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Abstract
Error correction codes are a crucial part of the
physical communication layer, ensuring the re-
liable transfer of data over noisy channels. The
design of optimal linear block codes capable of
being efficiently decoded is of major concern, es-
pecially for short block lengths. While neural
decoders have recently demonstrated their advan-
tage over classical decoding techniques, the neu-
ral design of the codes remains a challenge. In
this work, we propose for the first time a unified
encoder-decoder training of binary linear block
codes. To this end, we adapt the coding setting to
support efficient and differentiable training of the
code for end-to-end optimization over the order
two Galois field. We also propose a novel Trans-
former model in which the self-attention masking
is performed in a differentiable fashion for the
efficient backpropagation of the code gradient.
Our results show that (i) the proposed decoder
outperforms existing neural decoding on conven-
tional codes, (ii) the suggested framework gen-
erates codes that outperform the analogous con-
ventional codes, and (iii) the codes we developed
not only excel with our decoder but also show
enhanced performance with traditional decoding
techniques.

1. Introduction
In the modern era of information technology, maintaining
strong and reliable communication despite interference in
transmission channels is a significant priority. It necessitates
the development of codes designed for resilient transmission
over noisy channels. Among the existing family of codes,
linear block codes represent a widely used class of error
correction codes (ECC), which benefits from decades of re-
search and design. Neural methods (Nachmani et al., 2016;
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Gruber et al., 2017; Bennatan et al., 2018; Choukroun &
Wolf, 2022) have been applied as successful heuristics to the
NP-hard maximum likelihood (ML) problem of decoding.
However, creating high-performance codes in conjunction
with their decoders remains a challenge, particularly in the
contemporary realm of finite-length codes.

Linear block codes are generally designed upon asymp-
totical analysis based on mathematical principles or upon
pseudorandom generation. The Shannon channel capacity
theorem (Shannon, 1948) demonstrated first the existence
of a coding technique that allows an arbitrarily small error
probability under maximum likelihood decoding when the
transmission rate remains closely below the channel capac-
ity. Then, the capacity can be asymptotically achieved using
random linear block codes, encoded in polynomial time.
Polar codes (Arikan, 2008) are a family of codes proven to
be capacity-achieving under successive cancellation (SC)
decoding with an explicit construction method based on
recursive channel combination. Low-Density Parity-Check
(LDPC) codes (Gallager, 1962) are provably close to the
capacity generally obtained from random sparse bipartite
graphs with appropriate degree distribution. LDPC codes
are effectively decoded via the efficient Belief Propagation
algorithm (Pearl, 1988).

While neural methods have been applied successfully to
train decoders of existing codes, attempts to use machine
learning for code design are far fewer. There have been
attempts to learn non-linear continuous codes along with
their neural decoders (O’Shea & Hoydis, 2017; Jiang et al.,
2019b), but the very high degree of non-differentiability of
the ubiquitous binary linear block codes makes their design
a major challenge.

Our contributions include (i) showing for the first time that
it is possible to directly optimize binary linear block codes
along with a neural decoder, in a unified and differentiable
fashion.

We optimize the denoising capabilities of a learned code
with respect to a neural decoder that is trained jointly. A
central question then becomes whether the learned code
is tailored for a given neural decoder only, or whether the
framework provides a universally good code in some sense.
(ii) We present compelling evidence supporting that the
optimized code exhibits improved performance compared
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to other codes of the same size, irrespective of the decoder
used. This outcome is somewhat unexpected, in light of
the significantly non-convex objective associated with the
integrated optimization process.

To achieve these innovative results, we make multiple tech-
nical contributions: (iii) we adapt the error correction coding
setting for efficient differentiable training, (iv) we solve the
highly not-differentiable optimization over the binary finite
field with binarization and polarization methods, and (v) we
improve over the existing ECC Transformer-based models
by creating a mask derived from the parity-check matrix in
a differentiable manner, allowing the efficient backpropa-
gation of the gradients with respect to the code through the
neural decoder’s layers.

2. Related Works
Neural decoder contributions generally focus on short and
moderate-length codes for two main reasons. First, classical
decoders are proven to reach the capacity of the channel
for large codes, preventing any potential enhancement. Sec-
ond, the emergence of applications driven by the Internet
of Things created the requirement for optimal decoders of
short to moderate-length codes. For example, 5G Polar
codes have code lengths of 32 to 1024 (ESTI, 2021).

Previous work on neural decoders is generally divided into
two main classes: model-based and model-free. Model-
based decoders implement parameterized versions of clas-
sical Belief Propagation (BP) decoders, where the Tanner
graph is unfolded into an NN in which weights are assigned
to each variable edge. This results in an improvement in
comparison to the baseline BP method for short codes (Nach-
mani et al., 2016; Nachmani & Wolf, 2019; Raviv et al.,
2020; 2023; Kwak et al., 2023). While model-based de-
coders benefit from a strong theoretical background, the
architecture is overly restrictive, which generally enforces
its coupling with high-complexity NN (Nachmani & Wolf,
2021). Also, the improvement gain generally vanishes for
more iterations and longer codewords (Hoydis et al., 2022).

Model-free decoders employ general types of neural net-
work architectures. Earlier approaches (Cammerer et al.,
2017; Gruber et al., 2017; Kim et al., 2018b) employed
stacked fully connected (FC) networks, convolutional neu-
ral networks (CNN) (Jiang et al., 2019a) or recurrent neu-
ral networks (RNNs) that have difficulties in learning the
code, since no prior can be straightforwardly established.
Similarly, (Bennatan et al., 2018) extended the classical
syndrome decoding by employing a channel output prepro-
cessing, which further adds the magnitude to the syndrome
vector such that the decoder remains provably invariant to
the codeword, avoiding overfitting the exponential number
of codewords. Recently, several works based on the Trans-

former (Vaswani et al., 2017) architecture have been adapted
to ECC. (Choukroun & Wolf, 2022) first introduced the Er-
ror Correction Code Transformer (ECCT), obtaining state-
of-the-art performance. Subsequently, (Choukroun & Wolf,
2023) extended the denoising diffusion paradigm to ECC,
further improving the SOTA by large margins. (Choukroun
& Wolf, 2024a) employed the ECCT to syndrome decoding
for quantum error correction. Finally, (Choukroun & Wolf,
2024b) proposed a foundation neural decoder, capable of
decoding and generalizing to any code, length, and rate,
enabling the potential deployment of a single universal neu-
ral decoder for every type of code. At the intersection of
Transformers and neural BP solutions, (Cammerer et al.,
2022) proposed a graph neural network decoder built upon
the Tanner graph. Recently, and following (Bennatan et al.,
2018; Choukroun & Wolf, 2022; Raviv et al., 2020), (Park
et al., 2023) has shown that different parity-check matrices
describing the same code provide different performance on
the ECCT.

While neural decoders show improved performance in var-
ious communication settings, there has been very limited
success in the design of novel neural coding methods. Most
of the existing works attack the unified training design in a
classical deep encoder-decoder fashion (based on FC, CNN,
or RNN), where the codes and the modulations are inte-
grated in a fully classical differentiable fashion. (O’Shea &
Hoydis, 2017) developed continuous (7,4) code with mod-
ulation power constraint matching the Hamming code per-
formance. Joint designs have been proposed for feedback
channels (Kim et al., 2018a) and Turbo codes (Kim et al.,
2018a). End-to-end training under non-differentiable mod-
ulations has been studied in (Aoudia & Hoydis, 2018; Ye
et al., 2018)

However, these methods are generally problematic, since
they make use of heavy deep learning-based encoding-
decoding solutions in the continuous domain, which is far
from practical encoding and decoding deployment. More-
over (Jiang et al., 2019b), neural codes remain far from
capacity-approaching performance because of the high level
of non-differentiability, as well as the difficulties in inducing
the code through the neural decoder.

3. Background
We provide the necessary background on error correction
coding and the Transformer architectures for ECC.

3.1. Coding

We assume a standard transmission protocol for messages
m ∈ {0, 1}k using a linear code C, defined by a generator
matrix G ∈ {0, 1}k×n and the parity check matrix H ∈
{0, 1}(n−k)×n, such that GHT = 0 over the order 2 Galois
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field GF (2). The parity check matrix H entails what is
known as a Tanner graph, which consists of n variable
nodes and (n − k) check nodes. The edges of this graph
correspond to the on-bits in each column of the matrix H .

The input message m ∈ {0, 1}k is encoded by G to a code-
word x = mG ∈ C ⊂ {0, 1}n satisfying Hx = 0 and is
transmitted via a Binary-Input Symmetric-Output channel,
e.g., an additive white Gaussian noise (AWGN) channel.
Let y denote the channel output represented as y = xs + ε,
where xs denotes the Binary Phase Shift Keying (BPSK)
modulation of x (i.e., over {±1}), and ε is a random noise
independent of the transmitted x. The main goal of the
decoder f : Rn → Rn is to provide a soft approximation
x̂ = f(y) of the codeword.

Following Bennatan et al. (2018); Choukroun & Wolf (2022;
2023), the surrogate decoder objective is defined by the
prediction of the equivalent multiplicative noise ε̃ such
that y = xs ⊙ ε̃, with ⊙ the Hadamard product. Ex-
tending classical syndrome decoding, the decoder prepro-
cesses the channel output y by concatenating the provably
codeword-independent magnitude and syndrome vectors,
such that h(y) := [|y|, s(y)] ∈ R2n−k, where [·, ·] denotes
vector/matrix concatenation and s(y) denotes the syndrome
defined by s(y) = Hbin(y) with bin(y) the binary mapping
of y. In this case, the soft codeword prediction is given by
the denoising task defined as x̂ = f(h(y))⊙ y.

3.2. Transformers for Error Correction Code

The seminal Transformer architecture was first introduced
as a novel, attention-based architecture for machine trans-
lation (Vaswani et al., 2017). The input sequence is em-
bedded into a high-dimensional space, coupled with posi-
tional embedding for each element. The embeddings are
then propagated through multiple normalized self-attention
and feed-forward blocks. The self-attention mechanism is
based on a trainable associative memory with (key, value)
vector pairs, where a query vector q ∈ Rd is matched
against a set of k key vectors using scaled inner products,
such that A(Q,K, V ) = Softmax(d−1/2(QKT ))V . Here,
Q ∈ RN×d, K ∈ Rk×d and V ∈ Rk×d represent the
stacked N queries, k keys and values tensors, respectively.
Keys, queries, and values are obtained using linear transfor-
mations of representations of the sequence’s elements, and
a multi-head self-attention scheme is deployed by extending
the self-attention mechanism to multiple attention heads.

The Error Correction Code Transformer (Choukroun &
Wolf, 2022) is a state-of-the-art neural error decoder. Its
initial embedding is defined by encoding h(y), viewed as a
sequence of length 2n− k where each bit is encoded into a
high-dimensional space with its own (position-dependent)
embedding vector. To integrate information about the
code, a binary masking derived from the parity-check

Figure 1: Illustration of the proposed end-to-end communi-
cation system. Our work focuses on the unified design and
co-training of the code induced by Ω and of the parameter-
ized decoder fθ.

H matrix is integrated into the self-attention mechanism
AH(Q,K, V ) = Softmax(d−1/2(QKT + g(H)))V , where
g(H) : {0, 1}(n−k)×n → {−∞, 0}(2n−k)×(2n−k). Specifi-
cally, the mask g(H) is obtained as the adjacency matrix of
the Tanner graph extended to two-ring connectivity. Finally,
the prediction module is implemented with two standard
linear layers.

Recently, the Foundation ECCT (FECCT) (Choukroun &
Wolf, 2024b) matched the ECCT’s performance while be-
ing fully code-, length-, and rate-invariant. FECCT enables
one to train a single decoder on several codes and demon-
strates strong generalization capabilities on unseen codes.
The length invariance of the initial embedding is obtained
using a single input encoding vector for all the magnitude
elements and two position-invariant embedding vectors for
representing the binary syndrome elements. The positional
embedding, as well as the code, are integrated as relative po-
sitional encoding into the self-attention via a parameterized
soft mapping of the node distances in the Tanner graph,
in order to modulate the self-attention tensor such that
AH(Q,K, V ) =

(
Softmax(d−1/2QKT ) ⊙ ψ(G(H))

)
V ,

where ψ(G(H)) is the learned mapping of the distances
between the nodes of the Tanner graph. Finally, to remain
code-invariant, the final prediction module is conditioned on
the parity-check matrix H by selecting the relevant variable
nodes from the parity-check embeddings.

4. Method
We present the setting of the proposed framework and the
elements of the proposed neural decoder, its complete archi-
tecture, and the training procedure.

4.1. End-to-End Optimization

We assume the standard (also referred to as canonical or
systematic) form of the code to ensure its efficient and dif-
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ferentiable optimization. In the standard form, the generator
matrix is defined as G = [Ik, P ] with P ∈ {0, 1}k×n−k

and the parity check matrix is induced as H = [PT , In−k].
Using a general matrix form for G would allow a greater
degree of freedom in design, but the differentiable and fast
design of the corresponding full-rank parity-check matrix
defining the code kernel from G would become a challenge.

To obtain trainable codes, we propose to parameterize the
matrix P such that

P := PΩ = bin(Ω), (1)

where Ω ∈ Rk×n−k denotes the trainable parameterized
version of P and bin : R → {0, 1} denotes the point-wise
binarization function.

Given a neural decoder fθ : R2n−k → Rn parameterized by
θ, the parameterized generator matrix GΩ = [Ik, PΩ] and
parity check matrix HΩ = [PT

Ω , In−k], the objective is now
defined in a unified end-to-end encoding-decoding fashion,
as opposed to the standard neural decoding optimization
task in which only the decoder is trained.

Defining ϕ(·, ·) the matrix multiplication over GF (2) (i.e.,
modulo 2) and the bipolar mapping ξ : {0, 1} → {±1} as
ξ(u) = 1− 2u, u ∈ {0, 1} , the objective is given by

L(Ω, θ) = Em∼Bernk(1/2),ε∼ZBCE
(
fθ(hΩ(yΩ)), bin(ε̃)

)
(2)

Here, yΩ = ξ(ϕ(m,GΩ)) + ε denotes the parameterized
channel output, hΩ(yΩ) = [|yΩ|, HΩbin(yΩ)] is the param-
eterized codeword-invariant preprocessing, Z denotes the
distribution of the channel noise used for the training, BCE
denotes the binary cross entropy loss, and ε̃ is defined in
Sec. 3.1 above. An illustration of the proposed end-to-end
communication system is given in Figure 1. Constraints on
the code (e.g., sparsity, structure) can be further added to
the training objective via its regularization.

While one could argue that the definition and optimization of
the code via the decoder only (without the generator) is suffi-
cient via its syndrome computation, we show in Appendix A
that the integration of the whole encoding-decoding pipeline
(i.e., G and H) is crucial for efficient backpropagation.

4.2. Optimization over GF (2)

The major problem in the end-to-end training objective is
the use of the highly non-differentiable ϕ and bin functions.

Here, we propose to perform the optimization of the bi-
narization function bin via the straight-through estimator
(STE) (Bengio et al., 2013) defined such that{

bin(u) = ξ−1
(
sign(u)

)
∂bin(u)

∂u = −1|u|≤τ

2

(3)

with τ the thresholding scalar that stops the weights Ω from
growing overly large (Courbariaux et al., 2015).

The optimization of ϕ is obtained using a differen-
tiable equivalence mapping of the XOR (⊕; i.e., sum
over GF (2)) operation using the following property:
ξ(u⊕ v) = ξ(u)ξ(v),∀u, v ∈ {0, 1}. Thus, without loss
of generality, with GΩi being the i-th column of GΩ and m
a binary vector, we have ∀i ∈ {1 . . . n}(
ϕ(m,GΩ)

)
i
:= GΩi⊕m = ξ−1

(
Πk

j=1ξ
(
(GΩ)ij ·mj

))
.

(4)
The new form defines a multilinear polynomial (potentially
inducing saddle-point optimization) over the classical linear
dot-product defined over R and the gradient can now be
computed in a differentiable manner.

4.3. Differentiable Masking

The masking allows the integration of information about
the code into the self-attention tensor. The masking derived
from the Tanner graph connectivity can be soft (Choukroun
& Wolf, 2024b) or hard (Choukroun & Wolf, 2022) and
can be placed at different locations of the self-attention
computation. However, existing masking methods induced
from the code are extracted once in a non-differentiable
fashion, i.e., no information can be backpropagated during
the optimization from the mask to the code (i.e., the parity
matrix).

In order to allow the integration of the code through the self-
attention while permitting its differentiable optimization, we
learn a parameterized mapping ψγ : N → R of the elements
constituting the mask, which is derived by the parity-check
matrix, such that

AH(Q,K, V ) = Softmax
(
QKT + ψγ

(
g(HΩ)

)
√
d

)
V, (5)

where the mask g(HΩ) ∈ N(2n−k)×(2n−k) is defined by

g(HΩ) =

(
HT

ΩHΩ HΩ

HT
Ω HΩH

T
Ω

)
(6)

Since HΩ represents the bipartite Tanner graph, the mask
diagonal block elements can be seen as the two-step transi-
tioning connectivity, i.e., the number of paths of length two
between every two nodes. The n× n top-left block matrix
represents the two-step transition matrix between every two
variable nodes, while the (n − k) × (n − k) bottom-right
block matrix represents the two-step transition matrix be-
tween every two parity-check nodes. The diagonal elements
of these matrices denote the degree of each node. Since the
block off-diagonal is defined by HΩ solely, it straightfor-
wardly defines the relationship between the parity nodes and
the variable nodes of the corresponding graph.
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Figure 2: For the Hamming(7,4) code: (a) the Tanner graph,
(b) the proposed differentiable masking for the standardized
version of the code.

This way, the gradient ∇ΩL can be backpropagated through
the self-attention layers along the network to provide a
decoder-aware code. An illustration of the proposed mask-
ing method is given in Figure 2.

4.4. Architecture

An illustration of the entire model is given in Figure 3. As
with (Choukroun & Wolf, 2024b), the initial encoding is per-
formed with a d dimensional one-hot encoding for the syn-
drome part and a single d-dimensional vector for the mag-
nitude part, for a total of three d-dimensional parameters.
Formally, the initial positional embedding Φ ∈ R(2n−k)×d

is given by
Φ = [|yΩ|TWm,Ws(yΩ)] (7)

with Wm ∈ Rd being the magnitude embedding vector and
W0 ∈ Rd and W1 ∈ Rd the two one-hot encodings of each
of the n− k binary syndrome values.

The decoder is defined as a concatenation of N decoding
layers composed of self-attention and feed-forward layers
interleaved with normalization layers with d. The distance
embedding ψγ : N → R is a fully connected neural net-
work with a 50-dimensional hidden layer and ReLU non-
linearities mapping each number of paths to a scalar. This
mapping becomes a fixed tensor at inference time. The con-
tribution of each bit to itself (i.e. the diagonal elements) is
omitted (masked) in the self-attention mechanism.

The output module is borrowed from (Choukroun & Wolf,
2024b) to allow a code-aware prediction conditioned by the
parameterized HΩ. The output module performs the follow-
ing projections on the final embedding Φ := [ΦM ,ΦS ]

ˆ̃ε =
(
ΦMWM +HT

Ω (ΦSWS)
)
Wd→1 (8)

with WS ,WM ∈ Rd×d and Wd→1 ∈ Rd as the embedding
layers. Thus, our model remains code-, length-, and rate-
invariant as well, by design.

The dimension of the feed-forward network of the trans-
former is four times that of the embedding d, following

Figure 3: Illustration of the proposed architecture. The main
contributions are represented with dashed lines.

(Vaswani et al., 2017), and is composed of GEGLU layers
(Shazeer, 2020), with layer normalization set to the pre-layer
setting, as in (Klein et al., 2017; Xiong et al., 2020). An
eight-head (i.e., h = 8) self-attention module is used in all
experiments. We note that while larger architectures would
enable better performance, deepening the accuracy gap over
other methods (e.g., GPT-3 (Brown et al., 2020) operates
successfully on 2K inputs with a similar Transformer model,
but with N = 96, d = 12K), ECC requires rather light and
shallow models to be deployed on edge devices.

The computational complexity as well as the number
of parameters of the method are the same as of the
FECCT (Choukroun & Wolf, 2024b), since the code bi-
nary matrices (G and H) as well as the distance embedding
functions ψγ are fixed after training. The number of param-
eters is defined by O(Nd2). In comparison, the ECCT is
not length invariant and has O(Nd2 + nd) parameters.

4.5. Training

The training objective is the cross-entropy func-
tion as given in Eq. 2, while the estimated hard-
decoded codeword is straightforwardly obtained as
x̂b = bin(sign(fθ(h(yΩ)) · yΩ)).

The Adam optimizer (Kingma & Ba, 2014) is used with
1024 samples per minibatch, for 1K epochs, with 1K mini-
batches per epoch. We initialized the learning rate to 10−4

coupled with a cosine decay scheduler down to 10−6 at
the end of the training. No warmup was employed (Xiong
et al., 2020). We note the optimization is stochastic and
highly non-convex such that theoretical guarantees of the
code performance or structure are difficult to establish.

We observed that using a large batch size (×8) greatly im-
proves the performance of our method, as well as of other
baselines (Choukroun & Wolf, 2022; 2024b). We, there-
fore, report in our tables new (and better) results for these
baselines. We note that while using more epochs improves
performance, the current modest setting already reaches
state-of-the-art performance.

The initialization and optimization of Ω are of major impor-
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Table 1: A comparison of the negative natural logarithm of Bit Error Rate (BER) for three normalized SNR values of our
method with literature baselines. BP results are obtained after L = 5 BP iterations in first row and at convergence results in
the second row are obtained after L = 50 BP iterations. SCL results are presented with a list length of L = 1 in the first row
and L = 32 in the second row. Our performance is presented with fixed Ω (DC-ECCT) and with trained Ω (E2E DC-ECCT)
for two shallow architectures: for N = 2, d = 32 in the first row and N = 6, d = 128 in the second row. The best results
are in bold. The second best results are in italic. Higher is better.

Method BP SCL ECCT DC-ECCT E2E DC-ECCT

Eb/N0 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

POLAR(32,11)
3.29
3.84

3.77
4.71

4.21
5.70

6.22
6.45

8.06
8.37

10.28
10.60

4.46
6.37

5.57
8.12

7.01
10.19

4.53
6.41

5.69
8.09

7.08
10.57

4.65
6.62

5.81
8.57

7.28
11.71

POLAR(64,32)
3.53
4.29

4.02
5.35

4.45
6.45

7.24
8.16

9.74
10.73

12.91
13.98

4.56
7.19

5.93
9.70

7.75
13.33

4.40
7.45

5.76
10.49

7.67
13.74

4.72
7.59

6.22
10.38

8.13
13.09

BCH(31,16)
4.59
5.12

5.87
6.87

7.57
9.27 NA

4.61
6.37

5.97
8.32

7.69
10.63

4.97
7.07

6.56
9.69

8.54
12.54

5.30
7.19

6.89
9.08

9.09
12.84

BCH(63,45)
4.07
4.35

4.92
5.60

6.03
7.24 NA

4.59
6.25

6.07
8.78

8.13
12.45

4.54
6.08

6.07
8.64

8.14
12.41

4.98
6.37

6.69
9.09

8.97
13.12

LDPC(49,24)
5.25
6.09

7.15
8.75

9.86
11.91 NA

4.21
5.34

5.32
6.43

6.56
7.21

4.08
5.57

5.29
6.55

6.55
7.21

4.95
6.28

6.46
8.77

8.33
12.33

RS(60,52)
4.43
4.69

5.32
6.43

6.43
7.56 NA

4.37
4.37

5.11
5.13

6.03
6.04

5.04
5.61

6.68
7.59

8.82
9.82

5.12
5.61

6.80
7.56

9.02
9.90

tance in our highly non-convex optimization setting. The
initialization can be performed given a binary matrix Ω0

obtained from random sampling or from a baseline stan-
dardized parity-check matrix. Thus, given an initial binary
matrix Ω0, the learnable matrix is initialized as Ω = c·ξ(Ω0)
with c ∈ R+ , providing a uniform confidence to every ele-
ment of Ω. The hyperparameters used for the optimization
of Ω are the early stopping training of Ω (not of the de-
coder), and the learning rate of Ω following (Courbariaux
et al., 2015). In all the experiments c = 0.01, τ = ∞ but
with Ω clamped such that |Ω| < 0.5, as in (Courbariaux
et al., 2015). However, other values can be more optimal
for any given code, and using larger batches would further
improve performance. As shown in Appendix A, it is
important to train using the all ones message, i.e., m = 1k.

Accelerating the proposed method (e.g. pruning, model
quantization/binarization, distillation, low-rank approxima-
tion) (Wang et al., 2020; Lin et al., 2021) is beyond the
scope of this paper and is left for future work. E.g., sparse
self-attention can be induced via the regularization of the
objective. Training and experiments are performed on a
12GB GeForce RTX 2080 Ti GPU. The training time ranges
from 34 to 327 seconds per epoch depending on code length,
rate, and model size. Testing time ranges from 2 to 3ms per
sample, using one GPU without any model optimization.

5. Experiments
To evaluate our method, we train the proposed architec-
ture with four classes of linear codes: Low-Density Par-
ity Check (LDPC) codes (Gallager, 1962), Polar codes
(Arikan, 2008), Reed Solomon codes (Reed & Solomon,
1960) and Bose–Chaudhuri–Hocquenghem (BCH) codes

(Bose & Ray-Chaudhuri, 1960). All the parity check matri-
ces are taken from (Helmling et al., 2019). Code available
at https://github.com/yoniLc/E2E_DC_ECCT.

We compare our method with the BP algorithm (Pearl,
1988), the SCL algorithm (Tal & Vardy, 2015) for polar
codes, and the SOTA ECCT (Choukroun & Wolf, 2022)
neural decoder. FECCT is not tested, since while possessing
important invariance properties, it reaches similar perfor-
mance as the ECCT in average. We note that, similarly to
FECCT, our method can be implemented as a foundation
model, where a single decoder is used for decoding multiple
(potentially trained) codes. However, we are not looking to
optimize multiple codes at once, due to the associated train-
ing complexity. Other neural decoders are not presented,
since their performance remains far from the ECCTs. Note
that LDPC codes are specifically designed for BP-based de-
coding (Richardson et al., 2001). SCL (Tal & Vardy, 2015)
is specifically designed for (short) polar codes on which it
is close to ML performance.

As opposed to other methods (Nachmani et al., 2016; Nach-
mani & Wolf, 2019; 2021), our method as well as the other
Transformer based neural decoders do not assume that the
channel is known and do not then compute the LLRs as
model input for improved performance. We observe that
using LLR very slightly improves these methods, while
removing it from classical BP induces catastrophic degrada-
tion of the performance.

The results are reported as negative natural logarithm bit er-
ror rates (BER), i.e., − ln(BER), for three different normal-
ized SNR values (Eb/N0), following the conventional test-
ing benchmark, e.g., (Nachmani & Wolf, 2019; Choukroun
& Wolf, 2022). BP-based results are obtained after L = 5
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(a) (b) (c) (d)

Figure 4: For a N = 2 layers DC-ECCT (first and second row) and a (31,16) code: (a) self-attention layer, (b) connectivity
mapping ψγ , (c) the corresponding filtered mask ψγ

(
g(HΩ)

)
(d) the obtained soft masked self-attention. The self-attention

maps have been averaged over the heads dimension.

BP iterations in the first row (i.e., 10-layer neural network)
and at convergence results in the second row are obtained
after L = 50 BP iterations (i.e., 100-layer neural network).
During testing, at least 105 random codewords are decoded,
to obtain at least 50 frames with errors at each SNR value.
We trained and tested all reported ECCT results ourselves
to ensure that the models were trained on the same parity-
check matrices. The SCL experiments are conducted by us,
using the code framework of (Cassagne et al., 2019).

The hyperparameter search was performed using a valida-
tion set as follows. For all neural decoders (i.e., including
ECCT), we selected the best results obtained from a single
random initialization and with the baseline initialization of
Ω. For the trained Ω setting, we tested the early stopping
of Ω optimization after 800 epochs. We also experimented
with training the code with a smaller learning rate defined
following (Courbariaux et al., 2015; Glorot & Bengio, 2010).
Results showing the impact of the initialization on the pro-
posed decoder and encoder-decoder framework are given
in Appendix C. The parity-check matrices of all neural de-
coders are in standard form.

In Table 1 we present the performance of our model Deep
Coding Error Correction Code Transformer (DC-ECCT) on
several codes. As can be seen, even for fixed (not trained) Ω
our neural decoder outperforms the state-of-the-art neural
decoder. Moreover, the end-to-end optimization of the code
(E2E DC-ECCT) improves the performance by very large
margins. We can observe that polar codes are already well-
suited for the inductive bias of transformers. Also, on larger
polar codes SCL gets close to ML and the code optimization
seems to converge to a worse local minima. We provide
BER plot visualizations in Appendix F.

6. Ablation Study and Analysis
We study the impact of the proposed method on other de-
coders and analyze the different modules of the method.
We provide in Appendix E an ablation study of the differ-
ent components of the proposed method, demonstrating the
superiority of the components of the proposed solution.

6.1. Performance with Belief Propagation

In Table 2, we present the performance of the Belief Propa-
gation decoding algorithm on different codes and rates. We
compare the performance of the baselines codes, these same
codes in standard form, random codes, random standardized
codes (i.e., random binary Ω), and codes obtained from the
Ω optimized via the E2E DC-ECCT. We can observe that
the learned codes outperform other codes under the BP de-
coder by very large margins, even if the code is presented in
standard form. This supports the claim that our method is
able to provide good codes in a broader sense.

Table 2: A comparison of the negative natural logarithm of
BER for three normalized SNR values of the BP method
on different codes that also appeared in Table 1. Results
are obtained after L = 5 BP iterations in the first row and
at convergence results in the second row are obtained after
L = 50 BP iterations. Best for each L in bold.

Code Baseline Standard form Random H Random Ω E2E Ω

Eb/N0 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

(31,16)
4.59
5.12

5.87
6.87

7.57
9.27

3.97
4.64

4.67
5.89

5.57
7.37

3.23
3.42

3.72
4.18

4.36
5.33

4.22
4.89

5.01
6.14

5.86
7.38

6.13
6.42

7.95
8.31

9.90
10.24

(63,45)
4.07
4.35

4.92
5.60

6.03
7.24

4.37
4.78

5.33
6.30

6.42
8.22

3.72
3.93

4.26
4.79

4.93
5.93

3.96
4.27

4.61
5.29

5.41
6.69

5.55
6.15

7.33
8.60

9.23
11.32

(60,52)
4.43
4.69

5.32
5.95

6.43
7.56

4.60
4.83

5.65
6.21

6.94
8.00

4.41
4.65

5.32
5.90

6.45
7.53

4.60
4.83

5.63
6.19

6.93
7.97

4.73
4.99

5.79
6.45

7.01
8.35

(64,32)
3.53
4.29

4.02
5.35

4.45
6.45

3.82
4.81

4.37
5.74

5.03
6.71

2.92
2.96

3.37
3.54

3.73
4.17

3.34
3.59

3.90
4.53

4.64
5.87

6.93
7.69

9.49
10.04

12.51
12.94
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(a) (b) (c)

(d) (e) (f)

Figure 5: The original parity-check matrix (PCM) of (a)
BCH(31,16), (d) POLAR(32,11) and their standard form in
(b) and (e), respectively. The third column corresponds to
the learned parity-check matrices of the corresponding code
length and rate. The PCM sparsity is of (a) 25%, (b) 30%
(c) 16%, (d) 31%, (e) 17%, and (f) 15%.

In Table 3 we also present the ML decoding performance
on the shortest codes, further demonstrating that the method
can learn competitive codes, independently of the decoder.

Table 3: A comparison of the maximum likelihood method
on different codes. The code tested are the baseline codes,
random code and, the proposed learned codes.

Code Baseline Random E2E Ω

Eb/N0 4 5 6 4 5 6 4 5 6

(31,16) 7.40 9.81 13.11 7.25 9.14 10.80 7.39 9.54 12.19

(32,11) 6.50 8.28 10.71 7.08 8.48 11.72 7.34 9.48 11.79

6.2. Parity-check Matrix Visualization

In Figure 5, we depict several typical parity-check matri-
ces for different codes, where we can see our optimization
method generally provides sparse codes. More visualiza-
tions and explanations are given in Appendix B.

6.3. Visualization of Learned Mapping and
Self-attention Maps

In Figure 4 we show the self-attention maps at the different
layers of the model, at the different stages of the proposed
soft masking. We first depict the classical self-attention
layer in (a), then show the learned connectivity mapping
ψγ in (b), the induced filtered mask in (c), and the resulting
masked/filtered self-attention (d). We can observe from
the connectivity mapping (b) that this shallow two-layer
network learns to initially analyze highly connected nodes
in the first layer, to finally focus on other less related nodes.
This translates directly to complementary saliency regions
of the filtered masks (c). Visualization for a N = 6 model
is given in Appendix D.

(a) (b)

(c) (d)

Figure 6: (a) Training loss of the proposed DC-ECCT with
Ω fixed and trained for BCH(31,16) codes. (b) Evolution of
Ωt compared to Ω0. (c) Evolution of Ωt compared to Ωt−1.
(b) Parity-check matrix sparsity. In these experiments, the
initial Ω0 is random, the optimization over Ω is stopped at
iteration 800, and the architecture is N = 2, d = 32.

6.4. Training Dynamics

We present in Figure 6 the typical training dynamics of the
proposed framework. In panel (a) we show the training
loss for a fixed Ω. As can be seen, the encoder-decoder
models enable faster and better training. We present in
(b,c) the high variation of the learned Ω at the beginning of
the optimization, attenuated towards the end of the training.
Finally, we can observe in (d) the level of sparsity of the code
during training. The framework tends to produce sparse
codes, with the main modification of the codes appearing
during the first stage of training.

7. Conclusion
We present a novel end-two-end training method of the bi-
nary linear block error correction system. The proposed
framework enables the effective and differentiable joint op-
timization of the code and of the neural decoder. The neu-
ral decoder based on the Transformer architecture allows
the differentiable training of the code via the Tanner graph
connectivity derivation from the parity-check matrix. The
proposed neural decoder outperforms the state-of-the-art,
while the unified encoding-decoding training allows further
improvement of performance.

A common criticism for ML-based ECC is that the neural
decoder cannot be deployed directly without the application
of massive deep-learning acceleration methods. Here, we
show for the first time that a code trained jointly with its de-
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coder is also better for popular classical decoders. Looking
forward, the efficient optimization of the codes may open
the door to the creation of new families of codes and the
establishment of new industry standards.

8. Impact Statements
This paper presents work whose goal is to advance the field
of Machine Learning and Information Theory. No real
societal consequences of our work can be easily established
or highlighted here.
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A. Repetition Code Backpropagation Analysis
We assume the standardized (3,1) repetition code such that

G =
(
1 c1 c2

)
and H =

(
c1 1 0
c2 0 1

)
, where c1, c2 ∈

{0, 1}. The repetition code is optimal for c1 = c2 = 1.

Given a message m ∈ {0, 1} we have x = mG =(
m c1m c2m

)
. Assuming no modulation, under a bi-

nary erasure channel we have y =
(
y1 y2 y3

)
= x⊕ n

with n ∈ {0, 1}3 the noise vector. The code syndrome is
then of the form

s =

(
s0
s1

)
= Hy =

(
c1y1 ⊕ y2
c2y1 ⊕ y3

)
(9)

Using polarized notation, we have{
s1 = 0.5− 0.5(1− 2c1y1)(1− 2y2)

s2 = 0.5− 0.5(1− 2c2y1)(1− 2y3)
(10)

Thus, we have ∂s1
∂c2

= ∂s2
∂c1

= 0 and, without loss of general-
ity we have

∂s1
∂c1

= y1(1− 2y2) + (1− 2c1y1)
∂y2
∂c1

(11)

We can observe that assuming yi as independent from the
codeword (i.e., not derived from G) for every (potentially
wrong) value of ci, the gradient is zero and no update is
possible half of the time (i.e., m = n1 = 0 or m = n1 = 1).
Thus the channel output should not be assumed as constant
during backpropagation (i.e., yi := yi(c1, c2)).

Assuming the channel output is dependent on the generator
and considering it for the computation of the codeword we
have now yi = xi ⊕ ni and then

∂s1
∂c1

= y1(1− 2y2) +m(1− 2c1y1)(1− 2n2) (12)

We can observe sampling zero messages induces the same
gradient as the independent setting since it cancels the parity
check coupled with it. Thus, we can deduct the all ones
binary message i.e., m = 1 (or at least m ̸= 0, a contrary
to what is commonly done in neural decoders training) is
important for efficient backpropagation since it will not
cancel the information propagation in the backward pass.

B. Parity-check Matrix Visualization
In Figure 7, we depict several typical parity-check matrices
for different codes. We note that the sparsity of the code is
a property that emerges from training and is not enforced
by the framework: sparse codes seem more appropriate for
Transformer-based neural decoders’ inductive bias.

(a) (b)

(c) (d)

Figure 7: The original parity-check matrix (PCM) of addi-
tional codes. (a) LDPC(49,24), and (c) BCH(63,45). The
second column (b,d) corresponds to the learned parity-check
matrices of the corresponding code length and rate. The
PCM sparsity is of (a) 15%, (b) 26%, (c) 38%, and (d) 20%

C. Impact of the Initialization
We present in Table 4 the performance of the DC-ECCT and
the E2E DC-ECCT under baseline and random initialization.
We can observe that the initialization has a very major im-
pact on the DC-ECCT while the end-to-end training allows
to mitigate the code impact but still presents different per-
formance under different initialization, which is understand-
able in high dimensional non-convex optimization scenarios.
Also, it seems Polar codes, contrary to other codes, already
provide a strong initialization for the proposed framework.

From our experience, refining a learned parity check matrix
most of the time did not improve or even gave worse perfor-
mance. The reason should lie within the high dimensional
non-convex optimization where the local minima of may be
a sharp minimum [1] such that small perturbation (retrain-
ing) induces a worse local optimum. Other optimization
methods may allow such refinement though.

D. Visualization of Learned Mapping and
Self-attention Maps

Figure 8 depicts BER plots comparing the performance of
the baselines and the proposed method for several codes.

E. Ablation Study
In Figure 5 we present an ablation study of the different
elements of the proposed framework.
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Table 4: A comparison of the negative natural logarithm of
Bit Error Rate (BER) for three normalized SNR values of
our method for N = 2, d = 32 with different initializations.
We test the initialization of Ω with baseline codes and with
random parity-check matrix. Higher is better.

Model DC-ECCT E2E DC-ECCT
Code Baseline Ω Random Ω Baseline Ω Random Ω

Eb/N0 4 5 6 4 5 6 4 5 6 4 5 6

POLAR(32,11) 4.53 5.69 7.08 3.95 4.93 6.18 4.55 5.68 7.08 4.65 5.81 7.28

POLAR(64,32) 4.40 5.76 7.57 3.47 4.42 5.77 4.72 6.22 8.13 4.70 6.13 8.05

BCH(31,16) 4.97 6.56 8.54 4.62 5.90 7.59 5.22 6.75 8.56 5.30 6.89 9.09

BCH(63,45) 4.54 6.06 8.12 4.41 5.85 7.83 4.72 6.37 8.60 4.98 6.69 8.97

LDPC(49,24) 4.08 5.19 6.45 3.75 4.81 6.24 4.95 6.45 8.33 4.95 6.46 8.33

RS(60,52) 4.38 5.13 6.03 5.04 6.68 8.82 4.38 5.13 6.03 5.12 6.80 9.02

In order to emphasize the importance of a mask induced by
the code we provide two ablation studies. Regarding the
masking procedure itself, we first provide the performance
of a fully trainable mask, such that the self-attention is mul-
tiplied similarly as in Eq 6 while the mask is a parameter
matrix trained independently of the code. Regarding the
training via the mask we show the performance of the pro-
posed framework where the gradients originated from the
mask are stopped.

In order to emphasize the importance of the sampling of the
original message m we provide results using random sam-
pling ofm (i.e., notm = 1). We note here that usingm = 0
(i.e., G is not taken into account for the optimization), as
done in almost all the existing neural decoding methods,
just completely fails the training.

Finally, even though there exists no known alternative, we
provide an interesting insight into the gradient computation
of the modulo operator. We apply the STE (Bengio et al.,
2013) on the results of a regular matrix-vector multiplication.
Given the modulo function g, we then have g(x) = xmod2
and ∂g(x)

∂x = 1|x|≤1. Since this approach is less theoretically
founded than the proposed polarization (especially in our
scenario where the modulo operation is performed over N),
it is interesting to see its overall training seems to bring
enhanced performance.

We note here that the quality of the learned code can cer-
tainly be improved if better trained on larger noise ranges
(i.e., range) and batch size, depending on available comput-
ing resources.

F. BER Visualization
Figure 9 depicts classical BER plots for three of the tested
codes.

Table 5: Ablation analysis on two codes for the N =
2, d − 32 architecture. For fairness, the same setting is
used in all experiment: clamping Ω s.t. |Ω| ≤ 1 and we stop
the training of Ω after 800 iterations among 1000. Ω0 is ran-
domely sampled. We show the performance of the proposed
method (Our), the performance using a fully trainable mask
independently of the code (Mask V2), and the performance
of using the STE for the modulo calculations instead of
the polarization approximation. We show the performance
when we stop the gradient from backpropagating via the
mask (Mask Stop Gradient) as well as the performance of
using random m instead of all ones.

Code (31,16) (32,11)

Eb/N0 4 5 6 4 5 6

Our 5.16 6.51 8.19 4.40 5.54 7.04
Mask V2 4.83 6.18 7.85 4.04 5.05 6.28
STE 5.11 6.53 8.20 4.63 5.89 7.39
Mask S.G. 4.54 5.81 7.50 4.26 5.39 6.79
Random m 5.04 6.44 8.13 4.38 5.50 6.84
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(a) (b) (c) (d)

Figure 8: For a N = 6 layers DC-ECCT (first and second row) and a (32,11) code: (a) self-attention layer, (b) connectivity
mapping ψγ , (c) the corresponding filtered mask ψγ

(
g(HΩ)

)
(d) the obtained soft masked self-attention. The self-attention

maps have been averaged over the heads dimension.
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Figure 9: BER plots comparing the performance of the baselines and the proposed method for various Eb/N0 values.
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