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Abstract

The current paradigm of machine learning consists in finding a single best model to deliver
predictions and, if possible, interpretations for a specific problem. This paradigm has however
been strongly challenged in recent years through the study of the Rashomon Effect which
was coined initially by Leo Breiman. This phenomenon occurs when there exist many good
predictive models for a given dataset/problem, with considerable practical implications in
terms of interpretation, usability, variable importance, replicability and many others. The set
of models (within a specific class of functions) which respect this definition is referred to as the
Rashomon set and an important amount of recent work has been focused on ways of finding
these sets as well as studying their properties. Developed in parallel to current research on
the Rashomon Effect and motivated by sparse latent representations for high-dimensional
problems, we present a heuristic procedure that aims to find sets of sparse models with good
predictive power through a greedy forward-search that explores the low-dimensional variable
space. Throughout this algorithm, good low-dimensional models identified from the previous
steps are used to build models with more variables in the following steps. While preserving
almost-equal performance with respect to a single reference model in a given class (i.e. a
Rashomon set), the sparse model sets from this algorithm include diverse models which can
be combined into networks that deliver additional layers of interpretation and new insights
into how variable combinations can explain the Rashomon Effect.

1 Introduction

The purpose of any machine learning algorithm is to deliver precise predictions with respect to a response (or
responses) of interest given a set of variables (predictors), whether dealing with classification or more general
regression problems. The current paradigm to achieve such predictions is commonly based on a single best
model that has been chosen, parametrized and fine-tuned to address a specific problem or dataset. There
are many reasons why such a paradigm is the dominating one, among which (i) its reliance on the existence
of a unique optimal representation of the data generation process as well as (ii) the practical implications
of relying on a single set of parameters and variables that can be used, and eventually interpreted, for
predictions on similar problems. There are however various limitations with this paradigm, starting from
areas of research and practice where there is a need for flexibility in the variables used. Indeed, from genomics
(see e.g. Xiong et al., 2001) to online prediction (see e.g. Carmona-Cejudo et al., 2011), there are many tasks
where a multitude of subsets of variables are useful, such as (i) in medical studies where machines collect
different measurements (variables) for a specific problem (see e.g. Draghici et al., 2006); (ii) for online search
algorithms where every subject provides different variables (according to their preferences or willingness
to disclose information) to determine suggestions or matches (see e.g. Vaughan & Chen, 2015) ; (iii) in
signal processing and pattern recognition where signals and images are collected at different resolutions and
therefore a single representation may not be flexible enough to adapt to different signal and image features
(see e.g. Elad & Yavneh, 2009; Wang et al., 2018). Intuitively, there can indeed be circumstances (e.g. medical
diagnostics) where some variables are more costly to measure and practitioners would therefore prefer to
have alternative good models with more “accessible” variables. In addition, interpretability of phenomena
can be greatly enhanced and stabilized when considering a set of models as highlighted by the multimodel
inference1 and model selection uncertainty literature in areas such as sociology and, especially, ecology (see

1Not to be confused with multimodal inference.
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e.g. Burnham & Anderson, 2004; Anderson & Burnham, 2004; Harrison et al., 2018; Caruana et al., 2004, for
an overview). This is of particular relevance, for example, within the Predictability-Computability-Stability
(PCS) framework of Yu & Kumbier (2020).

The existence of multiple models that fit a specific problem/dataset similarly well was already posited in
Breiman (2001b), albeit for more fundamental reasons coming from the uncertainty and noise affecting data.
Indeed, as a result of this uncertainty, many approximately-equally-good models can exist for a specific
problem/dataset giving rise to the so-called Rashomon Effect (Breiman, 2001b). While being commonly
observed in practice, this phenomenon returned to be an area of fundamental research only in recent years
starting from the work of Fisher et al. (2019) where they develop a new metric of variable importance using
multiple good models, and followed by a growing focus on this topic in Semenova et al. (2022); Xin et al.
(2022); Zhong et al. (2024); Liu et al. (2022); Qinyu Zhu et al. (2023); Semenova et al. (2024); Kissel & Mentch
(2024) where they develop methods and measures to select and evaluate sets of good models belonging to
different model classes. The need for a paradigm shift in machine learning as a result of this effect was
underlined more recently in Rudin et al. (2024) where the authors also highlighted the numerous advantages
that can be obtained when finding sets of models, as opposed to a single one, especially for high-stakes
decision making. In particular these advantages include, but are not limited to: (i) the possibility for users to
determine their preferred representation of a problem without losing predictive power; (ii) stable variable
importance information; and (iii) novel insights for model interpretability and prediction uncertainty. As a
consequence, there is a need to develop procedures to find these sets of models which, intuitively, are called
Rashomon sets (Fisher et al., 2019; Semenova et al., 2022). The push to develop such procedures is very
recent and, currently, exist for decision trees (Xin et al., 2022), generalized additive models (Zhong et al.,
2024) and risk scores (Liu et al., 2022; Qinyu Zhu et al., 2023). More specifically, having defined a class of
models, these procedures are able to rapidly find the corresponding (approximate) Rashomon sets which
achieve a predictive performance within an θ-range of a reference model.

In this work, we continue the current effort studying the Rashomon Effect by delivering a specific procedure
that aims at selecting a set of good predictive models under the constraint of sparsity for high-dimensional
problems and for any class of functions defined by the user. The motivation behind this new procedure lies in
another possible explanation for the existence of the Rashomon Effect for high-dimensional settings, namely
the presence of latent (unobserved) variables that generate, or are associated to, the manifest variables used
in practice to predict the response (which is actually linked to the latent variables). Indeed, the existence
of the Rashomon Effect has mainly been explained this far by the presence of nondeterministic processes
in the data which are affected by noise and uncertainty (Semenova et al., 2024). This indeed can explain
how different model parametrizations from the same class, or even how models from different classes, can
be considered almost-equally good. However, the presence of latent variables can also explain how models
(in a given class) can contain different combinations of manifest variables that all have similar predictive
performance based on how well these combinations represent the underlying latent (true) model. This is in
line with Fisher et al. (2019) where they state that, even if the models in the set do not contain the true data
generating process (e.g. the latent structure), one can hope that some models in the set can work in similar
ways to it. While the study of latent variable modelling is vast (see e.g. Borsboom, 2008; Muthén & Muthén,
2009), including sparse latent representations (see e.g. Wu et al., 2022; Ahuja et al., 2022; Fumero et al.,
2023), the idea of studying sparse latent structures through Rashomon sets is novel and can provide new ways
of representing these problems. In particular, since “the Rashomon Effect gives rise to simpler-yet-accurate
models” (Rudin et al., 2024), we focus on finding sparse representations of high-dimensional problems by
finding sets of sparse models containing combinations of fewer variables which also have the advantage of
delivering more interpretable models (Rudin, 2019; Rudin et al., 2022). In addition, the proposed procedure is
class-independent since it consists in a wrapper heuristic in which the user can select their class of preference
(similarly to Guerrier et al., 2016; Kissel & Mentch, 2024, for example). More specifically, the proposed
procedure performs variable screening procedures and greedily combines the screened variables to deliver
larger sets of sparse models. We call this procedure the “Sparse Wrapper AlGorithm” (SWAG) since any
model class can be run within it (hence a wrapper) and it outputs a set of sparse representations for these
models with good predictive performance. In particular, as highlighted earlier, this method delivers one class
of possible perturbations recommended within the PCS framework put forward in Yu & Kumbier (2020) and
therefore contributes to model-stability (see also Kissel & Mentch, 2024). The following section describes
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the proposed algorithm, followed by various applied examples highlighting its advantages for different model
classes and datasets.

2 A Sparse Rashomon Algorithm

Let us start with a general overview of the SWAG. This algorithm proceeds in a forward-stepwise manner: it
builds and tests models starting from one variable until it includes a maximal number of variables per model,
increasing the number of variables at each step. Hence, for each fixed number of variables, the algorithm
tests various (randomly selected) models and picks those with the best performance in terms of a chosen
performance metric (e.g. test error estimates). Throughout, the algorithm uses the information coming from
the best models at the previous step to build and test models in the following step. In the end, it outputs a
set of sparse models with similar performance to the best one in the set. Given its nature, a more detailed
comparison of this algorithm with the current stepwise selection procedures can be found in App. A.

To now provide a more formal and detailed description, let us define some basic notation. Let y ∈ Rn

denote the response and X ∈ Rn×p denote a variable (design) matrix with n samples and p variables, the
latter being indexed by a set S := {1, . . . , p}. In addition, we denote a class of functions (i.e. models) as
L := L(y, X) with l ∈ L denoting a general model which is built by using a subset sl ∈ P(S) of variables in
X, where we let P(A) and |A| denote respectively the power set and cardinality of a set A. In the following
paragraphs we will proceed to describing the algorithm and introduce meta-parameters whose interpretation
and selection will be discussed later in Sec. 2.1. Also, based on this description, Sec. 2.2 will compare the
SWAG models to Rashomon sets. It must also be noted that, given the heuristic nature of the algorithm,
many of its steps described below can be adapted/modified according to the user’s needs. This being said, the
first choice to make for the SWAG is to determine the maximum dimension of variables that the user wants
to be considered in a model and we denote this parameter as pmax < p. Based on this parameter, the SWAG
aims at exploring the space of variables to find sets of models using p̂ variables (1 ≤ p̂ ≤ pmax) with low
error (or good prediction). In this respect, without loss of generality, we assume the choice of a performance
metric that should be minimized, i.e. an error ϵ, such as estimates of test errors (e.g. cross-validation, Akaike
Information Criterion etc.). With this in mind, the SWAG is described in the following paragraphs, where the
first two algorithms are defined for a general model dimension p̂ and are then used within the third algorithm
which combines them in a greedy manner.

First Step The first screening step starts by using one distinct variable at a time to create p models.
Once these models are built, a set of models M⋆ is now available which is indexed by the ordered index set
I := {1, . . . , p} (i.e. each model l ∈ M⋆ is indexed by a unique element i ∈ I). Having chosen a performance
error ϵ, we denote the vector containing the errors of the p one-dimensional variable models as ϵ⋆ ∈ Rp which
is also indexed by the set I (i.e. each model l ∈ M⋆ is associated with an element in the error vector ϵ⋆).
Given this, it is now possible to select a performance quantile q⋆

α, where α ∈ (0, 1) and the quantile estimator
is chosen by the user (in this work we use the default choice for all statistical software, see e.g. Hyndman
& Fan, 1996). The smaller the value of α, the smaller the errors selected. The procedure then selects all
the models whose error is smaller or equal to q⋆

α and includes these in a new model set M̃⋆. The set M̃⋆

therefore collects one-dimensional models (i.e. models with one variable) with small errors and are therefore
based on a subset of variables S⋆ ⊂ S that can be assumed to be predictive with respect to the response of
interest y. Similarly to other screening procedures, we assume that this procedure is able to select predictive
variables with high probability. This assumption however does not necessarily hold when there are predictive
variables in the data that only demonstrate importance (i.e. predictive power) when combined in models
with other variables: if they exist, these variables will not be evaluated in the next steps of the SWAG even
though they would be important to better predict the response. To avoid this limitation, modifications can
obviously be made, including a change of the screening criterion or a less strict exclusion of non-screened
variables in the following steps of the SWAG. Nevertheless, based on all examples presented in Sec. 3 (and in
other applications), this limitation does not appear to affect the algorithm’s performance compared to, for
example, models that make use of all variables. This screening procedure is described in Algo. 1.
Remark. This first step is conceived for high-dimensional problems (i.e. large p). However, this step can be
avoided entirely if the dimension of the data is reasonable. Indeed, we would ideally like to skip this first step
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Inputs

Build set       of 
one dimensional 
      models

Build subset
of models whose 

Outputs

Algorithm 1 First Screening Algorithm
INPUTS: A response y ∈ Rn and variables X ∈ Rn×p; A variable
index set S := {1, . . . , p}; A class of models L; A performance
percentile α ∈ (0, 1); Eventual parameters to compute the error ϵ.

1: Using the class L, build p models by using all variables in
the set S

2: Create a model set M⋆ (with |M⋆| = p)
3: Build an error vector ϵ⋆ ∈ Rp and identify the α-quantile q⋆

α
of this vector

4: Create new model set M̃⋆ with models whose error is smaller
or equal to q⋆

α
5: Create variable index set S⋆ with variables included in the

models in the set M̃⋆

OUTPUTS: S⋆; M̃⋆; M⋆; ϵ⋆

and consider all variables (or at least force some additional variables) in the following steps of the SWAG.
This would imply that M̃⋆ = {l ∈ L, ∀ sl ∈ S} and S∗ = S within the steps described below.

General Step Fixing a given variable dimension p̂ such that 2 ≤ p̂ ≤ pmax, the general screening step
builds a maximum number m of distinct models which will all be included in a model set Mp̂ where each
model is built on combinations of p̂ distinct variables. In order to build these m models, the general step
takes the variable index set S⋆ from Algo. 1 as well as a set of models M̂ where each model is of dimension
p̂ − 1 (i.e. each model in M̂ takes p̂ − 1 variables as an input). We let sl ∈ S̃ := {s ∈ P(S⋆)

∣∣ |s| = p̂ − 1}
denote the variable indices for a specific model l ∈ M̂. By randomly selecting a model l ∈ M̂, the general
step will build a new model by using the variables indexed by sl and a randomly selected distinct variable
from the index set S⋆ \ sl. This is repeated until m distinct models are built and included in the model
set Mp̂. It must be noted that the total number of distinct models that can be built this way, say m̃, can
actually be smaller than m. In this case, the set Mp̂ will contain all possible models that can be built through
this procedure. Once the candidate model set Mp̂ is built, the general step of the algorithm closely follows
Algo. 1. More specifically, an error vector ϵp̂ is built and its performance quantile qp̂

α is computed. The main
output of this step is a new model set M̃p̂ which includes all models whose error in ϵp̂ is smaller or equal
to qp̂

α (with both ϵp̂ and Mp̂ being ordered by the same index set I p̂ := {1, . . . , m}). This general step is
described in Algo. 2.

Algorithm 2 General Screening Algorithm
INPUTS: A response y ∈ Rn and variables X ∈ Rn×p; A
variable index set S⋆ ⊂ {1, . . . , p} from Algo. 1; A num-
ber of variables p̂ ≤ pmax; A model set M̂; A class of
models L; A maximum number of models m; A performance
percentile α ∈ (0, 1); Eventual parameters to compute the error ϵ.

1: Define total possible p̂-dimenisonal models, i.e. m̃
2: if m̃ ≤ m then
3: Using the class L, build all possible m̃ models with p̂

variable inputs to create model set Mp̂

4: else
5: Using the class L, build m models with p̂ variable inputs

by extracting sl from randomly sampled models l ∈ M̂
and adding a variable from S⋆ \sl to create model setMp̂

6: end if
7: Build an error vector ϵp̂ and identify the α-quantile qp̂

α of
this vector

8: Create new model set M̃p̂ with models whose error is smaller
or equal to qp̂

α

OUTPUTS: M̃p̂; Mp̂; ϵp̂.

Inputs Outputs

Build    distinct    
dimensional models 
picking models from
        and a distinct 

variable from 

Build set      of 
models whose 
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The above described algorithms provide a straightforward manner of selecting a set of good models for a
given variable dimension p̂. However, as the variable dimension increases, the number of possible distinct
variable combinations increases exponentially fast leading to an increased risk of inefficiently exploring the
variable space if one simply randomly picks m variable combinations. For this reason, the SWAG performs a
greedy procedure which uses the information from Algo. 1 to obtain the set of best variables S⋆ which is the
easiest to explore completely. The next step of the algorithm, with p̂ = 2, then takes the set S⋆ and the set
of best models M̃⋆ as the input M̂ for Algo. 2. At each of the following steps, with p̂ > 2, the algorithm
defines M̂ := M̃p̂−1. Therefore, when increasing the variable dimension, the algorithm only considers variable
combinations based on good models and variables from the previous dimension. This procedure is repeated
for all variable dimensions until the maximal dimension pmax is reached. Throughout the procedure, the
algorithm saves the good model sets and error vectors for each dimension p̂. More formally, letting li and ϵi

represent the ith model and its associated error metric respectively, the set of SWAG models can be therefore
defined as:

M̃ :=
pmax⋃
p̂=1

{
li ∈ Mp̂

∣∣∣ ϵp̂
i ≤ qp̂

α , ∀ i ∈ I p̂
}

.

This procedure defines the SWAG which is described in Algo. 3. Let us now consider some aspects of interest
for this algorithm, discussed in the following paragraphs.

Yes

No

 General
Screening

   First
Screening

   Post
Processing

Algorithm 3 SWAG
INPUTS: A response y ∈ Rn and variables X ∈ Rn×p; A variable
index set S := {1, . . . , p}; A class of models L; A maximum
number of variables pmax (< p); A maximum number of models
m for each step; A performance percentile α ∈ (0, 1); Eventual
parameters to compute the error ϵ.

1: Run Algo. 1 using inputs y, X, S, L, m, α and obtain S⋆

and M̃⋆

2: M̂ ← M̃⋆

3: p̂← 2
4: while p̂ ≤ pmax do
5: Run Algo. 2 using inputs y, X, S⋆, M̂, L, m, α and

obtain M̃p̂

6: M̂ ← M̃p̂

7: p̂← p̂ + 1
8: end while
9: Create

• a set of good model sets M̃ := {M̃⋆,M̃2, . . . ,M̃pmax}

• a set of error vectors ϵ̃ := {ϵ⋆, ϵ2, . . . , ϵpmax}

OUTPUTS: M̃; ϵ̃

Post-Processing The user could choose to directly make use of the set of good models M̃ to make
predictions based on different sets of variables or arrange variables into networks for interpretation and
exploration (see for example Figs. 2 and 3 further on). However, these sets of models could undergo an
additional screening procedure according to the needs of the user. For example, a possible approach that is
used for the applications in Sec. 3 is to compute the median error for each vector in the set ϵ̃ (as defined
in Algo. 3) and select the quantile q̃δ corresponding to the dimension whose median is the lowest, where
δ ∈ (0, 1) can differ from α (a possible choice is 0.01). Having identified this quantile, we then select the
models (with the desired dimensions) whose error is smaller or equal to this quantile. In particular, this
procedure would deliver a set closer in spirit (but not equivalent) to the original definition of the Rashomon
set which contains all models whose performance is within an θ-range of the reference model (see Sec. 2.2 for
the definition). For this specific choice of post-processing, the quantile q̃δ would represent the upper bound
defining the performance of models in the Rashomon set, i.e.:

M̃R :=
pmax⋃
p̂=1

{
li ∈ Mp̂

∣∣∣ ϵp̂
i ≤ q̃δ , ∀ i ∈ I p̂

}
.
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Computational Complexity The SWAG is a computationally intense procedure and builds at most
p + m (pmax − 1) models in total which implies that its order of computation is proportional to this factor.
In addition, the choice of the error and its computation can add complexity to the procedure (e.g. r-repeated
k-fold cross-validation). Indeed, letting C(n, p̂) represent the complexity of fitting a model l ∈ L to a dataset
with n samples and p̂ variables, the worst-case complexity is given by O

(
r k

(
p C(n, 1) + pmax m C(n, pmax)

))
.

If a more efficient evaluation of the test error ϵ is available, this complexity can be considerably reduced. As
an example, if using a generalized linear model with complexity O(np̂2 + p̂3) and using AIC or BIC as the
error metric ϵ, then the worst-case complexity becomes O

(
np + mnp3

max + mp4
max

)
. One could even further

reduce computational complexity by directly using training error metrics ϵtrain since the parameter pmax
could already be considered as a regularizer to limit over-fitting (see Efron et al., 2004, and discussions in Sec.
2.1). A more detailed discussion of SWAG’s computational complexity is found in App. B.

Ensemble Learning and Stability The goal of the SWAG does not consist in improving prediction
accuracy per se, but more in providing user-flexibility and interpretability while preserving accuracy (to
the best extent possible) by relying on individual models chosen from the diverse representations in the set
M̃. Nevertheless, nothing stops us from using this set of good sparse models within an ensemble approach.
For example the SWAG models could be included in Bagging (Breiman, 1996), Boosting (Schapire, 1990),
Stacking (Wolpert, 1992) or other model-averaging approaches (see e.g., Raftery et al., 1997). In this sense,
similarly to Kissel & Mentch (2024), the SWAG provides a procedure to define model perturbations as
recommended, among others, within the PCS framework of Yu & Kumbier (2020).

2.1 SWAG Parameters

For the application of the SWAG, we assume the user has chosen a class of models L for which they would
like to obtain sparse representations without losing significant predictive power. Based on this, the user has
to define the meta-parameters of the algorithm which are (i) the maximum variable dimension pmax; (ii) the
maximum number of models m to be built within each step and (iii) the performance percentile α. Ideally,
with unlimited computing power, the first two parameters would be as large as possible, i.e. pmax = p and
m =

(
p
⌈ p

2 ⌉
)
, leading to best subset selection. However, this defeats the purpose of the algorithm and therefore

the decision of these parameters must be based mainly on interpretability/flexibility requirements as well as
available computing power and time. Below are some rules-of-thumb for the choice of these parameters:

• pmax: Fixing the available computing power and the efficiency in the computation of the model class
L, this parameter will depend on the total dimension of the problem p. Indeed, the goal of the SWAG
is to find very sparse models and the parameter pmax can be viewed as a regularization parameter
(Efron et al., 2004). Therefore, even with very large p, one can always fix this parameter within a
range of 5-20 (or smaller) for interpretability and/or replicability purposes. Another criterion, when
working with binary classification problems, is to use the Event Per Variable (EPV) rule presented in
Vittinghoff & McCulloch (2007) and discussed in van der Ploeg et al. (2014) (see Sec. 3 for example).
This rule aims at limiting the number of variables included in models to ensure that enough data
points are available in each dimension spanned by these variables, thereby preserving sufficient
information to adequately estimate such models. In future work, this parameter can be implicitly
determined by the algorithm based on the error quantile (or other metric) as a stopping-criterion
thereby defining pmax as the variable dimension where the error curve stops decreasing significantly
similarly to the scree plot in factor or principal component analysis (see e.g. Cattell, 1966).

• m: Fixing the available computing power and the efficiency in the computation of the model class L,
this parameter will determine the proportion of variable space that will be explored by the algorithm.
We know that it depends on the size of the problem p since we necessarily have m ≥ p for the
screening step of Algo. 1. In addition, this parameter needs to be chosen considering the performance
percentile α: if m is small and α is small, then the number of good models being selected could be
extremely low (possibly zero) since not enough variables may be selected from previous steps to
build m combinations. In general, we would want a large m (so that α can eventually be chosen
to be very small) and, remembering that p⋆ is the number of variables released from Algo. 1, a
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rule-of-thumb is to set m =
(

p⋆

2
)

(or close to it) in order to explore the entire (or most of the) subspace
of two-dimensional models generated by p⋆.

• α: as discussed in the previous point, this parameter is related to the maximum number of models
m. The larger α, the more the variable space is explored. Ideally, we want to choose a small α since
we would want to select good models (with extremely low error) and this is possible if m is large
enough. Generally good values for α are 0.01 or 0.05, implying that (roughly) 1% or 5% of the m
models are selected at each step.

The SWAG could be modified to perform tests to determine the best models across the different dimensions
(e.g. equivalence tests), therefore removing the need to specify α. This modification however is left for future
research. A study on the sensitivity of the SWAG to these meta-parameters is given in App. D where results
suggest that algorithm outputs are stable with respect to these choices.

2.2 SWAG Libraries and Rashomon Sets

It is reasonable to ask ourselves how the set of SWAG models M̃ (or M̃R after post-processing) compare to
the formal definition of a Rashomon set. For this reason, let us recall this definition which generally starts
from a reference model l∗ ∈ L, based on which the Rashomon set Rθ(l∗) is defined as:

Rθ(l∗) := {l ∈ L | D(l) ≤ D(l∗) + θ},

where D is a loss function (in our notation ϵ) and θ > 0 is a user-defined parameter which defines the margin
within which model performance can be considered “almost-equivalent” (see e.g. Fisher et al., 2019). In
this respect, the SWAG does not predefine a reference model l∗ or an “almost-equivalence” parameter θ
but finds “almost-equivalent” good sparse models through the percentile α which is therefore not absolute
(like θ) but relative to the performance of all models evaluated in a given dimension p̂. Following the
definition of a Rashomon set, technically speaking, if we were to define a reference model l∗ then there would
exist a θ for each dataset and model class such that the SWAG library constitutes a sparse subset of the
respective Rashomon sets. However this is a post-hoc adaptation of the definition since the exploration of
“almost-equally” performing models occurs differently between the SWAG and the formal definition of a
Rashomon set. This being said, the SWAG can easily be modified to more directly search for models in the
Rashomon set by selecting some sparse models whose loss (e.g. generalization error) is within a θ-range of a
pre-specified model l∗. Therefore, while these sets are indeed built on different criteria (and are thus not
directly comparable in terms of outputs), one could argue that the SWAG targets a sparse subset of the
Rashomon set for a given model class L (see results in Sec. 3), thereby enhancing its interpretability for
practitioners—particularly in light of the growing emphasis on “Explainable AI” (see e.g. Confalonieri et al.,
2021, for a historical perspective). Moreover, under certain aspects, it can be considered more intuitive in the
way models from a certain class are selected. For example, the SWAG does not require the pre-specification
of a reference model l∗ and, in addition, the parameter defining the models in the SWAG set is a performance
percentile rather than a pre-specified parameter θ related to the loss value D (for which a reasonable range
may sometimes be hard to determine a priori). However, as opposed to some currently available Rashomon
set procedures (e.g. Xin et al., 2022; Qinyu Zhu et al., 2023; Zhong et al., 2024), the SWAG does not guarantee
to find all models (but only some) with almost-equivalent performance for dimensions 1 ≤ p̂ ≤ pmax.

3 Empirical Results

We study the empirical performance of the SWAG with different model classes and on different datasets taken
from the UCI Machine Learning Repository (see Dua & Graff, 2017), ArrayExpress (see Kolesnikov et al.,
2015) and from the GitHub repository https://github.com/ramhiser/datamicroarray. More specifically,
the chosen model classes are: (i) Lasso (logistic) (Friedman et al., 2010); (ii) Linear-Kernel Support Vector
Machine (L-SVM) (see e.g., (Vapnik, 2013)); (iii) Radial-Kernel SVM (R-SVM) (Cortes & Vapnik, 1995);
(iv) Random Forest (RF) (Breiman, 2001a). Compared to these models classes, the use of more complex
models, such as neural networks, requires more thought on how to adapt their architecture as the number
and combination of variables change throughout the SWAG (this is left for future work). To ensure a fair
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comparison, we run all the analyses with the caret R package (see e.g. Kuhn, 2008, for a review). All the hyper-
parameters specific to each model class are set based on common/default choices and are discussed in App. C.

Table 1: For each dataset: # of instances per training
and test set, # of variables and relative SWAG meta-
parameter choices.
Data ntrain ntest p pmax m α

MeterA 69 18 666 6 3984 0.05
LSVT 100 26 310 6 1014 0.05
Ahus 125 31 15,739 8 99080 0.01
Colon 50 12 2,000 4 7996 0.03
Leukemia 58 14 7,129 4 10160 0.01

With regards to the datasets, they are the following:
(i) MeterA (Gyamfi et al., 2018); (ii) LSVT (Tsanas
et al., 2013); (iii) Ahus (Haakensen et al., 2016);
(iv) Colon (Alon et al., 1999); (v) Leukemia (Golub
et al., 1999). The details regarding these data and
the choices for the SWAG meta-parameters are
listed in Tab. 1: the choice of the SWAG meta-
parameters is made in line with the rules of thumb
described in Sec. 2.1 and with the intent of reduc-
ing overall computational time while ensuring a
reasonable exploration of the variable space. More
specifically, we choose 0.01 ≤ α ≤ 0.05 as a good
compromise between fixing an α as small as possi-
ble (to select good models) and the possibility of exploring a considerable portion of the variable space. With
m depending on the computing time and power available, we choose m in order to at least reasonably explore
the subspace of two-dimensional models for all the model classes and datasets. The choice of pmax is made
guided by the EPV rule discussed in van der Ploeg et al. (2014). As mentioned earlier, an extended study and
discussion on the sensitivity of the SWAG results with respect to the choice of these meta-parameters can be
found in App. D where, for example, it is also underlined how similar choices are needed for Rashomon sets
regarding the choice of a reference model and “equivalence” parameter θ. Finally, we apply 10-repeated 10-fold
cross-validation (i.e. r = 10 and k = 10) as the error metric ϵ and choose δ = 0.01 for the post-processing
based on the previously described median rule.
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Figure 1: SWAG test error range ϵtest (blue rectangles)
and original model test error (red dots). The blue
squares imply that the SWAG models all have the
same test error.

With the above in mind, we present some summary
measures of the set of SWAG models M̃ such as their
dimensions and their Jaccard diversity indices, allow-
ing to understand how interpretable (sparse) and how
flexible (diverse) the resulting SWAG models are (see
App. E.3 and E.4 for details on number of SWAG
models |M̃| and Jaccard index). Tab. 2 shows the
range of dimensions of the SWAG models (|sl|), the
median value for the pairwise Jaccard indices for all
models in M̃ (medJ ) as well as their range (rangeJ )
for each dataset. It can be seen how the SWAG
models are all extremely sparse (also as a result of
pmax) and that at least half of the Jaccard indices for
all model classes and datasets are below or equal to
0.5, indicating that there is a reasonable or high level
of diversity in the SWAG models which is essential
for user-flexibility as well as interpretability of latent
structures. Indeed, with respect to user-flexibility,
variable diversity can be important for practitioners
who need similarly good models with variables that
are less costly/invasive to collect and measure, or
that can be used when different institutions do not
collect the same variables (see e.g. Kissel & Mentch,
2024). However, an important aspect to underline
is that, while the goal of the SWAG is to deliver the
latter two advantages, these seem to come with a

limited cost in terms of prediction error with respect to the original reference models, thereby suggesting it
is capable of finding sparse subsets of the Rashomon set (if these exist). Indeed, Fig. 1 represents the test
error, denoted as ϵtest, of the original models (i.e. models trained using all variables) represented by the
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Table 2: Model class (main columns) and datasets (rows): (i) range of SWAG model dimensions, (ii) median
Jaccard index and (iii) range of the Jaccard indices for the SWAG models.

Lasso L-SVM R-SVM RF
|sl| medJ rangeJ |sl| medJ rangeJ |sl| medJ rangeJ |sl| medJ rangeJ

MeterA [4, 6] 0.38 [0.09, 0.83] [2, 6] 0.16 [0.00, 0.83] [4, 6] 0.20 [0.09, 0.83] [4, 6] 0.33 [0.09, 0.83]
LSVT [4, 6] 0.15 [0.20, 0.83] [5, 6] 0.09 [0.00, 0.83] [4, 6] 0.38 [0.33, 0.83] [3, 6] 0.25 [0.00, 0.83]
Ahus [6, 8] 0.15 [0.00, 0.88] [7, 8] 0.23 [0.00, 0.88] [5, 8] 0.23 [0.00, 0.75] [5, 8] 0.25 [0.00, 0.75]
Colon [3, 4] 0.14 [0.00, 0.75] [3, 4] 0.33 [0.00, 0.75] [3, 4] 0.14 [0.00, 0.75] [3, 4] 0.40 [0.33, 0.75]
Leukemia [2, 3] 0.00 [0.00, 0.67] [2, 3] 0.20 [0.00, 0.67] [2, 3] 0.00 [0.00, 0.67] 3 0.50 [0.20, 0.50]

red dots, and of the respective SWAG models, represented by a blue rectangle proportional to the range
of test errors (a similar figure is available for the training error ϵtrain in App. E.2). It can be seen how
in the majority of cases the SWAG models have close or comparable (if not sometimes better) prediction
accuracy with respect to their original versions, with homogeneous and exact accuracy when using Lasso
and R-SVM on the Meter A data for example. This range of performance of SWAG models is expected and
in line, for example, with the definition of Rashomon sets which are built on “almost-equivalent” models
within a θ-range of the reference one. Indeed, in our case, the prediction performance is overall preserved
while selecting extremely sparse models (maximum dimension 8) while the Lasso (the only sparse alternative
considered) selects between 10 and 26 variables. Moreover, the user can arbitrarily choose to trim these
distributions further by restricting their final selection to the best models in the SWAG library.

Further extensive experiments are provided in App. E supporting the stability of the SWAG across (i)
meta-parameters, (ii) datasets and (iii) model classes. Indeed, conclusions similar to those presented above
hold even when using existing (step-wise) variable selection approaches as possible good reference models
as well as across different meta-parameter and model-class choices (see e.g. App. A and D). Given the fact
that prediction accuracy and stability is generally preserved with the SWAG models, let us investigate the
advantages of the SWAG in terms of interpretability of latent structures (along with user-flexibility which
was observed through the Jaccard index above). To do so we consider building SWAG networks, based on
the final selected set of models, in which the size of the nodes are proportional to the presence of a variable
in SWAG models while the thickness of edges is proportional to times the variables are in the same SWAG
model. We briefly study and interpret the latent structures highlighted by these networks for two of the
considered datasets (more information in App. E.5).
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Figure 2: Network of variable importance and
pairwise link-intensity in M̃ for Meter A dataset
using the Lasso-based SWAG.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Percentage of models
including variables:

[25%, 0%]

[50%, 25%)

[75%, 50%)

[100%, 75%)

Link intensity between
pairs of variables:

[25%, 0%]

[50%, 25%)

[75%, 50%)

[100%, 75%)

Figure 3: Network of variable importance and
pairwise link-intensity in M̃ for LSVT dataset
using the Radial-Kernel SVM SWAG.

9



Under review as submission to TMLR

Ultrasonic Flowmeters The Meter A data is analyzed in Gyamfi et al. (2018) and collects measurements
on ultrasonic flowmeter diagnostics. Achieving good diagnostics regarding the health of a flowmeter is of
extreme importance for condition-based maintenance in many industrial sectors such as the oil and gas
industry since incorrect measurement can entail considerable economic and material losses (see e.g. TUV-NEL,
2012). In this data the goal is to classify the health of a meter into two classes: “Healthy” (Class 1) or
“Installation effects” (Class 2). Given that the variables are measurements of physical nature, we decide to
consider all first-order interactions which finally delivers a total variable size of p = 666 (36 original variables
plus

(36
2

)
= 630 interactions). Indeed, we do this since these interaction effects could not be adequately

captured by models that only contain the variables of interest on their own (see e.g. Jaccard & Turrisi, 2003).
Using the results from Lasso-based SWAG, the network in Fig. 2 would suggest that in order to understand
the mechanics and perform diagnostics for this ultrasonic flowmeter, among the 666 variables, an engineer
could focus their attention on variables labeled 10, 11 and 15 which correspond to the interaction (i) between
flatness ratio and gain as well as (ii) between the speed of sound and gain at the first end (of the fifth path).
For instance, the interaction between flatness ratio and gain is significant since, if the flatness ratio is low,
it indicates possible disturbances in the flow that could affect the gain measurements, leading to potential
inaccuracies in flow estimation. Moreover, combining the internal speed of sound with gains can help to
detect anomalies that individual measurements might miss. This relationship suggests that efficiency in signal
transmission could degrade over time and impact various paths differently. These variables are all linked to
characteristics such as structural integrity, alignment quality and environmental conditions, suggesting that
these could be the latent variables affecting the health of the flowmeter (Lynnworth & Liu, 2006).

LSVT The voice rehabilitation dataset was analyzed in Tsanas et al. (2013) in order to assess the effectiveness
of a computer program called “Lee Silverman voice treatment (LSVT) Companion” which allows patients
with Parkinson’s disease (PD) to independently progress through a rehabilitative treatment session. Taking
data on 126 samples from 14 patients who followed the latter treatment, 310 dysphonia measures were taken
on each of them (plus information on sex and age of the patients) and used to understand if they could
correctly predict whether the patients’ voices were “acceptable” or “unacceptable” after this treatment. There
is also scientific interest in determining the variables (and combinations thereof) that most contribute to the
definition, in this case, of a Parkinson’s speech treatment as being acceptable or not. Also in this case, the
SWAG models (based on the R-SVM) can be arranged into a network to allow for interpretation as seen in
Fig. 3. Based on the SWAG network, researchers interested in improving speech treatment should focus on
variables 6, 7 and 13 which correspond to the 2nd and 3rd Mel-Frequency Cepstral Coefficients (MFCC) and
to the entropy with base-4 logarithmic coefficients (as well as the interactions between these three variables as
highlighted by their frequent presence in the same SWAG models). These variables indirectly measure latent
characteristics such as voice quality and cognitive load: (i) fluctuations in MFCC can reflect changes in the
vocal tract configuration, corresponding to mechanical or motor control difficulties in speech production in
PD patients while (ii) entropy values can indirectly suggest the cognitive effort involved in speech production
which, in patients with PD, can lead to reduced speech variability and difficulties in modulation, impacting
treatment effectiveness (Dao et al., 2022; Zhang et al., 2023; Shen et al., 2024).

4 Conclusions

The proposed algorithm does not directly fit in the standard procedures to build Rashomon sets since these
are commonly found starting from a reference model and explore all model dimensions. More specifically,
without a reference model and by fixing a model class, the SWAG assumes the existence of sparse models in
the Rashomon set of this class and aims to find (some of) them. By doing so, we can see that the SWAG
produces many of the main results of the Rashomon Effect (Rudin et al., 2024), in particular: (i) the selection
of many sparse-yet-accurate models (on par with their original counterparts applied to all variables) as shown
by Fig. 1; (ii) flexibility to provide users with diverse and sparse models that are interchangeable in terms of
predictive performance as highlighted by Tab. 2; (iii) evaluation of prediction uncertainty through SWAG
error (or accuracy) ranges, in particular model-uncertainty (see again Fig. 1); (iv) stable variable importance
metrics that can be interpreted also in terms of connections with other variables (see Fig. 2 and 3). Moreover,
as shown in Sec. 3, all this is achieved through any model class of choice. Indeed, the possibility of studying
the role of variables in a network (i.e. the change of effects when combined with other variables) can also
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be a tool to address the replication crisis occurring in many domains. In this sense, finding the best single
model in each study does not allow to assess how generalizable the successive interpretations can be, whereas
sets of models can stabilize interpretations by verifying which variables have stable effects in the network. In
particular, these properties directly address some of the requirements of the PCS framework of Yu & Kumbier
(2020), specifically the model-perturbation that ensures that the final model(s) are more generalizable.

Given its heuristic nature, the proposed algorithm can be easily adapted for different user preferences,
including the selection of sparse model sets based on domain-specific utility (cost) functions. Future directions
of research for this procedure include the theoretical study of its properties when in the presence of sparse
latent representations, including its ability to select models built with weakly correlated variables which are
linked to distinct underlying latent functions. Moreover, the structure of the SWAG can possibly allow to
construct inferential tools to determine the significance of the model set M̃, specifically if there are indeed
important variables/models or if the set contains randomly selected models due to spurious correlations
and/or to the absence of significant predictors. Using the network representations of the SWAG models,
one could employ network statistics to overcome the problem of testing each model in the set individually,
thereby delivering the first statistical tools for testing Rashomon sets.
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A Comparison to Single-Model Variable Selection Framework

We firstly give a brief overview of variable selection methods that are relevant to this work, and later provide
some comparisons between them and the SWAG framework. Therefore, let us start by recalling the main
strategies in forward or backward selection as commonly applied to linear and logistic regression model
classes. Probably the most well-known procedure, and still one of the most employed by practitioners, is
plain forward selection. It starts from an empty model and iteratively adds the variable that results in
the greatest improvement of a criterion e.g., the Akaike Information Criterion (AIC; Akaike, 1973) or the
Bayesian Information Criterion (BIC; Schwarz, 1978). Historically, the roots of stepwise selection can be
traced to Efroymson (1960), and various stepwise approaches remain standard for their simplicity, although
they usually are not particularly suited for high-dimensional problems. To tackle this setting, another group
of methods leverages screening which can then be combined with forward selection or any other feature
selection procedure (similarly to SWAG). For example, in ultrahigh-dimensional settings, Sure Independent
Screening (SIS) proposed by Fan & Lv (2008) and Fan et al. (2009) ranks variables by a measure of marginal
association, drastically reducing the dimensionality. Its iterative counterpart, ISIS, refines this process by
allowing repeated screening steps combined with penalized methods such as Lasso (Tibshirani, 1996), SCAD
(Fan & Li, 2001), or MCP (Zhang, 2010). A further popular method is Recursive Feature Elimination (RFE),
introduced by Guyon et al. (2002). RFE begins with the full set of variables and then: (i) trains a model
within the class of choice e.g., Random Forests, (ii) computes variable-importance metrics, and (iii) eliminates
the least important variables, iterating until a specified subset size is reached.

All the above methods (and, to the best of our knowledge, the vast majority of existing forward/backward
and penalized variable selection algorithms) aim to find a single, final subset of features i.e., a single model.
With SWAG, we build on the underlying idea of forward selection (i.e. growing from smaller to larger subsets
of variables) but adapt it to identify multiple sparse and accurate models rather than a single best model. In
essence, similarly to the MPS of Kissel & Mentch (2024), SWAG is a model-agnostic wrapper that uses any
estimator of the test error metric, e.g. cross-validation (CV), to guide each enlargement of the variable set. It
screens variables one at a time initially, then expands only those subsets that have already demonstrated
strong predictive performance, and it does so for any chosen model class, whether linear/logistic regression,
kernel SVMs, Random Forests or possibly even more complex learners. Moreover, one of the main reasons for
running SWAG is to study the so-called Rashomon Effect (Breiman, 2001b; Fisher et al., 2019) where various
models can deliver similarly good performance on a given dataset. Instead of discarding the “almost-as-good”
alternatives, the SWAG keeps them therefore letting users explore the diversity of good solutions, check for
potential sparse latent structures and build variable-importance networks to interpret effects. In comparing
SWAG with existing methods, one can note that it preserves the forward-growing nature of classic stepwise
selection but goes beyond it by exploring multiple subsets in parallel at each dimension rather than following
a single path. This allows SWAG to present a library of equally good models rather than a single final model.
Although nothing impedes from modifying SWAG in various ways, currently it does not rely only on marginal
metrics for screening (differently from screening-based methods such as SIS and ISIS) but directly uses the
test error ϵ which, after the first step of the procedure, accounts for conditional effects given other variables.
Compared to RFE, SWAG pursues a forward approach rather than a backward one, which tends to be more
computationally tractable when the number of variables is large. Also, RFE methods typically require a
sensitivity metric specific to the chosen class of models and still aim for a single best subset of variables,
whereas SWAG by construction accommodates different classes of models and retains many good subsets of
variables. Lastly, it is interesting to compare SWAG with a variable selection method that also delivers a set
of models i.e., the random subspace method (RSM) of Ho (1998). RSM is an ensemble approach in which
variable subsets are chosen at random and used to train weak models. On the other hand, SWAG focuses on
identifying good (strong) sparse models through a deliberate search guided by the error metric ϵ. Because
RSM is inherently random, interpreting variable importance can be more challenging, whereas SWAG keeps
track of which variables produce good performance and thus highlights how features co-occur across good
models. Of course, this comes at a computational cost as SWAG by construction, is more computationally
intensive than the classical RSM. A recent alternative very similar in spirit to the SWAG is the MPS of
Kissel & Mentch (2024) which builds “forking-paths” from each of the pre-screened variables and evaluates
(in a forward stepwise manner) which variables should be added to each of the previously selected variables.
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By using a stability selection procedure in each step, the MPS builds a set of models of size pmax. Compared
to the latter, the SWAG is more computationally intensive but is less greedy in terms of nested structures
since it allows to drop certain previous variable combinations if they do not improve the error metric in the
following dimensions. Moreover, it does not only consider models of dimension pmax but also all smaller
models with similarly good performance (although we think that the MPS could theoretically be adapted to
consider this case as well). Based on these characteristics, while being more computationally burdensome,
the SWAG would intuitively provide more diverse models in terms of size and variable combinations which
can be an important aspect for practitioners.

To provide a practical comparison, we run some common variable selection methods (that only choose one
model) on the same datasets and with the same model classes as those shown in Sec. 3. More in detail, in
Tab. 3 we compare SWAG with: (i) AIC forward selection combined with the SIS screening procedure (SIS +
forwardAIC ); (ii) the iterative SIS coupled with the default MCP penalization method (ISIS MCP); and (iii)
the RFE with Random Forests as the model class (RFE RF). These competitors include selection approaches
of different nature, including penalized-based methods (e.g. Lasso, ISIS) and permutation importance based
methods (RFE based on RF with MDA measures). We underline that we coupled classic forward selection
with a screening procedure because in itself it is not suited for the high-dimensional datasets used in our
work. This is because running a logistic regression requires a number of observations larger or equal to
the number of variables, which is not the case for all our datasets. The main result of the applied analysis
(see Tab. 3) is that, for all the datasets considered, the test error ϵtest of each competitor lies within the
test error range of the SWAG models (or even above the maximum value in some cases) for the relevant
model class i.e., Lasso-logistic for SIS + forwardAIC and ISIS MCP and Random Forests (RF) for RFE
RF. These results provide further evidence that SWAG searches the space of models in a comparable way
to other forward/backward feature selection methods but, as opposed to the latter, outputs a library of
almost-equally-good sparse models rather than a single one. This result also complements the one presented
in the paper (see Fig. 1) where the test error of each full model, trained with all the variables, is always
either within the SWAG range or sometimes even higher than the worst test error achieved by a SWAG
model (except for one case). Throughout this analysis, we have made an effort to perform the most fair
comparison possible. In particular, we have used 10-fold CV as the estimator of the out-of-sample prediction
error whenever possible and we input our choice of pmax to RFE RF for each dataset to both speed-up and
facilitate the search in the space of models of the considered comparisons.

ϵtest MeterA ϵtest LSVT ϵtest Ahus ϵtest Colon ϵtest Leukemia
SWAG range Lasso [0.000, 0.000] [0.192, 0.231] [0.065, 0.226] [0.167, 0.417] [0.000, 0.286]

SIS + forwardAIC 0.111 0.192 0.129 0.417 0.143

ISIS MCP 0.333 0.231 0.065 0.250 0.143

SWAG range RF [0.000, 0.278] [0.115, 0.269] [0.032, 0.194] [0.333, 0.417] [0.071, 0.214]

RFE RF 0.000 0.154 0.129 0.417 0.071

Table 3: Comparison of the test errors ϵtest of forward/backward feature selection methods with the SWAG
models test error range for the relevant model class i.e., Lasso-logistic for SIS + forwardAIC and ISIS MCP
and Random Forests (RF) for RFE RF. The analysis has been done for all the datasets present in our work:
MeterA, LSVT, Ahus, Colon and Leukemia.

To summarize, SWAG brings two main benefits compared to existing variable selection methods: (i) by using
any test error metric, it can wrap around any model class without requiring specialized ranking metrics (each
tied to a specific class of models); (ii) it finds multiple and diverse almost-equally-good (distinct) solutions at
each subset size to address the Rashomon Effect. In terms of pros, empirical performance this far shows that
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SWAG can match or exceed the accuracy of a (regularized) model fit on the whole data while selecting very
few variables, and it allows for new avenues of interpretation (e.g. through a network of co-occurrences among
variables in the best subsets). On the cons side, SWAG’s forward-greedy expansion can be computationally
demanding if the number of variables is extremely large or if the error metric ϵ is burdensome to compute,
although parallelization can mitigate these burdens together with a smarter choice of the error metric if
available (e.g. AIC or BIC). In this perspective, since the parameter pmax can work as a regularization
parameter, it may be possible to simply evaluate the models based on their training error thereby avoiding
major computational costs coming from cross-validations (to be investigated in future work). Moreover, it is
still not known if and under what conditions the SWAG guarantees finding every possible almost-equally
good model in the considered dimensions, though in practice it has proven to robustly capture diverse and
accurate solutions for different model classes and datasets. To conclude, similarly to the MPS in Kissel &
Mentch (2024), the SWAG fits into the forward selection tradition by however extending its scope: instead
of identifying a single final subset it finds multiple sparse subsets with good performance and delivering
advantages common when taking into account the Rashomon Effect.

B Computational Complexity

We firstly underline that the premise of the SWAG is to deliver a set of good sparse models for high-dimensional
problems to be employed at the user’s discretion for interpretations, predictions and decisions. Therefore it
does not consider problems where the user needs to rapidly re-estimate or re-test new models and consequently
assumes that the user is not constrained by time to obtain the SWAG outputs. This being said, the SWAG is
a wrapper algorithm and therefore part of its complexity depends on the complexity in fitting the model
class run within it. For this reason, let C(n, p̂) represent the complexity of fitting a model l ∈ L to a
dataset with n samples and p̂ variables. Based on this, the first step of the SWAG evaluates each variable
individually, therefore the complexity of this first step is O (p C(n, 1)). The general step iteratively fits
models with 2 ≤ p̂ ≤ pmax variables where, for each dimension p̂, the number of times the model is fitted
is m with consequent complexity O (m C(n, p̂)). Since the latter step iterates up to pmax, the worst-case
complexity of the general step is O ((pmax − 1) m C(n, pmax)) = O (pmax m C(n, pmax)). Therefore, combining
the two steps of the SWAG delivers an overall worst-case complexity of O (p C(n, 1) + pmax m C(n, pmax)). In
addition, if one uses r-repeated k-fold cross-validation to obtain the test error metric ϵ, then this worst-case
complexity grows to O

(
r k

(
p C(n, 1) + pmax m C(n, pmax)

))
. As a consequence, since p is fixed by the data

and pmax is fixed to be small by the user for sparsity/interpretation reasons, the computational complexity is
driven mainly by the choice of m (i.e. the number of models to evaluate at each step) and, in particular,
by the test error metric chosen. Indeed, the overall complexity of the SWAG can be increased (r k)-fold if
choosing r-repeated k-fold cross-validation but can be considerably reduced if one is able to employ other
more efficient metrics. As an example, if using a generalized linear model with complexity O(np̂2 + p̂3) and
using AIC or BIC as the error metric ϵ, then the worst-case complexity becomes O

(
np + mnp3

max + mp4
max

)
:

this obviously consists in a considerable decrease compared to the general worst-case complexity, as also
shown the computational runtimes further on. One could even further reduce computational complexity by
directly using training error metrics since the parameter pmax could already be considered as a regularizer to
limit over-fitting (see Efron et al., 2004, and discussions in Sec. 2.1). In addition to m however, in specific
cases the parameter α can also play a role for complexity with respect to the number of variables p. Indeed,
α determines the set of screened variables S∗ whose size is p∗. In the general step the SWAG samples m
possible combinations out of the

(
p∗

p̂

)
available: this total number of available combinations may be smaller

than m due to a potentially small p∗, in which case the SWAG performs an exhaustive search and evaluation
of all possible variable combinations for dimension p̂ (i.e. best subset selection). If this occurs, then this will
be the case also in larger dimensions up to pmax where the number of possible combinations will actually
decrease with the dimension. As a result, the complexity coming from m will be reduced to O

((
p∗

p̂

))
for all

{2 ≤ p̂ ≤ pmax |
(

p∗

p̂

)
< m}.
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B.1 Example Runtime: Leukemia Dataset

We ran the SWAG on an Apple 8-core M1 pro 16GB RAM on the Leukemia dataset which has n = 58
training samples and p = 7129 variables with m = 10160, α = 0.01 and pmax = 4. Using 10-repeated 10-fold
cross-validation to get the error metric ϵ, we get the results in Tab. 4 (rounded to the closest minute). These
times will obviously be longer when the number of samples n increases, especially when employing model
classes that do not scale too well with n. These runtimes can however be significantly reduced through
vectorized operations and, in particular, parallelization (when possible) since we can fit and evaluate multiple
models for each dimension p̂ at the same time.

Lasso L-SVM R-SVM RF
50 min 22 min 153 min 82 min

Table 4: Runtimes of SWAG on Leukemia dataset for different model classes.

Above we discussed how the use of a more computationally efficient error metric can drastically reduce SWAG
runtimes. Let us therefore see an example when using a simple logistic regression in the SWAG and using the
AIC as the error metric ϵ. Running it on a MacBook Pro with 1.4 GHz Quad-Core Intel Core i5 processor
and 8 GB RAM, the SWAG is run in 0.32 min (roughly 20 seconds). Moreover, as a side note, this does
not appear to affect the test error performance of the resulting SWAG models compared to the model classes
and cross-validation approaches used for the other methods. In fact, the range of test errors for the SWAG
models using this approach is [0, 0.214] and the model dimension range is [2, 4] therefore delivering results in
line with the other model classes for this dataset. This suggests that if an efficient estimator of the test error
is available, runtimes can be considerably reduced without significantly affecting the results.

C Hyper-parameter Choice

In this work, we make use of different model classes that we use either in their original versions or within the
SWAG. For this reason, we make use of the same hyper-parameter selection rules in all settings, relying on
the common/default choices (as per the caret R package):

1. Lasso-logistic2: the data is pre-processed (i.e., centered and rescaled) and a grid of 5 penalty terms
(λ) for the Lasso (logistic) is used with λ ∈ [0, λmax] where λmax = {0.05, 0.1} depending on pmax.

2. Linear- and Radial-Kernel SVM: in both cases, the data is pre-processed (i.e., centered and
rescaled) and the Linear-Kernel SVM has a cost parameter c = 1 (default value), while the cost for
Radial-Kernel SVM is automatically selected based on a grid of 5 values (i.e., tuneLength = 5);

3. Random Forest: the default value for the number of trees is kept (i.e., ntree = 500) as well as the
common choice for the number of randomly sampled variables at each split (i.e., mtry= √

p for the
original version and mtry =

√
p̂ for the SWAG; see Genuer et al. (2010) for a detailed discussion.

D Sensitivity Analysis

We briefly discuss how the SWAG compares to Rashomon sets in the choice of their respective parameters
(which was also mentioned in Sec. 2.2). Indeed, recalling the definition of Rashomon sets, the “performance”
of the Rashomon set depends on the choice of a (good) reference model l∗ and the parameter θ which may
not always be easy to determine according to the choice of the loss function D (e.g. it may be difficult to have
a priori knowledge of the potential range of loss values for a specific problem). Similarly, the performance of
the Rashomon set can vary depending on choice of the model class L and across different datasets. Therefore,
similarly to Rashomon sets, the choice of the meta-parameters is up to the user’s discretion based on their
needs. In particular, given that the parameter pmax is not chosen for performance but for user-preference on

2In this particular case, Algo. 1 is implemented with the caret package using classical (non-penalized) logistic regression
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model dimensions, the main parameters to be chosen are m and α (and eventually post-processing parameters,
e.g. δ). The parameter α plays a similar role to the parameter θ in Rashomon sets, except that it is not an
absolute value but relative to the set of m models evaluated in a certain dimension. In some way, the choice
of α could be considered more intuitive with respect to θ since the former represents the proportion of best
performing models we want to use in the algorithm, whereas the choice of θ relies on the possible (unknown)
range of losses with respect to a model class and dataset. Therefore, the “additional” parameter with respect
to Rashomon sets would be the number of models to evaluate in each step of the SWAG, i.e. m.

With the above in mind, we perform some sensitivity analyses to understand how these parameters can
affect the SWAG results in terms of test error (ϵtest) and SWAG model dimensions (|sl|). Given that pmax
is determined by the user based on their interpretability requirements, as mentioned earlier, we focus on
the impact of the parameters m (number of models considered for each dimension) and α (the percentile to
determine the selected models for each dimension). We firstly run the SWAG for different model classes and
different combinations of meta-parameters α and m for the Leukemia dataset: the results are presented in
Tab. 5 and 6. We see that as the parameter α increases, so does the average test-error and its upper range,
which is to be expected: by increasing the proportion of selected models we allow “worse-performing” models
to be considered in the SWAG therefore increasing the upper bound (just like increasing θ for Rashomon sets).
Across different values of m we generally also see an increase in the upper range of test errors as we increase
m: nevertheless for a fixed value of α, the choice of m does not appear to considerably affect the range of
SWAG model dimensions |sl| or the average test-error performance mean(ϵtest). Indeed, as we would expect,
increasing m allows to explore more variable combinations and, by doing so, identifies more well-performing
models as well as more “worse-performing” ones. Similar conclusions are made when focusing on the Meter
A data using the Linear-Kernel SVM: see Tab. 7. All things being equal, these intuitive results suggest
to pick a large m (conditional on computational time and resources) and then let the user pick the best
performing ones within the final SWAG library. Nevertheless, as seen in these sensitivity results, similarly
good-performing models are found even with smaller values of m. In fact, the issue of consistent performance
of the SWAG in some way relies mainly on whether the SWAG is able to find some good performing models
independently from these parameters, and the means and ranges of test errors across all model classes suggest
that this is generally the case.

In support of the generally consistent performance across model classes and datasets, we extracted information
on the frequency of variable selection (variable importance) across different classes within the same datasets
analyzed in this work and looked at the correlation between these frequencies. Tab. 8 and 9 show these
analyses for the Colon and Leukemia datasets respectively. For the Colon dataset, we see a high degree of
correlation between Lasso and L-SVM which build linear decision boundaries while there is a less strong (but
still reasonable) degree of correlation between R-SVM and RF which produce non-linear decision boundaries
(whereas the correlations between these two groups of model classes are very low). We notice a similar
pattern for the Leukemia dataset where however there is also a high degree of correlation of the R-SVM with
the linear boundary models and a lower degree of correlation (but still non-negligible) with the non-linear
model RF. What this seems to suggest is that, conditional on different non-linear patterns in the data, the
identification of important predictive variables by the SWAG is relatively consistent across model classes
(especially if these classes share some underlying assumptions): they select the same variables and consider
the same variables to be important. Since these results are based on variable importance, there is a good
reason to believe that these results would hold even for different choices of α and m since they do not greatly
affect the detection of important variables once they are screened in the first step. In conclusion, returning to
the choice of the SWAG meta-parameters, knowing that pmax is chosen by the user for sparsity preferences
(and not for performance), α should generally be chosen small enough (depending also on the number of
variables p) and m can be made as large as computational power allows: then the user can post-process the
SWAG models as strictly as they want to pick the best performing ones. As stated earlier, similar reasoning
must be applied, for example, also for the choice of the meta-parameters of Rashomon sets, i.e. reference
model l∗ and parameter θ, where the reference model is usually a pre-existing empirical risk minimizer chosen
by the user.
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m = 5, 000 m = 10, 000
α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01

Lasso-Logistic
ϵtest [0, 0.286] [0, 0.286] [0, 0.286] [0, 0.357] [0, 0.357] [0, 0.286]

mean(ϵtest) 0.134 0.109 0.059 0.110 0.100 0.075
|sl| [2, 4] [2, 4] [2, 4] [2, 4] [2, 4] [2, 4]

Linear SVM
ϵtest [0, 0.357] [0, 0.214] [0, 0.214] [0, 0.357] [0, 0.357] [0, 0.142

mean(ϵtest) 0.092 0.075 0.063 0.115 0.083 0.063
|sl| [2, 4] [2, 4] [2, 4] [2, 4] [2, 4] [2, 4]

Radial SVM
ϵtest [0, 0.286] [0, 0.286] [0, 0.214] [0, 0.286] [0, 0.286] [0, 0.214]

mean(ϵtest) 0.113 0.085 0.081 0.101 0.084 0.081
|sl| [2, 4] [2, 4] [2, 4] [2, 4] [2, 4] [2, 4]

RF
ϵtest [0.071, 0.286] [0.143, 0.286] [0.143, 0.214] [0, 0.286] [0.143, 0.214] [0.071, 0.214]

mean(ϵtest) 0.216 0.188 0.182 0.175 0.203 0.146
|sl| [2, 4] [2, 4] [2, 4] [2, 4] [2, 4] [2, 4]

Table 5: Sensitivity analysis of meta-parameters m and α for the Leukemia dataset

Logistic
m = 5, 000 m = 10, 000

α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01
ϵtest [0, 0.42857] [0, 0.28571] [0, 0.21429] [0, 0.5] [0, 0.35714] [0, 0.21429]

mean(ϵtest) 0.12519 0.09505 0.06505 0.12548 0.10005 0.06505
|sl| [2, 4] [2, 4] [2, 4] [2, 4] [2, 4] [2, 4]

Table 6: Sensitivity analysis of meta-parameters m and α for the Leukemia dataset with simple logistic and
AIC for test error estimation

Table 7: Sensitivity analysis of meta-parameters m and α for the Meter A dataset with Linear-Kernel SVM.

m = 10, 000 m = 40, 000
α = 0.2 α = 0.1 α = 0.05 α = 0.2 α = 0.1 α = 0.05

ϵtest [0.056, 0.500] [0, 0.111] [0, 0.056] [0.056, 0.722] [0, 0.667] [0, 0.056]
|sl| [5, 6] [2, 6] [2, 6] [4, 6] [2, 6] [2, 6]
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Table 8: Colon dataset: Correlation Matrix of Variable Importance

Lasso L-SVM R-SVM RF
Lasso 1.00000000 0.74568151 -0.05654834 -0.05374952
L-SVM 0.74568151 1.00000000 -0.03513071 -0.06136117
R-SVM -0.05654834 -0.03513071 1.00000000 0.28045757
RF -0.05374952 -0.06136117 0.28045757 1.00000000

Table 9: Leukemia dataset: Correlation Matrix of Variable Importance

Lasso L-SVM R-SVM RF
Lasso 1.00000000 0.89133907 0.7865345 -0.04117896
L-SVM 0.89133907 1.00000000 0.8179987 -0.01653499
R-SVM 0.78653446 0.81799867 1.0000000 0.13001335
RF -0.04117896 -0.01653499 0.1300133 1.00000000

E Empirical Results

Here we give further details regarding the empirical results presented in Sec. 3. More specifically, we provide
(i) more details regarding the logic used to determine the SWAG meta-parameters, (ii) the training error
(ϵtrain) results, number models and Jaccard index description for the considered datasets, and (iii) the details
regarding the variables included in the SWAG networks for the Meter A and LSVT data.

E.1 SWAG Parameter Choice

The choice of the SWAG meta-learning parameters is made in line with the rules of thumb described in Sec.
2.1 and with the intent of reducing overall computational time while ensuring a reasonable exploration of the
variable space. More specifically, we start by defining pmax based on the EPV rule discussed in van der Ploeg
et al. (2014) and, for each dataset, we verify that the selected pmax reaches at least an EPV > 4 as suggested
by Vittinghoff & McCulloch (2007). Based on this, we define m with the aim to at least explore all the
subspace of two-dimensional models generated by p⋆ (i.e.,

(
p⋆

2
)
). To determine this value in practice, we first

evaluate
(

p
2
)

and, given the computational power at our disposal, we select a given percentage of this quantity
that we may call m2 since it refers only to two-dimensional models. This choice then automatically determines
a value p⋆ that satisfies our original aim since p⋆ = 1+

√
1+8m2/2. The value of α follows automatically and it

is set to α = p⋆
/p or, if this value is not appropriate for the user, the parameter m2 can be varied in order to

obtain the desired value of α. In particular, we find that the range 0.01 ≤ α ≤ 0.05 is a good compromise
between fixing an α as small as possible (in order to select strong models) and the possibility of exploring a
considerable portion of the variable space. Taking this into account, in order to determine the final value
of m, we just need to consider the growing dimension of the model up to pmax. To do so, we multiply the
evaluation made at the two-dimensional space of models by pmax and obtain our final m = m2 pmax. It
implies that, following our choices, m is a linear function of pmax.

E.2 SWAG Training Error

For additional information purposes, we provide results on the training error (ϵtrain) observed for the SWAG
models and their original versions which are represented in Fig. 4. As can be observed, the training error
ranges of the SWAG models are generally lower than that of the original model versions. We expect this
since the SWAG models are selected based exactly on this cross-validation criterion (which is not the case for
the original versions).
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Figure 4: SWAG training error range ϵtrain (blue rectangles) and original learning method training error (red
dots). The blue squares imply that the SWAG models all have the same training error.

E.3 Number of SWAG Models

Tab. 10 collects the information on the number of SWAG models |M̃| per model class and dataset shown
in this work (see Tab. 1). As we can see, the number of models varies between datasets and model classes,
indicating whether there can exist sparse models as a result of the Rashomon Effect. For example, a number
that stands out is the number of models based on the Lasso class, i.e. 5, which can suggest that models
belonging to its Rashomon set are of larger dimensions than pmax. This is consistent with Fig. 1 where we
can see that the original model performs better than the corresponding SWAG models.

Table 10: Number of models in the SWAG libraries

MeterA LSVT Ahus Colon Leukemia
Lasso 32 5 720 64 157
L-SVM 74 417 447 66 98
R-SVM 26 28 1’137 70 40
RF 26 27 637 59 20

E.4 Jaccard Index Computation

We briefly explain how the Jaccard index was computed to present the results in Tab. 2. Generally speaking,
we pick two models belonging to the SWAG library and then apply the Jaccard index to the sets of variables
included in these two models: we then do so for all pairs of SWAG models. More specifically, for sets A and
B the Jaccard index is given by:

J(A, B) = A ∩ B

A ∪ B
.

Therefore, as an example, if A = {2, 3} is the index set of variables in one SWAG model (i.e. this model
contains variables 2 and 3) and if B = {2, 3, 12} is the index set of variables in another SWAG model, then
the Jaccard index is 2/3 ≈ 0.67 denoting a considerable overlap in variables between the two models. This
is computed for each pair of models in the SWAG sets therefore generating a collection of Jaccard indexes
which we summarize with their median value and range for each dataset and model class.
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E.5 SWAG Network Details

In this section, we reproduce the same analyses and interpretations included in the main manuscript (for ease
of readability) and add the details regarding the variables included in the SWAG networks for the Meter A
and LSVT datasets.

E.5.1 Meter A

The Meter A data is analyzed in Gyamfi et al. (2018) and collects measurements on ultrasonic flowmeter
diagnostics. Achieving good diagnostics regarding the health of a flowmeter is of extreme importance for
condition-based maintenance in many industrial sectors such as the oil and gas industry since incorrect
measurement can entail considerable economic and material losses (see, e.g., TUV-NEL, 2012). In this data,
the goal is to classify the health of a meter into two classes: “Healthy” (Class 1) or “Installation effects”
(Class 2). Given that the variables are measurements of physical nature, we decide to consider all first-order
interactions which finally delivers a total variable size of p = 666 (36 original variables plus

(36
2

)
= 630

interactions). Using the results from Lasso-based SWAG, we can see how the variables most frequently
included in the selected models can be arranged into a network where the edges represent the most common
connections between these variables as can be seen in Fig. 5. Therefore, in order to understand the mechanics
and perform diagnostics for this ultrasonic flowmeter, among the 666 variables, a researcher could for example
focus their attention on the interaction (i) between flatness ratio and gain as well as (ii) between the speed of
sound and gain at the first end (of the fifth path). In particular, a consistent flatness ratio across various
paths indicates structural integrity and alignment, crucial for optimal performance. Variations in the flatness
ratio can suggest issues such as misalignment or internal obstructions, which can significantly impair the
gain readings and, consequently, the flow measurements. The flatness ratio can affect wave propagation,
with deviations leading to distorted signals. This distortion, which manifests in reduced gain measurements,
indicates latent defects that could progress into more severe operational failures if not addressed (Tang
et al., 2015). In addition, changes in the speed of sound can indicate alterations in fluid properties—such as
temperature, pressure, or contamination levels (which may not be immediately observable). Monitoring the
speed of sound alongside gain measurements can uncover underlying problems within the fluid system that
affect measurement accuracy (Bombarda et al., 2021). As a final note, given that cost-based maintenance
can have asymmetric costs according to the decision taken on the flowmeter, the SWAG could allow to
select models based on the corresponding (non-convex) cost-function instead of a symmetric kind of loss
(i.e., each type of error is weighted equally) that model classes are usually trained on (see, e.g., Crone, 2002;
Masnadi-Shirazi & Vasconcelos, 2007).
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1 Gain at first end of 2nd path
2 Gain at first end of 5th path
3 Int. Flatness ratio, Gain at first end of 1st path
4 Int. Flatness ratio, Gain at first end of 7th path
5 Int. Flatness ratio, Gain at second end of 2st path
6 Int. Flatness ratio, Gain at second end of 4th path
7 Int. Flatness ratio, Gain at second end of 7th path
8 Int. Speed of sound 3nd path, Gain at first end of 5th path
9 Int. Speed of sound 3rd path, Gain at first end of 5th path

10 Int. Speed of sound 4th path, Gain at first end of 5th path
11 Int. Speed of sound 6th path, Gain at first end of 5th path
12 Int. Speed of sound 7th path, Gain at first end of 5th path
13 Int. Speed of sound 8th path, Gain at first end of 5th path
14 Int. Average speed of sound in all paths, Gain at first end

of 5th path
15 Int. Gain at first end of 2nd path, Gain at first end of 5th path
16 Int. Gain at first end of 5th path, Gain at second end of 5rd path
17 Int. Gain at first end of 5th path, Gain at second end of 5th path

Figure 5: Network of variable importance and pairwise link-intensity in the set of models M̃ for the Meter A
dataset using the Lasso-based SWAG results. “Int.” denotes the interaction between two variables
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E.5.2 LSVT

The voice rehabilitation dataset is analyzed in Tsanas et al. (2013) in order to assess the effectiveness of a
computer program called “Lee Silverman voice treatment (LSVT) Companion” which allows patients with
Parkinson’s disease to independently progress through a rehabilitative treatment session. Taking data on 126
samples from 14 patients who followed the latter treatment, 310 dysphonia measures are taken on each of
them (plus information on sex and age of the patients) and used to understand if they could correctly predict
whether the patients’ voices are “acceptable” or “unacceptable” after this treatment. In their analysis, a
robust feature selection is used to select 8 variables (based on the first eight variables classified by the feature
selection method) and subsequently R-SVM is tested (along with RF) to obtain around 90% accuracy in
classifying patients’ progress.
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4 Jitter F0 range 5 95 perc 16 entropy log 10 coef
5 Jitter pitch percent 17 det TKEO mean 6 coef
6 MFCC 2nd coef 18 det TKEO mean 8 coef
7 MFCC 3rd coef 19 det TKEO std 5 coef
8 prc95 5 F0 series F0 expTitze 20 det TKEO std 6 coef
9 entropy shannon 6 coef 21 det TKEO std 7 coef

10 entropy shannon 7 coef 22 det TKEO std 8 coef
11 entropy shannon 9 coef 23 det TKEO std 10 coef
12 entropy shannon 10 coef 24 entropy log 3 9 coef

Figure 6: Network of variable importance and pairwise link-intensity in the set of models M̃ for the LSVT
dataset using the Radial-Kernel SVM SWAG results.

There is also scientific interest in determining the variables (and combinations thereof) that most contribute
to the definition, in this case, of a Parkinson’s disease (PD) speech treatment as being acceptable or not.
Also in this case, the SWAG models (based on the R-SVM) can be arranged into a network in order to allow
for interpretation as seen in Fig. 6. Based on the SWAG network, researchers interested in improving speech
treatment should focus on the 2nd and 3rd Mel-Frequency Cepstral coefficients (MFCC) and on the entropy
with base-4 logarithmic coefficients (as well as the interactions between these three variables as highlighted by
their frequent presence in the same SWAG models). In particular, MFCCs such as the 2nd and 3rd coefficients,
are pivotal in characterizing the spectral properties of sound produced by the vocal tract. They provide
details about vowel sounds and overall speech quality, making them useful for assessing the impact of LSVT
therapy. Moreovwer, various jitter measurements (such as Jitter F0 absolute perturbation and Jitter F0
range across the 5th and 95th percentiles), are crucial in assessing vocal stability: with heightened jitter
often correlating with less stable vocal production where this instability can signal underlying physiological
issues affecting vocal fold function, suggesting a need for targeted therapeutic interventions. For instance, a
patient exhibiting low jitter values and consistent MFCC readings alongside stable entropy measures is likely
progressing well in their treatment. Conversely, high jitter or low entropy may indicate challenges that require
further intervention. These attributes serve not only as indicators of progress but as quantifiable measures
for tailoring personalized therapy sessions, enhancing the overall management of voice characteristics affected
by PD. Each attribute interrelates, influencing the others: for example, stabilization in jitter can lead to
improved MFCC values as patients develop stronger vocal control through therapy.
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