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Abstract

Large language models have demonstrated ex-001
ceptional capabilities across diverse tasks, but002
their fine-tuning demands significant mem-003
ory, posing challenges for resource-constrained004
environments. Zeroth-order (ZO) optimiza-005
tion provides a memory-efficient alternative006
by eliminating the need for backpropagation.007
However, ZO optimization suffers from high008
gradient variance, and prior research has largely009
focused on single-task learning, leaving its010
application to multi-task learning unexplored.011
Multi-task learning is crucial for leveraging012
shared knowledge across tasks to improve gen-013
eralization, yet it introduces unique challenges014
under ZO settings, such as amplified gradient015
variance and collinearity. In this paper, we016
present MaZO, the first framework specifically017
designed for multi-task LLM fine-tuning under018
ZO optimization. MaZO tackles these chal-019
lenges at the parameter level through two key020
innovations: a weight importance metric to021
identify critical parameters and a multi-task022
weight update mask to selectively update these023
parameters, reducing the dimensionality of the024
parameter space and mitigating task conflicts.025
Experiments demonstrate that MaZO achieves026
state-of-the-art performance, surpassing even027
multi-task learning methods designed for first-028
order optimization.029

1 Introduction030

Large language models (LLMs) have revolution-031

ized natural language processing, enabling break-032

throughs in various applications (Anthropic, 2024;033

DeepMind, 2024; OpenAI, 2024; Bai et al., 2023).034

However, the large sizes of LLMs pose signif-035

icant memory challenges during training. Tra-036

ditional first-order (FO) optimization uses back-037

propagation, which requires substantial memory to038

store intermediate activations and gradients (Ros-039

tam et al., 2024; Kundu et al., 2024). This is-040

sue is especially pronounced in fine-tuning tasks041

on resource-constrained platforms (e.g. low-end 042

GPUs or edge devices) (Zhuang et al., 2024). More- 043

over, certain hardware platforms lack software sup- 044

port (e.g. automatic differentiation) for backpropa- 045

gation (Bergholm et al., 2018), further restricting 046

FO methods. Although parameter-efficient fine- 047

tuning methods have alleviated some of these chal- 048

lenges, they still require multiple times the memory 049

of inference (Bai et al., 2024a; Zhang et al., 2024b). 050

Zeroth-order (ZO) optimization provides a 051

memory-efficient alternative by estimating gradi- 052

ents via forward passes only. Recent advances, 053

such as MeZO (Malladi et al., 2023), have reduced 054

memory usage to inference levels while achieving 055

strong performance in LLM fine-tuning. However, 056

the gradient variance in ZO methods is proportional 057

to the number of perturbed parameters, which 058

makes ZO methods struggle with high-dimensional 059

parameter spaces, leading to slower convergence, 060

increased gradient estimation variance, and hard 061

to scale up (Chen et al., 2024b). Although recent 062

work (Liu et al., 2024b; Yang et al., 2024c; Chen 063

et al., 2023; Liu et al., 2024b; Yu et al., 2024) has 064

addressed some of these issues, most ZO methods 065

focus on single-task learning, leaving their applica- 066

tion to multi-task learning largely unexplored. 067

Multi-task learning is a key paradigm in LLMs to 068

enable shared representations across diverse down- 069

stream tasks. This approach improves generaliza- 070

tion, reduces the need for task-specific models, and 071

improves performance in a wide range of applica- 072

tions (Zhang et al., 2023; Radford et al., 2019). De- 073

spite its advantages, multi-task learning also intro- 074

duces inherent challenges, particularly when tasks 075

exhibit conflicting objectives. These conflicts arise 076

when the optimization signals from different tasks 077

are misaligned, leading to competing gradients that 078

prevent the model from learning effectively across 079

all tasks (Sener and Koltun, 2018; Mahapatra and 080

Rajan, 2020; Crawshaw, 2020; Zhou et al., 2022; 081

Shi et al., 2023). 082
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Figure 1: Radar chart comparing the performance of our MaZO method with other methods on LLaMA-2-7B and
Mistral-7B. Larger is better. Shared model means we train the model on one task and test it on all tasks.

The issue of conflicting gradients is further083

exacerbated in scenarios involving ZO optimiza-084

tion (Liu et al., 2020; Malladi et al., 2023). The085

high gradient variance in ZO methods can amplify086

inter-task conflicts and make it even more diffi-087

cult to balance competing objectives (Zhang et al.,088

2024a). Furthermore, ZO methods suffer from089

collinearity in gradient estimates (see Section 2.2),090

where aggregated gradient directions lack diversity,091

and higher rank in Hessian matrix (see Section 3.1),092

where slower decay of eigenvalues in multi-task093

learning makes the convergence slow. A primary094

experiment demonstrated in Figure 1 shows that095

vanilla multi-task ZO optimization is only slightly096

better than zero-shot on average and is even worse097

on many tasks.098

To address these challenges, we propose Masked099

Zeroth-Order Optimization (MaZO), a novel frame-100

work designed for multi-task fine-tuning under ZO101

settings. MaZO tackles the problem at parameter102

level, which introduces two key innovations: (1) a103

weight importance metric that identifies critical pa-104

rameters for each task, and (2) a multi-task weight105

update mask that selectively updates these parame-106

ters while freezing others. By focusing on the most107

important parameters, MaZO reduces the dimen-108

sion of parameter space, mitigating the high vari-109

ance of ZO fine-tuning while preserving the model110

capacity. Moreover, unlike traditional approaches111

dynamic weighting (Chen et al., 2018; Liu et al.,112

2024a; Aghajanzadeh et al., 2023), which are triv-113

ial in ZO settings because of collinearity, MaZO114

balances multi-task learning conflicts from the per-115

spective of weight. It activates distinct parameter116

subsets for different tasks based on their impor-117

tance scores, allowing MaZO to allocate more ca- 118

pacity to tasks that require more updates. 119

Paper Contributions. This paper makes the fol- 120

lowing novel contributions: 121

• First ZO-based multi-task fine-tuning frame- 122

work: We propose Masked Zeroth-Order Op- 123

timization (MaZO), the first framework specif- 124

ically designed for multi-task LLM fine-tuning 125

under ZO optimization. 126

• Task conflict resolution at the parameter level: 127

MaZO addresses inter-task conflicts by selec- 128

tively activating critical parameters for each task. 129

This parameter-level approach ensures balanced 130

optimization across tasks under ZO settings. 131

• State-of-the-art performance: Comprehensive 132

experiments on LLaMA-2-7B and Mistral-7B 133

demonstrate that MaZO achieves state-of-the-art 134

results in multi-task fine-tuning under ZO set- 135

tings, outperforming multi-task learning methods 136

designed for first-order (FO) optimization. 137

2 Preliminaries and Related Work 138

2.1 Zeroth-Order Optimization 139

Zeroth-order (ZO) optimization estimates gradients 140

using forward passes only. A common approach 141

for ZO gradient estimation is the simultaneous per- 142

turbation stochastic approximation (Spall, 1992), 143

which serves as a randomized gradient estimator. 144

Consider a model with parameters θ ∈ Rd and a 145

loss function L(θ). Using Taylor expansion, the 146

randomized gradient can be estimated by perturb- 147

ing θ with random noise z ∼ N (0, Id) and com- 148

puting forward and reverse losses: 149
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∇̂L(θ) = L(θ + ϵz)− L(θ − ϵz)

2ϵ
z, (1)150

where ϵ is a small scalar. The expectation of151
∇̂L(θ) matches the smoothed version of the true152

gradient. During training, zeroth-order stochastic153

gradient descent (ZO-SGD) updates parameters as:154

155 θ = θ − η∇̂L(θ), (2)156
where η is the learning rate.157

Recent advances have improved ZO optimiza-158

tion for large-scale applications. For example,159

MeZO (Malladi et al., 2023) reduces memory us-160

age by regenerating random perturbations z using161

random seeds instead of storing them. ZO optimiza-162

tion offers significant advantages for fine-tuning163

LLMs, as it avoids memory-intensive backpropaga-164

tion (Liu et al., 2020; Zhang et al., 2024b). Despite165

these advantages, the gradient variance of ZO opti-166

mization increases linearly with the dimensionality167

of the parameter space. This leads to slower conver-168

gence and difficulties in large-scale training (Chen169

et al., 2024b). To address these challenges, various170

methods have been proposed. These include the de-171

sign of advanced ZO optimizers (Zhao et al., 2024;172

Jiang et al., 2024; Chen et al., 2019); dimensional-173

ity reduction techniques (Liu et al., 2024b; Wang174

et al., 2024; Yang et al., 2024c; Guo et al., 2024);175

hybrid approaches like Addax (Li et al., 2024); full-176

batch gradient estimation (Gautam et al., 2024);177

exploiting low-rank structures (Zhao et al., 2023;178

Yu et al., 2024), and using orthogonal random di-179

rections (Kozak et al., 2023).180

While these methods have advanced ZO in var-181

ious ways, they do not specifically address the182

unique challenges of multi-task learning.183

2.2 Multi-task Learning184

Multi-task learning aims to improve generalization185

performance by jointly learning T related tasks186

through shared parameters (Chen et al., 2024a).187

Classical multi-task learning minimizes a weighted188

combination of task-specific losses:189

L(θ) =
T∑
t=1

wtLt(θ), s.t.
T∑
t=1

wt = 1, wt ≥ 0,

(3)

190

where Lt(θ) represents the learning loss for a sin-191

gle task t. Parameter updates are performed using192

gradient descent.193

Multi-task learning under FO optimization has194

been widely studied, with different technical routes:195

(1) dynamic weight, which adjusts the weight of196

different tasks by gradients (Chen et al., 2018;197

Sener and Koltun, 2018; Mao et al., 2022), loss 198

(Liu et al., 2019, 2024a; Kongyoung et al., 2020; 199

Gong et al., 2024) or uncertainty (Aghajanzadeh 200

et al., 2023); (2) gradient manipulation (Désidéri, 201

2012; Liu et al., 2021; Yu et al., 2020); (3) data 202

mixing and scheduling (Bai et al., 2024b; Ahma- 203

dian et al., 2024); (4) learning shared and specific 204

knowledge with model architecture based on LoRA 205

(Feng et al., 2024; Yang et al., 2024b; Wang et al., 206

2023) or MoE (Liu et al., 2023; Gupta et al., 2022); 207

(5) model merging (Yang et al., 2023). 208

3 The MaZO Framework 209

3.1 Challenges in ZO Multi-Task Fine Tuning 210

Under ZO optimization, multi-task learning faces 211

unique challenges. Specifically, task-specific ZO 212

gradient estimates exhibit fundamental collinear- 213

ity, as the aggregated multi-task learning gradient 214

aligns with the shared random perturbation z: 215

g =
T∑
t=1

wtg
t 216

=

(
T∑
t=1

wt
Lt(θ + ϵz)− Lt(θ − ϵz)

2ϵ

)
z. (4) 217

Here g and gt are gradients of multi-task learning 218

and of task t, respectively. This collinearity results 219

in a lack of directional diversity, limiting optimiza- 220

tion efficacy. Further discussion can be found in 221

Appendix H. 222

As explained in (Malladi et al., 2023), the sur- 223

prising success of ZO optimization in LLM fine- 224

tuning is due to the low-rank property of the Hes- 225

sian matrix. Based on (3), the Hessian matrix in 226

multi-task fine-tuning can be written as 227

H =

T∑
t=1

wtH
t, (5) 228

where Ht is the Hessian associated with single-task 229

learning loss Lt. Although Ht has a low rank in 230

the fine-tuning process, H can have a much higher 231

rank due to the weighted sum of T task-specific 232

Hessian matrices. Figure 3 empirically verifies our 233

theoretical claim: the Hessian in multi-task learn- 234

ing exhibits a broader eigenvalue spectrum than 235

single-task learning, leading to a higher effective 236

rank. This further slows down the convergence of 237

ZO in multi-task LLM fine-tuning. 238

To address the above challenges, we propose 239

Masked Zeroth-Order Optimization (MaZO). 240
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Figure 3: Top-K eigenvalue distribution of the Hessian
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in multi-task learning suggests a higher effective rank,
which contributes to the slower convergence of ZO fine-
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Our approach introduces a novel framework that241

solves multi-task learning at parameter level.242

MaZO combines weight importance metrics and a243

multi-task weight update mask. The weight impor-244

tance is derived using two complementary metrics:245

(1) a global score which evaluates the theoretical246

minimum loss when freezing a parameter, (2) a247

greedy score which quantifies the immediate loss248

change during a single optimization step. Using249

these scores, we construct a weight update mask250

that identifies a subset of critical parameters, en-251

abling effective optimization by reducing dimen-252

sionality and variance while balancing the perfor-253

mance among potentially conflicting tasks.254

3.2 Multi-Task Weight Update Mask255

We first introduce the multi-task weight update256

mask, assuming the weight importance scores are257

precomputed. We defer the computation of weight258

importance scores to the next subsection. In ZO259

optimization, the variance of an estimated gradient260

increases with the number of training parameters. 261

Therefore, it is crucial to identify and focus on 262

critical parameters for effective optimization while 263

freezing others (Liu et al., 2024b; Guo et al., 2024). 264

Suppose that we have a weight importance score 265

matrix St for each task t and a sparsity level ρ. We 266

unfreeze the top k = ⌈(1− ρ) ·N⌉ parameters in 267

each row, where N is the total number of param- 268

eters in that row. The importance scores are com- 269

pared row-wise due to the approximations involved 270

in gradient and Hessian estimation following Sun 271

et al. (2023), which will be detailed in Section 3.4. 272

Since importance scores across tasks are not di- 273

rectly comparable due to differing scales, we nor- 274

malize the scores row-wise for each task: 275

Ŝt
ij =

St
ij −min(St

i)

max(St
i)−min(St

i)
, (6) 276

where St
i denotes the i-th row of St; Ŝt

ij is the 277

normalized score for parameter j in row i for task 278

t. The overall score across tasks is computed as: 279

S =
T∑
t=1

Ŝt. (7) 280

We select the top k parameters based on S in 281

each row to fine-tune, while freezing the others. 282

This selection is represented by a binary mask ma- 283

trix M, where Mij = 1 indicates that parameter j 284

in row i is unfrozen. The final parameter update is 285

computed as: 286

∆Wmasked = ∆W ⊙M, (8) 287

where ⊙ denotes element-wise multiplication. 288

When applied to LoRA (Hu et al., 2021), this be- 289

comes: 290

∆Wmasked = (A ·B)⊙M, (9) 291

where A and B are the decomposed matrices of 292

LoRA. 293
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3.3 Weight Importance294

The overall importance score for task t combines295

the normalized global and greedy scores with a296

weight regularization term:297

St = St
global + αSt

greedy + β|W|, (10)298

where α and β are hyperparameters controlling the299

contributions of each component and |W| is the300

absolute value of weight. We now describe the301

computation of two complementary metrics: the302

global score and the greedy score.303

3.3.1 Global Score304

The global score is inspired by the Optimal Brain305

Surgeon method (Frantar and Alistarh, 2023; Sun306

et al., 2023; Das et al., 2023). Unlike pruning,307

which sets the parameters to zero, our approach308

freezes certain parameters while updating others309

via perturbation. Consider the Taylor expansion of310

the loss function of task t:311

δLt = (gt)⊤ · δθ + 1

2
δθ⊤ ·Ht · δθ +O(∥δθ∥3),312

where Ht is the Hessian matrix of task t and gt =313
∂Lt

STL
∂θ . Freezing a parameter at position m imposes314

the constraint I⊤mδθ = 0, where Im is an indicator315

function. The optimization problem becomes:316

min
m

{
min
δθ

((
gt
)⊤ · δθ + 1

2
δθ⊤ ·Ht · δθ

)
∣∣∣∣I⊤m · δw = 0

}
.

(11)317

This formulation seeks to find the parameter posi-318

tion m that, when frozen, results in the maximal319

decrease in the loss function while allowing other320

parameters to adjust optimally. The inner optimiza-321

tion determines the best possible parameter updates322

given the constraint, while the outer optimization323

identifies the least impactful parameter to fix.324

Using Lagrange multipliers, the optimal loss325

change (global score) is derived as:326

(St
global)m = δLtm =

(
I⊤m ·

(
Ht
)−1 · gt

)2
2
(
(Ht)−1

)
mm

, (12)327

This expression quantifies the theoretical maximum328

decrease in loss when parameter m is fixed, pro-329

viding a measure of its importance to the overall330

optimization process. Smaller values indicate less331

important parameters, which should be frozen.332

3.3.2 Greedy Score 333

Although the global score provides a theoretical 334

measure of parameter importance, it may not suf- 335

fice because the model may not converge to the 336

optimal situation due to the large variance in the 337

ZO gradient. Therefore, we also introduce a greedy 338

score as a practical complement, which considers 339

the immediate impact of freezing a parameter in a 340

single optimization step. 341

For a gradient descent update with learning rate 342

η and random direction z, the parameter update of 343

task t is approximated as: 344

δθ ≈ −ηzzTgt. (13) 345

Substituting δθ and taking the expectation over 346

random directions z, we obtain the expected change 347

in loss: 348

E(δLt) = −(gt)Tgt · η 349

+

(
M∑
i=0

(gt
i)

2Ht
ii + 2(gt

i)
THtgt

)
η2 350

where M is the number of parameters in a LLM. 351

When we freeze a parameter at position m, the 352

change of loss (greedy score) will increase by: 353

(St
greedy)m = δLtm 354

= (gt
m)2η +Ht

mm(gt
m)2η2 355

− 4

M∑
j=0

Ht
mj(g

t
m)(gt

j)η
2 (14) 356

Parameters with lower St
greedy values are consid- 357

ered less important for the current optimization 358

step and are better candidates for freezing during 359

multi-task learning. 360

3.4 Implementation 361

To avoid the huge cost of computing the full gradi- 362

ent and Hessian, we adopt a row-wise approxima- 363

tion strategy. For a linear layer y = Wx, focusing 364

on a single row wi, the output is yi = wix. Per- 365

forming a Taylor expansion of the loss L with re- 366

spect to yi, we find that both the first-order gradient 367

∇L(yi) and second-order derivative ∇2L(yi) are 368

scalars. Substituting ∆yi = ∆wix, the gradient 369

and Hessian with respect to wi are: 370

gt =
∂L
∂wi

= ∇L(yi)x, (15) 371

Ht =
∂2L
∂w2

i

= ∇2L(yi)(xx
⊤). (16) 372
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Here, we replace the gradient with x, and the Hes-373

sian with xx⊤ since we only care about the relative374

value in a row. This row-wise approximation signif-375

icantly reduces computational cost, while still cap-376

turing the relative importance of parameters within377

each row. However, it also restricts the weight-378

importance comparison to the row direction.379

Overall Algorithm Flow. The pseudo-code of380

the whole MaZO fine-tuning framework is shown381

as Algorithm 1 in Appendix C.382

4 Experiments383

4.1 Experimental Setup384

We perform multi-task fine-tuning on three widely385

used decoder-only pretrained language models:386

LLaMA-2-7B (Touvron et al., 2023), Mistral-7B387

(Jiang et al., 2023) and Qwen2.5-32B (Yang et al.,388

2024a).389

Tasks. We evaluate our approach on a diverse390

set of natural language understanding (NLU) and391

natural language generation (NLG) tasks from the392

GLUE (Wang et al., 2018) and SuperGLUE (Wang393

et al., 2019) benchmarks. Specifically, for NLU,394

we include SST-2, BoolQ, RTE, WSC, WiC, Mul-395

tiRC, and COPA, covering various classification396

and reasoning tasks. For NLG, we use SQuAD397

for question answering. Additionally, we evaluate398

Qwen2.5-32B on the MMLU dataset, which con-399

sists of 57 tasks and 14k test examples, showcasing400

the scalability of our method. Details on datasets401

and evaluation metrics are in Appendix G.402

Reproducibility. Comprehensive details essen-403

tial for reproducing our results, along with the ab-404

lation study, are presented in Appendix B.405

Baselines. We compare MaZO with several406

baselines. First, we include vanilla ZO optimiza-407

tion combined with traditional multi-task learning408

(MTL-ZO) techniques as a direct comparison to409

MaZO in the ZO setting. Second, we evaluate410

single-task learning (STL-ZO), where models are411

trained individually on each task to provide an up-412

per bound for task-specific performance without413

multi-task conflicts, as well as a single-task trans-414

fer baseline, where the model is trained on a single415

task (SST-2) using vanilla ZO optimization and416

evaluated across all tasks to highlight the limita-417

tions of single-task training in multi-task scenar-418

ios. Third, we include LoRA fine-tuning (Hu et al.,419

2021), a parameter-efficient approach, and extend420

MaZO to update LoRA matrices under ZO settings.421
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Figure 4: The convergence curve of (1) vanilla multi-
task ZO fine-tuning with LoRA, (2) MaZO with LoRA.

Finally, we compare MaZO against state-of-the- 422

art first-order (FO) multi-task learning methods, 423

including CoBa (Gong et al., 2024), FAMO (Liu 424

et al., 2024a), and MTL-LoRA (Yang et al., 2024b), 425

to its compatibility with ZO optimization. Details 426

are discussed in Appendix D. These baselines pro- 427

vide a comprehensive comparison for assessing 428

MaZO’s effectiveness and robustness in addressing 429

the challenges of ZO-based multi-task learning. 430

4.2 Results on LLaMA-2-7B 431

MaZO Outperforms Competitors. The results 432

for LLaMA-2-7B are presented in Table 1. Vanilla 433

multi-task ZO optimization shows only slight im- 434

provements over the zero-shot baseline, highlight- 435

ing its inability to effectively address multi-task 436

conflicts under ZO settings. Similarly, vanilla 437

single-task ZO optimization with a shared model 438

fails to generalize effectively across multiple tasks, 439

underscoring the inherent challenges of ZO opti- 440

mization in multi-task scenarios. In contrast, our 441

proposed MaZO framework achieves the highest 442

average performance across all tasks and demon- 443

strates a balanced performance profile. These re- 444

sults validate MaZO’s ability to mitigate inter-task 445

conflicts and optimize multi-task learning by se- 446

lectively focusing on critical parameters. The ef- 447

fectiveness of MaZO is further evident in its su- 448

perior performance in both full-model ZO fine- 449

tuning and LoRA-based fine-tuning, with partic- 450

ularly pronounced gains in the latter. This under- 451

scores MaZO’s flexibility and its compatibility with 452

parameter-efficient fine-tuning techniques. 453

Dimensionality Reduction Enhances Multi- 454

Task Learning. The application of LoRA to ZO 455

fine-tuning significantly improves the performance 456

of multi-task learning. This improvement can be 457

attributed to LoRA’s ability to reduce the dimen- 458

sionality of the parameter space, thereby lowering 459
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Task SST-2 BoolQ RTE WSC WiC MultiRC COPA SQuAD AvgTask Type ———————- Classification ———————- – Multiple Choice – – Generation –

STL-ZO (one model per task) 93.8 83.0 73.5 51.3 62.1 61.0 86.0 79.6 73.8
Zero-Shot 83.8 75.8 57.0 37.5 52.6 46.6 79.0 56.4 61.1
ICL 93.7 78.7 61.2 47.2 59.9 54.3 80 57.7 66.6
STL-ZO(shared model) 93.8 75.8 58.8 43.3 50.6 46.0 75.0 52.2 61.9
MTL-ZO 80.6 74.2 55.6 58.6 51.0 53.8 80.0 62.3 64.5
MTL-ZOLoRA 90.2 80.0 61.0 54.8 56.6 58.0 76.0 74.8 68.9

MTL-ZOMTL-LoRA 88.4 76.8 60.2 60.6 57.6 61.6 79.0 59.4 68.0
MTL-ZOCoBa 82.8 75.3 56.8 60.6 53.4 55.8 77.0 57.6 64.9
MTL-ZOFAMO 91.0 77.6 59.4 56.5 53.4 50.6 78.0 53.9 65.1

MaZO 90.6 76 62.8 56.7 52.6 58.6 82.0 55.5 66.9
MaZOLoRA 91.2 80.0 62.8 61.5 56.6 60.4 80.0 77.7 71.3

Table 1: Performance comparison across tasks using different methods on LLaMA-2-7B. The average score (Avg)
is computed across all tasks. Metrics for these tasks are consistent with MeZO (Malladi et al., 2023). Shared model
indicates training on a single task (SST-2) and testing on all tasks. ICL refers to in-context learning. STL represents
single-task learning and MTL represents multi-task learning.

the variance of gradient estimates. These findings460

reinforce the validity of MaZO’s masking strategy,461

which optimizes multi-task learning by focusing462

on a reduced set of critical parameters.463

FO multi-task learning methods do not apply464

to ZO. Multi-task learning methods originally de-465

veloped for first-order (FO) optimization, such as466

CoBa and FAMO, do not achieve effective perfor-467

mance in the ZO setting. This can be attributed to468

their inability to resolve multi-task conflicts due to469

the collinearity problem in ZO gradient estimates.470

Under the ZO framework, FO methods can only471

adjust the magnitude of the approximated gradient,472

but not its direction, resulting in performance degra-473

dation. Additionally, MTL-LoRA, the multi-task474

version of LoRA does not significantly enhance per-475

formance in the ZO setting. This may be due to the476

sensitivity of task-specific weights and the diagonal477

transformation matrix to noise. Perturbation-based478

optimization, as used in ZO, introduces excessive479

variance, which undermines the effectiveness of480

these FO-based methods.481

4.3 Results on Mistral-7B482

The results for Mistral-7B in Table 2 reveal trends483

similar to those observed with LLaMA-2-7B. De-484

spite the relatively low zero-shot performance of485

Mistral-7B, vanilla multi-task learning ZO fails486

to deliver substantial improvements. This under-487

scores the inherent challenges of ZO-based multi-488

task learning. In contrast, MaZO consistently out-489

performs all other methods. Its ability to mitigate490

ZO-specific challenges is evident in its superior491

performance, further validating MaZO as a state-of-492

the-art solution for ZO-based multi-task learning.493

4.4 Results on Qwen2.5-32B 494

The results of MMLU benchmark on Qwen2.5-32B 495

are demonstrated in Table 3 that directly apply- 496

ing multi-task learning (e.g., MTL-ZO) can lead 497

to a performance drop compared to the zero-shot 498

baseline. In contrast, our MaZO-based methods 499

consistently improve performance across settings, 500

surpassing both the zero-shot and standard multi- 501

task learning approaches. 502

4.5 Computational Performance 503

Figure 4 shows that MaZO converges faster and 504

achieves a significantly lower loss compared to tra- 505

ditional multi-task ZO fine-tuning methods. This 506

holds true both with and without LoRA. This im- 507

provement can be attributed to the mask mecha- 508

nism in MaZO, which focuses on optimizing the 509

most critical parameters, thereby reducing gradi- 510

ent noise, balancing the inter-task conflicts, and 511

accelerating convergence. 512

To evaluate the efficiency of MaZO, we com- 513

pare its memory usage, search time, and training 514

time against baseline vanilla multi-task learning 515

ZO methods, both with and without LoRA. Table 4 516

summarizes the results. The search time introduced 517

by MaZO is negligible compared to the overall 518

training time. MaZO incurs a slight increase in 519

memory usage (approximately 10%) compared to 520

baseline multi-task learning ZO methods. This is 521

primarily due to the additional storage required for 522

the weight update mask. However, this increase is 523

marginal and does not significantly impact the over- 524

all memory efficiency, especially when combined 525

with LoRA, where the parameter space is already 526
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Task SST-2 BoolQ RTE WSC WiC MultiRC COPA SQuAD AvgTask Type ———————- Classification ———————- – Multiple Choice – – Generation –

STL-ZO (one model per task) 93.6 77.8 74.2 55.3 62.1 62.7 88.0 76.5 73.8
Zero-Shot 56.7 42.4 50.5 52.8 50.3 43.6 79.0 57.2 54.1
ICL 62.3 46.1 56.0 53.2 61.4 53.4 79.0 62.3 59.2
MTL-ZO 58.7 47.2 55.0 53.2 59.8 54.4 79.0 56.3 58.0
MTL-ZOLoRA 89.3 73.2 71.5 51.3 58.1 53.4 80.0 73.5 68.7

MaZO 83.4 56.3 60.2 54.8 58.1 55.8 79 59.4 63.4
MaZOLoRA 90.2 72.4 74.2 54.8 62.1 57.3 82.0 73.5 70.8

Table 2: Performance comparison across tasks using different methods on Mistral-7B. The setting and notation are
the same as Table 1. We exclude the FO MTL methods as they do not have significant improvement.

Method MMLU Score
Zero-Shot 83.1
MTL-ZO 81.2
MTL-ZOLoRA 83.4
MTL-ZOFAMO 82.7
MTL-ZO 83.5
MTL-ZOLoRA 84.1

Table 3: MMLU Scores of different methods on
Qwen2.5-32B.

Method Memory (GB) Search Time (min) Training Time (h)
MTL-ZO 29.0 - 14.3
MaZO 33.3 42 16.6
MTL-ZOLoRA 31.2 - 13.7
MaZOLoRA 33.9 8.5 14.1

Table 4: Comparison of memory usage, search time,
and training time between MTL-ZO and MaZO, with
and without LoRA. While MaZO introduces marginal
memory and runtime overhead due to the mask storage
and search process, it achieves significantly better ac-
curacy. Note that the memory requirement exceeds the
model size (7B) because we use a batch size of 16 and
a maximum token length of 600.

reduced. While MaZO introduces a small memory527

overhead, its benefits in terms of faster convergence528

and reduced gradient variance outweigh this cost,529

making it an effective and practical solution for530

multi-task fine-tuning under ZO optimization.531

4.6 Various Weight Importance Metrics532

To further validate the effectiveness of MaZO,533

we compare its performance with three alterna-534

tive weight scoring methods: random selection,535

magnitude-based scoring, and Wanda scoring. De-536

tailed implementation of these methods is de-537

scribed in Appendix F. For a fair comparison, we538

fix the sparsity level at 50%, consistent with the539

sparsity used in the Wanda score. Table 5 summa-540

rizes the results of this comparison.541

The findings indicate that while both the542

magnitude-based and Wanda-based scoring can im-543

Task SST-2 BoolQ Copa SQuAD Avg

No Mask 85.4 72.2 80.0 66.0 75.9
Random 86.6 73.0 80.0 63.4 75.8
Magnitude 87.4 75.6 79.0 65.6 76.9
Wanda 88.4 77.8 80.0 62.4 77.2
MaZO 90.2 78.0 81.0 72.3 80.4

Table 5: Comparison of different weight importance
metrics. The sparsity is set to 50% except for No Mask.
Random and Magnitude are done weight-wise while
Wanda and MaZO are selected row-wise.

prove average performance, their improvements 544

are less pronounced and less balanced across tasks 545

compared to MaZO. This is because these meth- 546

ods evaluate the weight importance statically, with- 547

out considering training dynamics or perturbation- 548

based insights. In contrast, MaZO dynamically 549

identifies critical parameters during training, en- 550

abling more effective optimization and better multi- 551

task balance under the ZO framework. These re- 552

sults underscore the superiority of MaZO in lever- 553

aging weight importance to achieve state-of-the-art 554

performance in multi-task fine-tuning. 555

5 Conclusion 556

In this work, we have presented MaZO, a novel 557

framework that harnesses masked zeroth-order op- 558

timization for the multi-task fine-tuning of LLMs. 559

By incorporating weight importance score along- 560

side a multi-task weight update mask, MaZO ef- 561

fectively reduces gradient variance and mitigates 562

conflicts among tasks. Our experimental results 563

demonstrate that MaZO not only surpasses cur- 564

rent zeroth-order optimization methods but also 565

outperforms leading multi-task learning methods 566

designed for first-order optimization across a range 567

of NLP tasks. Furthermore, our parameter-level 568

approach is not limited solely to zeroth-order op- 569

timization, offering potential integrations with a 570

variety of other optimization strategies. 571
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6 Limitations572

While MaZO demonstrates strong empirical per-573

formance, several limitations warrant discussion.574

First, the computation of weight importance intro-575

duces additional computational overhead compared576

to vanilla ZO methods. However, this cost remains577

negligible relative to the memory and computa-578

tional demands of model weights and activations.579

Second, the effectiveness of MaZO is partially con-580

tingent on the quality of gradient and Hessian ap-581

proximations. While our current approximations582

are effective, they could be further refined through583

more sophisticated estimation techniques to en-584

hance performance. Finally, we do not provide585

a theoretical convergence analysis specifically for586

the MaZO approach. However, Sparse MeZO (Liu587

et al., 2024b) has already conducted a comprehen-588

sive and rigorous analysis of general masking sce-589

narios in zeroth-order optimization. We refer inter-590

ested readers to their work for detailed theoretical591

insights, and therefore do not duplicate these efforts592

here.593
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A Additional Explanation on Hessian and 902

Gradient Approximation 903

Consider a linear layer in an LLM that computes: 904

y = Wx, (17) 905

where W ∈ Rm×n, x ∈ Rn, and y ∈ Rm. Fo- 906

cusing on one particular linear component, let us 907

analyze a single row wi ∈ Rn of W. The corre- 908

sponding output is given by: 909

yi = wi x, (18) 910

which is a scalar. 911

To analyze the sensitivity of the loss L with re- 912

spect to wi, we perform a second-order Taylor ex- 913

pansion of L with respect to yi: 914

L(yi +∆yi) ≈ L(yi) +∇L(yi)∆yi 915

+
1

2
∇2L(yi) (∆yi)

2. (19) 916

Since yi is a scalar, its second derivative∇2L(yi) 917

is also a scalar. 918

Now, the change in yi due to a change in the 919

weights is 920

∆yi = ∆wi x. (20) 921

Substituting this into the second-order term yields: 922

∂2L
∂w2

i

≈ ∇2L(yi) (xx
⊤). (21) 923

Since we are primarily interested in comparing 924

weight importance along the row direction, the ab- 925

solute scale of the Hessian is not crucial. In prac- 926

tice, we can drop the multiplicative factor ∇2L(yi) 927

(or, equivalently, assume it to be a constant) and 928

write: 929
∂2L
∂w2

i

∝ xx⊤. (22) 930

Similarly, one can derive a first-order approx- 931

imation for the gradient. By retaining only the 932

first-order term of the Taylor expansion, we have: 933

L(yi +∆yi) ≈ L(yi) +∇L(yi)∆yi. (23) 934

With ∆yi = ∆wi x, the gradient with respect to 935

wi becomes: 936

∂L
∂wi

≈ ∇L(yi)x. (24) 937

Similarly, since we are only interested in the rela- 938

tive value, the factor is dropped: 939

g ∝ x. (25) 940
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Algorithm 1 MaZO LLM Fine-Tuning Framework

Input: Pre-trained LLM parameters θ, train-
ing data, tasks t = 1, . . . , T , sparsity level ρ,
hyperparameters α, β, learning rate η
Output: Updated parameters θ∗

for each task t = 1 to T do
Collect evaluation data
Compute St

global with eq. (12)
Compute St

greedy with eq. (14)
Combine scores:

St = St
global + αSt

greedy + β|W|

Normalize St and get Ŝt with eq. (6)
end for
Aggregate: Sum row-wise normalized scores
across tasks:

S =

T∑
t=1

Ŝt

for each weight W in LLM do
for each row i in W do

Select top k parameters in each row
according to corresponding S and construct
weight update mask M

end for
end for
for each training step do

Compute weight update ∆W using ZO
optimization

Apply mask:

∆Wmasked = ∆W ⊙M

Update parameters:

θ ← θ + η∆Wmasked

end for

This derivation shows that, by considering each941

row independently (row-wise), we avoid the im-942

mense complexity involved in computing the full943

Hessian matrix (which is high-dimensional and dif-944

ficult to characterize even under diagonalization945

assumptions). In other words, computing the Hes-946

sian row-wise allows us to circumvent the problem947

of determining the eigenvalues or even a reliable948

diagonal approximation of the full Hessian.949

B Implementation Details and 950

Reproducibility 951

B.1 Hyperparameters 952

The training configuration involves setting a learn- 953

ing rate of 1e-7 for the full model and 3e-4 for the 954

LoRA-based components. The batch size is con- 955

figured to 8, and the training process consists of 956

30,000 steps. The optimizer used is Stochastic Gra- 957

dient Descent (SGD). In terms of sparsity, a MaZO 958

sparsity of 0.9 is applied to the full model, while 959

0.8 sparsity is utilized for the LoRA components. 960

Additionally, the LoRA rank is defined as 16. 961

B.2 Ablation Study 962

We explore the optimal hyperparameter settings 963

for MaZO, includeing α, β, sparsity level, and the 964

LoRA rank. To streamline the process, we per- 965

form grid searches for each hyperparameter while 966

keeping the others constant. For most experiments, 967

we fine-tune the model on SST-2, BoolQ, COPA, 968

and SQuAD, encompassing binary classification, 969

multiple-choice, and generation tasks, providing di- 970

verse evaluation scenarios. However, for the LoRA 971

rank, we evaluate performance across all tasks. 972

α and β. To optimize α and β, we fix the 973

sparsity level at 50% and perform full-model fine- 974

tuning (without LoRA). The search is conducted in 975

two stages. First, β is set to zero, and α is tuned, 976

resulting in an optimal value of α = 10. Next, 977

with α fixed, β is tuned, yielding an optimal value 978

of β = 1. These values strike a balance between 979

the global and greedy weight importance metrics, 980

ensuring effective parameter selection. 981

LoRA rank. We examine the impact of LoRA 982

rank and provide detailed results in Appendix E. In 983

summary, the results reveal a U-shaped relationship 984

between rank and performance, reflecting a trade- 985

off between model capacity and dimensionality. 986

The optimal rank of 16 minimizes loss and is used 987

as the default setting for LoRA-based baseline. 988

Sparsity. We perform a grid search of the spar- 989

sity level ρ from 0.1 to 0.99. For full-model fine- 990

tuning, the performance first improves with increas- 991

ing sparsity and then sharply declines. The peak 992

performance is achieved at ρ = 0.9. For LoRA 993

fine-tuning, we jointly optimize sparsity levels and 994

LoRA ranks. The optimal result is found at a LoRA 995

rank of 64 and a sparsity level of 0.8. Notably, the 996

effective number of parameters is equivalent to 997

64× (1− 0.8) = 12.8, which is less than the best- 998

performing rank of LoRA baseline. This highlights 999
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that MaZO can further reduce the dimension while1000

maintaining the model capacity.1001

C Pseudo-code of MaZO1002

The pseudo-code of the whole MaZO LLM fine-1003

tuning framework is shown as Algorithm 1.1004

D Baseline1005

D.1 CoBa: Convergence Balancer for1006

Multitask Finetuning1007

CoBa (Convergence Balancer) (Gong et al., 2024)1008

is a novel multi-task learning (MTL) method de-1009

signed for large language models (LLMs). It dy-1010

namically adjusts task weights during training to1011

ensure balanced convergence across tasks, while1012

maintaining computational efficiency.1013

Consider an LLM parameterized by θ ∈ Rm,1014

trained on T ≥ 2 tasks. The loss function for task1015

t at iteration i is denoted as Lt(θ; i) : Rm → R≥0.1016

The overall optimization objective is:1017

min
θ∈Rm

L(θ; i) =
T∑
t=1

ωt(i)Lt(θ; i), (26)1018

where ωt(i) is the weight of task t at iteration i.1019

A uniform weight assignment ωt(i) =
1
T ensures1020

equal attention to all tasks but often leads to varying1021

convergence rates. CoBa dynamically adjusts ωt(i)1022

to balance these rates, prioritizing generalization1023

by deriving weights from validation losses instead1024

of training losses. CoBa is built upon three main1025

components:1026

Relative Convergence Score (RCS) dynam-1027

ically allocates smaller weights to tasks that1028

converge faster and larger weights to slower-1029

converging tasks. It is computed as:1030

RCSt(i) = softmaxt

(
T

αt(i)∑T
t′=1 |αt′(i)|

)
, (27)1031

where αt(i) is the convergence slope of task t, de-1032

rived from the normalized validation loss ratio over1033

a sliding window of N iterations. The softmax op-1034

eration ensures differentiation across tasks, with1035

faster-converging tasks receiving lower weights.1036

Absolute Convergence Score (ACS) addresses1037

task divergence by reducing weights for diverging1038

tasks and increasing weights for converging tasks.1039

It is computed as:1040

ACSt(i) = softmaxt

(
−N αt(i)∑i

j=i−N+1 |αt(j)|

)
,

(28)1041

where normalization is performed along the his- 1042

torical iteration dimension, isolating a task’s own 1043

trajectory. ACS ensures tasks with consistent con- 1044

vergence receive higher weights while diverging 1045

tasks are penalized. 1046

Divergence Factor (DF) determines the relative 1047

influence of RCS and ACS on the final task weights. 1048

It is defined as: 1049

DF(i) = min

(
softmaxi

(
i · αmax(i)∑i
j=1 αmax(j)

)
, 1

)
,

(29) 1050

where αmax(i) is the largest convergence slope 1051

across all tasks at iteration i. DF ensures RCS dom- 1052

inates when all tasks are converging, while ACS 1053

takes precedence when divergence is detected. 1054

The final task weights ωt(i) are computed as: 1055

ωt(i) = DF(i) ·RCSt(i) + (1−DF(i)) ·ACSt(i),
(30) 1056

allowing a seamless transition between RCS and 1057

ACS dominance based on task convergence trends. 1058

The convergence slope αt(i) for task t is calcu- 1059

lated based on the normalized validation loss ratio 1060

L̄val
t (θ; i). Specifically, we fit a linear model to the 1061

validation loss ratios over a sliding window of N 1062

iterations. The observations are defined as: 1063

xt(i) = [i, 1]⊤, Xt(N ; i) = [xt(s0), . . . ,xt(i)]
⊤,

(31) 10641065

yt(N ; i) = [L̄val
t (θ; s0), . . . , L̄val

t (θ; i)]⊤, (32) 1066

where s0 = max(0, i−N + 1) is the starting step 1067

of the sliding window. The goal is to compute the 1068

coefficient vector ct(N ; i) = [αt(N ; i), βt(N ; i)]⊤ 1069

that minimizes the mean squared error (MSE) be- 1070

tween the predicted and actual validation loss ra- 1071

tios: 1072

ct = argmin
ct

1

2
(Xtct − yt)

⊤(Xtct − yt). (33) 1073

The closed-form solution for ct is given by: 1074

ct = (X⊤
t Xt)

−1X⊤
t yt. (34) 1075

Algorithm The CoBa algorithm is summarized 1076

in Algorithm 2, We use M = 4 with batchsize = 1077

16 1078

D.2 FAMO: Fast Adaptive Multitask 1079

Optimization 1080

Fast Adaptive Multitask Optimization (FAMO) is 1081

a dynamic weighting method designed to address 1082
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Algorithm 2 CoBa Algorithm

Require: Initial parameters θ0, M batches of val-
idation set, history window length N = 5M ,
warm-up steps W = M , number of tasks T ,
initial weights ωi(0) =

1
T .

Ensure: Trained parameters θ.
1: for t = 0 to T do
2: Compute L(θ; i) with training batch xi.
3: Compute L̄val

t (θ; t) with validation batch
vi.

4: Update validation loss history yt(N ; i).
5: Compute αt(i).
6: if i > W then
7: Compute RCS(i), ACS(i), and DF(i)

using Eqs. (27), (28), and (29).
8: Update task weights ωt(i) using Eq.

(30).
9: else

10: Set ωt(i) =
1
T .

11: end if
12: Update model parameters θ using weighted

loss L(θ; i).
13: end for

the challenges of multitask learning (MTL), where1083

directly optimizing the average loss across tasks1084

often leads to under-optimization of certain tasks.1085

FAMO ensures balanced task loss reduction using1086

only O(1) space and time per iteration, making it1087

computationally efficient and scalable.1088

The complete FAMO algorithm is summarized1089

in Algorithm 4.1090

D.3 MTL-LoRA1091

MTL-LoRA (Multi-Task Learning LoRA) is a1092

parameter-efficient fine-tuning method designed1093

to enhance the multi-task learning (MTL) capabil-1094

ities of large language models (LLMs). It builds1095

upon the Low-Rank Adaptation (LoRA) framework1096

by addressing the challenges of task interference1097

and suboptimal information sharing in multi-task1098

scenarios.1099

LoRA is a parameter-efficient fine-tuning1100

method that freezes the majority of a pre-trained1101

model’s parameters and introduces trainable low-1102

rank matrices to approximate gradient updates. For1103

a weight matrix W ∈ Rd×k in the original model,1104

LoRA decomposes the gradient update ∆W into1105

two low-rank matrices B ∈ Rd×r and A ∈ Rr×k,1106

where r ≪ min(d, k). The updated weight matrix1107

Algorithm 3 PyTorch Implementation of Wanda

Input: Weight matrix W ∈ RCout×Cin , input
activations X ∈ R(N ·L)×Cin , sparsity ratio s ∈
[0, 1]
Output: Pruned weight matrix W
Compute importance scores: metric =
W.abs() ·X.norm(p = 2, dim = 0)
Sort scores within each row: _, sorted_idx =
torch.sort(metric, dim = 1)
Identify indices to prune: pruned_idx =
sorted_idx[:, : ⌊Cin · s⌋]
Set pruned weights to zero: W.scatter_(dim =
1, index = pruned_idx, src = 0)
Return W

is expressed as: 1108

W′ = W +∆W = W +BA. 1109

The output of the updated layer for an input x is: 1110

h = (W +BA)x. 1111

MTL-LoRA enhances LoRA by introduc- 1112

ing task-specific transformations and dynamic 1113

information-sharing strategies. 1114

Task-Specific Transformation. MTL-LoRA in- 1115

troduces a learnable task-specific transformation 1116

matrix Λt ∈ Rr×r for each task t. For an input xt 1117

corresponding to task t, the low-rank projection is 1118

modified as: 1119

zt = ΛtAxt, 1120

where A ∈ Rr×k is the shared low-rank matrix. 1121

Dynamic Information Sharing. To improve 1122

cross-task information sharing, MTL-LoRA em- 1123

ploys multiple up-projection matrices Bi ∈ Rd×r 1124

(i = 1, . . . , n) and combines their outputs using a 1125

weighted averaging strategy. The final output for 1126

task t is computed as: 1127

ht = Wxt +

n∑
i=1

exp(wt
i/τ)∑n

j=1 exp(w
t
j/τ)

Bizt, 1128

where wt
i are learnable weights for task t, and τ 1129

is a temperature hyperparameter controlling the 1130

sharpness of the weight distribution. 1131

We set number of up-projection matrices n to 3, 1132

rank to 16 and temperature τ to 0.5 1133
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Figure 5: The loss curve with different LoRA rank.

E LoRA Rank1134

We investigate the influence of LoRA rank on the1135

model’s final performance. Initially, we exclude1136

weight masking and fine-tune the model with dif-1137

ferent LoRA ranks. The evaluation loss curves for1138

ranks ranging from 1 to 512 are plotted in Figure 5.1139

As the rank increases, the loss forms a U-shaped1140

curve, with the lowest point occurring at a rank of1141

16. Ideally, the trend of the lowest point in first-1142

order (FO) optimization should follow the green1143

dashed line in Figure 5. However, in the zeroth-1144

order (ZO) setting, the larger parameter optimiza-1145

tion space as rank increases leads to a deviation1146

from this ideal trend.1147

This U-shaped curve highlights a critical trade-1148

off: while increasing the rank improves the model’s1149

capacity, it simultaneously introduces challenges1150

in optimizing a larger parameter space under ZO1151

settings. This observation directly motivates our1152

exploration of sparsity and mask selection strate-1153

gies, which aim to reduce the number of parameters1154

being optimized while retaining the most impor-1155

tant ones. By identifying and focusing on the most1156

critical parameters, we can mitigate the challenges1157

posed by ZO optimization and achieve better per-1158

formance, as demonstrated by our MaZO approach.1159

F Details of Different Weight Score1160

Metrics1161

F.1 Wanda: Pruning by Weights and1162

Activations1163

In this section, we introduce Wanda (Pruning by1164

Weights and Activations), a simple yet effective1165

method for pruning large language models (LLMs).1166

Wanda can induce high sparsity in pretrained LLMs1167

without requiring retraining or weight updates, 1168

making it computationally efficient and easy to 1169

implement. 1170

The key idea of Wanda is to evaluate the impor- 1171

tance of each weight based on both its magnitude 1172

and the corresponding input activation. Specifi- 1173

cally, for a linear layer with weight matrix W ∈ 1174

RCout×Cin and input activations X ∈ R(N ·L)×Cin , 1175

the importance score Sij of weight Wij is defined 1176

as: 1177

Sij = |Wij | · ∥Xj∥2, (35) 1178

where |Wij | is the absolute value of the weight, 1179

and ∥Xj∥2 is the L2 norm of the j-th column of 1180

X, aggregated across all tokens in the batch and 1181

sequence dimensions. This metric effectively com- 1182

bines weight magnitude and input activation infor- 1183

mation to determine the importance of each weight. 1184

Unlike traditional pruning methods that compare 1185

weights globally or layer-wise, Wanda adopts a per- 1186

output comparison strategy (the same as our row- 1187

wise comparison). For a weight Wij connecting 1188

input j to output i, its comparison group is defined 1189

as all weights connected to the same output i: 1190

Gij = {Wuv |u = i}. (36) 1191

Within each comparison group, weights are ranked 1192

by their importance scores Sij , and a predefined 1193

sparsity ratio s% is applied to prune the lowest- 1194

ranked weights. 1195

F.2 Other Metrics 1196

In this section, we introduce two additional heuris- 1197

tic weight importance metrics: random and magni- 1198

tude. 1199

For the random metric, we randomly select 50% 1200

of the weights. It is important to note that the 1201

comparison group is the entire set of weights, rather 1202

than a single row. 1203

For the magnitude metric, we select weights with 1204

the smallest values in a weight, following the ap- 1205

proach described by Liu et al. (2024b). 1206

G Task Details 1207

We consider a diverse set of natural language under- 1208

standing (NLU) and natural language generation 1209

(NLG) tasks. 1210

G.1 Natural Language Understanding Tasks 1211

We select tasks from the GLUE (Wang et al., 2018) 1212

and SuperGLUE (Wang et al., 2019) benchmarks: 1213
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• SST-2 (Stanford Sentiment Treebank): A bi-1214

nary sentiment classification task.1215

• BoolQ: A yes/no question-answering task.1216

• RTE (Recognizing Textual Entailment): A bi-1217

nary classification task for textual entailment.1218

• WSC (Winograd Schema Challenge): A pro-1219

noun resolution task.1220

• WiC (Word-in-Context): A word sense dis-1221

ambiguation task.1222

• MultiRC (Multi-Sentence Reading Compre-1223

hension): A question-answering task where1224

each question has multiple correct answers.1225

• COPA (Choice of Plausible Alternatives): A1226

multiple-choice task for causal reasoning.1227

G.2 Natural Language Generation Task1228

For natural language generation, we include:1229

• SQuAD (Rajpurkar, 2016): A question-1230

answering dataset where the model generates1231

text-based answers from a given passage.1232

G.3 Dataset Splits and Evaluation Metrics1233

To ensure computational feasibility, we randomly1234

sample 500 instances for training, 250 for valida-1235

tion, and 500 for testing for each task. Performance1236

is measured using F1 score or accuracy, depending1237

on the task.1238

H Discussion of Collinearity1239

Task-specific ZO gradients: For each task t ∈1240

{1, . . . , T}, the zeroth-order gradient estimate is1241

given by1242

gt =
Lt(θ + ϵz)− Lt(θ − ϵz)

2ϵ
z ≡ αtz, (37)1243

where αt is a scalar. Thus, every gt is a scalar1244

multiple of the same random direction z.1245

Span of all task gradients: The space spanned1246

by the set of all task gradients is1247

span{g1,g2, . . . ,gT } = span{z}. (38)1248

Therefore, the dimension of this span is1249

dim
(
span{g1,g2, . . . ,gT }

)
= 1. (39)1250

Aggregated gradient: The combined gradient 1251

used for the update is 1252

g =

T∑
t=1

wtg
t =

(
T∑
t=1

wtαt

)
z, (40) 1253

which clearly lies in the one-dimensional subspace 1254

spanned by z. 1255

Gradient covariance matrix: Define the covari- 1256

ance matrix of the task gradients as 1257

C =

T∑
t=1

πt
(
gt − ḡ

) (
gt − ḡ

)⊤
, (41) 1258

where πt are probability weights (or simply 1/T 1259

for uniform weighting) and the mean gradient is 1260

ḡ =

T∑
t=1

πtg
t. (42) 1261

Since gt = αtz, we have 1262

gt − ḡ = (αt − ᾱ)z, with ᾱ =

T∑
t=1

πtαt. (43) 1263

Thus, the covariance matrix becomes 1264

C =

(
T∑
t=1

πt(αt − ᾱ)2

)
zz⊤. (44) 1265

Since zz⊤ is an outer product of a vector with itself, 1266

it has rank 1. Hence, 1267

rank(C) = 1. (45) 1268

Conclusion: The lack of directional diversity 1269

in the task gradients is mathematically captured by 1270

the fact that all task-specific gradients lie in a one- 1271

dimensional subspace, and the covariance matrix 1272

of these gradients has rank 1. This indicates that no 1273

matter how many tasks are aggregated, the update 1274

direction remains confined to a single direction z 1275

in the parameter space. 1276
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Algorithm 4 Fast Adaptive Multitask Optimization
(FAMO)
Require: Initial model parameters θ0, task losses
{Lt,i}Tt=1, learning rates α and β, decay factor
γ.

1: Initialize logits: ξ1 ← 0.
2: for i = 1 to T do
3: Compute task weights:

zi = Softmax(ξt),

where for each i,

zt,i =
exp(ξt,i)∑T

t′=1 exp(ξt′,i)
.

4: Update model parameters:

θt+1 = θt − α
T∑
t=1

(
ct
zt,i
Lt,i

)
∇Lt,i,

with ci =

(
k∑

i=1

zt,i
Lt,i

)−1

.

5: Compute the vector of log-loss differences:

di =

 logL1,i − logL1,i+1
...

logLT,i − logLT,i+1

 .

6: Compute the Jacobian of the softmax func-
tion:

(Ji)tt′ =
∂zt,i
∂ξt′,i

= zt,i(δtt′ − zt′,i).

7: Aggregate the gradient by the chain rule:

δi = J⊤
i di.

8: Update logits:

ξi+1 = ξi − β
(
δi + γ ξi

)
.

9: end for
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