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Abstract
Real-world data collected from multiple domains
can have multiple, distinct distribution shifts over
multiple attributes. However, state-of-the art ad-
vances in domain generalization (DG) algorithms
focus only on specific shifts over a single attribute.
We introduce datasets with multi-attribute distri-
bution shifts and find that existing DG algorithms
fail to generalize. Using causal graphs to charac-
terize the different types of shifts, we show that
each multi-attribute causal graph entails different
constraints over observed variables, and there-
fore any algorithm based on a single, fixed inde-
pendence constraint cannot work well across all
shifts. We present Causally Adaptive Constraint
Minimization (CACM), an algorithm for identify-
ing the correct independence constraints for reg-
ularization. Experiments confirm our theoretical
claim: correct independence constraints lead to
the highest accuracy on unseen domains. Our re-
sults demonstrate the importance of modeling the
causal relationships inherent in a data-generating
process, without which it can be impossible to
know the correct regularization constraints for a
dataset.

1. Introduction
To perform reliably in real world settings, machine learning
models must be robust to distribution shifts – where the
training distribution differs from the test distribution. The
domain generalization (DG) task (Wang et al., 2021; Zhou
et al., 2021) encapsulates this challenge by evaluating accu-
racy on an unseen domain given data from multiple domains
that share a common optimal predictor. Recent state-of-the-
art advances in representation learning for DG (Li et al.,
2018a; Arjovsky et al., 2019; Krueger et al., 2021; Mahajan
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Figure 1: (a) Our multi-attribute distribution shift dataset
Col+Rot-MNIST. We combine Colored MNIST (Arjovsky
et al., 2019) and Rotated MNIST (Ghifary et al., 2015) to
introduce distinct shifts over Color and Rotation attributes.
(b) The causal graph representing the data generating pro-
cess for (a) – Color has a correlation with Y which changes
across environments while Rotation varies independently.

et al., 2021; Sun & Saenko, 2016) focus on a limited setting
where the domains exhibit a single kind of distribution shift
over one attribute (where an attribute refers to a spurious
high-level variable). Using MNIST as an example, domains
are created either by adding new values of a spurious at-
tribute like rotation (e.g., Rotated-MNIST dataset (Ghifary
et al., 2015; Piratla et al., 2020)) or by changing the corre-
lation between the class label and a spurious attribute like
color (e.g., Colored-MNIST (Arjovsky et al., 2019)), but not
both simultaneously. Recent work (Wiles et al., 2022; Ye
et al., 2022) shows that the accuracy of state-of-the-art DG
algorithms are not consistent over these different datasets,
indicating the importance of the kind of shift in a dataset.

In real-world data, however, different sources of distribution
shift can co-exist. Differences across domains may involve
multiple attributes with different kinds of shifts. For exam-
ple, in our Col+Rot-MNIST dataset (see Figure 1), the color
and rotation angle of digits can shift independently across
data distributions. In satellite imagery (Koh et al., 2021),
the appearance of land cover such as vegetation (trees and
grasses) changes seasonally and independently of regional
variations in vegetation. To capture such data, we provide a
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Figure 2: (a), (b) Causal graphs used for specifying multi-attribute distribution shifts. Shaded nodes denote observed
variables; since not all attributes may be observed, we use dotted boundary. Dashed lines denote correlation. (c) represents
different mechanisms for the Y −Aind relationship leading to Causal, Confounded and Selected shifts (bottom to top).

characterization of multi-attribute distribution shifts based
on the relationship between each attribute and the class la-
bel. Using causal graphs and the principle of d-separation,
we show that each type of shift leads to a different set of
independence constraints on the observed variables. As a
consequence, for datasets like Col+Rot-MNIST and a multi-
attribute dataset derived from small NORB (LeCun et al.,
2004), we find that existing DG algorithms that are often
targeted for a specific shift fail to generalize. Specifically,
applying an incorrect constraint leads to substantially lower
accuracy than the correct constraint, highlighting the impor-
tance of identifying a suitable constraint for each dataset.

Beyond existing DG algorithms, our theoretical analysis
shows that any representation learning algorithm based on
a single, fixed independence constraint will fail to general-
ize under multi-attribute shifts. Therefore, we propose to
leverage the information provided by multiple independent
shifts across attributes, assuming structural knowledge of
the shifts. Then, given a dataset and the canonical causal
graph for multi-attribute shifts (Figure 2), our proposed algo-
rithm, Causally Adaptive Constraint Minimization (CACM),
identifies the correct constraints and applies them as a regu-
larizer in the learning algorithm’s loss function.1

2. Generalization under multi-attribute shifts
We focus on representation learning-based (Wang et al.,
2021) DG algorithms, typically characterized by a regu-
larization term that constrains an ERM loss such as cross-
entropy (see Table 5 in Suppl.). Which regularization con-
straint is the correct one? This question has attracted much
discussion (Johansson et al., 2019; Mahajan et al., 2021;
Wiles et al., 2022; Ye et al., 2022; Zhao et al., 2019) without
resolution. Various works have discussed failure modes of
unconditional independence (Akuzawa et al., 2019; Johans-
son et al., 2019; Zhao et al., 2019), conditional indepen-

1Full version of the paper is available at: https://arxiv.
org/abs/2206.07837.

dence (Mahajan et al., 2021) and Invariant Risk Minimiza-
tion (Rosenfeld et al., 2021). Moreover, recent empirical
work (Wiles et al., 2022; Ye et al., 2022) shows that different
algorithms perform better under different shifts, but none
performs across all shifts. As a result, (Wiles et al., 2022)
suggest that instead of a universal algorithm for any shift,
adaptable algorithms that use auxiliary attribute informa-
tion can be more useful. To explore this question beyond
domains with a single distribution shift, we consider the gen-
eralization problem over a more realistic setup where each
domain can have multiple shifts over different attributes.

2.1. Risk-invariant predictor over a set of distributions

We consider the supervised learning setup from Wiles et al.
(2022) where each row of train data (xi,ai, yi)

n
i=1 contains

input features xi (e.g., X-ray pixels), a set of nuisance or
spurious attributes ai (e.g., hospital) and class label yi (e.g.,
disease diagnosis). The attributes represent variables that
are often recorded during data collection or can be inferred.

Since the nuisance attribute’s distribution or its correlation
with the label can change, we obtain different data distribu-
tions. Given a set of domains sampled from P , the train data
is sampled from domains, PEtr = {PE1, PE2, · · · } ⊂ P
while the test data is assumed to be sampled from a single
unseen domain, PEte = {PEte} ⊂ P . The goal is to learn
a classifier g(x) using train domains such that it generalizes
and achieves a similar, small risk on test data from PEte as
it achieves on PEtr. Formally, given a set of distributions P ,
we define a risk-invariant predictor (Makar et al., 2022) as,

Definition 2.1. Optimal Risk Invariant Predictor for P
(from (Makar et al., 2022)) Define the risk of predictor g on
distribution P ∈ P as RP (g) = Ex,y∼P ℓ(g(x), y) where ℓ
is cross-entropy or another classification loss. Then, the set
of risk-invariant predictors obtain the same risk across all
distributions P ∈ P , and set of the optimal risk-invariant
predictors is defined as the risk-invariant predictors that
obtain minimum risk on all distributions.

https://arxiv.org/abs/2206.07837
https://arxiv.org/abs/2206.07837
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2.2. Using causal graphs for multi-attribute shifts

To specify the set of distributionsP to generalize over, using
causal graphs, we characterize the different data-generating
processes that can lead to a multi-attribute shift dataset. Fig-
ure 2 shows the corresponding causal directed acylic graph
(DAG). Shaded nodes represent observed variables X , Y ;
and the sets of attributes Aind , Aind , and E such that
Aind ∪Aind ∪ {E} = A. Aind represents the attributes
correlated with label, Aind the attributes that are indepen-
dent of label, while E is a special attribute for the domain.
All attributes, along with the stable/causal features Xc, de-
termine the observed features X . And the stable features,
Xc are the only features that cause Y . In the simplest case,
we assume no label shift across environments i.e. marginal
distribution of Y is constant across train domains and test,
PEtr(y) = PEte(y) (see Figure 2(a)). More generally, dif-
ferent domains may have different distribution of objects
and hence there may be a correlation between E and Obj,
as represented by the right subfigure (Figure 2(b)).

We characterize different kinds of shifts based on the rela-
tionship between nuisance attributes A and the classification
label Y . Specifically, Aind has varying distribution across
environments but is Independent of the class label. The
dashed bidirectional arrow represents the correlation be-
tween Aind and Y . There are different mechanisms which
can introduce the dashed-line relationship (Figure 2(c)) –
direct-causal relationship (Y causing Aind ), confounding
between Y and Aind due to a common cause, or selec-
tion during the data-generating process. Thus, we define
four kinds of shifts based on the causal graph: Independent,
Causal, Confounded, and Selected. As we shall see, these
shifts correspond to different independence constraints be-
tween observed variables. Thus, in addition to the dataset,
to fully specify the problem of multi-attribute shift general-
ization for a learning algorithm, we require knowledge of
the kind of shift for each observed attribute.

Definition 2.2. Generalization under Multi-attribute shifts.
Given training data (xi,ai, yi)

n
i=1 and the type of causal

relationship of each attribute A with the label Y , construct
a realized causal graph G based on the canonical graph
in Figure 2 and define PG as the set of all distributions
obtained by changing the relationship between Y and each
attribute while keeping the same graph (type of shift). The
generalization goal is to learn an optimal risk-invariant
predictor over PG .

Availability of multiple attributes. Unlike the full causal
graph, type of relationship between label and an attribute is
often known. Suppl. A contains real-world examples where
these relationships as well as attribute values are known.

3. Correct regularizer for multi-attribute shifts
3.1. Deriving conditional independence constraints for a

risk-invariant representation

We assume the predictor can be represented as g(x) =
g1(ϕ(x)) where ϕ is the learnt representation. To derive the
constraints that should be satisfied by a risk-invariant g1(ϕ),
we utilize a strategy from past work (Mahajan et al., 2021;
Veitch et al., 2021). We identify the conditional indepen-
dence constraints satisfied by Xc in the causal graph and
enforce that ϕ should follow the same constraint.
Proposition 3.1. Given a dataset (xi,ai, yi)

n
i=1 and a

causal DAG G over ⟨Xc,X,A, Y ⟩ such that Xc is the
only variable (or set of variables) that causes Y and is not
independent of X , then the conditional independence con-
straints satisfied by Xc are necessary for a risk-invariant
predictor over PG . That is, if a predictor does not satisfy
any of these constraints, then there exists a data distribution
P ′ ∈ PG such that predictor’s risk will be higher than its
risk in other distributions.

We examine two common constraints on independence be-
tween ϕ and a nuisance attribute: either unconditional (Al-
buquerque et al., 2020; Ganin et al., 2016b; Muandet et al.,
2013) or conditional on the label Y (Ghifary et al., 2016;
Hu et al., 2019; Li et al., 2018c;d) (see Suppl. for details on
these baseline methods). Under the canonical graph from
Figure 2(b), none of these constraints are valid because
there could be a correlation path between Xc and E (under
the X-ray example, this can be because more women visit
one hospital compared to the other). When we simplify
the graph by removing the correlation between object and
E (Figure 2(a)), the unconditional constraint is true when
A ⊥⊥ Y (A ∈ Aind ) but not always for Aind . For any
attribute A ∈ Aind , if the relationship between Y and A is
Confounded, then the unconditional constraint is correct; if
it is Causal or Selected, then the conditional constraint is
correct. Below we provide the set of valid constraints.
Theorem 3.1. Given a causal DAG with the structure as
shown in Figure 2(a), the correct constraint depends on the
relationship of label Y with the nuisance attributes A. As
shown, A can be split into Aind , Aind and E, where Aind

can be further split into subsets that have a causal (Acause ),
confounded (Aconf ), selected (Asel ) relationship with Y
(Aind = Acause ∪Aconf ∪Asel ). Then, the (conditional)
independence constraints that Xc should satisfy are,

1. Independent: Xc ⊥⊥ Aind ; Xc ⊥⊥ E; Xc ⊥⊥
Aind |Y ; Xc ⊥⊥ Aind |E; Xc ⊥⊥ Aind |Y,E

2. Causal: Xc ⊥⊥ Acause |Y ; Xc ⊥⊥ E; Xc ⊥⊥
Acause |Y,E

3. Confounded: Xc ⊥⊥ Aconf ; Xc ⊥⊥ E; Xc ⊥⊥
Aconf |E
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4. Selected: Xc ⊥⊥ Asel |Y ; Xc ⊥⊥ Asel |Y,E

Corollary 3.1.1. All the above derived constraints are valid
for Graph 2(a). However, in the presence of a correlation
between E and Obj (Graph 2(b)), only the constraints con-
ditioned on E hold true.

Hence, if information on Obj-E correlation is not available,
it is advisable to use E-conditioned constraints. While we
list all constraints, if one of the attributes is unobserved (say
Aind or Aind is not available), then we use the subset of
constraints derived for the observed features.

3.2. An algorithm for generalizing under
multi-attribution shifts

We now describe the proposed CACM algorithm.

Given a causal graph, the CACM algorithm first
utilizes the steps highlighted above to identify the
correct independence constraints. Then it applies
those constraints as a regularizer to the standard
ERM loss, g1, ϕ = argming1,ϕ; ℓ(g1(ϕ(x)), y) +
λ∗(RegPenalty), where λ is a hyperparameter and ℓ is
cross-entropy loss. We design the regularizer such that it
optimizes for valid constraints over all observed variables
V ∈ A. If there is a choice between multiple constraints,
we choose the constraint that will be valid over both Figure
2(a) and 2(b). We describe implementation details, full al-
gorithm and the regularization penalty for individual shifts
in Section D.3.

3.3. A fixed conditional independence constraint cannot
work for all datasets

Since the observed data distribution can be identical for all
three types of relationship between Y and Aind , the type of
relationship cannot be learned from observed data. Since the
constraints are different for different relationship types, it
implies that any algorithm relying on a single (conditional)
independence constraint (Gretton et al., 2012; Arjovsky
et al., 2019; Li et al., 2018b; Sun & Saenko, 2016) cannot
work for all datasets.

Theorem 3.2. Under the canonical causal graph in Fig-
ure 2, there exists no (conditional) independence constraint
such that it is valid for all realizations of the graph as the
type of multi-attribute shifts vary. Thus, for any predictor
algorithm for Y that uses a single type of (conditional) inde-
pendence constraint, there exists a realized graph G and a
corresponding training dataset such that the learned predic-
tor cannot be a risk-invariant predictor across distributions
in PG .

Table 1: MNIST. Accuracy on unseen domain for singe-
(color, rotation) and multi-attribute (col+rot) shifts.

Algo. Accuracy

color (Acause ) rotation (Aind ) col+rot

ERM 30.9 ± 1.6 61.9 ± 0.5 25.2 ± 1.3
IRM 50.0 ± 0.1 61.2 ± 0.3 39.6 ± 6.7
VREx 30.3 ± 1.6 62.1 ± 0.4 23.3 ± 0.4
MMD 29.7 ± 1.8 62.2 ± 0.5 24.1 ± 0.6
CORAL 28.5 ± 0.8 62.5 ± 0.7 23.5 ± 1.1
DANN 20.7 ± 0.8 61.9 ± 0.7 32.0 ± 7.8
C-MMD 29.4 ± 0.2 62.3 ± 0.4 32.2 ± 7.0
CDANN 30.8 ± 8.0 61.8 ± 0.2 32.2 ± 7.0

CACM 70.4 ± 0.5 62.4 ± 0.4 54.1 ± 1.3

Table 2: small NORB. Accuracy on unseen domain for
single- (lighting, azimuth) and multi-attribute (l+azi) shifts.

Algo. Accuracy

lighting (Acause ) azimuth (Aind ) l + azi

ERM 65.5 ± 0.7 78.6 ± 0.7 64.0 ± 1.2
IRM 66.7 ± 1.5 75.7 ± 0.4 61.7 ± 0.5
VREx 64.7 ± 1.0 77.6 ± 0.5 62.5 ± 1.6
MMD 66.6 ± 1.6 76.7 ± 1.1 62.5 ± 0.3
CORAL 64.7 ± 0.5 77.2 ± 0.7 62.9 ± 0.3
DANN 64.6 ± 1.4 78.6 ± 0.7 60.8 ± 0.7
C-MMD 65.8 ± 0.8 76.9 ± 1.0 61.0 ± 0.9
CDANN 64.9 ± 0.5 77.3 ± 0.3 60.8 ± 0.9

CACM 85.4 ± 0.5 80.5 ± 0.6 69.6 ± 1.6

4. Empirical Evaluation
We perform experiments on semi-synthetic (MNIST) and
natural (small NORB) datasets to demonstrate our main
claims: CACM with the correct graph-based constraints
significantly outperforms these algorithms, and incorrect
constraints cannot match the above accuracy. We com-
pare to baseline algorithms: IRM (Arjovsky et al., 2019),
VREx (Krueger et al., 2021), MMD (Li et al., 2018b),
CORAL (Sun & Saenko, 2016), DANN (Gretton et al.,
2012), Conditional-MMD (C-MMD) (Li et al., 2018b), and
conditional-DANN (CDANN) (Li et al., 2018d). Refer to
Suppl. D for further experimental details.

MNIST. Colored (Arjovsky et al., 2019) and Rotated (Ghi-
fary et al., 2015) MNIST present Acause and Aind dis-
tribution shifts, respectively. We combine these to ob-
tain a multi-attribute dataset with Acause = {color} and
Aind = {rotation}.

small NORB. We use small NORB (LeCun et al., 2004;
Wiles et al., 2022), an object recognition dataset, to cre-
ate a challenging task with multi-valued classes and at-
tributes over realistic 3D objects with varying lighting
(l) and azimuths (azi). We create multi-attribution shifts,
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Table 3: Comparing constraints Xc ⊥⊥ Acause |Y,E and
Xc ⊥⊥ Acause |Y in MNIST and small NORB.

Constraint MNIST Acc. small NORB Acc.

Xc ⊥⊥ Acause |Y 69.7 ± 0.2 79.7 ± 0.9
Xc ⊥⊥ Acause |Y,E 70.4 ± 0.5 85.4 ± 0.5

wherein there is a correlation between lighting condition
Acause = {l} and object category y; and Aind = {azi}
that varies independently across domains.

Further dataset details are in Suppl. D.2. To compare the
effect of shifts over two attributes, for each dataset, we also
create single-attribute shift datasets involving a change in
only one of the attributes. Thus, we have three evaluation
setups for each dataset: Acause , Aind and Acause ∪Aind .

4.1. Results

Correct constraint derived from the causal graph mat-
ters. Table 1 shows the accuracy on MNIST dataset. Com-
paring the three prediction tasks, for all algorithms, accu-
racy is lowest under two-attribute shift (Aind ∪Acause ),
reflecting the difficulty of a distribution shift over multiple
attributes. On the two-attribute shift task, all DG algorithms
obtain less than 40% accuracy whereas CACM obtains a
14.5% absolute improvement. Results on the small NORB
dataset (Table 2) are similar – CACM obtains 69.6% accu-
racy on the two-attribute task while the nearest baseline is
ERM at 64%. CACM also obtains highest accuracy on the
Acause task for both datasets. On MNIST, we find that
CACM achieves a substantially higher accuracy (70%) than
IRM and VREx, just 5 units lower than the optimal 75%.
While the Aind task is relatively easier, algorithms optimiz-
ing for the correct constraint achieve highest accuracy. Note
that MMD, CORAL, DANN, and CACM are based on the
same independence constraint (see Table 5 in Suppl.). These
results indicate the importance of regularization based on
data-specific correct constraints for generalization.

Incorrect constraints hurt generalization. We now di-
rectly compare the effect of using correct versus incorrect
(but commonly used) constraints for a dataset. To isolate the
effect of a single constraint, we consider the single-attribute
shift on Acause . Comparing small NORB and MNIST (Ta-
ble 3) reveals the importance of making the right structural
assumptions. Typically, DG algorithms assume that distribu-
tion of causal features Xc does not change across domains.
Then, both Xc ⊥⊥ Acause |Y,E and Xc ⊥⊥ Acause |Y
should be correct constraints. However, conditioning on
both Y and E provides a 5% point gain over condition-
ing on Y in NORB while the accuracy is comparable for
MNIST. Auxiliary information about the data-generating
process explains the result: Different domains in MNIST

include samples from the same distribution whereas small
NORB domains are sampled from a different set of toy
objects, thus creating a correlation between Obj and E (Fig-
ure 2(b)). Without such auxiliary information, such gains
will be difficult.

More ablations are in Suppl. E. To investigate the differences
in shifts over Independent, Causal and Confounded, results
of evaluation on synthetic data are in Suppl. E.2.

5. Discussion
We introduced CACM, an adaptive OoD generalization al-
gorithm to characterize multi-attribute shifts and apply the
correct independence constraints. Through empirical exper-
iments and theoretical analysis, we show the importance
of modeling the causal relationships in the data-generating
process. The main limitation is that CACM does not address
data sparsity – applying the constraints might be statistically
inefficient if an attribute value is undersampled compared
to others. Future work includes statistical improvements
in the regularization penalty (e.g., multiple regularization
coefficients λ).
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A. Presence of auxiliary attribute information in datasets
Unlike the full causal graph, attribute values as well as the relationships between class labels and attributes is often known.
CACM assumes access to attribute labels A only during training time, which are collected as part of the data collection
process (e.g., as metadata with training data (Makar et al., 2022)). We start by discussing the availability of attributes
in WILDS (Koh et al., 2021), a set of real-world datasets adapted for the domain generalization setting. Attribute labels
available in the datasets include, the time (year) and region associated with satellite images in FMoW dataset (Christie
et al. 2018) for predicting land use category, hospital from where the tissue patch was collected for tumor detection in
Camelyon17 dataset (Bandi et al., 2018) and the demographic information for CivilComments dataset (Borkan et al., 2019).
(Koh et al., 2021) create different domains in WILDS using this metadata, consistent with our definition of E ∈ A as a
special domain attribute.

In addition, CACM requires the type of relationship between label Y and attributes. This is often known, either based
on how the dataset was collected or inferred based on domain knowledge or observation. While the distinction between
Aind and Aind can be established using a statistical test of independence on a given dataset, the distinction between
Acause ,Asel and Aconf within Aind must be provided by the user. In the above datasets, for FMoW, time can be
considered an Independent attribute (Aind ) since it reflects the time at which images are captured which is not correlated
with Y ; whereas region is a Confounded attribute since certain regions associated with certain Y labels are over-represented
due to ease of data collection. Note that region cannot lead to Causal shift since the decision to take images in a region was
not determined by the final label nor Selected for the same reason that the decision was not taken based on values of Y .
Similarly, for the Camelyon17 dataset, it is known that differences in slide staining or image acquisition leads to variation in
tissue slides across hospitals, thus implying that hospital is an Independent attribute (Aind ) (Koh et al., 2021; Komura &
Ishikawa, 2018; Tellez et al., 2019); As another example from healthcare, a study in MIT Technology Review2 discusses
biased data where a person’s position (Aconf ) was spuriously correlated with disease prediction as patients lying down
were more likely to be ill. As another example, (Sagawa* et al., 2020) adapt MultiNLI dataset for OoD generalization due
to the presence of spurious correlation between negation words (attribute) and the contradiction label between “premise”
and “hypothesis” inputs. Here, negation words are a result of the contradiction label (Causal shift), however this relationship
between negation words and label may not always hold. Finally, for the CivilComments dataset, we expect the demographic
features to be Confounded attributes as there could be biases which result in spurious correlation between comment toxicity
and demographic information.

To provide examples showing the availability of attributes and their type of relationship with the label, Table 4 lists some
popular datasets used for DG and the associated auxiliary information present as metadata. In addition to above discussed
datasets, we include the popularly used Waterbirds dataset (Sagawa* et al., 2020) where the type of background (land/water)
is assigned to bird images based on bird label; hence, being a Causal attribute.

Table 4: Commonly used DG datasets include auxiliary information.

Dataset Attribute(s) Y −A relationship

FMoW-WILDS (Koh et al., 2021) time Aind

region Aconf

Camelyon17-WILDS (Koh et al., 2021) hospital Aind

Waterbirds (Sagawa* et al., 2020) background (land/water) Acause

MultiNLI (Sagawa* et al., 2020) negation word Acause

CivilComments-WILDS (Koh et al., 2021) demographic Aconf

Datasets cited in this section

G. Christie, N. Fendley, J. Wilson, and R. Mukherjee. Functional map of the world. In Computer Vision and
Pattern Recognition (CVPR), 2018.

P. Bandi, O. Geessink, Q. Manson, M. V. Dijk, M. Balkenhol, M. Hermsen, B. E. Bejnordi, B. Lee, K. Paeng, A. Zhong, et
al. From detection of individual metastases to classification of lymph node status at the patient level: the CAMELYON17
challenge. IEEE Transactions on Medical Imaging, 38(2):550–560, 2018.

2https://www.technologyreview.com/2021/07/30/1030329/machine-learning-ai-failed-covid-hospital-diagnosis-pandemic/

https://www.technologyreview.com/2021/07/30/1030329/machine-learning-ai-failed-covid-hospital-diagnosis-pandemic/
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D. Borkan, L. Dixon, J. Sorensen, N. Thain, and L. Vasserman. Nuanced metrics for measuring unintended bias with real
data for text classification. In WWW, pages 491–500, 2019.

B. Related Work
Improving the robustness of models in the face of distribution shifts is a key challenge. Several works have attempted
to tackle the domain generalization problem (Wang et al., 2021; Zhou et al., 2021) using different approaches – data
augmentation (Cubuk et al., 2020; He et al., 2016; Zhu et al., 2017), and representation learning (Arjovsky et al., 2019; Deng
et al., 2009; Higgins et al., 2017) being popular ones. Trying to gauge the progress made by these approaches, Gulrajani and
Lopez-Paz (Gulrajani & Lopez-Paz, 2021) find that existing state-of-the-art DG algorithms do not improve over ERM. More
recent work (Wiles et al., 2022; Ye et al., 2022) empirically shows that different algorithms perform well over different
distribution shifts, but no single algorithm performs consistently across all. While they evaluate on single-attribute shift
datasets, (Wiles et al., 2022) discuss the importance of having auxiliary knowledge of and evaluating methods under
different underlying shifts. To this end, we provide (1) multi-attribute shift benchmark datasets; (2) a causal interpretation of
different kinds of shifts; and (3) an adaptive algorithm to identify the correct regularizer.

Causally-motivated learning. There has been recent work focused on causal representation learning (Arjovsky et al.,
2019; Krueger et al., 2021; Locatello et al., 2020; Schölkopf et al., 2021) for OoD generalization. While these works attempt
to learn the constraints for causal features from input features, we show that it is necessary to model the data-generating
process and have access to auxiliary attributes to obtain a risk-invariant predictor, especially in multi-attribute distribution
shift setups. Recent research has shown how causal graphs can be used to characterize and analyze the different kinds
of distribution shifts that occur in real-world settings (Makar et al., 2022; Veitch et al., 2021). Our approach is similar in
motivation but we extend from single-domain, single-attribute setups in past work to formally introduce multi-attribute
distribution shifts in more complex and real-world settings. Additionally, we do not restrict ourselves to binary-valued
classes and attributes.

C. Proofs
C.1. Proof of Proposition 3.1

Proposition 3.1. Given a dataset (xi,ai, yi)
n
i=1 and a causal DAG G over ⟨Xc,X,A, Y ⟩ such that Xc is the only variable

(or set of variables) that causes Y and is not independent of X , then the conditional independence constraints satisfied by
Xc are necessary for a risk-invariant predictor over PG . That is, if a predictor does not satisfy any of these constraints,
then there exists a data distribution P ′ ∈ PG such that predictor’s risk will be higher than its risk in other distributions.

Proof. Let X, Y,Xc be random variables where Xc causes Y . Xc also causes the observed features X but X may be
additionally affected by the attributes A. Let ŷ = g(x) be a candidate predictor. Then g(X) represents a random vector
based on a deterministic function g of X . Suppose there is an independence constraint ψ that is satisfied by Xc but not
g(X). 3 Since A refers to the set of all other variables (attributes) that also cause X , A cannot be empty otherwise X
is only caused by Xc and hence would satisfy all independence constraints that Xc satisfies. Below we show that such a
predictor g is not risk-invariant: there exist two data distributions generated according to Definition 2.2 such that the risk of
g is different for them.

Without loss of generality, we can write g(x) as,

g(x) = (g(x)/h(xc)) ∗ h(xc) = g′(x,xc)h(xc) ∀x ∼ P (X) (1)

where h is an arbitrary, non-zero, deterministic function of the random variable Xc. Since Xc satisfies the (conditional)
independence constraint ψ and h is a deterministic function, h(Xc) also satisfies ψ. Also since the predictor g(X) does not
satisfy the constraint ψ, it implies that the random vector g′(X,Xc) cannot satisfy the constraint ψ. Thus, g′(X,Xc) cannot
be a function of Xc only. Since X has two parents, Xc and A, this implies that g′(X,Xc) and A are not independent.

Now, let us construct two data distributions P1 and P2 such that P (Xc, Y ) stays invariant, i.e., P1(Xc, Y ) = P2(Xc, Y ).
But P (A) can change or P (A|Y ) can change. Since A causes X , the conditional distribution P (Y |X) will also

3In practice, the constraint may be evaluated on an intermediate representation of g, such that g can be written as, g(X) = g1(ϕ(X))
where ϕ denotes the representation function. However, for simplicity, we assume it is applied on g(X).
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change. Further, since g′(X,Xc) and A are not independent, P (Y |g′(X,Xc)) will change, i.e., P1(Y |g′(X,Xc)) ̸=
P2(Y |g′(X,Xc)).

The risk over any distribution P can be written as (using the cross-entropy loss),

RP (g) = EP [ℓ(Y, g
′(X,Xc)h(Xc))]

= −EP [
∑
y

y log g′(X,Xc)h(Xc)]

= −EP [
∑
y

y log g′(X,Xc)]− EP [
∑
y

y log h(Xc)]

(2)

The risk difference is,

RP2
(g)−RP1

(g)

= EP1
[
∑
y

y log g′(X,Xc)]− EP2
[
∑
y

y log g′(X,Xc)] + EP1
[
∑
y

y log h(Xc)]− EP2
[
∑
y

y log h(Xc)]

= EP1
[
∑
y

y log g′(X,Xc)]− EP2
[
∑
y

y log g′(X,Xc)]

where the second equality is because P1(Xc, Y ) = P2(Xc, Y ). The risk of h(Xc)) would be the same across P1 and P2

but not for g′ since g′(X,Xc) changes across the two distributions. Thus the absolute risk difference is non-zero,

|RP2
(g)−RP1

(g)| > 0 (3)

and g is not a risk-invariant predictor. Hence, satisfying conditional independencies that Xc satisfies is necessary for a
risk-invariant predictor.

C.2. Proof of Theorem 3.1

Theorem 3.1. Given a causal DAG with the structure as shown in Figure 2(a), the correct constraint depends on the
relationship of label Y with the nuisance attributes A. As shown, A can be split into Aind , Aind and E, where Aind

can be further split into subsets that have a causal (Acause ), confounded (Aconf ), selected (Asel ) relationship with Y
(Aind = Acause ∪Aconf ∪Asel ). Then, the (conditional) independence constraints that Xc should satisfy are,

1. Independent: Xc ⊥⊥ Aind ; Xc ⊥⊥ E; Xc ⊥⊥ Aind |Y ; Xc ⊥⊥ Aind |E; Xc ⊥⊥ Aind |Y,E

2. Causal: Xc ⊥⊥ Acause |Y ; Xc ⊥⊥ E; Xc ⊥⊥ Acause |Y,E

3. Confounded: Xc ⊥⊥ Aconf ; Xc ⊥⊥ E; Xc ⊥⊥ Aconf |E

4. Selected: Xc ⊥⊥ Asel |Y ; Xc ⊥⊥ Asel |Y,E

Proof. The proof follows from d-separation (Pearl, 2009) on the causal graphs realized from Figure 2(a). For each condition,
Independent, Causal, Confounded and Selected, we provide the realized causal graphs below and derive the constraints.

Independent: As we can see in Figure 3(a), we have a collider X on the path from Xc to Aind and Xc to E. Since
there is a single path here, we obtain the independence constraints Xc ⊥⊥ Aind and Xc ⊥⊥ E. Additionally, we see
that conditioning on Y or E would not block the path from Xc to Aind , which results in the remaining constraints:
Xc ⊥⊥ Aind |Y ; Xc ⊥⊥ Aind |E and Xc ⊥⊥ Aind |Y,E. Hence, we obtain,

Xc ⊥⊥ Aind ;Xc ⊥⊥ E;Xc ⊥⊥ Aind |Y ;Xc ⊥⊥ Aind |E;Xc ⊥⊥ Aind|Y,E

Causal: From Figure 3(b), we see that while the path Xc → X → Acause from Xc to Acause contains a collider X ,
Xc ⊥̸⊥ Acause due to the presence of node Y as a chain. By the d-separation criteria, Xc and Acause are conditionally
independent given Y =⇒ Xc ⊥⊥ Acause |Y . Additionally, conditioning on E is valid since E does not appear as a collider
on any paths between Xc and Acause =⇒ Xc ⊥⊥ Acause |Y,E. We get the constraint Xc ⊥⊥ E since all paths connecting
Xc to E contain a collider (collider X in Xc → X → Acause → E, collider Acause in Xc → Y → Acause → E).
Hence, we obtain,

Xc ⊥⊥ Acause |Y ;Xc ⊥⊥ E;Xc ⊥⊥ Acause |Y,E



Modeling the Data-Generating Process is Necessary for Out-of-Distribution Generalization

(a) Independent shift (b) Causal shift

(c) Confounded shift (d) Selected shift

Figure 3: Causal graphs for distinct distribution shifts based on Y −A relationship.

Confounded: From Figure 3(c), we see that all paths connecting Xc and Aconf contain a collider (collider X in
Xc → X → Aconf , collider Y in Xc → Y → C → Aconf ). Hence, Xc ⊥⊥ Aconf . Additionally, conditioning on E
is valid since E does not appear as a collider on any paths between Xc and Aconf =⇒ Xc ⊥⊥ Aconf |E. We get the
constraint Xc ⊥⊥ E since all paths connecting Xc and E also contain a collider (collider X in Xc →X → Aconf → E,
collider Y in Xc → Y → C → Aconf → E). Hence, we obtain,

Xc ⊥⊥ Aconf ;Xc ⊥⊥ E;Xc ⊥⊥ Aconf |E

Selected: For the observed data, the selection variable is always conditioned on, with S = 1 indicating inclusion of sample
in data. The selection variable S is a collider in Figure 3(d) and we condition on it. Hence, Xc ⊥̸⊥ Asel . Conditioning on Y
breaks the edge Xc → Y , and hence all paths between Xc and Asel now contain a collider (colliderX in Xc →X → Asel)
=⇒ Xc ⊥⊥ Asel |Y . Additionally, conditioning on E is valid since E does not appear as a collider on any paths between
Xc and Asel =⇒ Xc ⊥⊥ Asel |Y,E. Hence, we obtain,

Xc ⊥⊥ Asel |Y ;Xc ⊥⊥ Asel |Y,E

C.2.1. PROOF OF COROLLARY 3.1.1

Corollary 3.1.1. All the above derived constraints are valid for Graph 2(a). However, in the presence of a correlation
between E and Obj (Graph 2(b)), only the constraints conditioned on E hold true.

If there is a correlation between Obj and E, Xc ⊥̸⊥ E. We can see from Figure 3 that in the presence of Obj−E correlation,
Xc ⊥̸⊥ Aind ; Xc ⊥̸⊥ Aind |Y ( 3(a)), Xc ⊥̸⊥ Acause |Y ( 3(b)), Xc ⊥̸⊥ Aconf ( 3(c)) and Xc ⊥̸⊥ Asel |Y ( 3(d)). Hence,
conditioning on environment E is required for the valid independence constraints.
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C.3. Proof of Theorem 3.2

Theorem 3.2. Under the canonical causal graph in Figure 2, there exists no (conditional) independence constraint such
that it is valid for all realizations of the graph as the type of multi-attribute shifts vary. Thus, for any predictor algorithm for
Y that uses a single type of (conditional) independence constraint, there exists a realized graph G and a corresponding
training dataset such that the learned predictor cannot be a risk-invariant predictor across distributions in PG .

Proof. The proof follows from an application of Theorem 3.1 and Proposition 3.1. Under the canonical graph from
Figure 2(a or b), the four types of attribute shifts possible are Independent, Causal, Confounded and Selected. From the
constraints provided for these four types of attribute shifts in Theorem 3.1, it is easy to observe that there is no single
constraint that is satisfied across all four shifts. Thus, given a data distribution (and hence, dataset) with specific types of
multi-attribute shifts such that Xc satisfies certain (conditional) independence constraints, it is always possible to change
the type of at least one of the those shifts to create a new data distribution (dataset) where the same constraints will not hold.

To prove the second claim, suppose that there exists a predictor for Y based on a single type of conditional independence
constraint. Since the same constraint is not valid across all attribute shifts, we can always construct a data distribution
(corresponding to a realized graph G) where Xc would not satisfy the same constraint, by changing the type of at least one
attribute shift. From Proposition 3.1, all conditional independence constraints satisfied by Xc under G are necessary to be
satisfied for a risk-invariant predictor. Hence, for the class of distributions PG , a single constraint-based predictor cannot be
a risk-invariant predictor.

D. Experimental Details
All experiments are performed in PyTorch 1.10 with NVIDIA Tesla P40 and P100 GPUs. We build upon the code from
DomainBed (Gulrajani & Lopez-Paz, 2021) and OoD-Bench (Ye et al., 2022). Regularizing on g1(ϕ(x)) provided better
accuracy than ϕ(x); hence we adopt it for all our experiments.

D.1. Additional details about baseline methods

Table 5 lists the baseline methods we compare to, the independence constraints imposed and the statistics matched/optimized
by each method across environments E.

Table 5: Statistic matched/optimized by different DG algorithms. match operation matches the statistic value across E. h
is a learnable domain classifier on top of shared representation ϕ. ℓ represents the main classifier loss while ℓd is domain
classifier loss.

Constraint Statistic DG Algorithm

ϕ ⊥⊥ E match E[ϕ(x)|E] ∀ E MMD (Gretton et al., 2012)
maxE E[ℓd(h(ϕ(x)), E)] DANN (Ganin et al., 2016a)
match Cov[ϕ(x)|E] ∀ E CORAL (Sun & Saenko, 2016)

Y ⊥⊥ E|ϕ match E[Y |ϕ(x), E] ∀ E IRM (Arjovsky et al., 2019)
match Var[ℓ(f(x), y)|E] ∀ E VREx (Krueger et al., 2021)

ϕ ⊥⊥ E|Y match E[ϕ(x)|E, Y = y] ∀ E C-MMD (Li et al., 2018b)
maxE E[ℓd(h(ϕ(x)), E)|Y = y)] CDANN (Li et al., 2018d)

D.2. Datasets

MNIST. Rotated (Ghifary et al., 2015) and Colored MNIST (Arjovsky et al., 2019) present distinct distribution shifts.
While Rotated MNIST only has Aind wrt. rotation attribute (R), Colored MNIST only has Acause wrt. color attribute
(C). We combine these datasets to obtain a multi-attribute dataset with Acause = {C} and Aind = {R}. Each domain
Ei has a specific rotation angle ri and a specific correlation corri between color C and label Y . Our setup consists of 3
domains: E1, E2 ∈ Etr (training), E3 ∈ Ete (test). We define corri = P (Y = 1|C = 1) = P (Y = 0|C = 0) in Ei. In our
setup, r1 = 15◦, r2 = 60◦, r3 = 90◦ and corr1 = 0.9, corr2 = 0.8, corr3 = 0.1. All environments have 25% label noise,
as in (Arjovsky et al., 2019). For all experiments on MNIST, we use a two-layer perceptron consistent with previous works
(Arjovsky et al., 2019; Krueger et al., 2021).
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Figure 4: (a), (b) Train and (c) Test domains for MNIST.

small NORB. Moving beyond simple binary classification, we use small NORB (LeCun et al., 2004), an object recognition
dataset, to create a challenging setup with multi-valued classes and attributes over realistic 3D objects. It consists of images
of toys of five categories with varying lighting (l), elevation (ele) and azimuths (azi). The objective is to classify unseen
samples of the five categories. (Wiles et al., 2022) introduced single-attribute shifts for this dataset. We combine them to
yield Acause = {l} wherein there is a correlation between lighting condition l and toy category y; and Aind = {azi} that
varies independently across domains. Training domains have 0.9 and 0.95 spurious correlation with l whereas there is no
correlation in test domain. We add 5% label noise in all environments. We use ResNet-18 (pre-trained on ImageNet) for all
settings and fine tune for our task.

Y = 0 Y = 1 Y = 2 Y = 4Y = 3

(a)

Y = 0 Y = 1 Y = 2 Y = 4Y = 3

(b)

Y = 0 Y = 1 Y = 2 Y = 4Y = 3

(c)

Figure 5: (a), (b) Train and (c) Test domains for MNIST.

D.3. Implementation details

All methods are trained using Adam optimizer. MNIST dataset is trained for 5000 steps (default in DomainBed (Gulrajani &
Lopez-Paz, 2021)) while small NORB is trained for 2000 steps. Consistent with the default value in DomainBed, we use a
batch size 64 for MNIST and 128 for small NORB.

Regularization Penalty. Since A includes multiple attributes, the regularizer penalty depends on the type of distribution
shift for each attribute. For instance, for A ∈ Aind (Independent), to enforce ϕ(x) ⊥⊥ A, we aim to minimize the
distributional discrepancy between P (g(x)|A = ai) and P (g(x)|A = aj), for all i, j values of A. However, the same
constraint is applicable on E. So if domain variable E is available, it is statistically efficient to apply the constraint on
E since there would typically be multiple closely related values of A in a domain (e.g., slide stains collected from one
hospital may be spread over similar colors, but not exactly the same). Hence, we apply the constraint on distributions
P (g1(ϕ(x))|E = Ei) and P (g1(ϕ(x))|E = Ej) if E is observed (and A may/may not be unobserved), otherwise we apply
the constraint over A.

RegPenaltyAind
=

|E|∑
i=1

∑
j>i

MMD(P (g1(ϕ(x))|E = Ei), P (g1(ϕ(x))|E = Ej)) (4)

For A ∈ Acause (Causal), following Theorem 3.1, we consider distributions P (g1(ϕ(x))|A = ai, Y = y) and
P (g1(phi(x))|A = aj , Y = y). We additionally condition on domain E as there may be a correlation between E
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and Obj (Figure 2(b)), which renders other constraints incorrect (Corollary 3.1.1).

RegPenaltyAcause =
∑
|E|

∑
y∈Y

|Acause |∑
i=1

∑
j>i

MMD(P (g1(ϕ(x))|ai,cause, y), P (g1(ϕ(x))|aj,cause, y)) (5)

The finalRegPenalty is a sum of penalties over all attributes,RegPenalty =
∑

A∈A PenaltyA. We choose the Maximum
Mean Discrepancy (MMD) (Gretton et al., 2012) metric to implement our penalty (although, in principle, any estimable
metric for enforcing conditional independence would work). Unlike prior work (Makar et al., 2022; Veitch et al., 2021), we
do not restrict ourselves to binary-valued attributes and classes.

We provide the CACM algorithm for a general graph G below.

Algorithm 1 CACM

Input: Dataset (xi,ai, yi)
n
i=1, causal DAG G

Output: Function g(x) = g1(ϕ(x)) : X → Y
A ← set of observed variables in G except Y,E (special domain attribute)
C ← {} {mapping of A to As}
Phase I: Derive correct independence constraints
for A ∈ A do

if (Xc, A) are d-separated then
Xc ⊥⊥ A is a valid independence constraint

else if (Xc, A) are d-separated conditioned on any subset As of the remaining observed variables in A \ {A} then
Xc ⊥⊥ A|As is a valid independence constraint
C[A] = As

end if
end for
Phase II: Apply regularization penalty using constraints derived
for A ∈ A do

if Xc ⊥⊥ A then
RegPenaltyA =

∑
|E|

∑|A|
i=1

∑
j>i MMD(P (g1(ϕ(x))|Ai), P (g1(ϕ(x))|Aj))

else if A is in C then
As = C[A]

RegPenaltyA =
∑

|E|
∑

a∈As

∑|A|
i=1

∑
j>i MMD(P (g1(ϕ(x))|Ai, a), P (g1(ϕ(x))|Aj , a))

end if
end for
RegPenalty =

∑
A∈ARegPenaltyA

g1, ϕ = argming1,ϕ; ℓ(g1(ϕ(x)), y) + λ∗(RegPenalty)

Remark. If E is observed, we always condition on E because of Corollary 3.1.1.

We provide the regularization penalty (RegPenalty) for Independent, Causal, Confounded and Selected shifts for our
causal graph in Figure 2.

RegPenaltyAind
=

|E|∑
i=1

∑
j>i

MMD(P (g1(ϕ(x))|E = Ei), P (g1(ϕ(x))|E = Ej))

RegPenaltyAcause =
∑
|E|

∑
y∈Y

|Acause |∑
i=1

∑
j>i

MMD(P (g1(ϕ(x))|ai,cause, y), P (g1(ϕ(x))|aj,cause, y))
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RegPenaltyAconf
=

∑
|E|

|Aconf |∑
i=1

∑
j>i

MMD(P (g1(ϕ(x))|ai,conf ), P (g1(ϕ(x))|aj,conf ))

RegPenaltyAsel
=

∑
|E|

∑
y∈Y

|Asel |∑
i=1

∑
j>i

MMD(P (g1(ϕ(x))|ai,sel, y), P (g1(ϕ(x))|aj,sel, y))

We want to emphasize that the constraints from the CACM algorithm are necessary but not sufficient. While regularizers
like CACM restrict the set of possible solutions to a smaller subset that contains Xc (Mahajan et al., 2021), they are not
guaranteed to return Xc. Formally, Xc is not identified under the current graph.

Model Selection. We create 90% and 10% splits from each domain to be used for training and model selection (as needed)
respectively. For our main results, we use a validation set that follows the test domain distribution consistent with previous
work on these datasets (Arjovsky et al., 2019; Ye et al., 2022; Wiles et al., 2022). Specifically, we adopt the test-domain
validation from DomainBed where early stopping is not allowed and all models are trained for the same fixed number of
steps to limit test domain access. We additionally report results using test-domain validation with early stopping as well
as train-domain validation in Suppl. E. Train-domain validation uses a validation set that follows the distribution of the
training domains.

D.4. Hyperparameter search

Following DomainBed (Gulrajani & Lopez-Paz, 2021), we perform a random search 20 times over the hyperparameter
distribution and this process is repeated for total 3 seeds. The best models are obtained across the three seeds over which we
compute the mean and standard error. The hyperparameter search space for all datasets and algorithms is given in Table 16.

E. Results

Table 6: Small NORB Causal shift. Comparing Xc ⊥⊥
Acause |Y,E with possible incorrect constraints.

Constraint Accuracy

Xc ⊥⊥ Acause 72.7 ± 1.1
Xc ⊥⊥ Acause |E 76.2 ± 0.9
Xc ⊥⊥ Acause |Y 79.7 ± 0.9

Xc ⊥⊥ Acause |Y,E 85.4 ± 0.5
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Figure 6: Accuracy of CACM and incorrect constraint
on small NORB Causal shift with varying λ {1, 10,
100} and spurious correlation in train envs (in paranthe-
ses in legend).

E.1. Incorrect constraints hurt generalization.

Here, we present additional experiments to support the claim in Section 4.1 that incorrect constraints hurt model generaliza-
tion.

Theorem 3.1 provides the correct constraint for Acause : Xc ⊥⊥ Acause |Y,E. In addition, using d-separation on Figure 2,
we see the following invalid constraints, Xc ⊥⊥ Acause |E, Xc ⊥⊥ Acause . Without knowing that the shift corresponds to
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a Causal shift, one may apply these constraints that do not condition on the class. Results on small NORB (Table 6) show
that using the incorrect constraint has an adverse effect on model performance. The correct constraint yields 85% accuracy
while the best incorrect constraint achieves 79.7%. Moreover, application of the incorrect constraint is sensitive to the λ
(regularization weight) parameter (Figure 6): as λ increases, accuracy drops to less than 40%. However, accuracy with the
correct constraint stays invariant across different values of λ.

Finally, we consider the multi-attribute shift setting for small NORB to demonstrate the significance of applying the correct
constraints from the causal graph. In addition to applying the correct CACM constraints, we consider a case where we
interchange the variables before inputting to CACM algorithm (Aind gets used as Acause and vice-versa) and then apply
the resultant (incorrect) constraints. Accuracy with interchanged variables (65.1± 1.6) is lower than that of correct CACM
(69.6± 1.6).

E.2. Synthetic Dataset

We create a synthetic dataset to investigate the differences in constraints over Independent, Causal and Confounded shifts.
We also study the existing DG algorithms in a fairer synthetic setting and show their inability to close the performance gap
with CACM even in such setting (Section E.3).

Dataset description. Our synthetic dataset is constructed based on the data-generating processes of the slab dataset (Ma-
hajan et al., 2021; Shah et al., 2020). The original slab dataset was introduced by (Shah et al., 2020) to demonstrate the
simiplicity bias in neural networks as they learn the linear feature which is easier to learn in comparison to the slab feature.
Our extended slab dataset, adds to the setting from (Mahajan et al., 2021) by using non-binary attributes and class labels to
create a more challenging task and allows us to study DG algorithms in the presence of linear spurious features.

Our dataset consists of label Y (|Y | = 5) and 3-dimensional input X consisting of features Xc, Aind and Aind . This
is consistent with the graph in Figure 2 where attributes and causal features together determine observed features X; we
concatenate Xc, Aind and Aind to generateX in our synthetic setup. Causal feature Xc has a non-linear “slab” relationship
with Y while Aind has a linear, Causal relationship with Y . Aind is independent of Y and has varying uniform distribution
pind across environments. We have three environments, E1, E2 ∈ Etr (training) and E3 ∈ Ete (test). Xc has a uniform
distribution Uniform[0, 1] across all environments.

y =


0 if Xc ∈ [0, 0.2)
1 if Xc ∈ [0.2, 0.4)
2 if Xc ∈ [0.4, 0.6)
3 if Xc ∈ [0.6, 0.8)
4 if Xc ∈ [0.8, 1.0]

Acause =

{
y with prob. = p

abs(y − 1) with prob. = 1− p

pind(Aind |Ei) =

 Uniform[−0.4, 0.4] if i = 1
Uniform[−0.5, 0.5] if i = 2
Uniform[−0.8, 0.8] if i = 3

Hence, we have a five-way classification setup with multi-valued attributes and multi-attribute distribution shifts. Follow-
ing (Mahajan et al., 2021), the two training domains have p as 0.9 and 1.0, and the test domain has p = 0.0. We add 10%
noise to Y in all environments. We use the default 3-layer MLP architecture from DomainBed and use mean difference (L2)
instead of MMD as the regularization penalty given the simplicity of the data.

Experiments. We run all baselines and CACM on the synthetic dataset similar to experiments in Section 4 (Table 7). We
can see that CACM significantly outperforms all algorithms for Causal and multi-attribute shifts. As discussed previously,
Aind is a relatively easier task; however, algorithms optimizing for the correct constraint achieve highest accuracy. Note
that MMD, CORAL, DANN, and CACM are based on the same independence constraint in the presence of Aind (see
Table 5 in Suppl., Theorem 3.1).
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Table 7: Synthetic dataset. Accuracy on unseen domain for singe-attribute (Acause , Aind ), and multi-attribute (Acause ∪
Aind ) distribution shifts.

Algo. Accuracy

Acause Aind Acause ∪Aind

ERM 32.2 ± 2.9 86.3 ± 0.7 26.4 ± 1.3
IRM 68.4 ± 3.4 84.7 ± 1.0 51.0 ± 3.9
VREx 66.0 ± 2.2 84.1 ± 1.4 62.4 ± 5.6
MMD 23.3 ± 1.7 86.0 ± 1.0 23.8 ± 2.1
CORAL 28.6 ± 3.0 87.6 ± 0.4 21.7 ± 1.1
DANN 44.6 ± 3.6 84.0 ± 0.6 46.4 ± 4.3
C-MMD 36.7 ± 4.1 85.3 ± 1.3 27.6 ± 1.8
CDANN 40.0 ± 7.2 84.9 ± 1.1 40.5 ± 2.1

CACM 94.1 ± 0.5 86.4 ± 0.7 84.3 ± 3.5

Table 8: Synthetic dataset. Accuracy on unseen domain for Causal
distribution shift when Acause is provided in input (column 2) and
when Acause is additionally used to create domains (column 3).

Algo. Accuracy

Acause (input) Acause (input+domains)

ERM 32.2 ± 2.9 29.1 ± 4.6
IRM 68.4 ± 3.4 36.4 ± 1.7
VREx 66.0 ± 2.2 24.9 ± 1.2
MMD 23.3 ± 1.7 39.7 ± 7.3
CORAL 28.6 ± 3.0 37.7 ± 4.8
DANN 44.6 ± 3.6 58.0 ± 11.6
C-MMD 36.7 ± 4.1 33.9 ± 5.6
CDANN 40.0 ± 7.2 49.8 ± 5.0

CACM 94.1 ± 0.5

Table 9: Comparison of constraints Xc ⊥⊥ A|Y,E
and Xc ⊥⊥ A|E in Causal and Confounded shifts.
Xc ⊥⊥ A|Y,E is a correct constraint for Causal
shift but invalid for Confounded shift; Xc ⊥⊥ A|E
is a correct constraint for Confounded shift but in-
valid for Causal shift.

Constraint Accuracy

Acause Aconf

Xc ⊥⊥ A|E 29.7 ± 3.8 62.4 ± 1.9
Xc ⊥⊥ A|Y,E 94.1 ± 0.5 56.0 ± 1.0

E.3. Providing attribute information to DG algorithms for a fairer comparison

CACM leverages attribute labels to apply the correct independence constraints derived from the causal graph. However,
existing DG algorithms only use the input features X and the domain attribute. Here we provide this attribute information to
existing DG algorithms to create a more favorable setting for their application. We show that even in a relatively fairer setup,
these algorithms are not able to close the performance gap with CACM, showing the importance of the causal information
through graphs.

We consider our Synthetic dataset with Causal distribution shift where our observed features X = (Xc,Acause ). Note that
by construction of X , since one of our input dimensions already consists of Acause , we explicitly make Acause available to
all DG algorithms for applying their respective constraints. Thus, in the synthetic setup, all baselines do receive information
about Acause in addition to the domain attribute E.

As a more informative way of providing the attribute information (Acause ) for existing DG algorithms, we run a separate
experiment where the attribute is provided as the domain indicator. Using the same underlying data distribution, we group
the data (i.e., create environments/domains) based on Acause i.e, each environment E has samples with same value of
Acause . In this setup (Table 8, third column), we see MMD, CORAL, DANN and CDANN show significant improvement
in accuracy but the best performance is still 36% lower than CACM while showing high estimate variance. This reinforces
our motivation to use the causal graph of the data-generating process to derive the constraint, as the attribute values alone are
not sufficient. We also see IRM and VREx perform much worse than earlier, highlighting the sensitivity of DG algorithms to
domain definition. In contrast, CACM uses the causal graph to study the structural relationships and derive the regularization
penalty, which remains the same in this new dataset too.
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E.4. Comparing constraints for Confounded vs Causal shift

Here, we extend our experiments from the main paper to consider a Confounded shift setting. In Theorem 3.1, we see that
for the Causal shift, Xc ⊥⊥ Acause |Y ; Xc ⊥̸⊥ Acause (also, Xc ⊥⊥ Acause |Y,E; Xc ⊥̸⊥ Acause |E) whereas for the
Confounded shift, Xc ⊥⊥ Aconf ; Xc ⊥̸⊥ Aconf |Y (also, Xc ⊥⊥ Aconf |E; Xc ⊥̸⊥ Aconf |Y,E). We construct a synthetic
setup with Confounded shift to demonstrate the importance of using the valid independence constraints for different kinds of
shifts.

We have three environments, E1, E2 ∈ Etr (training) and E3 ∈ Ete (test). Xc has a uniform distribution Uniform[0, 1]
across all environments. Our confounding variable c has different functional relationships with Y and Aconf which vary
across environments. Our observed input X is 2-dimensional and formed by concatenating Xc and Aconf .

cE1,E2
=

{
1 with prob. = 0.25
0 with prob. = 0.75

cE3
=

{
1 with prob. = 0.75
0 with prob. = 0.25

ytrue =


0 if Xc ∈ [0, 0.25)
1 if Xc ∈ [0.25, 0.5)
2 if Xc ∈ [0.5, 0.75)
3 if Xc ∈ [0.75, 1.0]

yE1,E2
=

{
ytrue + c with prob. = 0.9

ytrue with prob. = 0.1
yE3

= ytrue

Aconf =

{
2 ∗ c with prob. = p

0 with prob. = 1− p ; pE1
= 1.0, pE2

= 0.9, pE3
= 0.8

Table 9 compares the performance of these constraints in synthetic Confounded and Causal setups (Section E.2). We can
see that the valid constraints according to the graph significantly outperform the incorrect constraints in both shifts. Hence,
the information on the specific relationship between Y and A is necessary for obtaining an optimal predictor.

E.5. Complete results

We provide complete results here for experiments in Section 4.

Tables 10, 11 and 12 show results on Causal (Acause ), Independent (Aind ) and multi-attribute (Acause ∪Aind ) shifts
respectively for MNIST. Tables 13, 14 and 15 show results on Causal (Acause ), Independent (Aind ) and multi-attribute
(Acause ∪Aind ) shifts respectively for small NORB.

While we report results using test-domain validation without early stopping in Section 4.1, we present additional results
here using early stopping. Overall, early stopping improves accuracy across datasets and shifts for all methods. CACM
outperforms all methods using model selection with as well as without early stopping, with the exception of Table 11.
Table 11 shows results for the Independent shift which is a relatively easier task and hence all methods perform similarly.
For Independent shift in MNIST (Table 11), CORAL achieves the highest accuracy. It is important to note that CORAL uses
the same valid independence constraint derived by CACM for Independent shift (Theorem 3.1).

For completeness, we also include results using train-domain validation. However, as noted by previous work (Ye et al.,
2022), using a validation set based on training domain distribution may not be suitable in the presence of spurious correlations
as achieving high accuracy in training domains often leads to low accuracy in sufficiently different, novel test domains.

F. Anti-Causal Graph
Figure 7 shows causal graphs used for specifying multi-attribute distribution shifts in an anti-causal setting. These graphs
are identical to Figure 2, with the exception of change in direction of causal arrow from Xc −→ Y to Y −→Xc.
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We derive the (conditional) independence constraints for the anti-causal DAG for Independent, Causal, Confounded and
Selected shifts.

Theorem F.1. Given a causal DAG with the structure as shown in Figure 7(a), the correct constraint depends on the
relationship of label Y with the nuisance attributes A. As shown, A can be split into Aind , Aind and E, where Aind

can be further split into subsets that have a causal (Acause ), confounded (Aconf ), selected (Asel ) relationship with Y
(Aind = Acause ∪Aconf ∪Asel ). Then, the (conditional) independence constraints that Xc should satisfy are,

1. Independent: Xc ⊥⊥ Aind ; Xc ⊥⊥ E; Xc ⊥⊥ Aind |Y ; Xc ⊥⊥ Aind |E; Xc ⊥⊥ Aind |Y,E

2. Causal: Xc ⊥⊥ Acause |Y ; Xc ⊥⊥ E; Xc ⊥⊥ Acause |Y,E

3. Confounded: Xc ⊥⊥ Aconf |Y ; Xc ⊥⊥ E; Xc ⊥⊥ Aconf |Y,E

4. Selected: Xc ⊥⊥ Asel |Y ; Xc ⊥⊥ Asel|Y,E

Proof. The proof follows from d-separation using the same logic as earlier proof in Section C.2. We observe that for all
attributes A ∈ Aind (Acause , Aconf , Asel ), it is required to condition on Y to obtain valid constraints as Y node appears
as a chain or fork in the causal graph but never as a collider due to the Y −→Xc causal arrow.

Corollary F.1.1. All the above derived constraints are valid for Graph 7(a). However, in the presence of a correlation
between E and Obj (Graph 7(b)), only the constraints conditioned on E hold true.

(a) (b)

Figure 7: Corresponding anti-causal graphs for Figure 2. Note the graphs are identical to Figure 2 with the exception of the
causal arrow pointing from Y −→Xc instead of from Xc −→ Y .

G. Broader impact and ethical considerations
Our work on modeling the data-generating process for improved out-of-distribution generalization is an important advance
in building robust predictors for practical settings. Such prediction algorithms, including methods building on representation
learning, are increasingly a key element of decision-support and decision-making systems. We expect our approach
to creating a robust predictor to be particularly valuable in real world setups where spurious attributes and real-world
multi-attribute settings lead to biases in data. While not the focus of this paper, CACM may be applied to mitigate social
biases (e.g., in language and vision datasets) whose structures can be approximated by the graphs in Figure 2. Risks of
using methods such as CACM, include excessive reliance or a false sense of confidence. While methods such as CACM ease
the process of building robust models, there remain many ways that an application may still fail (e.g., incorrect structural
assumptions). AI applications must still be designed appropriately with support of all stakeholders and potentially affected
parties, tested in a variety of settings, etc.
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Table 10: Colored + Rotated MNIST. Complete results for Causal (Acause ) shift.

Algorithm Test-domain validation Train-domain validation
no early stopping early stopping

ERM 30.9 ± 1.6 63.2 ± 2.7 10.1 ± 0.1
IRM 50.0 ± 0.1 66.1 ± 1.5 10.9 ± 0.7
VREx 30.3 ± 1.6 62.1 ± 2.6 10.2 ± 0.4
MMD 29.7 ± 1.8 57.8 ± 4.5 10.1 ± 0.1
CORAL 28.5 ± 0.8 63.3 ± 4.8 10.2 ± 0.1
DANN 20.7 ± 0.8 64.1 ± 2.4 9.6 ± 0.0
C-MMD 29.4 ± 0.2 68.3 ± 1.3 10.1 ± 0.4
CDANN 30.3 ± 9.1 63.3 ± 3.4 10.2 ± 0.2

CACM 70.4 ± 0.5 71.7 ± 0.7 10.1 ± 0.2

Table 11: Colored + Rotated MNIST. Complete results for Independent (Aind ) shift.

Algorithm Test-domain validation Train-domain validation
no early stopping early stopping

ERM 61.9 ± 0.5 63.4 ± 0.8 61.1 ± 0.4
IRM 61.2 ± 0.3 63.1 ± 1.0 60.5 ± 0.6
VREx 62.1 ± 0.4 62.2 ± 0.5 61.5 ± 0.2
MMD 62.2 ± 0.5 61.6 ± 0.2 60.7 ± 0.6
CORAL 62.5 ± 0.7 62.0 ± 0.4 60.3 ± 0.6
DANN 61.9 ± 0.7 62.8 ± 0.5 61.7 ± 0.7
C-MMD 62.3 ± 0.4 62.4 ± 0.3 62.3 ± 0.1
CDANN 61.8 ± 0.2 63.5 ± 0.5 62.6 ± 0.4

CACM 62.4 ± 0.4 63.0 ± 0.1 61.6 ± 0.3

Table 12: Colored + Rotated MNIST. Complete results for multi-attribute (Acause ∪Aind ) shift.

Algorithm Test-domain validation Train-domain validation
no early stopping early stopping

ERM 25.2 ± 1.3 64.2 ± 5.3 10.3 ± 0.1
IRM 39.6 ± 6.7 66.2 ± 3.1 10.5 ± 0.0
VREx 23.3 ± 0.4 65.2 ± 4.4 10.0 ± 0.1
MMD 24.1 ± 0.6 62.6 ± 3.4 10.6 ± 0.3
CORAL 23.5 ± 1.1 65.9 ± 5.5 10.2 ± 0.3
DANN 32.0 ± 7.8 62.1 ± 2.4 10.9 ± 0.5
C-MMD 32.2 ± 7.0 60.0 ± 2.4 10.4 ± 0.4
CDANN 30.8 ± 8.0 67.6 ± 2.8 10.3 ± 0.2

CACM 54.1 ± 1.3 69.7 ± 2.6 10.2 ± 0.1
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Table 13: Small NORB. Complete results for Causal (Acause ) shift.

Algorithm Test-domain validation Train-domain validation
no early stopping early stopping

ERM 65.5 ± 0.7 67.6 ± 1.3 60.0 ± 1.4
IRM 66.7 ± 1.5 68.4 ± 1.2 62.3 ± 2.1
VREx 64.7 ± 1.0 67.5 ± 0.3 58.1 ± 0.9
MMD 66.6 ± 1.6 67.5 ± 1.2 60.7 ± 0.1
CORAL 64.7 ± 0.5 67.4 ± 0.2 61.5 ± 1.7
DANN 64.6 ± 1.4 69.6 ± 0.5 61.5 ± 1.1
C-MMD 65.8 ± 0.8 68.5 ± 0.1 62.1 ± 2.4
CDANN 64.9 ± 0.5 70.9 ± 1.1 64.6 ± 1.2

CACM 85.4 ± 0.5 87.2 ± 0.4 75.7 ± 4.7

Table 14: Small NORB. Complete results for Independent (Aind ) shift.

Algorithm Test-domain validation Train-domain validation
no early stopping early stopping

ERM 78.6 ± 0.7 79.2 ± 1.1 74.2 ± 1.5
IRM 75.7 ± 0.4 79.4 ± 0.4 72.0 ± 0.9
VREx 77.6 ± 0.5 79.6 ± 0.1 75.2 ± 0.7
MMD 76.7 ± 1.1 79.9 ± 0.7 74.7 ± 0.9
CORAL 77.2 ± 0.7 79.5 ± 0.9 75.3 ± 0.8
DANN 78.6 ± 0.7 80.0 ± 0.3 74.4 ± 0.8
C-MMD 76.9 ± 1.0 79.4 ± 0.3 75.5 ± 1.5
CDANN 77.3 ± 0.3 78.6 ± 0.9 72.5 ± 1.4

CACM 80.5 ± 0.6 81.3 ± 0.7 77.4 ± 1.5

Table 15: Small NORB. Complete results for multi-attribute (Acause ∪Aind ) shift.

Algorithm Test-domain validation Train-domain validation
no early stopping early stopping

ERM 64.0 ± 1.2 64.2 ± 1.1 55.6 ± 0.7
IRM 61.7 ± 0.5 64.1 ± 1.3 57.4 ± 1.0
VREx 62.5 ± 1.6 63.1 ± 1.5 48.1 ± 6.7
MMD 62.5 ± 0.3 63.1 ± 0.2 60.1 ± 1.9
CORAL 62.9 ± 0.3 63.9 ± 1.6 42.4 ± 5.0
DANN 60.8 ± 0.7 65.1 ± 1.0 57.9 ± 1.4
C-MMD 61.0 ± 0.9 62.9 ± 1.2 58.7 ± 3.0
CDANN 60.8 ± 0.9 65.6 ± 1.1 60.5 ± 1.8

CACM 69.6 ± 1.6 69.5 ± 1.6 55.4 ± 6.5
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Table 16: Search space for random hyperparameter sweeps.

Method Sweeps

MLP learning rate: [1e-2, 1e-3, 1e-4, 1e-5]
dropout: 0

ResNet learning rate: [1e-2, 1e-3, 1e-4, 1e-5]
dropout: [0, 0.1, 0.5]

MNIST weight decay: 0
generator weight decay: 0

not MNIST weight decay: 10Uniform(−6,−2)

generator weight decay: 10Uniform(−6,−2)

IRM learning rate: [1e-2, 1e-3, 1e-4, 1e-5]
λ: [0.01, 0.1, 1, 10, 100]
iterations annealing: [10, 100, 1000]

VREx learning rate: [1e-2, 1e-3, 1e-4, 1e-5]
λ: [0.01, 0.1, 1, 10, 100]
iterations annealing: [10, 100, 1000]

MMD learning rate: [1e-2, 1e-3, 1e-4, 1e-5]
λ: [0.1, 1, 10, 100]
γ: [0.01, 0.0001, 0.000001

CORAL learning rate: [1e-2, 1e-3, 1e-4, 1e-5]
λ: [0.1, 1, 10, 100]

DANN, CDANN generator learning rate: [1e-2, 1e-3, 1e-4, 1e-5]
discriminator learning rate: [1e-2, 1e-3, 1e-4, 1e-5]
discriminator weight decay: 10Uniform(−6,−2)

λ: [0.1, 1, 10, 100]
discriminator steps: [1, 2, 4, 8]
gradient penalty: [0.01, 0.1, 1, 10]
adam β1: [0, 0.5]

C-MMD learning rate: [1e-2, 1e-3, 1e-4, 1e-5]
λ: [0.1, 1, 10, 100]
γ: [0.01, 0.0001, 0.000001

CACM learning rate: [1e-2, 1e-3, 1e-4, 1e-5]
λ: [0.1, 1, 10, 100]
γ: [0.01, 0.0001, 0.000001


