios. For instance, on the CelebA benchmark, we obtain an empirical measure
ε̂ ≈ 6 for a model trained with a formal privacy guarantee of ε = 50.

2 BACKGROUND

2.1 DIFFERENTIAL PRIVACY

Differential Privacy (Dwork et al., 2006; Dwork & Roth, 2014) defines a standard notion of privacy
that guarantees the output of an algorithm does not depend significantly on a single sample or user.
Definition 1 (Differential Privacy). A randomised algorithmM : D → R satisfies (ε, δ)-differential
privacy if for any two adjacent datasets D,D′ ∈ D and any subset of outputs S ⊆ R,

P(M(D) ∈ S) ≤ eεP(M(D′) ∈ S) + δ.

The privacy parameter ε is called the privacy budget and it determines an upper bound on the infor-
mation an adversary can obtain from the output of an (ε, δ)-DP algorithm. The parameter δ defines
the probability of failing to guarantee the differential privacy bound for any two adjacent datasets.
In this work, we are interested in user-level differential privacy which takes D and D′ to be adjacent
if D′ can be formed by adding or removing all samples associated with a single user from D.

2

Published as a conference paper at ICLR 2023

Standard DP results state that the privacy budget (ε, δ) accumulates (roughly) in proportion to the
square root of the number of iterations. Advanced privacy accountants leverage the uncertainty due
to random sampling (Mironov, 2017; Wang et al., 2019b; Gopi et al., 2021). We use the Rényi
Differential Privacy (RDP) accounting implemented in the Opacus library (Yousefpour et al., 2021).

2.2 PRIVATE FEDERATED LEARNING

A standard FL protocol, such as FEDAVG (McMahan et al., 2017a) computes a weighted average
of the model updates from clients before performing a gradient descent step on the global model.
Other variants exist to deal with common optimization problems in the federated setting such as
convergence speed (Wang et al., 2019a), heterogeneity (Karimireddy et al., 2020a;b), reducing com-
munication bandwidth (Alistarh et al., 2017) and adding momentum (Reddi et al., 2020). In this
work, we focus on DP-FEDSGD, a private extension of FEDAVG (McMahan et al., 2017b). At each
round, the selected clients compute their clipped model update ui and transmit it to the server, which
aggregates the model updates and adds Gaussian noise:

ũ =
∑
i

ui +N (0, σ2Id).

In practice, federated algorithms rely on Secure Aggregation (SegAgg) protocols to aggregate each
client update without revealing any individual ui to the server or to other participants (Bonawitz
et al., 2017; Bell et al., 2020). In a TEE-based SecAgg (Huba et al., 2022), a trusted execution
environment (TEE) aggregates the individual model updates and calibrated DP noise before handing
over the noisy model update ũ to the server. These specific models are orthogonal to our work and
we assume from now on that the server and clients participate in a TEE-based SecAgg protocol. We
discuss our threat model with regards to our attack in Section 3.1.

2.3 ATTACKS & EMPIRICAL PRIVACY

Centralized and FL Attacks. There is a vast body of literature on attacking models trained in
the centralised setting. For example, membership inference attacks (MIA) attempt to distinguish
whether a sample was present in the training set given only the trained model (Shokri et al., 2017;
Sablayrolles et al., 2019). Others attacks consider the more difficult problem of reconstructing entire
training samples from a trained model, often using (batch) gradient information (Yin et al., 2021;
Jeon et al., 2021; Balle et al., 2022). Since model updates ui are essentially just aggregated gradients,
it is natural that FL updates may leak private information as well. Nasr et al. (2019) show that it is
possible to perform both passive and active membership-inference attacks in the federated setting.
Other works such as that of Fowl et al. (2021) and Wen et al. (2022) have designed attacks on model
updates which allow for the reconstruction of training samples used in federated training. However,
they assume that the server can poison the global model, whereas we assume an honest server.

Canaries. The notion of canary samples usually refers to natural data samples used to measure
memorization in large language models (Carlini et al., 2019; 2021; Thakkar et al., 2020; Shi et al.,
2022). For instance, Parikh et al. (2022) propose to reconstruct canaries inserted in training data
and Stock et al. (2022) insert canaries to track and quantify the information leakage when training
a causal language model. In all prior work, the canary is either a sample from the training set
or a handcrafted instance such as “My SSN is 123-45-6789”. In contrast, CANIFE provides an
explicit method for crafting canary samples that are as adversarial as possible within the given threat
model (see Appendix E for canary samples) to obtain tight measurement of the model’s exposure.
Moreover, the proposed method applies to any training modality allowing to backpropagate in the
sample space (in particular, pixels for images and tokens for natural language).

Empirical Privacy. The proposed approach departs from existing attacks in the FL setup. For
instance, Jayaraman & Evans (2019) and Jagielski et al. (2020) have derived empirical measures
of privacy through attacks and often shown gaps between the empirically measured and theoretical
privacy. More recently, Nasr et al. (2021) study a range of membership-inference attacks by varying
adversary’s powers. We argue that the threat model of many of these attacks is often too permissive
relative to what a realistic adversary can achieve in the federated setting. For example, attacks in
Nasr et al. (2021) assume knowledge of the other samples in the dataset.

3

Published as a conference paper at ICLR 2023

Server

Client

Client

Adversary

Dataset

Craft canary

Back to server

Adversary tries to detect canary

Dataset

SecAgg

Dataset

Model

Figure 2: Illustration of the proposed CANIFE method for one training round. The adversary is a
rogue client that crafts a training sample resulting in an extremely out-of-distribution model update
uc and performs a membership inference attack on the (public) aggregated noisy model update ũ
provided to the server by SecAgg. Attack results are converted to empirical privacy guarantees ε̂ for
this round. We then compound these guarantees over the course over the training as in Section 3.4.

3 METHODOLOGY

The adversary wants to design a canary sample z to measure the empirical privacy of a given FL
training round under a realistic threat model defined in Section 3.1. We view this problem as a mem-
bership inference game where a rogue client crafts a canary z specific to the global model at round
r (Section 3.3) and uses this canary to produce an extremely out-of-distribution model update. After
this, the server proceeds as usual, aggregating model updates via any secure aggregation primitive
and adding noise. At the end of the round, the adversary attempts to detect the presence of the canary
in the aggregated noisy model update ũ (Section 3.2) and computes a per-round empirical privacy
measure. These per-round empirical privacy guarantees are compounded over the whole course of
the training to give a final empirical privacy guarantee as explained in Section 3.4.

3.1 THREAT MODEL

We assume an honest-but-curious threat model where the clients and the server do not deviate from
the training protocol (Bonawitz et al., 2017; Kairouz et al., 2019; Huba et al., 2022). In particular,
the clients cannot directly manipulate gradients nor the final model updates from the local training
and the server cannot modify the model maliciously to eavesdrop on the clients.

To craft the canary for a given training round, we assume that the adversary — a rogue client — has
access to (1) the current server-side public model and to (2) emulated mock clients. Mock clients
are created using a public set of samples called the design pool whose distribution is similar to that
of the clients. We show in Section 4 that the adversary is able to design a strong and robust canary
sample even with a small amount of public data and under mild assumptions about the true data
distribution. We also demonstrate that the computational resources required to design the canary are
small, which means that even adversaries under resource constraints are able to launch such attacks.

We argue such a threat model is realistic and discuss practical limitations that influence the adver-
sary’s success in Section 3.4: our goal is to design an attack that is as adversarial as possible (in
order to derive a worst-case measure of empirical privacy) under a set of reasonable assumptions.

3.2 CANARY DETECTION

The adversary’s objective is to craft a canary z such that the resulting model update is extremely out-
of-distribution. More precisely, we require that the canary gradient∇θℓ(z) is orthogonal to all indi-
vidual clipped model updates ui in the current round: ⟨ui,∇θℓ(z)⟩ = 0. We demonstrate that this
allows the adversary to detect the presence of the canary by separating two Gaussian distributions.

The server trains a model parameterized by θ ∈ Rd with a certain level of DP noise σ across a
population of clients each holding a local dataset Di. Since the rogue client holds a dataset that

4

Published as a conference paper at ICLR 2023

only contains the canary Dc = {z}, its clipped model update will be proportional1 to the canary
gradient: uc ∝ ∇θℓ(z). Recall that the aggregated private model update ũ is formed by the noisy
sum of individual clipped model updates: ũ =

∑
i ui +N (0, σ2Id). Then, as a counter-factual, if

the rogue client does not participate in the training round:

⟨ũ, uc⟩ ∝
∑
i

⟨ui,∇θℓ(z)⟩︸ ︷︷ ︸
=0 by design

+
〈
N (0, σ2Id),∇θℓ(z)

〉︸ ︷︷ ︸
=N (0,σ2∥∇θℓ(z)∥2)

.

Hence, ⟨ũ, uc⟩ follows a one-dimensional zero-mean Gaussian with variance σ2
c , where σc accounts

for the proportionality factor. Similarly, if the rogue client participates in the training round, ⟨ũ, uc⟩
follows a one-dimensional Gaussian with the same variance σ2

c centered at ∥uc∥2. Thus, the mem-
bership inference game is reduced to separating two Gaussian distributions centered at 0 and ||uc||2
respectively. Note that the result is unchanged up to a fixed scaling factor if the client updates ui are
weighted by their local dataset size as in (McMahan et al., 2017b). The testing approach is described
in full in Algorithm 1 and involves computing the attack score sr := ⟨ũ, uc⟩. We derive a connection
with the likelihood ratio test in Appendix A.

3.3 CANARY DESIGN

At a given round r, the rogue client is given the current server-side model parameterized by θ. Given
a set of heldout clipped model updates {ui}, it creates the canary by minimizing:

L(z) =
∑
i

⟨ui,∇θℓ(z)⟩2 +max(C − ||∇θℓ(z)||, 0)2. (1)

Recall that ∇θℓ(z) denotes the gradient of the network’s parameters with respect to its training
loss ℓ when forwarding the canary z through the network. The first loss term is designed to make
the canary gradient ∇θℓ(z) orthogonal to the set of heldout model updates while the second term
enforces the canary norm is not smaller than some constant, that we set to the clipping constant C
of DP-FL. This ensures ||uc||2 = C2 and for simplicity we fix C = 1. In Appendix D, we provide
experiments that show that choosing the gradient norm constant too large (i.e., much larger than C)
has a detrimental effect on optimization.

Using an automatic differentiation framework such as PyTorch (Paszke et al., 2019), we com-
pute ∇zL(z) and perform stochastic gradient descent directly in the sample space as described
in Algorithm 1. (Recall that the model parameters θ are fixed during the optimization procedure.)
Computing ∇zL(z) is straightforward for continuous data, such as images, as we can simply back-
propagate in the pixel space. For language models, the problem is more complex as the input is a
sequence of discrete tokens. Hence, we leverage the work of Guo et al. (2021), who use the Gumbel-
Softmax distribution (Jang et al., 2016) to forge adversarial language examples. This allows them to
use gradient-based methods by optimising a probability distribution over each token in a sequence.

We investigate various methods to initialize the canary, including starting from a random training
sample or random pixels or tokens. Depending on the task at hand, we might need to fix a target for
the canary. For instance, for image classification, we need to assign the canary to a class in order to
be able to compute ∇θℓ(z). We investigate various canary initialization and target choice strategies
experimentally in Section 4. We also investigate other optimization considerations for designing the
canary such as slightly modifying the loss in Appendix D.

Adversarial Examples. We can view the canary z as “adversarial” in the sense that it should
be extremely out-of-distribution to get a worst-case measure of privacy. This is different from the
unrelated notion of adversarial examples which typically constrain the changes of a sample to be
imperceptible to humans (Biggio et al., 2013). In our setup, we do not impose this constraint as we
wish to encompass the realistic worst-case of an extreme out-of-distribution sample.

3.4 MEASURING EMPIRICAL PRIVACY

The CANIFE attack is carried out over a certain number (n) of fake rounds where the server does not
update its global model but where the pool of selected (regular) clients differs every time. Hence,

1We assume that the client’s local optimizer is SGD with no momentum (McMahan et al., 2017b).

5

Published as a conference paper at ICLR 2023

Algorithm 1 CANIFE attack by a rogue client

Input: Design pool Dpool, Design iterations T , Canary learning rate β, Global model θ
1: Form mock clients from the design pool Dpool
2: For each mock client i, compute the clipped model update ui

3: Initialise the canary z0 ▷ See Section 3.3
4: for t = 1, . . . , T do
5: L(zt)←

∑
i⟨ui, C · ∇θℓ(zt)⟩2 +max(C − ||∇θℓ(zt)||, 0)2 ▷ Canary optimization loss

6: Compute ∇ztL(zt) ▷ Gradient of the canary loss w.r.t zt
7: zt+1 ← zt − β · ∇ztL(zt) ▷ For NLP, see Section 3.3
8: end for
9: Compute uc ▷ Model update with Dc = {(zT , yc)}

10: return sr ← ⟨ũ, uc⟩ ▷ ũ is deemed public after the round has finished

CANIFE has no influence on the model’s final accuracy. The adversary crafts a single canary and
inserts it into every fake round with probability 1/2. Once the n attack scores are computed, the
adversary deduces the performance of the attack at a calibrated threshold γ. Building on previous
work (Jagielski et al., 2020; Nasr et al., 2021), we compute the empirical privacy guarantee ε̂ based
on the False Positive Rate (FPR) and False Negative Rate (FNR) of the attack at the threshold γ as

ε̂ = max

(
log

1− δ − FPR

FNR
, log

1− δ − FNR

FPR

)
.

Our measure differs slightly from that of (Nasr et al., 2021) as our attack measures privacy at a single
round of training. Thus, ε̂ is a per-round privacy measure which we denote as ε̂r and we compare
this to a per-round theoretical εr. In order to deduce an overall empirical epsilon ε̂ we convert the
per-round ε̂r into a noise estimate σ̂r under amplification by subsampling. We then compose for
s steps with an RDP accountant, until we perform the next attack and update our σ̂r. To provide
a worst-case measure we choose a threshold that maximises ε̂ under our attack. We note that n
determines bounds on ε̂r and its CIs. With n = 100, ε̂r is at most 3.89. Similarly, when computing
ε̂r, we set δ = 1/n. For further accounting details and the algorithm to compute ε̂ see Appendix C.

Relationship to DP. Our threat model and canary design procedure have been chosen to ensure
that the adversary is as strong as possible but still constrained by realistic assumptions. At least three
factors of the design process restrict the adversary in practice:

1. The adversary only has partial knowledge of the model updates in the form of an aggregated
noisy sum ũ. Furthermore, when designing a canary, the adversary uses a design pool to
mock clients. In our design, we have been conservative by assuming the adversary has ac-
cess to heldout data that matches the federated distribution by constructing the design pool
from the test set of our datasets. In practice, adversaries can form design pools from public
datasets that match the task of the target model. See Appendix F for further discussion.

2. The optimization process induces two possible sources of error: the convergence itself and
the generalization ability of the canaries to unseen model updates.

3. We calculate the maximum accuracy that can be derived from the attack and use the thresh-
old that maximises ε̂r. This is conservative, as in practice an adversary would have to
calibrate a threshold γ on a public heldout dataset. Furthermore, they would not be able to
perform n fake rounds with the same canary.

If these practical constraints were not imposed on an adversary, then the privacy measure we derive
from our attack would essentially be tight with the DP upper bound. For example, if we could always
design a perfect canary z that has gradient orthogonal to all possible model updates ui then the DP
noise σ completely determines whether we can distinguish if z is present in ũ or not. However, in
practice, the assumptions listed above make the attack more difficult as we will see in Section 4.1.

4 EXPERIMENTS

In this section, we begin by highlighting the power of our attack on the simplest federated setting
where participants only have a single sample (Section 4.1). We then show how our attack allows

6

Published as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
Attack score (sr)

0

5

10

15

20

Fr
eq

ue
nc

y

Without z, =-0.0032, =0.006
With z, =0.9981, =0.007

(a) σ = 0

1 0 1 2
Attack score (sr)

0

2

4

6

8

Fr
eq

ue
nc

y

Without z, =-0.1033, =0.512
With z, =1.0955, =0.445

(b) σ = 0.423

0 500 1000 1500 2000
Design Pool Size (m)

0.000

0.005

0.010

0.015

0.020

0.025

M
ea

n
St

an
da

rd
 D

ev
ia

tio
n Number of clients

16
64

32
128

(c)

Figure 3: Experiments on CIFAR-10 on a toy setup where each client holds a single data sample. (a)
Attack histograms without DP noise, showing that our attack completely succeeds. (b) Attack his-
tograms with DP noise: as the DP noise σ increases, it becomes harder to separate both histograms.
(c) Varying the design pool size and the number of participating clients. The y-axis shows the mean
standard deviation of the histograms formed from the attack.

us to monitor privacy empirically over a federated training run (Section 4.2) before concluding with
an ablation study that shows our canary is robust to various design choices (Section 4.3). We open-
source the code for CANIFE design and test to reproduce our results 2.

Setup. We evaluate our attack on both image and language models. We utilise LEAF (Caldas et al.,
2018) which provides benchmark federated datasets for simulating clients with non-IID data and a
varying number of local samples. We study image classification on CIFAR10 (IID) (Krizhevsky
et al., 2009) and CelebA (non-IID) (Liu et al., 2015). We train a simple Convolutional Neural Net-
work (CNN) and a ResNet18 model. For our language tasks, we train an LSTM model on non-IID
splits of Sent140 (Go et al., 2009) and Shakespeare (McMahan et al., 2017a). For more infor-
mation on datasets, model architectures and training hyperparameters, see Appendix B. We train,
design, and evaluate our attacks using the FLSim framework3. All experiments were run on a single
A100 40GB GPU with model training taking at most a few hours. We discuss CPU benchmarks
for canary design in Section 4.3. For canary design, we use the Adam optimizer (Kingma & Ba,
2014) with learning rate β = 1 and fix C = 1. We form the CANIFE design pool from a LEAF
test split, resulting in canaries designed on non-IID mock clients which approximates the training
distribution. We have clients perform a single local epoch in all experiments, but see Appendix F
for possible extensions to multiple local epochs. From now, we refer to “epoch” as one pass of
the federated dataset (in expectation). For privacy accounting, we utilise the RDP accountant with
subsampling (Mironov et al., 2019) implemented via the Opacus library (Yousefpour et al., 2021),
sampling clients uniformly at each round (i.e., Poisson sampling), see Appendix C for more details.

4.1 EXAMPLE ATTACK: CIFAR10

We first investigate the simplest federated setting where each client holds a single sample. It follows
that the clipped model update ui is simply a scaled gradient of the client’s single sample. This
corresponds to the central setting where the number of clients per round is equivalent to a (central)
batch size. In Figure 3, we train a ResNet18 model on CIFAR10 to 60% test accuracy and perform
our attack. We design a single canary and have the server perform n = 100 mock rounds where the
model is frozen, with half having the canary client inserted and half without. We compute attack
scores from these n = 100 trials and form histograms.

In Figure 3a, we present one histogram of the attack scores on a model that has 64 clients partic-
ipating per round with no DP (ε = ∞). We use a design pool of m = 512 to design the canary.
We observe that our attack is quite tight in this non-private setting. Since σ = 0, we hope that if
the canary was designed well, the standard deviation of the histograms would also be close to 0.
It turns out that the average standard deviation of the histograms is 0.006. Recall in Section 3.4,
we discussed there is inherent error from both the optimization procedure and the fact the server

2Code available at https://github.com/facebookresearch/canife
3https://github.com/facebookresearch/FLSim

7

https://github.com/facebookresearch/canife
https://github.com/facebookresearch/FLSim

Published as a conference paper at ICLR 2023

0 2000 4000 6000 8000
Global Round (r)

0

5

10

15
Pr

iv
ac

y
B

ud
ge

t (
) r

r

(a) Sent140 (2-layer LSTM)

0 500 1000 1500 2000 2500
Global Round (r)

0.0

2.5

5.0

7.5

10.0

12.5

Pr
iv

ac
y

B
ud

ge
t (

) r

r

(b) CelebA (ResNet18)

CelebA Sent140 Shakespeare
Dataset

0

2

4

6

8

10
10 30 50

(c) CANIFE empirical epsilon ε̂

Figure 4: (a) and (b) Monitoring per-round empirical privacy on LEAF benchmarks. Models are
trained to ε = 50 with 100 clients per round. CIs for ε̂r are compared with the theoretical per-round
epsilon εr, rounds with an upper CI of∞ do not have CIs displayed. (c) CANIFE empirical privacy
incurred during the whole training, averaged over 5 independent runs (see Figure 1 for details).

designs the canary on heldout data but in this case the error is small. In Figure 3b, we display an-
other example attack, this time for a model trained under privacy with a final ε = 25 corresponding
to σ = 0.423 with 64 clients per round. We observe the attack is still fairly tight as the standard
deviation of the histograms (average 0.478) is close to that of the privacy noise σ.

Finally, we explore how both the design pool size and the number of clients affect the standard
deviation of the histograms (Figure 3c). We vary both the number of clients and the design pool
size. We train a model without privacy for each combination of parameters until it reaches 60%
train accuracy and then attack the model, plotting the average standard deviation of the histograms.
We conclude with two observations. First, the attack is much tighter when there is a smaller number
of clients participating per round. Second, the size of the design pool has a diminishing effect on
reducing the standard deviation. We further explore these in Section 4.3.

4.2 MONITORING EMPIRICAL PRIVACY

One main goal of our attack is to provide a lightweight method for monitoring empirical privacy
during federated training. We explore this in Figure 4, training ResNet18 on CelebA and a 2-layer
LSTM model on Sent140 and Shakespeare. We train to a final ε = 50 and achieve 63.9% test
accuracy on Sent140, 89.9% on CelebA and 44.8% on Shakespeare. We carry out the CANIFE
attack at a regular interval, freezing the model, designing a single canary, and performing n = 100
attack trials with the designed canary before continuing training. This generates scores which are
used to compute an empirical per-round privacy measure ε̂r as outlined in Section 3.4 (see also
Appendix C.3 for further details). The canary sample z is initialised randomly and we explore how
this affects optimization in Section 4.3. We note in practice that participants (and the server) would
not want to waste rounds with a frozen model, see Appendix F for possible extensions.

We monitor the optimization of the canary loss by computing the canary health which measures
the percentage improvement of the final canary loss compared to the initial loss. A perfect health
of 1 means the canary achieved minimal design loss. As an example, for Sent140, we find that the
average canary health across 5 separate training runs is 0.970 ± 0.098. Excluding the first 1000
rounds from each run, the average canary health becomes 0.990 ± 0.01. Thus, after two model
epochs, optimization stabilises and the initial canary loss is reduced by 99%.

In Figure 4a, we display per-round privacy estimates ε̂r and their 95% confidence intervals (CIs) for
Sent140 trained with ε = 50 and compare to the (constant) theoretical per-round privacy εr. We
observe ε̂r is initially small and grows to an almost constant level within a single epoch and stays
there during training. This results in a 4.5× gap between the theoretical εr and ε̂r measured by
our attack. We obtain similar 4 – 5× gaps for CelebA (ResNet18) in Figure 4b and Shakespeare
in Appendix C.5. We compound these per-round estimates ε̂r to provide a cumulative measure
of privacy ε̂ and display this in Figure 1 for models trained with ε ∈ {10, 30, 50}. Again, there
is a significant gap between the final theoretical privacy and the measure derived under CANIFE.
The final ε̂ averaged over 5 separate training runs for each tasks are shown in Figure 4c. We note
significant gaps between tasks, most notably with Sent140. This is likely due to the small sample

8

Published as a conference paper at ICLR 2023

0 5000 10000 15000 20000 25000
Design Sample Size

0.2

0.4

0.6

0.8

1.0

M
ea

n
St

an
da

rd
 D

ev
ia

tio
n Canary Initialisation

random
image

(a) Canary Initialisation

0 1000 2000 3000 4000 5000
Design Iterations (t)

0.7

0.8

0.9

1.0

At
ta

ck
 A

cc
ur

ac
y

(b) Design Iterations: Varying T

50 55 60 65
Model Test Accuracy

0.6

0.7

0.8

0.9

1.0

At
ta

ck
 A

cc
ur

ac
y

(c) Model test vs attack accuracy

Figure 5: Ablations studies for CANIFE without addition of DP noise. (a) Canary initialization
when varying the design pool size (CelebA, 4-layer CNN). (b) Number of design iterations required
to produce robust and well-designed canaries (CelebA, 4-layer CNN). (c) Model vs attack accuracy
across 5 runs (Sent140, 2-layer LSTM). Attack accuracy increases as model test accuracy increases.

rate which provides significant privacy amplification. We also observe CANIFE estimates are stable
across runs with relatively small standard deviation.

4.3 ABLATION STUDY

Canary Initialisation. In Figure 5a, we explore how initialising the canary affects the optimiza-
tion. We consider two initialisation strategies: initialising the canary randomly or initialising the
canary as a sample from the design pool (which is then excluded from the design). We observe no
significant difference on the average standard deviation of the attack histograms.

Design Pool Size. In Figure 5a, we vary the design pool size. We observe there is no significant
effect on the average standard deviation of the attack histograms. This confirms what we observed
in Figure 3c: the design pool size has diminishing impact on reducing the standard deviation.

Design Iterations. In Figure 5b, we explore how the number of design iterations impacts the
quality of the canary measured through the calibrated attack accuracy. We observe that just t = 1000
iterations are needed to obtain 95% accuracy and that with t = 3000 the attack improves to almost
100% accuracy, staying close to constant as t increases further. We additionally benchmarked the
average CPU time on an M1 MacBook Air (2020) for a single design iteration. For Sent140, it
takes an average of 0.06s per iteration and 0.23s for CelebA (ResNet18). For t = 2500, the design
procedure took on average 165s and 591s respectively. Hence, the canary design process takes at
most 10 minutes on a CPU and only a few minutes with a GPU. Thus our attack is lightweight,
requiring only a few thousand design iterations to achieve near-optimal canaries.

Model Accuracy. We conclude by noting the accuracy of the model and that of our attack are
highly correlated. In Figure 5c, we plot both model test accuracy and calibrated attack accuracy
across Sent140 trained without DP. We observe early in training, when model accuracy is low, that
the attack accuracy is similarly low. Once the model converges to a sufficiently high test accuracy
the attack accuracy is close to 100%. In experiments that require comparison across different models
(e.g., Figure 3c) we checkpoint to a fixed test accuracy to avoid this confounding effect.

5 CONCLUSION

Motivated by the fact that DP is conservative, we consider a more realistic threat model to extract
private information about client data when training a model with FL. We introduce CANIFE, a novel
method to measure empirical privacy where a rogue client crafts a canary sample that results in an
outlier model update. We argue that the difficulty of tracing this malicious model update in the
aggregated noisy model update provides a tighter measurement of the model’s privacy exposure.
We hope this work can benefit practical deployments of DP-FL pipelines by complementing the
theoretical bound with an arguably more realistic measure of the privacy leakage.

9

Published as a conference paper at ICLR 2023

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
Communication-efficient SGD via gradient quantization and encoding. Advances in neural in-
formation processing systems, 30, 2017.

Borja Balle, Gilles Barthe, Marco Gaboardi, Justin Hsu, and Tetsuya Sato. Hypothesis testing
interpretations and renyi differential privacy. In International Conference on Artificial Intelligence
and Statistics, pp. 2496–2506. PMLR, 2020.

Borja Balle, Giovanni Cherubin, and Jamie Hayes. Reconstructing training data with informed
adversaries. arXiv preprint arXiv:2201.04845, 2022.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Differentially private empirical risk minimiza-
tion: Efficient algorithms and tight error bounds, 2014.

James Henry Bell, Kallista A Bonawitz, Adrià Gascón, Tancrède Lepoint, and Mariana Raykova.
Secure single-server aggregation with (poly) logarithmic overhead. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, pp. 1253–1269, 2020.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov, Gior-
gio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In Joint
European conference on machine learning and knowledge discovery in databases, pp. 387–402.
Springer, 2013.

Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia Shumailov, and
Nicolas Papernot. When the curious abandon honesty: Federated learning is not private. arXiv
preprint arXiv:2112.02918, 2021.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar
Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-
preserving machine learning. In proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1175–1191, 2017.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. LEAF: A benchmark for federated settings. arXiv
preprint arXiv:1812.01097, 2018.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:
Evaluating and testing unintended memorization in neural networks. In 28th USENIX Security
Symposium (USENIX Security 19), pp. 267–284, 2019.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX Security Symposium (USENIX Security 21), pp.
2633–2650, 2021.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations
and Trends in Theoretical Computer Science, 2014.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of cryptography conference, pp. 265–284. Springer, 2006.

Liam Fowl, Jonas Geiping, Wojtek Czaja, Micah Goldblum, and Tom Goldstein. Robbing the
fed: Directly obtaining private data in federated learning with modified models. arXiv preprint
arXiv:2110.13057, 2021.

Liam Fowl, Jonas Geiping, Steven Reich, Yuxin Wen, Wojtek Czaja, Micah Goldblum, and Tom
Goldstein. Decepticons: Corrupted transformers breach privacy in federated learning for language
models. arXiv preprint arXiv:2201.12675, 2022.

10

Published as a conference paper at ICLR 2023

Suzanne Frey. Introducing Android’s private compute services. 2021. URL https://
security.googleblog.com/2021/09/.

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients—
how easy is it to break privacy in federated learning? Advances in Neural Information Processing
Systems, 33:16937–16947, 2020.

Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification using distant supervision.
CS224N project report, Stanford, 1(12):2009, 2009.

Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz. Numerical composition of differential privacy.
Advances in Neural Information Processing Systems, 34:11631–11642, 2021.

Chuan Guo, Alexandre Sablayrolles, Hervé Jégou, and Douwe Kiela. Gradient-based adversarial
attacks against text transformers. arXiv preprint arXiv:2104.13733, 2021.

Samyak Gupta, Yangsibo Huang, Zexuan Zhong, Tianyu Gao, Kai Li, and Danqi Chen. Recovering
private text in federated learning of language models, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Dzmitry Huba, John Nguyen, Kshitiz Malik, Ruiyu Zhu, Mike Rabbat, Ashkan Yousefpour, Carole-
Jean Wu, Hongyuan Zhan, Pavel Ustinov, Harish Srinivas, et al. Papaya: Practical, private, and
scalable federated learning. Proceedings of Machine Learning and Systems, 4:814–832, 2022.

Matthew Jagielski, Jonathan Ullman, and Alina Oprea. Auditing differentially private machine
learning: How private is private SGD? Advances in Neural Information Processing Systems, 33:
22205–22216, 2020.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with Gumbel-Softmax.
arXiv preprint arXiv:1611.01144, 2016.

Bargav Jayaraman and David Evans. Evaluating differentially private machine learning in practice.
In 28th USENIX Security Symposium (USENIX Security 19), pp. 1895–1912, 2019.

Jinwoo Jeon, Kangwook Lee, Sewoong Oh, Jungseul Ok, et al. Gradient inversion with generative
image prior. Advances in Neural Information Processing Systems, 34:29898–29908, 2021.

Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for differential
privacy. In International conference on machine learning, pp. 1376–1385. PMLR, 2015.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L.
D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He,
Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi,
Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,
Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus
Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song,
Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma,
Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances
and open problems in federated learning, 2019.

Peter Kairouz, Brendan McMahan, Shuang Song, Om Thakkar, Abhradeep Thakurta, and Zheng Xu.
Practical and private (deep) learning without sampling or shuffling. In International Conference
on Machine Learning, pp. 5213–5225. PMLR, 2021.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebas-
tian U Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms
in federated learning. arXiv preprint arXiv:2008.03606, 2020a.

11

https://security.googleblog.com/2021/09/
https://security.googleblog.com/2021/09/

Published as a conference paper at ICLR 2023

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020b.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Saeed Mahloujifar, Alexandre Sablayrolles, Graham Cormode, and Somesh Jha. Optimal member-
ship inference bounds for adaptive composition of sampled gaussian mechanisms, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017a.

H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private
recurrent language models. arXiv preprint arXiv:1710.06963, 2017b.

Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations sympo-
sium (CSF), pp. 263–275. IEEE, 2017.

Ilya Mironov, Kunal Talwar, and Li Zhang. R\’enyi differential privacy of the sampled gaussian
mechanism. arXiv preprint arXiv:1908.10530, 2019.

Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of deep learning:
Passive and active white-box inference attacks against centralized and federated learning. In 2019
IEEE symposium on security and privacy (SP), pp. 739–753. IEEE, 2019.

Milad Nasr, Shuang Songi, Abhradeep Thakurta, Nicolas Papemoti, and Nicholas Carlin. Adversary
instantiation: Lower bounds for differentially private machine learning. In 2021 IEEE Symposium
on Security and Privacy (SP), pp. 866–882. IEEE, 2021.

Rahil Parikh, Christophe Dupuy, and Rahul Gupta. Canary extraction in natural language under-
standing models. arXiv preprint arXiv:2203.13920, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems 32. 2019.

Swaroop Ramaswamy, Om Thakkar, Rajiv Mathews, Galen Andrew, H Brendan McMahan, and
Françoise Beaufays. Training production language models without memorizing user data. arXiv
preprint arXiv:2009.10031, 2020.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, Yann Ollivier, and Hervé Jégou. White-
box vs black-box: Bayes optimal strategies for membership inference. In International Confer-
ence on Machine Learning, pp. 5558–5567. PMLR, 2019.

Weiyan Shi, Si Chen, Chiyuan Zhang, Ruoxi Jia, and Zhou Yu. Just fine-tune twice: Selective
differential privacy for large language models. arXiv preprint arXiv:2204.07667, 2022.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
tacks against machine learning models. In 2017 IEEE symposium on security and privacy (SP),
pp. 3–18. IEEE, 2017.

12

Published as a conference paper at ICLR 2023

Pierre Stock, Igor Shilov, Ilya Mironov, and Alexandre Sablayrolles. Defending against reconstruc-
tion attacks with Rényi differential privacy. arXiv preprint arXiv:2202.07623, 2022.

Om Thakkar, Swaroop Ramaswamy, Rajiv Mathews, and Françoise Beaufays. Understanding unin-
tended memorization in federated learning. arXiv preprint arXiv:2006.07490, 2020.

Jianyu Wang, Anit Kumar Sahu, Zhouyi Yang, Gauri Joshi, and Soummya Kar. Matcha: Speed-
ing up decentralized SGD via matching decomposition sampling. In 2019 Sixth Indian Control
Conference (ICC), pp. 299–300. IEEE, 2019a.

Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. Subsampled Rényi differential
privacy and analytical moments accountant. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 1226–1235. PMLR, 2019b.

Yuxin Wen, Jonas Geiping, Liam Fowl, Micah Goldblum, and Tom Goldstein. Fishing for user data
in large-batch federated learning via gradient magnification. arXiv preprint arXiv:2202.00580,
2022.

Mingbin Xu, Congzheng Song, Ye Tian, Neha Agrawal, Filip Granqvist, Rogier van Dalen, Xiao
Zhang, Arturo Argueta, Shiyi Han, Yaqiao Deng, et al. Training large-vocabulary neural lan-
guage models by private federated learning for resource-constrained devices. arXiv preprint
arXiv:2207.08988, 2022.

Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo Molchanov. See
through gradients: Image batch recovery via gradinversion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 16337–16346, 2021.

Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine, Karthik Prasad, Mani
Malek, John Nguyen, Sayan Ghosh, Akash Bharadwaj, Jessica Zhao, et al. Opacus: User-friendly
differential privacy library in PyTorch. arXiv preprint arXiv:2109.12298, 2021.

13

Published as a conference paper at ICLR 2023

A CONNECTIONS TO LIKELIHOOD RATIO TEST

Let us assume that each model update follows a Gaussian distribution N (µ,Σ). The sum of k
model updates then either followsN (kµ, kΣ) (without the canary) orN (kµ+∇ℓ(z), kΣ) (with the
canary), recalling that uc ∝ ∇ℓ(z). Then we have

p0(u) =
1√

det(2πkΣ)
exp

(
−(u− kµ)T (kΣ)−1(u− kµ)/2

)
p1(u) =

1√
det(2πkΣ)

exp
(
−(u− (kµ+∇ℓ(z)))T (kΣ)−1(u− (kµ+∇ℓ(z)))/2

)
=

1√
det(2πkΣ)

exp
(
−((u− kµ)−∇ℓ(z)))T (kΣ)−1((u− kµ)−∇ℓ(z))/2

)
.

We can write the (log) likelihood ratio as

log
p1(u)

p0(u)
=

1

2

(
(u− kµ)T (kΣ)−1(u− kµ)− ((u− kµ)−∇ℓ(z)))T (kΣ)−1((u− kµ)−∇ℓ(z))

)
=

1

2

(
(u− kµ)T (kΣ)−1(u− kµ)− ((u− kµ)−∇ℓ(z)))T (kΣ)−1((u− kµ)−∇ℓ(z))

)
= ∇ℓ(z)T (kΣ)−1(u− kµ)− 1

2
∇ℓ(z)T (kΣ)−1∇ℓ(z).

In particular for the centers of the Gaussian with and without the canary, u ∈ {kµ, kµ+∇ℓ(z)},

log

(
p1(u)

p0(u)

)
= ±1

2
∇ℓ(z)T (kΣ)−1∇ℓ(z).

Maximizing this term will thus help separate the two Gaussians. However, doing this directly is
infeasible as it requires to form and invert the full covariance matrix Σ in very high dimensions.
Instead, we propose to minimize z 7→ (∇ℓ(z)T)Σ(∇ℓ(z)) as it is tractable and can be done with
SGD. Note that for sample model updates {ui} we can estimate the (uncentered) covariance matrix
as 1

n

∑
i uiu

T
i and thus

(∇ℓ(z)T)Σ(∇ℓ(z)) ≈ 1

n

∑
i

∇ℓ(z)T (uiu
T
i)∇ℓ(z) =

1

n

∑
i

⟨ui,∇ℓ(z)⟩2.

Which, ignoring constants, is the first term of L(z) defined in Equation 1. One could alternatively
minimise ⟨∇ℓ(z), µ̂⟩2 with µ̂ = 1

n

∑
i ui. We explore the empirical differences in Appendix D.

B DATASETS & MODEL ARCHITECTURES

Here we detail the training setup and model architectures for our experiments. In all experiments we
train with DP-FEDSGD and without momentum. We use both client (ηC) and server (ηS) learning
rates. We train without dropout in all model architectures. In more detail:

• CIFAR10 is an image classification tasks with 10 classes (Krizhevsky et al., 2009). We
train a ResNet18 model (He et al., 2016) on CIFAR10. We form an IID split of 50, 000
train users and 10, 000 test users where each user holds a single sample and thus has a local
batch size of 1. We use a client learning rate of ηC = 0.01 and server learning rate ηS = 1.

• CelebA is a binary image classification task (Liu et al., 2015). We train a ResNet18 model
with 11, 177, 538 parameters and a simple Convolutional Neural Network (CNN) with four
convolutional layers following that used by Caldas et al. (2018) with 29, 282 parameters.
We use the standard non-IID LEAF split resulting in 8408 train users and 935 test users
and a local batch size of 32. We train with a client learning rate of ηC = 0.899 and a server
learning rate of ηS = 0.0797.

14

Published as a conference paper at ICLR 2023

Algorithm 2 Measuring ε̂

Input: Number of rounds R, Privacy parameter δ, Sampling rate q, Number of attack scores n,
Attack frequency s

1: for r = 1, . . . , R do
2: if r mod s = 0 then
3: Freeze the model θr and use Algorithm 1 to compute attack scores {si}ni=1
4: Calculate FPRγ and FNRγ from {si} at each threshold γ ∈ {s1, . . . , sn}
5: Compute ε̂r ← maxγ

(
log

1−δ−FPRγ

FNRγ
, log

1−δ−FNRγ

FPRγ

)
6: Compute σ̂r ← GetNoise(ε̂r, δ) ▷ Estimate one-step noise multiplier
7: σ̂r+i ← σ̂r for i ∈ [1, s) ▷ σ̂r is the estimate for rounds [r, r + s)
8: end if
9: end for

10: return ε̂← GetPrivacy({σ̂r}; δ, q) ▷ Compose each noise estimate under an RDP accountant
with amplification by subsampling using sample rate q, see (Mironov et al., 2019)

0 100 200 300 400 500
Global Round (r)

0

2

4

6

8

10

Pr
iv

ac
y

B
ud

ge
t (

) r

r

(a) Shakespeare per-round privacy (ε = 50)

0 100 200 300 400 500
Global Round (r)

0

5

10

15

20
r

r

(b) Shakespeare per-round privacy (ε = ∞)

Figure 6: Measuring privacy during Shakespeare training

• Sent140 is a sentiment analysis (binary classification) task (Go et al., 2009). We train a 2-
layer LSTM with 272, 102 parameters on Sent140 following the architecture of Caldas et al.
(2018). We use standard non-IID LEAF splits resulting in 59, 214 train users and 39, 477
test users and a local batch size of 32. We train for 15 epochs, and for ε = 0 achieve an
average test accuracy of 64.8%. We train with a client learning rate of ηC = 5.75 and a
server learning rate of ηS = 0.244.

• Shakespeare is a next character prediction task with 47 classes (McMahan et al., 2017a).
We train a similar LSTM model to Sent140, based on the architecture used by Caldas et al.
(2018) with 819, 920 parameters. We use standard non-IID LEAF splits with 1016 train
users and 113 test users and a local batch size of 128. We train our models for 15 epochs
resulting in an average final test accuracy of 44.4% for ε = 0. We use a client learning rate
of ηC = 3 and a server learning rate of ηS = 0.524.

C MEASURING EMPIRICAL PRIVACY

C.1 PRIVACY MEASURES AND ACCOUNTING

Here we provide further details about privacy accounting and the different privacy measures that we
analyse. In all experiments we use Rényi Differential Privacy (RDP) accounting with subsampling
(Poisson sampling over the set of clients) to guarantee user-level DP. This is based on the DP-
FEDAVG algorithm (McMahan et al., 2017b) with accounting implemented via the Opacus library
(Yousefpour et al., 2021). More specifically, the accounting uses the RDP subsampling analysis
derived from Mironov et al. (2019) and the RDP to (ε, δ)-DP conversion from Balle et al. (2020).

15

Published as a conference paper at ICLR 2023

1.5 2.0 2.5 3.0 3.5 4.0
r

0.6

0.7

0.8

0.9
At

ta
ck

 A
cc

ur
ac

y

r

(a) Sent140 (2-layer LSTM)

1.5 2.0 2.5 3.0
r

0.65

0.70

0.75

0.80

At
ta

ck
 A

cc
ur

ac
y

r

(b) Shakespeare (2-layer LSTM)

2.0 2.5 3.0 3.5
r

0.7

0.8

0.9

At
ta

ck
 A

cc
ur

ac
y

r

(c) CelebA (ResNet18)

Figure 7: Per-round ε̂r estimates against attack accuracy. Estimates are computed over 5 training
runs with a final theoretical ε = 50.

0 5000 10000 15000 20000 25000
Design Sample Size

0.6

0.7

0.8

0.9

1.0

At
ta

ck
 A

cc
ur

ac
y

Loss
Loss 1
Loss 2

(a) Loss modifications

40 60 80 100 120
Clients Per Round

0.78

0.80

0.82

0.84

At
ta

ck
 A

cc
ur

ac
y

(b) Varying number of clients per
round: Attack accuracy

0 2000 4000 6000
Global Round (r)

0

2

4

6

Clients per round
40
60
80
100
120

(c) Varying number of clients per
round: Empirical ε̂

Figure 8: Further Ablations on CelebA; (a) CNN (b), (c); ResNet18

In this work, we have exactly four different privacy measures. For the theoretical quantities we have
the per-round guarantee εr and final privacy guarantee ε which are computed as follows:

• εr - This is the per-round theoretical epsilon that is derived from the RDP accountant when
the subsampling rate q is set to 1 and number of steps R = 1. This is a constant value
(dependent on the noise multiplier σ and δ) and is the privacy guarantee of performing a
single step of DP-FEDAVG.

• ε - This is the theoretical (ε, δ)-DP guarantee of the model trained under (user-level) DP.
We calculate this via an RDP accountant with subsampling where the sampling rate q is
chosen to be the number of participating clients over the total number of clients in the
population. Since we are using Gaussian noise this corresponds to the RDP analysis of the
Subsampled Gaussian Mechanism (SGM), see (Mironov et al., 2019) for technical details.

Similarly, we have analogous empirical measures ε̂r and ε̂ which are computed as follows:

• ϵ̂r - Since the attack used by CANIFE infers membership of the canary update at a particular
round, the privacy measure derived from a set of CANIFE attack scores is a per-round
measure. This is computed via the formula derived in Kairouz et al. (2015) i.e.,

ε̂r = max
γ

(
log

1− δ − FPRγ

FNRγ
, log

1− δ − FNRγ

FPRγ

)
,

where FPR,FNR are computed from the attack scores at round r. In our experiments
we maximise ε̂r over the threshold γ to provide a worst-case measure. The quantity ε̂r is
directly comparable to the theoretical εr. We also compute 95% confidence intervals (CIs)
for ε̂r from the attack scores via the Clopper-Pearson method as in Nasr et al. (2021).

• ε̂ - This is the empirical privacy measure of the model derived from CANIFE. One could
apply basic composition to ε̂r over R rounds to obtain the empirical measure of Rε̂r but
this results in suboptimal composition. Instead we compute ε̂ under the tighter composition

16

Published as a conference paper at ICLR 2023

Canary Sample after optimization

mRnt,,,,,,,,,,,’d,,,,,,R,,,,,A,,,,,,,,,,,,,A,,,,,,,,,,,,,,,,,AA,,,,V2,E >H &3 4i
Yet I confess that often ere thisMday,x?h\nnPImh!v7DhNAd}I!H’;kXXI’PmP1Iert 6Fa

th, nothing bu; aZ empty box, sir, wQich in my lord’s beealf I cote to e? rtat 3

Table 1: Canary Samples on Shakespeare.

of RDP with amplification by subsampling. To do so, we convert each ε̂r into an equivalent
noise multiplier σ̂r and compound the noise over a number of rounds with the accountant.
The quantity ε̂ is directly comparable to ε. See Section C.2 for more information.

C.2 ALGORITHM FOR ε̂

In Section 3.4, we explained how we obtain a per-round privacy measurement ε̂r from CANIFE and
compound this to form a global privacy estimate ε̂ over a training run. We detail this method in
Algorithm 2. In order to compound our per-round estimates ε̂r from CANIFE, since we only attack
the model every s rounds we assume that the noise estimate σ̂r remains constant between rounds r
and r + s before we attack the model again and re-estimate the noise σ̂r.

C.3 DETAILS FOR MONITORING PRIVACY

In Section 4.2, we present experiments using CANIFE to measure empirical privacy during the train-
ing run of federated models. We ran each training run five times and examples of these runs are
displayed in Figure 4. Here we provide extra details of the training setup:

• CelebA. We train a ResNet18 model for 30 epochs and have 100 clients participate per
training round. This results in 85 rounds per epoch. We freeze and attack the model every
s = 40 rounds resulting in 64 empirical privacy estimates (ε̂r) across training.

• Sent140. We train for 15 epochs and have 100 clients participate per training round. This
results in 593 rounds per epoch and 8895 rounds in total. We freeze and attack the model
every s = 100 resulting in 90 empirical privacy measurements across training.

• Shakespeare. We train for 30 epochs and have 60 clients participate per training round.
This results in 17 rounds per epoch and 510 training rounds in total. We freeze and attack
the model every s = 8 rounds resulting in 64 empirical privacy estimates across training.

C.4 RELATIONSHIP BETWEEN ε̂r AND ATTACK ACCURACY

We display the relationship between the per-round measurement ε̂r and the accuracy of the attack
for models with a final privacy of ε = 50 in Figure 7. We also found a consistent relationship for
ε ∈ {10, 30}.

C.5 FURTHER EXPERIMENTS: SHAKESPEARE

In Figure 4, we displayed example per-round estimates ε̂r across training runs for CelebA and
Sent140. In Figure 6a we display a similar plot but for an example training run on Shakespeare. We
also note that one can use CANIFE to measure ε̂r for models that are trained without privacy. In
Figure 6b, we show an example training run on Shakespeare without DP (ε =∞). As mentioned in
Section 3.4, the number of attack trials determines an upper bound on ε̂r. Here we can see that the
empirical privacy measure is essentially constant throughout (non-private) training and consistently
reaches these bounds. We note that ε̂r =∞ only once (when the maximum attack accuracy reaches
100%).

D FURTHER ABLATION STUDIES

Loss modification. As discussed in Appendix A, we can minimise the dot-product of the canary
with the average model update (“Loss 1”) or the covariance loss (“Loss 2”) which we choose to

17

Published as a conference paper at ICLR 2023

0 200 400 600 800 1000
Canary Gradient Norm Constant

0.6

0.7

0.8

0.9

At
ta

ck
 A

cc
ur

ac
y

(a) Attack accuracy

0 200 400 600 800 1000
Canary Gradient Norm Constant

0.6

0.8

1.0

C
an

ar
y

H
ea

lth

(b) Canary health

Figure 9: Varying the canary gradient norm constant on CelebA (CNN)

use in all experiments. In Figure 8a, we vary the design sample size and carry out 5 attacks with a
checkpointed CNN model on CelebA while varying these losses. We observe that there is a clear
difference in accuracy between the two losses, with Loss 2 having consistently high attack accuracy
which is almost constant as we increase the sample size. We note that Loss 1 seems more sensitive
to the total number of design samples, with increasing attack accuracy as the design sample size
increases.

Number of clients per round. In Figure 8b, we vary the number of clients per round and plot
the average attack accuracy over 5 training runs. We note that the attack accuracy decreases slowly
as the number of clients increases which is consistent with the observations made in Figure 3c.
In Figure 8c, we plot the empirical estimate ε̂ during training. We find that although the average
accuracy decreases, this does not have a significant effect on the final estimate ε̂ which decreases as
the number of clients per round decreases.

Canary gradient norm. To conclude, we investigate the effect of the canary gradient norm con-
stant in the second term of the loss L(z). We fix the privacy clipping constant to be C = 1 and vary
the gradient norm constant on CelebA. We use a checkpointed CNN model trained without DP to
70% test accuracy. We attack the model 10 times and average the results. In Figure 9a, we display
the average accuracy of the attack and in Figure 9b the average canary health as we vary the gradient
norm constant. We observe that choosing the constant too large can significantly decrease the effi-
cacy of the attack and that choosing the constant around C is enough to guarantee high accuracy and
well-behaved optimization. We note that the canary health does not significantly decrease until the
norm constant is chosen to be very large (> 600), yet the attack suffers a large drop in accuracy for
constants > 50. This implies that as you increase the constant, it is first possible to design a canary
that has large gradient norm but at the expense of orthogonality to the other model updates, and as
the constant gets very large, it becomes too difficult to optimise either term of L(z).

E CANARY SAMPLES

We display in Table 1 some examples of designed canaries with CANIFE when initializing the craft-
ing procedure with training sentences on Shakespeare.

F LIMITATIONS AND EXTENSIONS

In our experiments we have made assumptions for CANIFE that may be limiting in specific practical
FL scenarios. In this section, we highlight such limitations with various extensions for CANIFE.

Multiple Local Epochs. Throughout Section 4, we have restricted clients to performing a single
local epoch for simplicity. But in practice clients often perform multiple local epochs and this has
shown to help improve the convergence of models trained in FL. CANIFE is not limited to methods

18

Published as a conference paper at ICLR 2023

with a single local epoch and in practice to audit methods like DP-FEDAVG with multiple local
epochs there are two main solutions:

1. Use CANIFE as is: There is nothing in the current formulation of CANIFE that does not
apply to multiple local updates. Since in practice, the server will mock the adversary,
they are free to choose how many local epochs the canary client performs. Thus, they can
design a canary with a single local epoch to be orthogonal to clients who do multiple local
epochs. We also believe this is most practical for an adversary since it is the easiest from
the attackers viewpoint to design and optimize for.

2. Modify CANIFE loss: An alternative approach is to design a canary sample that has a
model update (formed from multiple local epochs) that is orthogonal to all other model
updates (which are also formed from multiple local epochs). To carry out such a design we
can modify the CANIFE loss in equation 1 to include the canary model update uc instead
of the canary gradient ∇θℓ(z). In order to calculate the gradient of such a loss it requires
backpropagating through the multiple local updates and essentially “unrolling” the local
SGD steps. This may be computationally burdensome, and so while it is possible to design
such a canary sample, it may not be practically viable for any adversary (and/or server)
depending on the model size and number of local epochs. Thus in practice, it may be
simpler to audit the model via (1).

Multiple Privacy Measurements. One current limitation of CANIFE is that it only produces a
single privacy measurement (ε̂r) at a specific round. In practice, model auditors may want a more
comprehensive empirical analysis of the model’s privacy via multiple measurements, such as attacks
that vary the threat model like that of Nasr et al. (2021). We believe CANIFE can be extended to
support a “multiple measurement” approach with ease since there is some degree of freedom in the
canary design. For example, by using different design pools, each one strengthening the adversary
further (e.g. with more data and/or design pools that better approximate the federated distribution
based on prior knowledge) and thus obtain a more holistic measure of the model’s privacy. One can
similarly vary the number of design epochs to simulate clients with limited computation. Designing
multiple canaries per round under different constraints will generate a set of empirical epsilons that
allow for more fine-grained statistics (for example, taking the maximum of the per-round empirical
epsilons for a worst-case measure).

Preventing Wasted FL Rounds. Another limitation of CANIFE is that in our experimental setup
we freeze the model for a set number of rounds to compute attack scores of a designed canary. In
practice, the server and clients would be unwilling to waste federated rounds to compute CANIFE
scores. We believe CANIFE can be extended to support a more practical attack without wasting
training rounds as follows:

• Multiple Canaries: One alternative is that the server could design multiple canaries at a
single round, and use these to obtain (multiple) attack scores (subject to compute limita-
tions). This can help reduce the number of mock rounds being run.

• Running measurements: The previous approach may be computationally prohibitive de-
pending on server resources and still requires frozen rounds. An alternative could be to
maintain “running” attack measurements where we allow CANIFE to run alongside normal
model training, letting the model change at each round. In this setup, the server can design
a canary at each round, calculate attack scores and then proceed with updating the global
model (without the canary inserted). This has minimal overhead to the server (who just
needs to design the canary) and no additional overhead to clients (who just believe they
are participating in a standard FL training round). The set of attack scores can be used to
calculate empirical epsilons over various periods of training and one can change this period
however they like. We emphasize that since our results (specifically Figure 4) show the
per-round empirical measure is fairly stable after the first epoch or so of training, then the
approach described here should still give stable results (even though the model would be
changing at each round).

Design Pool Assumptions. The design pool is an important component of our attack, and in order
to present a conservative (worst-case) privacy measure in this work, we assume that the adversary

19

Published as a conference paper at ICLR 2023

has access to held-out data that approximates the federated training data well. To do this, we form
the design pool from the test set of our datasets but in many practical scenarios this is not possible
since the server may not know much about the (private) federated data. While this is a limitation
of CANIFE, we believe that for many tasks it would be possible to form a design pool from public
data. For example, if the adversary knows the exact task of the model (e.g. sentiment analysis)
then the adversary can form a design pool from public datasets (e.g. Sent140) or even craft their
own language data for canary design. We expect that this would be a reasonable proxy for the
true federated dataset and would not significantly affect privacy measurement. In scenarios where
the server has no prior knowledge, they could utilise private synthetic data generation methods or
Federated Analytics (FA) to privately compute statistics about client data to guide the choice of
design pool.

20

	Introduction
	Background
	Differential Privacy
	Private Federated Learning
	Attacks & Empirical Privacy

	Methodology
	Threat Model
	Canary Detection
	Canary Design
	Measuring Empirical Privacy

	Experiments
	Example Attack: CIFAR10
	Monitoring Empirical Privacy
	Ablation Study

	Conclusion
	Connections to likelihood ratio test
	Datasets & Model Architectures
	Measuring Empirical Privacy
	Privacy Measures and Accounting
	Algorithm for
	Details for monitoring privacy
	Relationship between r and attack accuracy
	Further Experiments: Shakespeare

	Further Ablation Studies
	Canary Samples
	Limitations and Extensions

