
TTOpt: A Maximum Volume Quantized Tensor
Train-based Optimization and its Application to

Reinforcement Learning

Konstantin Sozykin ∗ † Andrei Chertkov ∗ † Roman Schutski †

Anh-Huy Phan † Andrzej Cichocki † ‡ § Ivan Oseledets † ¶

Abstract

We present a novel procedure for optimization based on the combination of efficient
quantized tensor train representation and a generalized maximum matrix volume
principle. We demonstrate the applicability of the new Tensor Train Optimizer
(TTOpt) method for various tasks, ranging from minimization of multidimensional
functions to reinforcement learning. Our algorithm compares favorably to popular
gradient-free methods and outperforms them by the number of function evaluations
or execution time, often by a significant margin.

1 Introduction

In recent years learning-based algorithms achieved impressive results in various applications, ranging
from image and text analysis and generation [52] to sequential decision making and control [40]
and even quantum physics simulations [49]. The vital part of every learning-based algorithm is
an optimization procedure, e.g., Stochastic Gradient Descent. In many situations, however, the
problem-specific target function is not differentiable, too complex, or its gradients are not helpful due
to the non-convex nature of the problem [30, 2, 58]. The examples include hyper-parameter selection
during the training of neural models, policy optimization in reinforcement learning (RL), training
neural networks with discrete (quantized) weights [57] or with non-differentiable loss functions [20].
In all these contexts, efficient direct gradient-free optimization procedures are highly needed.

Recently, [53] showed that an essential class of gradient-free methods, namely the evolutionary
strategies (ES) [22, 26], are competitive in reinforcement learning problems. In RL, the goal is to find
the agent’s action distribution π (the policy), maximizing some cumulative reward function J. The
policy is usually parameterized with a set of parameters θ. It follows that the reward is a function of
the parameters of the policy: J(π(θ)) = J(θ). The idea of [53] and similar works [36, 15, 10, 11]
is to directly optimize the cumulative reward function J(θ) = J(θ1, θ2, . . . , θd) with respect to
the parameters of the policy. We pursued a similar approach to transform a traditional Markov
Decision Process into an optimization problem (we provide the details in Appendix B.3). Although
the agents trained with ES often demonstrate more rich behavior and better generalization compared
to traditional gradient-based policy optimization, the convergence of ES is often slow [11].

∗Equal Contribution, corresponding emails {konstantin.sozykin,a.chertkov}@skoltech.ru
†Center of Artificial Intelligence Technology, Skolkovo Institute of Science and Technology (Skoltech)

Moscow, Russia
‡RIKEN Center for Advanced Intelligence Project (AIP), Tokyo, Japan
§Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
¶Artificial Intelligence Research Institute (AIRI), Moscow, Russia

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

As an alternative to previous works, we present a tensor-based1 gradient-free optimization approach
and apply it to advanced continuous control RL benchmarks. The proposed algorithm, Tensor-Train
(TT) Optimizer (TTOpt), works for multivariable functions with discrete parameters by reformulating
the optimization problem in terms of tensor networks. Consider a function J(θ) : Nd −→ R of
a d-dimensional argument θ, where each entry θk of the vector θ takes a value in the discrete set
{ωi}Ni=1. The function J may be viewed as an implicitly defined d-dimensional tensor J . Each entry
in J is a value of J for some argument. Maximizing J is equivalent to finding the sets of indices
{θ(m)

max}Mm=1 of maximal entries {j(m)
max}Mm=1 of J .

By using only a tiny fraction of adaptively selected tensor elements (e.g., a small number of function
evaluations), our method builds a representation of J in the TT-format and finds a set of the largest
elements. Although the algorithm works only with functions of discrete arguments, the grid size for
each parameter can be huge thanks to the efficiency of the TT-format. Fine discretization makes it
possible to almost reach a continuous limit and obtain large precision with TTOpt. The strength of
our approach is, however, the direct handling of discrete (quantized) parameters.

Contributions. We propose an efficient gradient-free optimization algorithm for multivariable
functions based on the low-rank TT-format and the generalized maximum matrix volume principle2.
We demonstrate that our approach is competitive with a set of popular gradient-free methods for
optimizing benchmark functions and neural network-based agents in RL problems. We empirically
show that agents with discrete (heavily quantized) weights perform well in continuous control tasks.
Our algorithm can directly train quantized neural networks, producing policies suitable for low-power
devices.

2 Optimization with tensor train

In this section, we introduce a novel optimization algorithm. We show how to represent the optimiza-
tion problems in the discrete domain efficiently and then formulate optimization as a sampling of the
objective function guided by the maximum volume principle.

2.1 Discrete formulation of optimization problems

We first need to transfer the problem to the discrete domain to apply our method. It may seem that
discretizing an optimization problem will make it harder. However, it will allow us to use powerful
techniques for tensor network representation to motivate the algorithm. For each continuous parameter
θk (k = 1, 2, . . . , d) of the objective function J(θ) we introduce a grid {θ(nk)

k }Nk
nk=1. At each point

(θ
(n1)
1 , θ

(n2)
2 , . . . , θ

(nd)
d) of this grid with index (n1, n2, . . . , nd) the objective function takes a value

J(θ(n1)
1 , θ

(n2)
2 , . . . , θ

(nd)
d) ≡ J [n1, n2, . . . , nd]. We thus can regard the objective function as an

implicit d-dimensional tensor J with sizes of the modes N1, N2, . . . , Nd. Finding the maximum of
the function J(θ) translates into finding the maximal element of the tensor J in the discrete setting.

Notice that the number of elements of J equals: |J | = N1 · N2 · . . . · Nd ∼ (max1≤k≤d Nk)
d
.

The size of J is exponential in the number of dimensions d. This tensor cannot be evaluated or
stored for sufficiently large d. Fortunately, efficient approximations were developed to work with
multidimensional arrays in recent years. Notable formats include Tensor Train (TT) [47, 46, 50,
44, 63], Tensor Chain/Tensor Ring [29, 66] and Hierarchical Tucker [21]. We use the most studied
TT-format [13], but the extensions of our method to other tensor decompositions are possible.

1By tensors we mean multidimensional arrays with a number of dimensions d (d ≥ 1). A two-dimensional
tensor (d = 2) is a matrix, and when d = 1 it is a vector. For scalars we use normal font, we denote vectors with
bold letters and we use upper case calligraphic letters (A,B, C, . . .) for tensors with d > 2. Curly braces define
sets. We highlight discrete and continuous scalar functions of multidimensional argument in the appropriate
font, e.g., J(·), in this case, the maximum and minimum values of the function are denoted by Jmax and Jmin,
respectively.

2We implemented the proposed algorithm within the framework of the publicly available software product:
https://github.com/AndreiChertkov/ttopt.

2

https://github.com/AndreiChertkov/ttopt

2.2 Tensor Train decomposition

Definition 2.1. A tensor J ∈ RN1×N2×···×Nd is said to be in the TT-format [46] if its elements are
represented by the following expression

J [n1, n2, . . . , nd] =

R0∑
r0=1

R1∑
r1=1

· · ·
Rd∑

rd=1

G1[r0, n1, r1]G2[r1, n2, r2] . . .Gd[rd−1, nd, rd], (1)

where nk = 1, 2, . . . , Nk for k = 1, 2, . . . , d.

In TT-format the d-dimensional tensor J is approximated as a product of three-dimensional tensors
Gk ∈ RRk−1×Nk×Rk , called TT-cores. The sizes of the internal indices R0, R1, · · · , Rd (with
convention R0 = Rd = 1) are known as TT-ranks. These ranks control the accuracy of the
approximation.

The storage of the TT-cores, G1,G2, . . . ,Gd, requires at most d ·max1≤k≤d Nk · (max0≤k≤d Rk)
2

memory cells, and hence the TT-approximation is free from the curse of dimensionality3 if the
TT-ranks are bounded. The basic linear algebra operations (such as finding a norm, differentiation,
integration, and others) can also be implemented in the TT-format with polynomial complexity in
dimensionality and mode size.

Building TT-approximation. Several efficient schemes were proposed to find TT-approximation if
all or some of the elements of the initial tensor are known or may be generated by the function’s call.
Examples include TT-SVD [47, 46], TT-ALS [27] and TT-CAM [48] (Cross Approximation Method
in the TT-format).

We build upon the TT-CAM but modify it not to compute the approximation for the entire tensor, but
rather to find a small subset of its maximal entries. The original algorithm builds a TT-approximation
by adaptively requesting elements of the input tensor. As we will show below, these elements with
high probability will have large absolute values. Based on this observation, we formulate a robust
optimization algorithm for multivariate functions (either discrete or continuous). To simplify the
understanding, we outline the approach for the two-dimensional case, and after that, we describe our
gradient-free optimization method for the multidimensional case.

2.3 Maximal element in a matrix

The Cross Approximation Method (CAM) for matrices [18, 9, 1] is a well-established algorithm for
building a rank-R approximation J̃ of an implicitly given matrix J :

J ≃ J̃ , J̃ = JC Ĵ−1JR, (2)

where JC consists of R columns of J , JR is composed of R rows of J , and Ĵ is a submatrix at
their intersection. Such approximation (also called cross or skeleton decomposition) may be built
iteratively using a well known alternating directions method and a maximum volume (maxvol)
algorithm4 [18], as we will sketch below.

Intuition behind TTOpt. The main interest in optimization problems is not the approximation (2)
itself, but the following property of the resulting maximum volume submatrix Ĵ . [18] proved that if
Ĵ is an R×R submatrix of maximal volume (in selected rows and columns) then the maximal (by
modulus) element Ĵmax ∈ Ĵ bounds the absolute maximal element Jmax in the full matrix J :

Ĵmax ·R2 ≥ Jmax. (3)
3The number of elements of an uncompressed tensor (hence, the memory required to store it) and the

number of elementary operations required to perform computations with such a tensor grow exponentially in
dimensionality. This problem is called the curse of dimensionality.

4The maxvol algorithm finds R rows in an arbitrary non-degenerate matrix A ∈ RN×R (N > R) which
span a maximal-volume R × R submatrix Â. The matrix Â ∈ A has maximal value of the modulus of the
determinant on the set of all nondegenerate square submatrices of the size R×R. We describe the implementation
of maxvol in Appendix A.1. The algorithm greedily rearranges rows of A to maximize submatrix volume. Its
computational complexity is O(NR2 +KNR), where K is a number of iterations.

3

Figure 1: The scheme of the cross approximation
algorithm for matrices using the alternating direc-
tion and maximal-volume principle. Green bars
represent generated rows/columns; purple bars are
rows/columns selected for generation in the next
step by the maxvol algorithm. The method allows
to find the optimum of the two dimensional func-
tion J(θ1, θ2).

Figure 2: Conceptual scheme of TTOpt al-
gorithm based on the alternating direction
and maximal-volume approaches for tensors.
Only a small part of the tensor is explicitly
generated during this procedure, as shown
here with green columns. For the simplicity
of presentation, the rows and columns se-
lected at iterations are drawn as continuous
blocks (they are not in practice).

This statement is evident for R = 1, and for the case R > 1 it gives an upper bound for the element.
By using elementwise transformations of J , this upper bound can be used to obtain a sequence that
converges to the global optimum. The main idea of the maxvol-based methods is that it is easier to
find a submatrix with a large volume rather than the element with the largest absolute value. Moreover,
our numerical experiments show that this bound is pessimistic, and in practice, the maximal-volume
submatrix contains the element which is very close to the optimal one.

TTOpt algorithm for matrices. The idea of the TTOpt algorithm for matrices is to iteratively
search for the maximal volume submatrices in the column and row space of the implicitly given5 input
matrix J ∈ RN1×N2 . After T iterations a series of “intersection” matrices {Ĵ (t)}Tt=1 ∈ RR×R is
produced. The maximal element is searched in these small submatrices. We schematically represent
the TTOpt algorithm in Figure 1, and a description is given below:

1. At the initial stage, we set the expected rank of the approximation, R, and select R ran-
dom columns I(C,1). We then generate the corresponding column submatrix J

(1)
C = J [:

, I(C,1)] ∈ RN1×R. Using the maxvol algorithm, we find the maximal-volume submatrix
Ĵ (1) ∈ RR×R in J

(1)
C and store its row indices in the list I(R,1).

2. The indices I(R,1) are used to generate a row submatrix J
(2)
R = J [I(R,1), :] ∈ RR×N2 .

Then, using the maxvol algorithm, we find the maximal-volume submatrix Ĵ (2) in the
matrix J

(2)
R and store the corresponding column indices in the list I(C,2).

5The matrix is specified as a function J(·) that allows to calculate the value of an arbitrary requested element
(n1, n2), where 1 ≤ n1 ≤ N1 and 1 ≤ n2 ≤ N2. We present the approach to approximate the value of the
maximum modulus element of such a matrix. The method of finding the minimal or maximal elements within
the framework of this algorithm will be described in Section 2.6.

4

3. We generate the related columns J (3)
C = J [:, I(C,2)], apply again the maxvol algorithm to

the column submatrix, and iterate the process until convergence.

4. The approximate value of the maximum modulus element of the matrix J is found as

Ĵmax = max
(
max (Ĵ (1)), max (Ĵ (2)), . . . , max (Ĵ (T))

)
. (4)

2.4 Optimization in the multidimensional case

As we explained previously, the target tensor, J , is defined implicitly, e.g., by a multivariable function
J. We propose a novel method to find the optimum in this implicit tensor. We outline the approach
below and provide detailed algorithms in Appendix A.2.

As shown in Figure 2, we begin by considering the first unfolding6 J1 ∈ RN1×N2...Nd of the tensor
J and select R1 random columns I(C)

1 . Precisely, I(C)
1 here is a list of R1 random multi-indices of

size d− 1, which specify positions along modes k = 2 to k = d. We then generate the submatrix
J

(C)
1 ∈ RN1×R1 for all positions along the first mode (shown in green in Figure 2). Like in matrix

case, we apply the maxvol algorithm to find the maximal-volume submatrix Ĵ1 ∈ RR1×R1 and store
the corresponding indices of R1 rows in the list I(R)

1 .

In contrast with matrix case, we cannot generate the row submatrix J
(R)
1 ∈ RR1×N2N3...Nd for

the selected row indices I(R)
1 , since it contains an exponential number of elements. The following

trick is used instead. We consider the implicit matrix J
(R)
1 and reshape it to a new matrix J2 ∈

RR1N2×N3...Nd . We sample R2 random columns I
(C)
2 in the matrix J2 and generate the entire

small submatrix J
(C)
2 ∈ RR1N2×R2 . Next we find the maximal-volume submatrix Ĵ2 ∈ RR2×R2

in J
(C)
2 and store the corresponding R2 row multi-indices in the list I(R)

2 . The resulting submatrix
J

(R)
2 ∈ RR2×N3N4...Nd is then transformed (without explicitly evaluating its elements) into the

matrix J3 ∈ RR2N3×N4...Nd .

We continue the described operations, called sweeps, until the last mode of the initial tensor, J , is
reached. After that, we repeat the process in the opposite direction, sampling now the row indices
instead of the column indices. These sequences of forward and backward sweeps are continued until
the algorithm converges to some row and column indices for all unfolding matrices7 or until the
user-specified limit on the number of requests to the objective function, J, is exceeded. Finally, after
T sweeps, the approximate value of the maximum modulo element can be found by the formula (4),
as in the two-dimensional case.

Note that currently there is no analog of Eq. (3) in the multidimensional case, and hence there are
no formal guarantees of the convergence of the sweeps to the global minimum, nor the rate of this
convergence. The only guarantee is that the result will monotonically improve with iterations.

2.5 Complexity of the algorithm

It can be easily shown that the described algorithm requires to evaluate only
O
(
d ·max1≤k≤d

(
NkR

2
k

))
elements of the implicit tensor in one sweep. Thus, with a total

number of sweeps T , we will have

O
(
T · d · max

1≤k≤d

(
NkR

2
k

))
, (5)

calls to the objective function J. In practice, it turns out to be more convenient to limit the maximum
number of function calls, M , according to the computational budget.

6The k-th unfolding Jk for the d-dimensional tensor J ∈ RN1×N2×···×Nd is the matrix Jk ∈
RN1...Nk×Nk+1...Nd , with elements Jk[n1, . . . , nk, nk+1, . . . , nd] ≡ J [n1, n2, . . . , nd] for all indices.

7The TT-approximation (1) of the tensor J may be recovered from the generated columns J (C)
k and maximal-

volume submatrices Ĵk (k = 1, 2, . . . , d) as follows: Gk = J
(C)
k Ĵ−1

k ∈ RRk−1Nk×Rk , where Gk is the 2-th
unfolding of the k-th TT-core. However, we do not consider this point in more detail, since in our work, the
main task is to find the minimum or maximum value of the tensor, not to construct its low-rank approximation.

5

If the time of a single call to J is significant, then the effort spent on the algorithm’s operation will
be negligible. Otherwise, the bottleneck will be the calculation of the maximal-volume submatrices
by the maxvol algorithm. Taking into account the estimate of the maxvol complexity, given in
Appendix A.1, it can be shown that in this case the complexity of our algorithm is

O
(
T · d · max

1≤k≤d

(
NkR

3
k

))
. (6)

2.6 Implementation details

For the effective implementation of the TTOpt algorithm, the following important points should be
taken into account (see also the detailed pseudocode in Appendix A.2).

Stability. Submatrices J (C)
k (or J (k)

C and J
(k)
R for the two-dimensional case) that arise during the

iterations may degenerate, and in this case it is impossible to apply the maxvol algorithm. To solve
this problem, we first calculate the QR decomposition for these matrices and then apply the maxvol
to the corresponding Q factors8.

Rank selection. We do not know in advance the exact ranks R1, R2, . . . , Rd of the unfolding
matrices (or rank R of the matrix J for the two-dimensional case). Therefore, instead of the maxvol
algorithm, we use its modification, i.e., the rect_maxvol algorithm9 [39], within the framework of
which several (“most important”) rows are added to the maximal-volume submatrix. In this case,
we have Ĵ

(C)
1 ∈ R(R1+∆R1)×R1 , Ĵ (C)

2 ∈ R(R2+∆R2)×R2 , etc. Note that the final approximation
obtained in this case may have an overestimated rank, which, if necessary, can be reduced by
appropriate rounding, for example, by truncated SVD decomposition.

Mapping function. Maximal-volume submatrices contain the maximum modulus element but
not the minimum or maximum element of the tensor (i.e., the sign is not taken into account). We
introduce a dynamic mapping function to find the global minimum (or maximum). Instead of J at
each step of the algorithm, we evaluate10:

g(x) =
π

2
− atan (J(x)− Jmin) , (7)

where Jmin is the current best approximation for the minimum element of the tensor.

Quantization. To reach high accuracy, we often need fine grids. In the case when the sizes of the
tensor modes N1, N2, . . . , Nd are large, the sizes of unfolding matrices become large, which leads to
a significant increase in computational complexity of the maxvol algorithm. To solve this problem,
we apply additional compression based on quantization of the tensor modes [45]. Assume without the
loss of generality that the size of each mode is Nk = P q (k = 1, 2, . . . , d; P ≥ 2; q ≥ 2). Then we
can reshape the original d-dimensional tensor J ∈ RN1×N2×···×Nd into the tensor J̃ ∈ RP×P×···×P

of a higher dimension d · q, but with smaller modes of size P . The TTOpt algorithm can be applied
for this “long” tensor instead of the original one11. We found that this idea significantly boosts the
accuracy of our algorithm and reduces the complexity and execution time. Typically, P is taken as
small as possible, e.g., P = 2.

3 Experiments

To demonstrate the advantage of the proposed optimization method, we tested TTOpt on several
numerical problems. First, we consider analytical benchmark functions and then the practically

8It can be shown that this operation does not increase the complexity estimate (6) of the algorithm.
9The rect_maxvol algorithm allows to find R+∆R rows in an arbitrary nondegenerate matrix A ∈ RN×R

(N > R, N ≥ R+∆R) which form an approximation to the rectangular maximal-volume submatrix of the
given matrix A. Details about rect_maxvol are provided in Appendix A.1.

10The mapping function should be continuous, smooth, and strictly monotone. There are various ways to
choose such a function. However, during test runs, it turned out that the proposed function (7) is most suitable.

11If the maximal rank R > P , we select all indices for first k modes until P k > R. We note however that
this detail does not change the global behavior of the TTOpt algorithm.

6

Table 1: Comparison of the TTOpt optimizer versus baselines in terms of the final error ϵ (absolute
deviation of the obtained optimal value relative to the global minimum) and computation time τ (in
seconds) for various benchmark functions. See Table 1 in Appendix B.1 with the list of functions and
their properties. The reported values are averaged over 10 independent runs. The upper half of the
table presents gradient free (zeroth order) methods, and the lower half is for first and second order
methods.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

TTOPT
ϵ 3.9E-06 2.9E-07 1.8E-12 4.4E-15 2.8E-02 1.1E-01 5.5E-09 4.6E-11 1.8E-01 1.3E-04
τ 2.61 2.44 2.45 2.52 2.40 2.48 2.39 2.60 2.32 2.44

GA ϵ 9.7E-02 8.4E-03 5.8E-03 2.0E+00 3.9E-04 1.0E+01 1.2E-01 7.9E-01 6.2E-03 4.2E+03
τ 6.21 4.56 5.09 4.87 5.85 5.69 5.05 5.04 5.04 4.70

OPENES ϵ 1.8E-01 1.2E-02 1.7E-02 2.0E+00 1.2E-03 9.7E+00 3.8E+00 2.1E+00 1.8E-02 4.2E+03
τ 2.62 1.08 1.62 1.08 2.41 2.04 1.30 1.39 1.62 1.12

CMAES ϵ 5.1E+287 3.1E-01 9.3E-77 2.0E+00 7.6E+289 1.9E+01 5.5E-02 9.3E+01 5.3E+289 1.7E+282
τ 10.36 8.50 9.40 9.13 12.86 9.76 9.04 9.13 11.15 8.86

DE ϵ 1.1E+00 4.3E-02 3.3E-02 9.0E-05 1.8E-01 2.6E-01 2.0E-01 6.2E+00 6.6E-01 3.8E+02
τ 38.91 38.06 51.05 39.48 41.35 41.40 41.34 41.31 37.97 38.64

NB ϵ 1.5E+01 6.5E+00 3.9E+01 1.2E-01 2.4E+01 6.6E+00 2.6E+10 6.3E+01 3.4E+00 3.2E+03
τ 45.23 46.98 37.50 45.91 48.03 37.16 40.05 44.95 44.06 46.91

PSO ϵ 1.2E+01 5.3E+00 3.5E+01 9.8E-02 2.0E+01 2.5E-01 2.0E+10 2.3E+01 5.1E-01 2.9E+03
τ 47.19 47.04 45.50 43.39 46.80 44.97 46.46 42.78 43.15 47.13

BFGS ϵ 1.9E+01 2.1E+00 1.9E+01 4.3E-13 1.2E-02 6.4E+00 2.4E-05 7.0E+01 4.2E+00 2.1E+03
τ 0.01 0.02 0.03 0.00 0.02 0.01 0.04 0.01 0.01 0.00

L-BFGS ϵ 1.9E+01 1.9E+00 4.0E-10 4.3E-13 1.2E-02 4.5E+00 4.5E-10 7.0E+01 4.2E+00 2.1E+03
τ 0.01 0.06 0.05 0.00 0.01 0.02 0.02 0.01 0.01 0.01

CG ϵ 1.9E+01 3.4E+00 N/A 0.0E+00 2.0E-02 4.4E+00 2.9E-12 7.0E+01 4.2E+00 2.1E+03
τ 0.01 0.07 N/A 0.00 0.01 0.05 0.02 0.01 0.03 0.00

NCG ϵ 1.9E+01 3.4E+00 1.7E-19 0.0E+00 7.4E-02 6.4E+00 2.1E-12 7.0E+01 4.2E+00 2.2E+03
τ 0.01 0.06 0.04 0.00 0.01 0.06 0.01 0.00 0.02 0.01

NEWTON
ϵ 1.9E+01 2.2E+00 1.1E+11 0.0E+00 3.2E-02 6.4E+00 2.8E-24 7.0E+01 4.2E+00 2.1E+03
τ 0.01 0.02 0.01 0.00 0.01 0.10 0.01 0.01 0.01 0.00

TR NCG ϵ 1.9E+01 6.5E+00 2.4E-10 4.0E-12 4.8E+00 4.4E+00 1.2E-14 7.0E+01 4.2E+00 2.1E+03
τ 0.01 0.12 0.04 0.00 0.02 0.03 0.01 0.00 0.02 0.01

TR ϵ 1.9E+01 7.0E+00 3.2E-13 4.0E-12 6.1E+01 2.6E+00 5.3E-11 7.0E+01 4.2E+00 2.1E+03
τ 0.02 12.97 0.06 0.00 0.06 0.05 0.02 0.01 0.01 0.01

significant problem of optimizing the parameters of the RL agent. We select GA (Genetic Algo-
rithm [26, 60]), openES (basic version of OpenAI Evolution Strategies [53]) and cmaES (the
Covariance Matrix Adaptation Evolution Strategy [22]) as baselines for both experiments. Addi-
tionally we used DE (Differential Evolution [59]), NB (NoisyBandit method from Nevergrad [5])
and PSO (Particle Swarm Optimization [24, 33]) for benchmark functions12. We also compared
the proposed approach with gradient-based methods applied for all benchmark functions13: BFGS
(Broyden–Fletcher–Goldfarb–Shanno algorithm), L-BFGS (Limited-memory BFGS), CG (Conju-
gate Gradient algorithm), NCG (Newton CG algorithm), Newton (Newton Exact algorithm), TR
NCG (Trust-Region NCG algorithm) and TR (Trust-Region Exact algorithm).

According to our approach, the TTOpt solver has the following configurable parameters: a and b are
lower and upper grid bounds (for simplicity, we use the same value for all dimensions); R is a rank
(for simplicity, we use the same value for all unfolding matrices); P is a submode size (mode size of
the quantized tensor; for simplicity, we use the same value for all dimensions); q is the number of
submodes in the quantized tensor (each mode of the original tensor has size N = P q); M is a limit
on the number of requests to the objective function.

3.1 Benchmark functions minimization

To analyze the effectiveness of the TTOpt, we applied it to 10-dimensional benchmark functions with
known global minimums; see Table 1 in Appendix B.1 with the list of functions and their properties
(note that some of the considered benchmarks are multimodal non-separable functions). Also, in
Appendix B.1, we present a more detailed study of the TTOpt solver and the dependence of the
accuracy on the value of its parameters (R, q and M).

12We used implementations of the methods from available packages estool (https://github.com/
hardmaru/estool), pycma (https://github.com/CMA-ES/pycma, and nevergrad (https://github.
com/facebookresearch/nevergrad).

13We used implementations from the package https://github.com/rfeinman/pytorch-minimize).
We carried out computations with all methods from this library, except for Trust-Region GLTR (Krylov) and
Dogleg methods, for which the calculation ended with an error for most benchmarks.

7

https://github.com/hardmaru/estool
https://github.com/hardmaru/estool
https://github.com/CMA-ES/pycma
https://github.com/facebookresearch/nevergrad
https://github.com/facebookresearch/nevergrad
https://github.com/rfeinman/pytorch-minimize

Table 2: The result of the TTOpt optimizer in terms of the final error ϵ (absolute deviation of the
obtained optimal value relative to the global minimum) and computation time τ (in seconds) for
benchmark F1 (Ackley function) for various dimension numbers.

DIMENSION d = 10 d = 50 d = 100 d = 500
ERROR, ϵ 3.9E-06 3.9E-06 3.9E-06 3.9E-06
TIME, τ 3.1 40.1 143.9 3385.3

Table 3: Mean E and standard deviation σ of the final cumulative reward. The environments are
encoded using capital letters Swimmer-v3, LunarLanderContinuous-v2, InvertedPendulum-v2 and
HalfCheetah-v3. The left sub-table is for mode size N = 3, another one is for mode size N = 28.
Results are averaged over 10 random seeds.

S(3) L(3) I(3) H(3) S(28) L(28) I(28) H(28)

TTOPT
E
σ

357.50
6.59

290.29
24.40

1000.00
0.00

4211.02
211.94

311.82
29.61

286.87
21.65

1000.00
0.00

2935.90
544.11

GA E
σ

349.91
10.04

283.05
16.28

893.00
283.10

2495.37
185.11

359.79
4.21

213.75
99.67

222.86
342.79

3085.80
842.76

CMAES E
σ

342.31
36.07

214.55
93.79

721.00
335.37

2549.83
501.08

340.54
78.90

221.95
133.80

621.00
472.81

2879.46
929.55

OPENES E
σ

318.39
44.61

114.97
113.48

651.86
436.37

2423.16
602.43

109.39
40.11

73.08
163.33

224.71
217.51

1691.22
976.96

In all experiments with baselines (GA, openES, cmaES, DE, NB, PSO, BFGS, L-BFGS, CG,
NCG, Newton, TR NCG and TR), we used default parameter values. In Appendix B.2 we also
present the additional experiments with Bayesian Optimization [37]. For TTOpt we selected rank14

R = 4, submode size P = 2 and the number of submodes q = 25. For all methods, a limit on the
number of requests to the objective function is chosen as M = 105. All calculations are performed
on a standard laptop.

The results are demonstrated in Table 1. For each method we list the absolute deviation of the
result Ĵmin from the global minimum Jmin, i.e., ϵ = | Ĵmin − Jmin |. We also present the total
running time, τ . Compared to other benchmarks, TTOpt is consistently fast, accurate and avoids
random failures to converge seen in other algorithms. Additionally, TTOpt turns out one of the
fastest gradient-free algorithms (GA, openES, cmaES, DE, NB, PSO), despite a simple Python
implementation.

One of the advantages of the proposed TTOpt approach is the possibility of its application to
essentially multidimensional functions. In Table 2 we present the result of TTOpt for the F1
benchmark function of various dimensionality (results for other benchmarks are in Appendix B.1).
Note that as a limit on the number of requests to the objective function we chose M = 104 · d, and
the values of the remaining parameters were chosen the same as above. As can be seen, even for
500-dimensional functions, the TTOpt method gives a fairly accurate result.

3.2 Application of TTOpt to Reinforcement Learning

We used several continuous RL tasks implemented in Mujoco [61] and OpenAI-GYM [8]: Swimmer-
v3 [16], LunarLanderContinuous-v2, InvertedPendulum-v2 and HalfCheetah-v3 [64]. In all experi-
ments, the policy π is represented by a neural network with three hidden layers and with tanh and
ReLU activations. Each layer is a convolution layer. See additional details about hyperparameters in
Table 6 in Appendix B.

We discretize (quantize) the values of agent’s weights. The TTOpt method is used to optimize discrete
agent’s weights in order to maximize the cumulative reward of the episode. This corresponds to
on-policy learning.

14We chose rank R using the following heuristic. The minimal number of sweeps is fixed as T = 5. It follows
that the algorithm will need 2 · T · (dq) · P ·R2 function calls. With a given limit on the number of function

requests M , the rank can be estimated as R ≤
√

M
2·T ·d·q·P .

8

0 2 4 6
Number of function queries 104

0

1

2

3

4

av
er

ag
e

re
w

ar
ds

10
3

HalfCheetah-v3

TTopt

cmaES

openES

GA

target reward

0 2500 5000 7500 10000 12500 15000
seconds

0

1

2

3

4

av
er

ag
e

re
w

ar
ds

10
3

HalfCheetah-v3

TTopt

cmaES

openES

GA

target reward

Figure 3: Training curves of TTOpt and baselines for HalfCheetah-v3 (N = 3). The upper plot is the
average cumulative reward versus the number of interactions with the environment. The lower plot is
the same versus execution time. The reward is averaged for seven seeds. The shaded area shows the
difference of one standard deviation around the mean. See similar plots for other environments in
Appendix B.5.

To properly compare TTOpt with other methods, we propose modified evolutionary baselines that
enforce constrained parameter domain. We adapt penalty term and projection techniques from [31, 6]
to introduce constraints, see Appendix B.4 for details.

First, we run benchmarks with small mode size N = 3 with lower and upper grid bounds ±1.
Another series of experiments was done with finer mode of size N = 2q with the same bounds. These
experiments model the case of neural networks with discrete (quantized) weights which use q-bits
quantization. Finally, we provide the results of using TTOpt as a fine-tuning procedure for linear
policies from [36].

We present characteristic training curves based on the number of environment interactions and
execution time for the HalfCheetah-v3 experiment (N = 3) in Figure 3. Training curves for other
environments can be found in Appendix B.5, in Figure 3 for N = 3 and in Figure 4 for N = 256.
TTOpt consistently outperforms all other baselines on the coarse grid with mode size N = 3.
Our method is still best for finer grids with mode size N = 256 on InvertedPendulum-v2 and
LunarLanderContinuous-v2, and second-best on HalfCheetah-v3. Moreover, TTOpt has significantly
lower execution time compared to evolutionary baselines. Another interesting observation is that the
training curves of TTOpt have low dispersion, e.g., the algorithm performs more consistently than
the baselines (see Appendix B.5). Table 3 summarizes the experiments for the coarse and fine grids.
Results for fine-tuning of linear policies are presented in Table 5 in Appendix B.5. We also did rank
and reward dependency study in Appendix B.

4 Related work

In the case of high dimensional optimization, evolutionary strategies (ES) [56, 42] are one of the
most advanced methods of black-box optimization. This approach aims to optimize the parameters
of the search distribution, typically a multivariate Gaussian distribution, to maximize the objective
function. Finite difference schemes are commonly used to approximate gradients of the parameters of
the search distribution. Numerous works proposed techniques to improve the convergence of ES [42].
[65] proposed to use second-order natural gradient of [12] to generate updates, while [22] suggested
to include the history of recent updates to generate next ones. [35] presented the concept of surrogate
gradients for faster convergence.

Another series of works aimed to reduce the high sampling complexity of ES. In [11] the au-
thors described how to use active subspaces [14] to reduce the number of objective function calls
dynamically.

Plenty of the already mentioned works in gradient-free optimization specifically applied these methods
to RL tasks [53, 10, 11, 36, 15, 23]. Overall, the performance of ES-based methods is comparable

9

to conventional policy gradients, especially if the number of model parameters is small [54, 55].
Another advantage of ES over policy gradient is that it produces more robust and diverse policies [32]
by eliminating the problem of delayed rewards and short length time horizons. Finally, evolutionary
approaches are suitable for the problems with non-Markovian properties [23].

Other metaheuristic [25, 38] and classical optimization [51] techniques are also studied within RL
scope. The examples include simulated annealing [4], particle swarm optimization [24, 33] and even
classical Nelder-Mead algorithm [41, 43]. These methods, however, are not tested on common RL
task sets. Several other works combined evolutionary methods with RL to achieve better performance
in complex scenarios [28, 17], e.g., AlphaStar [62, 3].

Finally, low-rank tensor approximations have been applied to RL problems in settings different from
ours, including multi-agent scenarios [34], and improving dynamic programming approaches [19, 7].
The idea of our method is quite different from the presented works, especially in the RL area.

5 Conclusion

We proposed a new discrete optimization method based on quantized tensor-train representation
and maximal volume principle. We demonstrate its performance for analytical benchmark functions
and reinforcement learning problems. Our algorithm is more efficient under a fixed computational
budget than baselines, especially on discrete domains. Moreover, the execution time for TTOpt is
lower by a significant margin compared with other baselines. Finally, we show that the agents with
discrete parameters in RL can be as efficient as their continuous parameter versions. This observation
supports the broad adoption of quantization in machine learning. We hope that our approach will
serve as a bridge between continuous and discrete optimization methods.

Acknowledgments and Disclosure of Funding

The work was supported by Ministry of Science and Higher Education grant No. 075-10-2021-068.

References
[1] Salman Ahmadi-Asl, Cesar F Caiafa, Andrzej Cichocki, Anh Huy Phan, Toshihisa Tanaka,

Ivan Oseledets, and Jun Wang. Cross tensor approximation methods for compression and
dimensionality reduction. IEEE Access, 9:150809–150838, 2021.

[2] Stéphane Alarie, Charles Audet, Aïmen E. Gheribi, Michael Kokkolaras, and Sébastien Le
Digabel. Two decades of blackbox optimization applications. EURO Journal on Computational
Optimization, 9:100011, 2021.

[3] Kai Arulkumaran, Antoine Cully, and Julian Togelius. Alphastar: An evolutionary computation
perspective. In Proceedings of the Genetic and Evolutionary Computation Conference Com-
panion, GECCO ’19, page 314–315, New York, NY, USA, 2019. Association for Computing
Machinery.

[4] Amir F. Atiya, Alexander G. Parlos, and Lester. Ingber. A reinforcement learning method based
on adaptive simulated annealing. In 2003 46th Midwest Symposium on Circuits and Systems,
volume 1, pages 121–124 Vol. 1, 2003.

[5] Pauline Bennet, Carola Doerr, Antoine Moreau, Jeremy Rapin, Fabien Teytaud, and Olivier
Teytaud. Nevergrad: Black-box optimization platform. SIGEVOlution, 14(1):8–15, apr 2021.

[6] Rafał Biedrzycki. Handling bound constraints in CMA-ES: An experimental study. Swarm and
Evolutionary Computation, 52:100627, 2020.

[7] Alexey I. Boyko, Ivan V. Oseledets, and Gonzalo Ferrer. Tt-qi: Faster value iteration in tensor
train format for stochastic optimal control. Computational Mathematics and Mathematical
Physics, 61(5):836–846, 2021.

[8] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. ArXiv, abs/1606.01540, 2016.

[9] Cesar F. Caiafa and Andrzej Cichocki. Generalizing the column–row matrix decomposition to
multi-way arrays. Linear Algebra and its Applications, 433(3):557–573, 2010.

10

[10] Krzysztof Choromanski, Mark Rowland, Vikas Sindhwani, Richard Turner, and Adrian Weller.
Structured evolution with compact architectures for scalable policy optimization. In Jennifer
Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 970–978. PMLR,
10–15 Jul 2018.

[11] Krzysztof M Choromanski, Aldo Pacchiano, Jack Parker-Holder, Yunhao Tang, and Vikas Sind-
hwani. From complexity to simplicity: Adaptive ES-active subspaces for blackbox optimization.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[12] Andrzej Cichocki and Shun-ichi Amari. Adaptive Blind Signal and Image Processing: Learning
Algorithms and Applications. John Wiley & Sons, Inc., USA, 2002.

[13] Andrzej Cichocki, Namgil Lee, Ivan Oseledets, Anh-Huy Phan, Qibin Zhao, and Danilo P.
Mandic. Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-
rank tensor decompositions. Foundations and Trends® in Machine Learning, 9(4-5):249–429,
2016.

[14] Paul G. Constantine. Active subspaces - emerging ideas for dimension reduction in parameter
studies. In SIAM spotlights, 2015.

[15] Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth O. Stanley,
and Jeff Clune. Improving exploration in evolution strategies for deep reinforcement learning
via a population of novelty-seeking agents. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, NIPS’18, page 5032–5043, Red Hook, NY, USA,
2018. Curran Associates Inc.

[16] Rémi Coulom. Reinforcement Learning Using Neural Networks, with Applications to Motor
Control. PhD thesis, Institut National Polytechnique de Grenoble, 2002.

[17] Aleksandra Faust, Anthony G. Francis, and Dar Mehta. Evolving rewards to automate reinforce-
ment learning. In 6th ICML Workshop on Automated Machine Learning, 2019.

[18] Sergei A Goreinov, Ivan V Oseledets, Dimitry V Savostyanov, Eugene E Tyrtyshnikov, and
Nikolay L Zamarashkin. How to find a good submatrix. In Matrix Methods: Theory, Algorithms
And Applications: Dedicated to the Memory of Gene Golub, pages 247–256. World Scientific,
2010.

[19] Alex Gorodetsky, Sertac Karaman, and Youssef Marzouk. High-dimensional stochastic optimal
control using continuous tensor decompositions. The International Journal of Robotics Research,
37(2-3):340–377, 2018.

[20] David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[21] Wolfgang Hackbusch and Stefan Kühn. A new scheme for the tensor representation. Journal of
Fourier analysis and applications, 15(5):706–722, 2009.

[22] Nikolaus Hansen. The CMA Evolution Strategy: A Comparing Review, pages 75–102. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006.

[23] Verena Heidrich-Meisner and Christian Igel. Neuroevolution strategies for episodic reinforce-
ment learning. Journal of Algorithms, 64(4):152–168, 2009. Special Issue: Reinforcement
Learning.

[24] Daniel Hein, Alexander Hentschel, Thomas Runkler, and Steffen Udluft. Particle swarm
optimization for generating interpretable fuzzy reinforcement learning policies. Engineering
Applications of Artificial Intelligence, 65:87–98, 2017.

[25] J. Michael Herrmann, Adam Price, and Thomas Joyce. 3. Ant colony optimization and rein-
forcement learning, pages 45–62. De Gruyter, 2020.

[26] John H. Holland. Genetic algorithms. Scientific American, 267(1):66–73, 1992.

[27] Sebastian Holtz, Thorsten Rohwedder, and Reinhold Schneider. The alternating linear scheme
for tensor optimization in the tensor train format. SIAM Journal on Scientific Computing,
34(2):A683–A713, 2012.

11

[28] Shauharda Khadka and Kagan Tumer. Evolution-guided policy gradient in reinforcement
learning. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems, NIPS’18, page 1196–1208, Red Hook, NY, USA, 2018. Curran Associates Inc.

[29] Boris N. Khoromskij. O(dlog n)-quantics approximation of n-d tensors in high-dimensional
numerical modeling. Constructive Approximation, 34(2):257–280, Oct 2011.

[30] Tamara G. Kolda, Robert Michael Lewis, and Virginia Torczon. Optimization by direct search:
New perspectives on some classical and modern methods. SIAM Review, 45(3):385–482, 2003.

[31] Oliver Kramer. A review of constraint-handling techniques for evolution strategies. Appl. Comp.
Intell. Soft Comput., 2010, January 2010.

[32] Joel Lehman, Jay Chen, Jeff Clune, and Kenneth O. Stanley. ES is more than just a traditional
finite-difference approximator. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’18, page 450–457, New York, NY, USA, 2018. Association for Computing
Machinery.

[33] Tundong Liu, Liduan Li, Guifang Shao, Xiaomin Wu, and Meng Huang. A Novel Policy
Gradient Algorithm with PSO-Based Parameter Exploration for Continuous Control. Eng. Appl.
Artif. Intell., 90(C), apr 2020.

[34] Anuj Mahajan, Mikayel Samvelyan, Lei Mao, Viktor Makoviychuk, Animesh Garg, Jean
Kossaifi, Shimon Whiteson, Yuke Zhu, and Animashree Anandkumar. Tesseract: Tensorised
actors for multi-agent reinforcement learning. In International Conference on Machine Learning
(ICML), volume 139, pages 7301–7312, 2021.

[35] Niru Maheswaranathan, Luke Metz, George Tucker, Dami Choi, and Jascha Sohl-Dickstein.
Guided evolutionary strategies: augmenting random search with surrogate gradients. In Ka-
malika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 4264–4273. PMLR, 09–15 Jun 2019.

[36] Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear policies
is competitive for reinforcement learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

[37] Erich Merrill, Alan Fern, Xiaoli Fern, and Nima Dolatnia. An empirical study of Bayesian
optimization: Acquisition versus partition. Journal of Machine Learning Research, 22(4):1–25,
2021.

[38] Laurent Meunier, Herilalaina Rakotoarison, Pak Kan Wong, Baptiste Roziere, Jérémy Rapin,
Olivier Teytaud, Antoine Moreau, and Carola Doerr. Black-box optimization revisited: Im-
proving algorithm selection wizards through massive benchmarking. IEEE Transactions on
Evolutionary Computation, pages 1–1, 2021.

[39] Aleksandr Mikhalev and Ivan V Oseledets. Rectangular maximum-volume submatrices and
their applications. Linear Algebra and its Applications, 538:187–211, 2018.

[40] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, Feb 2015.

[41] John A. Nelder and Roger Mead. A simplex method for function minimization. Computer
Journal, 7:308–313, 1965.

[42] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, Apr 2017.

[43] Barry D. Nichols. Continuous action-space reinforcement learning methods applied to the
minimum-time swing-up of the acrobot. In 2015 IEEE International Conference on Systems,
Man, and Cybernetics, pages 2084–2089, 2015.

[44] Alexander Novikov, Maxim Rakhuba, and Ivan Oseledets. Automatic differentiation for
Riemannian optimization on low-rank matrix and tensor-train manifolds. SIAM Journal on
Scientific Computing, 44(2):A843–A869, 2022.

12

[45] Ivan V Oseledets. Approximation of 2d × 2d matrices using tensor decomposition. SIAM J.
Matrix Anal. Appl., 31(4):2130–2145, 2010.

[46] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing,
33(5):2295–2317, 2011.

[47] Ivan V Oseledets and Eugene E Tyrtyshnikov. Breaking the curse of dimensionality, or how to
use SVD in many dimensions. SIAM Journal on Scientific Computing, 31(5):3744–3759, 2009.

[48] Ivan V Oseledets and Eugene E Tyrtyshnikov. TT-cross approximation for multidimensional
arrays. Linear Algebra and its Applications, 432(1):70–88, 2010.

[49] David Pfau, James S. Spencer, Alexander G. D. G. Matthews, and W. M. C. Foulkes. Ab
initio solution of the many-electron schrödinger equation with deep neural networks. Phys. Rev.
Research, 2:033429, Sep 2020.

[50] Anh-Huy Phan, Andrzej Cichocki, André Uschmajew, Petr Tichavský, George Luta, and
Danilo P. Mandic. Tensor networks for latent variable analysis: Novel algorithms for tensor train
approximation. IEEE Transactions on Neural Networks and Learning Systems, 31(11):4622–
4636, 2020.

[51] Zhiwei Qin, Weichang Li, and Firdaus Janoos. Sparse reinforcement learning via convex
optimization. In Eric P. Xing and Tony Jebara, editors, Proceedings of the 31st International
Conference on Machine Learning, volume 32 of Proceedings of Machine Learning Research,
pages 424–432, Bejing, China, 22–24 Jun 2014. PMLR.

[52] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-image generation. ArXiv, abs/2102.12092, 2021.

[53] Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. Evolution strategies as a scalable
alternative to reinforcement learning. ArXiv, abs/1703.03864, 2017.

[54] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In Francis Bach and David Blei, editors, Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pages 1889–1897, Lille, France, 07–09 Jul 2015. PMLR.

[55] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. ArXiv, abs/1707.06347, 2017.

[56] Hans-Paul Schwefel. Evolutionsstrategien für die numerische Optimierung, pages 123–176.
Birkhäuser Basel, Basel, 1977.

[57] Artur M. Schweidtmann and Alexander Mitsos. Deterministic global optimization with artificial
neural networks embedded. Journal of Optimization Theory and Applications, 180(3):925–948,
Oct 2018.

[58] Alexandra Senderovich, Ekaterina Bulatova, Anton Obukhov, and Maxim Rakhuba. Towards
practical control of singular values of convolutional layers. In Advances in Neural Information
Processing Systems, 35, 2022.

[59] Rainer Storn and Kenneth Price. Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization, 11(4):341–359,
Dec 1997.

[60] Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O. Stanley,
and Jeff Clune. Deep neuroevolution: Genetic algorithms are a competitive alternative for
training deep neural networks for reinforcement learning. ArXiv, abs/1712.06567, 2017.

[61] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033, 2012.

[62] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh,
Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P.
Agapiou, Max Jaderberg, Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin
Dalibard, David Budden, Yury Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu
Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKin-
ney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris

13

Apps, and David Silver. Grandmaster level in StarCraft II using multi-agent reinforcement
learning. Nature, 575(7782):350–354, Nov 2019.

[63] Lev Vysotsky and Maxim Rakhuba. Tensor rank bounds and explicit qtt representations for the
inverses of circulant matrices. arXiv preprint arXiv:2205.04335, 2022.

[64] Pawel Wawrzynski. Learning to control a 6-degree-of-freedom walking robot. In EUROCON
2007 - The International Conference on "Computer as a Tool", pages 698–705, 2007.

[65] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhuber.
Natural evolution strategies. Journal of Machine Learning Research, 15(27):949–980, 2014.

[66] Qibin Zhao, Masashi Sugiyama, Longhao Yuan, and Andrzej Cichocki. Learning efficient tensor
representations with ring-structured networks. In ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8608–8612, 2019.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A] The work

has no any societal impacts, since its about optimization methods.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] The code will
be provided in supplemental material and as github repository after decision

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] We used a typical shade(mean-std) plots that used in
reinforcement learning experiments

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] . We mentioned all

references and source-codes for gradient-free baselines.
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

	Introduction
	Optimization with tensor train
	Discrete formulation of optimization problems
	Tensor Train decomposition
	Maximal element in a matrix
	Optimization in the multidimensional case
	Complexity of the algorithm
	Implementation details

	Experiments
	Benchmark functions minimization
	Application of TTOpt to Reinforcement Learning

	Related work
	Conclusion

