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Abstract

By leveraging a hierarchical structure of known
classes, Hierarchical Novelty Detection (HND)
offers fine-grained detection results that pair de-
tected novel samples with their closest (known)
parent class in the hierarchy. Prior knowledge
on the parent class provides valuable insights to
better understand these novel samples. However,
traditional novelty detection methods try to sepa-
rate novel samples from all known classes using
uncertainty or distance based metrics so they are
incapable of locating the closest known parent
class. Since the novel class is also part of the
hierarchy, the model can more easily get confused
between samples from known classes and those
from novel ones. To achieve effective HND, we
propose to augment the known (leaf-level) classes
with a set of novel classes, each of which is as-
sociated with one parent (i.e., non-leaf) class in
the original hierarchy. Such a structure allows us
to perform novel fine-grained evidence allocation
to differentiate known and novel classes guided
by a uniquely designed loss function. Our thor-
ough theoretical analysis shows that fine-grained
evidence allocation creates an evidence margin to
more precisely separate known and novel classes.
Extensive experiments conducted on real-world
hierarchical datasets demonstrate the proposed
model outperforms the strongest baselines and
achieves the best HND performance.

1. Introduction
Novelty detection aims to tackle the challenging real scenar-
ios, where test samples may come from previously unseen
classes outside of the training distribution. Various novelty
detection techniques have been developed with promising
detection performance (Chen et al., 2021; Vaze et al., 2021;
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Figure 1. An illustrative example of Hierarchical Novelty Detec-
tion (HND): (a) A hierarchy of traffic signs with known classes
(Stop, Yield, Hiking Trail and Picnic Area); (b) Testing samples
from both known and novel classes.

Chen et al., 2020; Zhang et al., 2020). Uncertainty or dis-
tance based metrics are commonly leveraged to quantify
how a testing sample is different from known ones. How-
ever, most existing methods only provide a binary detec-
tion result, indicating whether the sample is novel or not.
Such a coarse-grained result does not offer additional in-
sight on the nature of the novel sample to further inform
decision-making. For example, when detecting a new type
of malware, it may be beneficial to identify the closest soft-
ware family it belongs to, which can help security engineers
quickly develop a defense strategy. Similar cases can be
found in many other domains: when a newly synthesized
protein is discovered, locating the most similar existing pro-
tein type can equip biologists with valuable prior knowledge
to study the novel one and advance scientific discovery.

To perform fine-grained novelty detection, it is beneficial to
leverage existing hierarchical structures that humans com-
monly use to organize information. For example, most
real-world objects can be described using a hierarchical
structure based on their relationship with other relevant ob-
jects. Many benchmark datasets also organize the training
classes into a hierarchical structure. With a hierarchy of
known classes in place, fine-grained novelty detection can
be achieved by simultaneously performing novelty detec-
tion while accurately identifying a parent class within the
hierarchy that the novel sample is most similar to. We refer
to this problem as hierarchical novelty detection (HND). As
shown in Figure 1, given a set of known types of traffic
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signs organized by a hierarchy in (a) used in model training,
the testing samples may come from known classes (Stop)
or represent new types of traffic signs, including Do Not
Enter and Food as shown in (b). For those novel samples, a
properly trained HND not only needs to detect that they are
not part of the existing hierarchy but also assign them to the
closest parent class: Do Not Enter → Novel Regulatory and
Food → Novel Recreational.

To achieve good novelty detection performance, a general
detection model tries to separate novel data samples from
known classes as much as possible. As a result, the model
tends to assign a high uncertainty (or distance) score for
novel data samples so that they can be clearly differentiated
from known samples. However, directly applying existing
novelty detection techniques does not meet the unique re-
quirement of HND. A fundamental challenge lies in that
the novel samples are no long totally unbounded as in the
standard novelty detection setting. In contrast, they are also
part of the hierarchy and the novelty arises because their
corresponding class was not included during the training
time. Thus, simply assigning a high uncertainty/distance
score to a novel data sample may push it outside the entire
hierarchy, hence is not able to identify a close parent class
to better understand the nature of the sample.

HND is only sparsely pursued by existing efforts. One vi-
able solution is to conduct hierarchical classification (HC)
augmented with Novelty Detection techniques (Lee et al.,
2018; Wang et al., 2022) (referred to as HC-ND). For each
node followed by the HC process, a novelty score is pre-
dicted and compared with a pre-defined threshold to deter-
mine whether HC-ND should continue or stop. For samples
from a known class, HC should proceed to the bottom layer
of the hierarchy and assign them to the corresponding leaf
node; for a novel sample, HC-ND should identify a right
non-leaf node to stop when sufficient novelty is detected,
making it impossible to further assign it into one of the
existing child classes. The effectiveness of HC-ND heavily
hinges on the HC model, as a mistake made at any point
during the hierarchical classification process will result in
a wrong detection result. Consequently, the detection error
accumulates quickly with the depth of the hierarchy. Fur-
thermore, a different novelty threshold may be assigned
depending on the depth of the hierarchy, which further com-
plicates the detection process.

To avoid a fast accumulating detection error in HC-HD, one
can convert a multi-level hierarchy into a flat structure (Lee
et al., 2018). To allow a novel data sample to be assigned
to any non-leaf node as its closest parent class, the flat
structure augments all known leaf classes with a set of novel
classes, each of which associates with one non-leaf node in
the original hierarchy. Figure 2 shows an example of the flat
structure, where the augmented novel classes are highlighted
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Figure 2. Flatten the hierarchy of Figure 1(a) to convert the prob-
lem into a multi-class (leaf classes and novel non-leaf classes)
classification problem. Novel non-leaf classes include Novel Traf-
fic Sign, Novel Regulatory Sign, and Novel Recreation Sign.

in red. One remaining challenge lies in the lack of training
samples from the novel classes. To overcome this, a Leave-
One-Out (LOO) training process has been developed that
iteratively removes classes from the hierarchy and treats
them as the novel class to support training. This process can
effectively avoid assigning a novel sample to any known
classes. Nevertheless, since samples from known classes
are used as novel ones during training, the model may have
trouble in differentiating the known classes from the novel
one during testing (as shown in Figure 5).

To achieve effective HND, we propose to conduct novel
fine-grained evidence allocation for hierarchical novelty
detection. By leveraging the flattened structure, we perform
evidence-based multi-class classification to train a model
that can allocate different amounts of evidence to known
classes and novel ones, respectively, which forms a margin
to separate them more precisely. In particular, for testing
samples from known classes, the model is trained to assign
high evidence to the corresponding leaf class, so it can be
clearly differentiated from other known classes as well as
the novel classes; for a novel data sample, the model can
assign moderate evidence to the corresponding novel class
while ensuring a low evidence to all other classes. Model
training is guided by a uniquely designed loss function with
strong theoretical guarantees to create an evidence margin
for improved HND detection. In addition, prior belief on
the existence of certain novel classes can be incorporated in
a principled way by adjusting the base rate in the innovative
evidential formulation. Our empirical results confirm that
HND performance can indeed benefit from such prior belief.
Our contribution of the paper is threefold:

• We propose a novel method, referred to as evidential
hierarchical novelty detection (E-HND) that leverages
fine-grained evidence to more precisely differentiate sam-
ples of known class from those of novel ones in the same
hierarchy.

• We design a unique loss function that can create an ev-
idence margin to ensure good separation of known and

2



Hierarchical Novelty Detection via Fine-Grained Evidence Allocation

Traffic Sign

Regulatory
Sign

Recreation
Sign

Stop
Yield Hiking

Trail
Picnic
Area

Traffic Sign

Regulatory
Sign

Recreation
Sign

Yield
Hiking
Trail

Picnic
Area

Novel Regulatory
Sign

Traffic Sign

Novel
Traffic Sign

Recreation
Sign

Hiking
Trail

Picnic
Area

Remove
Stop Class

Remove
Regulatory
Sign Class

(a) (b) (c)

Figure 3. Working mechanism of leave-one-out (LOO) training. A training sample from the stop class is used to train HND. The green
color represents Ground Truth(GT), and the dashed line represents the non-ground truth classes. (a) GT is the known leaf class (b) By
removing the known leaf class (stop) from the hierarchy, GT becomes its novel parent class (Novel Regulatory sign). (c) By removing the
Regulatory sign class, GT becomes the Novel Traffic sign class.

novel samples with sound theoretical guarantees.
• We leverage the base rate in the evidential formulation to

incorporate prior belief on the existence of novel classes.

We perform extensive experiments on multiple real-world
hierarchical datasets, which show the effectiveness of the
proposed E-HND model. Comparison with the strongest
known baselines shows that E-HND achieves the best HND
performance to date.

2. Related Works
Novelty Detection. The field of novelty detection aims to
identify whether the sample is from a known or novel class.
In order to perform novelty detection, some methods use
maximum probability or maximum logit value as the score
for assigning a sample to a known class (Vaze et al., 2021).
Similarly, (Bendale & Boult, 2016) uses a separate class
to assign the probability that a sample belongs to a novel
class. (Chen et al., 2020; 2021; Yang et al., 2020) learn a
prototype based on known classes and assigns the test sam-
ple to a known class on the basis of how close they are to
prototypes. (Chen et al., 2021) further utilizes an adversarial
learning-based training to generate novel samples to further
improve the novelty detection performance. Moreover, there
are various uncertainty-based methods (Sensoy et al., 2018;
Malinin & Gales, 2018; Charpentier et al., 2020) that quan-
tify the uncertainty measures to represent the uncertainty
in prediction for novel samples. These methods can not be
directly used in HND, as HND has a unique setting to iden-
tify the closest parent of the novel sample. Hence, in order
to tackle the problem, we need to consider the hierarchical
structure within known classes.

Hierarchical Novelty Detection. There are various works
(Chang et al., 2021; Chen et al., 2022; Zhao et al., 2021;
Du et al., 2020) in the field of hierarchical classification
that achieve promising results on identifying samples from
fine-grained classes. However, these classifications are not
equipped with novelty detection mechanisms. To introduce

novelty detection in hierarchy, (Lee et al., 2018) uses KL
divergence based confidence score for each local classifier.
Further, in order to improve novelty detection, (Wang et al.,
2022) uses fuzzy logic as an uncertainty measure. However,
using multiple classifiers in the hierarchy causes errors to
accumulate while making predictions. Also, it requires us
to set multiple thresholds. To avoid the use of multiple
thresholds and error propagation, (Lee et al., 2018) flattens
the hierarchy to perform multi-class classification for leaf
and non-leaf classes together. (Ruiz & Serrat, 2022) uses
cosine loss to learn prototypes to leaf and non-leaf classes,
and assigns the test sample to the closest learned prototype.
These methods leverage the training of known samples as
novel non-leaf classes, causing the model to confuse be-
tween known and novel classes in the testing phase. In
order to address the problem, we conduct HND based on
fine-grained evidence allocation that helps in the separation
between known and novel classes.

Novel Category Discovery (NCD). The goal of this field
of research works (Han et al., 2019; 2020; 2021; Zhong
et al., 2021b;a) is to discover novel categories from unla-
beled samples, where the unlabeled data contain samples
from only novel categories. The more realistic setting is
to include unlabeled samples from both known and novel
categories, as explored in Generalized Category Discovery
(GCD) (Vaze et al., 2022; Rastegar et al., 2024). NCD and
GCD along with HND go beyond the binary ID/OOD detec-
tion by assigning the detected novel samples into specific
classes. Furthermore, an implicit binary hierarchical tree
is learned to support the fine-grained categorization of the
novel samples (Rastegar et al., 2024). In contrast, HND
leverages an existing hierarchy of known classes to super-
vise the fine-grained categorization of the detected novel
samples if they fall into the hierarchy. NCD and GCD meth-
ods categorize the novel samples through clustering, which
could be less accurate due to the lack of detailed supervision
as in HND. In contrast, for a novel sample that is outside of
the existing hierarchy, where no fine-grained supervision is
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Figure 4. A training image from Stop class is used by cross-entropy
based loss function and E-HND (a) Logits mapped to ground
truth and non-ground truth classes by LOO method (b) Dirichlet
parameters mapped to ground truth and non-ground truth classes
by E-HND

available, NCD/GCD methods can be applied. Therefore,
HND and NCD/GCD can be used in a complementary way
depending on whether the detected novel samples belong to
the existing hierarchy or not.

3. Methodology
3.1. Problem Formulation
Let H denote a hierarchical relationship between classes.
For a class y, let Pa(y), Ch(y), An(y) and De(y) denote
the parent, children, ancestors and descendants of y in H,
respectively. There are three types of classes: leaf class
(with no children), non-leaf class (ancestor of a leaf class),
and novel class (Ch(y) = ϕ and y /∈ H). Out of these
classes, only the leaf class and non-leaf class are known
during training, forming the hierarchy H. Let N(y) denote
the set of novel classes, whose closest known parent class in
H is y. For a test sample belonging to a novel class N(y),
the goal of HND is to predict y for that sample.

As mentioned in the introduction, to avoid accumulating
errors over the hierarchical classification process and set-
ting layer specific novelty threshold, we leverage a flattened
structure to conduct HND. Let Le(H) and NLe(H) repre-
sent the set of leaf and non-leaf classes, respectively. To
cover the entire hierarchy, we associate each non-leaf class
with a novel class, as shown in Figure 2. We refer to these
novel classes as novel non-leaf classes. The flattened struc-
ture allows us to perform multi-class classification in one-
shot by including both the known leaf classes and novel
non-leaf classes. The model can output the probabilities
for the known (p(kn) = [p

(kn)
1 , ..., p

(kn)
|Le(H)|]) and novel non-

leaf classes (p(no) = [p
(no)
1 , ..., p

(no)
|NLe(H)|]). Once being

trained, the model can perform HND by

k̂ = argmax
k

[p
(kn)
1 , ..., p

(kn)
|Le(H)|, p

(no)
1 , ..., p

(no)
|NLe(H)|] (1)

where k̂ represents the index of the class with the highest
probability among known leaf and non-leaf novel classes.

3.2. Challenges of Model Training
One key challenge in novelty detection is the lack of samples
from novel classes during the training process. LOO is a
technique leveraging a flattened structure for novel detection
training using the samples solely from known classes (Lee
et al., 2018). Let (x, y) be a pair of training sample with a
leaf-level label y. To support known sample classification,
LOO trains the model to output the highest probability value
p(y|x) among all known leaf classes Le(H). To support
novelty detection using samples in class y, it recursively
removes each of its ancestors c ∈ An(y) from H, resulting
in a new hierarchy H \ c. For each c, it maximizes the
probability of the new ground truth as N(Pa(c)). As an
example, consider a sample from Stop class as shown in
Figure 3. The sample is first used to maximize the proba-
bility of Stop in comparison to non-ground truths shown in
the dashed box as shown in (a). When the Stop Sign class
is removed from the hierarchy, the same training sample
is used to maximize the probability of Novel Regulatory
Sign as shown in (b). Finally, when Regulatory Sign class is
removed from the hierarchy, the training sample is used to
maximize the probability of Novel Traffic Sign as shown in
(c). Overall, the following loss function is used to minimize
the cross-entropy:

LCE(θ) = E
p(x,y)

[− ln p(y|x; θLe(H))

+
∑

c∈An(y)

− ln p(N(Pa(c))|x; θN(Pa(c))∪Le(H\c))]

(2)

Since the same data sample is used to maximize both the
known ground truth (i.e., y) and the novel ground truth
(i.e., N(Pa(c))) during training, it could lead to a conflict
that causes confusion when using the model for testing.
For example, given a test Stop image, the model could
output a high probability for both the known ground true
label and each of the novel ground true labels as shown in
Figure 4(a). This kind of training does not allow the model
to separate between known and novel samples in testing.
The model allocates high logit values for both known and
novel samples as we observed in CUB test dataset in Figure
5(a), compromising the novelty detection performance in
practical settings.

3.3. Learning the Evidence Margin
To avoid confusion of the model during testing, it is essen-
tial to use a more fine-grained loss function that can clearly
separate samples from known and novel classes. Maximiz-
ing the class probability by minimizing the cross-entropy as
in (2) is inadequate. To this end, we propose to conduct evi-
dential HND, which performs fine-grained evidence-based
training that guides the model to allocate distinct amounts of
evidence to known and novel classes, respectively, resulting
in a clear separation.
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Figure 5. Comparison of the distribution of (a) logits and (b) evi-
dences for known and novel test samples in CUB dataset

Given a K-way multi-class problem, evidential learning
trains a model to assign a belief mass distribution b =
[b1, b2, ..., bK ] along with an uncertainty mass u to multi-
class forming a multinomial opinion w given by:

w = (b, u,a),with
K∑

k=1

bk + u = 1 (3)

where a = [a1, a2, ..., aK ] denotes the base rate distribution
representing the prior probabilities associated with each
class. The probability that a sample belongs to a class k is

P (y = k) = bk + aku (4)

Assume that the label distribution is governed by a param-
eter p = [p1, p2, ..., pK ], i.e., P (y = k|pk) = pk, which
allows us to obtain (4) by marginalizing p. Further, as-
sume that p is drawn from a Dirichlet PDF D(p|α), where
α = (α1, ..., αK)⊤. The parameter αk represents the effec-
tive number of observations for class k. Let rk represents
the observed evidence, then parameter αk is given by

αk = rk + akW (5)

where W provides the weight to the base rates 1. Such an
expression leads to an evidence based representation of class
probability P (y = k):

P (y = k) = E[pk] =
αk∑K
k=1 αk

=
rk + akW∑K
k=1 rk +W

(6)

Thus, given the ground-truth labels, training an evidential
learning model can be achieved by maximizing the ground-
true label probability. This is equivalent to assigning high
evidence to that label. On the other hand, the amount of
evidence also reflects the confidence (or uncertainty) of
the prediction. By comparing (6) and (4), when the model
predicts a low evidence rk, the corresponding belief bk is
low and the uncertainty mass u is high due to the summation
constraint in (3). For novel samples, it is natural for the
model to make a low-confidence prediction because the
model has not been exposed to such samples.

1The default values ak and W are usually set to 1
K

and K,
respectively, leading to αk = rk + 1 in common settings.

Taking advantage of the key properties offered by an
evidence-based formulation, we propose a novel loss func-
tion that can form an evidence margin to clearly separate
known and novel samples, leading to improved novelty de-
tection performance. On one hand, since the model naturally
provides low-confidence predictions for novel samples, the
loss function simulates that behavior during the training
phase by upper bounding the evidence allocated to the novel
classes. On the other hand, for the known classes, it allows
the model to predict much higher evidence, which ensures
confident predictions on known samples. More formally,
given the i-th training sample, the proposed loss function
comprises two terms that work in a multitask fashion to
allocate: (i) high evidence to the ground truth known leaf
class and (ii) moderate evidence to the ground truth novel
non-leaf classes.

Li(θ) = L(1)
i (θ) + L(2)

i (θ) (7)

L(1)
i (θ) = KL

[
D(pi|αi; θLe(H))||D(pi|α̂i; θLe(H))

]
L(2)
i (θ) =

∑
c∈An(y)

L(2)
i,c (θ)

L(2)
i,c (θ) = KL

[
D(pi|αi; θLe′(H\c))||D(pi|α̃i; θLe′(H\c))

]
The first term L(1)

i (θ) is defined using the KL diver-
gence between a model predicted Dirichlet Distribution
D(pi|αi; θLe(H)) and a sharp baseline Dirichlet Distri-
bution D(pi|α̂i; θLe(H)) that assigns high evidence (i.e.,
α̂ij ≫ 1) to ground-truth label j and zero evidence to other
labels. In the second term L(2)

i (θ), we iteratively remove
the ancestor c ∈ An(y) from H, resulting in a new hier-
archy H \ c) each time. For each c, L(2)

i,c (θ) is defined by
the KL divergence between a model predicted Dirichlet
Distribution D(p|α; θLe′(H\c)) and a less sharp Dirichlet
Distribution D(p|α̃; θLe′(H\c)), where Le′(H \ c) denotes
N(Pa(c)) ∪ Le(H \ c). The Dirichlet parameters of the
two baseline distributions are given as

α̂ik =

{
β1 ≫ 1, if k = jH

1 otherwise
(8)

α̃ik =

{
1 < β2 < β1, if k = jH\c

1 otherwise
(9)

where jH and jH\c denote the known ground-truth label and
and novel known ground-truth labels when c is removed.
Figure 4 (b) illustrates the key idea of the proposed loss
function, which forms an evidence margin (β1 − β2) to
clearly separate the known ground-truth an novel ground-
truth labels. Learning such a evidence margin can lead to
a much improved HND performance in testing. As shown
in Figure 5 (b), the model tends to predict much higher
evidence for known samples than the novel samples. In
contrast, without learning the evidence, the model predicts
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very similar logits for both known and novel samples margin
as shown in Figure 5 (a).

3.4. Theoretical Analysis
In this section, we perform a deep theoretical analysis to
understand the key properties of the proposed loss function.
First, we analyze how the proposed loss function can guar-
antee to learn an evidence margin to separate known ground
truth and novel ground-truth labels in Theorem 3.1. We then
show that the updates from two loss terms do not conflict
with each other in Theorem 3.2 as the same data sample is
leveraged in both terms in a multi-task fashion.

Theorem 3.1 (Evidence margin learning). Given a hierar-
chy H and a training sample i. The known ground truth
class is y with index jH and the novel ground truth index
is jH\c,∀c ∈ An(y). The loss function trains the model to
assign evidence such that

1 ≤ αjH ≤ β1, 1 ≤ αjH\c ≤ β2,∀c ∈ An(y) (10)

And when the learning converges, the Dirichlet parameters
form an evidence margin given by (β1 − β2).

Proof. (Proof sketch) Limited by the space, we provide the
proof of the theorem in Appendix. We first define a general
form of KL divergence-based loss function with baseline
ground truth β. For αj = β and αk ̸=j = 1, we show that
loss becomes 0. We then show that the loss decreases when
αj starts increasing until it reaches β and further increasing
αj beyond β causes the loss to increase.

Theorem 3.2 (Non-conflicting update). When optimizing
the overall loss function in (8) that involves simultaneously
minimizing the two loss terms L(1)

i (θ) and L(2)
i (θ), it does

not lead to a conflict in the model predicted Dirichlet pa-
rameters α.

Proof. (Proof sketch) We provide the details of the proof
in Appendix. We first identify the common parameters
between two loss terms. We then show that for the non-
common parameters, each loss term updates them indepen-
dently. Finally, for the common parameters, we show that
there is no conflicting update.

Remarks: Theorem 2 ensures that the model parameters
can be updated consistently when optimizing the jointly
objective function in (8). Besides, ensuring the evidence
margin, both loss terms also try to assign minimum evidence
to the non-ground truth labels. As an example in Figure
4(b), the model learns to output a Dirichlet parameter with
value 1 for all non-ground truth labels: Yield, Hiking Trail,
Picnic Area.

3.5. Incorporating the Prior Belief
The evidential theory allows us to encode a prior belief
in the form of base rate distribution a as we calculate the
effective number of observations. Base rates denote the

prior probabilities of a data sample belonging to the classes
when no evidence is observed and W quantifies the weight
of the base rates. In the most common setting with no strong
prior belief, the Dirichlet parameter is related to evidence
as αk = rk + 1, where evidence rk represents the observed
number of observations in support of class k. Recall that the
1 is the result of akW with a weak base rate 1

K and setting
W = K. By adjusting the base rates, we can incorporate
more appropriate prior belief that can further improve the
HND performance in practice.

In particular, a higher base rate for the known classes denote
the belief of completeness of the hierarchy, and a test sample
will more likely be assigned to one of the known leaf classes.
In contrast, a higher base rate for the novel classes allows
us to encode the belief that the current hierarchy is still
incomplete. By leveraging this Bayesian formulation, we
can assign different base rates given the distinct prior belief
on how incomplete each sub-hierarchy is. Applying a higher
base rate to class k has the effect of enforcing a stronger
prior belief by increasing the pseudo counts.

As an example, if we have a stronger belief that only the sub-
hierarchy of Recreation Sign is more likely to be incomplete
as part of the hierarchy shown in Figure 2, we can modify
the base rate distribution by using a higher base rate ak >
1/K for the corresponding Novel Recreation Sign class. As
a result, the pseudo count increases for Novel Recreation
Sign and decreases for other classes. In this way, a prior
belief can be encoded through base rates, resulting in an
increased Dirichlet parameter that affects the loss function
accordingly.

4. Experiments
We conduct experiments on real-world hierarchical datasets
to assess the effectiveness of the proposed method. We
investigate the effects of using different sets of hyperpa-
rameters to confirm the positive impact of the learning an
evidence margin. Finally, we explore the trade-off between
known and novel performance by adjusting the different
values of base rate distributions. Additional experiments are
presented in the Appendix C.

4.1. Datasets
To evaluate the performance of E-HND and other competi-
tive baselines, we use four real-world hierarchical datasets:

• TinyImagenet (Le & Yang, 2015): It contains 200
classes each with 500 training, 50 validation, and 50 test
images in each class, resulting in a total of 120k images.
We randomly select 50 classes as novel and the remaining
classes as known classes. For the known class, we create
the hierarchy using the hypernym-hyponym relationship
from WordNet. The resulting hierarchy contains 150 leaf
nodes, 86 non-leaf nodes, and 12 levels.

• CUB-200-2011 (Welinder et al., 2010): It contains 12k
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Table 1. Comparison Results

Method CUB Tiny Imagenet AWA2 Traffic
NA@50 AUC NA@50 AUC NA@50 AUC NA@50 AUC

DARTS 40.42 30.07 15.91 12.18 36.75 35.14 34.00 30.36
Relabel 38.23 28.75 18.67 14.73 45.71 40.28 39.67 34.03

Evidential 35.06 25.86 19.35 14.53 44.82 36.44 37.32 32.57
HCL 32.19 25.22 13.45 10.19 36.40 32.80 34.17 33.70
LOO 42.25 32.81 18.93 14.50 47.82 41.95 41.51 35.47

E-HND 46.18 35.31 21.44 16.03 48.22 42.37 45.09 41.02

TD+LOO 44.42 34.31 19.37 14.87 50.25 42.86 42.41 38.22
TD+E-HND 46.85 35.78 21.77 16.39 52.53 45.56 47.69 43.11

Results are obtained from local reproduction

images of fine-grained species of bird with a total of 200
classes. We use a 150-50 split of known-novel classes.
We construct the hierarchy using hypernym-hyponym
relationships from WordNet. The hierarchy consists of
43 non-leaf nodes, 150 leaf nodes, and 7 levels.

• Animals With Attributes 2 (Lampert et al., 2014): It
contains 37k images of animals with total 50 classes. We
use a 40-10 split of known-novel classes. We construct
the hierarchy using hypernym-hyponym relationships
from WordNet, resulting in 21 non-leaf nodes, 40 leaf
nodes, and 7 levels.

• Mapillary Traffic Sign Dataset (Ertler et al., 2019) It
consists 70k images of traffic signs with total of 203
classes. We use a 164-39 split of known-novel classes
from (Ruiz & Serrat, 2022) and construct hierarchy using
parent-child relationships from (Ruiz & Serrat, 2022),
resulting in 41 non-leaf, 164 leaf nodes, and 4 levels.

4.2. Compared Baselines
We compare E-HND with the following state-of-the-art base-
lines in HND. It is worth noting that performing Hierarchical
Classification augmented with Novelty Detection(HC-ND)
requires setting multiple thresholds, as discussed in the in-
troduction. Hence, it is difficult to make a fair comparison,
so we do not include it as one of the competing baselines
in table 1. Instead, we use the features from one of the
HC-ND methods as input to our method (TD+EHND) and
the best-performing baseline (TD+LOO). We discuss results
from HC-ND methods in Appendix C.

• Dual Accuracy Reward Trade-off Search (DARTS)
(Deng et al., 2012): Following the modified version of
DARTS (Lee et al., 2018), we obtain the expected re-
wards for all the classes.

• Relabel (Lee et al., 2018): For training the novel classes,
the training samples from known leaf classes are ran-
domly relabeled as novel non-leaf classes.

• Leave-One-Out (LOO) (Lee et al., 2018): The method
removes the class from the hierarchy one at a time, chang-
ing its the ground truth as the novel parent.

• Top-Down Features + Leave-One-Out (TD+LOO)
(Lee et al., 2018): TD+LOO uses features extracted from
the TD method as input to the LOO method. In contrast,

LOO method directly uses Resnet101 features as input.
• Evidential (Sensoy et al., 2018): There are different

ways of training an evidential model. We construct a
baseline using the evidential log loss.

• Hierarchical Cosine Loss (HCL) (Ruiz & Serrat, 2022):
As explained earlier, HCL uses a cosine loss to learn
prototypes of all the classes in the flattened structure in
HND. We follow the code provided by the paper.

4.3. Evaluation Metrics
The test dataset contains samples from known and novel
classes. Known Accuracy (K-ACC) denotes the ratio of
correctly predicted leaf-level labels by the model out of the
total known test samples. Similarly, Novel Accuracy (N-
ACC) denotes the ratio of correctly predicted closest parent
by the model out of novel test samples. For the practical
testing scenario of HND, we should compare our method
using both K-ACC and N-ACC. However, these accuracies
are in a trade-off relation, i.e., an increase in one accuracy
causes the other accuracy to decrease. In order to capture
the trade-off relation, we can add a bias term to the logit of
novel classes that increases N-ACC and decreases K-ACC.
With the use of different biases, we can obtain different
sets of K-ACC and N-ACC and plot them to obtain a K-
ACC vs N-ACC plot. This allows us to compute the Area
Under the Curve (AUC) of the plot to fairly compare all
the methods. Similarly, we also report N-ACC, where the
model has exactly 50% K-ACC, as the evaluation metric
denoted by NA@50.

4.4. Results and Discussion
We provide the results of the datasets for E-HND along
with the baselines in Table 1. From the results, we can see
that E-HND outperforms the baselines for all the datasets,
achieving the best performance. The superior performance
proves the effectiveness of E-HND. Further, we utilize the
hierarchical features (TD features) as input to our method
and the best-performing baseline, leading to TD+E-HND
and TD+LOO, respectively. We see an increased perfor-
mance for both methods, while our method maintains the
superior performance.

We present the K-ACC vs N-ACC plots for the datasets in
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Figure 6. Known accuracy vs Novel accuracy curve for E-HND along with the baselines for 4 hierarchical datasets

Figure 6 for E-HND, along with the baselines. The set of
biases used to obtain the plot represents the additional logits
added to novel classes in the settings of (TD+LOO, relabel,
LOO). For evidential models, E-HND, and TD+E-HND,
the additional bias represents the ‘pseudo counts’. We can
alternatively achieve the K-ACC vs N-ACC for our setting
by adjusting the base rate distribution. We study the impact
of different base rates for novel classes in Section 4.5.

From the K-ACC vs N-ACC plots for hierarchical datasets,
we observe that TD+E-HND has superior performance than
other methods. Due to the training mechanism to create
an evidence margin in our method, we are able to obtain
higher novel accuracies than other baselines for different
performances of known accuracy.

4.5. Ablation Studies
Impact of β1 and β2 on performance. For using E-HND,
we have two hyperparameters β1 and β2. We recommend
setting the value as β1 > β2 ≫ 1. To study the impact of
different values of β1 and β2, we plot the AUC values on
test samples of the CUB dataset for different settings of β1
and β2. In Figure 7(a), we keep β2 to a fixed value and vary
the value of β1 to obtain performance results on the test set.
Looking at the curve, we see that, for β1 < β2, the perfor-
mance is on the lower region. As β1 starts increasing, then
the performance increases, becoming almost constant for
a range of values. Then as β1 reaches the value in a much
higher range, the performance starts decreasing. Too high
margin has lower performance, as setting β1 ≫ β2 results
in L(1)

i (θ) much higher than L(2)
i (θ), focusing the effect of

overall loss function mostly on training known classes. Sim-
ilarly, in Figure 7 (b), we keep β1 to a fixed value and vary
the value of β1 to obtain different performance results on
the test set. We see that, in the lower region of β2, the suit-
able margin is created, which results in higher performance.
However, as β2 increases and β2 > β1, the performance
becomes much lower. Both of the plots confirm that a rea-
sonable margin of β1 > β2 has a positive impact on the
performance. Therefore, these hyperparameters are easy to
set as long as we maintain a reasonable margin of β1 > β2.
However, making β1 extremely high should be avoided as
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Figure 7. Impact of different values of β1 and β2. (a) Vary β1 for
fixed value of β2 = 10 and β2 = 20 for CUB (b) Vary β2 for fixed
value of β1 = 45 and β1 = 60

we see the decreasing performance for β1 ≫ β2.

Impact of base rate distribution. In this section, we study
the impact of using different base rates for novel classes.
Let, a(kn) and a(no) denote base rates for known and novel
classes respectively to represent completeness and incom-
pleteness of the hierarchy such that

|Le(H)|∑
k=1

a
(kn)
k +

|NLe(H)|∑
k=1

a
(no)
k = 1 (11)

Now, varying
∑|NLe(H)|

k=1 a
(no)
k in the range of [0, 1], we

obtain the base rates of each novel class by distributing the
novel base rate to all the novel classes. We can obtain cor-
responding values of the base rate for known classes using
(11). Now, for different sets of known and novel base rates,
we obtain the corresponding K-ACC and N-ACC. As we
increase the value of the novel base rate, we observe in Fig-
ure 8(a) for CUB dataset, that K-ACC starts decreasing, and
N-ACC starts increasing. This improvement is caused by an
increase in ‘pseudo counts’ eventually increasing the ‘effec-
tive’ number of observations for novel classes. However, the
increase in the novel base rate can not improve the N-ACC
beyond the value of 57% indicating the challenge associated
with correctly identifying the closest parent of a novel test
sample trained with known samples only. The increase in
novel base rate eventually makes the K-ACC 0% referring
to the compromise that comes with using the strong prior
that the hierarchy is incomplete. The trend for other datasets
is similar to CUB. As we see in Figure 8 (b), (c), and (d), as
the novel base rate increases, the N-ACC starts increasing
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Figure 8. Impact of using base rate distribution for (a) CUB, (b) TinyImagenet, (c) AWA2, (d) Traffic dataset

due to the effect of an increase in pseudo counts for novel
classes. We observe that the highest N-ACCs obtained by
adjusting the base rate are 22%, 58%, and 72% for Tiny Im-
agenet, AWA2, and Traffic respectively. The upper bound of
N-ACC is lower for Tiny Imagenet as the hierarchy is deeper
than CUB, AWA2 and Traffic, making the task of identify-
ing the closest parent for novel samples much more difficult.
The plot clearly demonstrates the trade-off between K-ACC
and N-ACC that can be obtained by adjusting the base rates
for known and novel classes.

4.6. Qualitative Study
We show the prediction of TD+E-HND with some of the
baselines, visualized with the corresponding hierarchy for
the representative samples from CUB dataset in Figure 9.
For the novel sample in (a), the true label and its closest
parents are coded in red and green respectively in the hi-
erarchy. Since the true novel class is not present in the
hierarchy, the ground truth label is its parent. For the known
sample in (b), the true label (also the ground truth) is coded
in green. For the representative sample of Yellow Bellied
Flycatcher in Figure 9(a), we observe that our method is able
to identify the closest parent Old World Flycatcher. How-
ever, other methods get confused about the sample with
other classes. In particular, TD+LOO method assigns it to
Acadian Flycatcher, a child class of the ground truth. We
note that Acadian Flycatcher is a known leaf class in the
hierarchy. The training method of TD+LOO leverages the
samples from Acadian Flycatcher as a sample of novel Old
World Flycatcher. As mentioned in the challenges of LOO
training, this can create confusion as the model assigns high
logits to both novel and known classes. As a result, the
TD+LOO is not able to distinguish whether the sample be-
longs to Acadian Flycatcher or Novel Old World Flycatcher.
We present the distribution of logits allocated by TD+LOO
for the novel samples of Yellow Bellied Flycatcher to classes:
Old World Flycatcher and Acadian Flycatcher in Figure 14(a)
in the Appendix. We observe that both classes are assigned
logits in the high region, making them indistinguishable.
However, in our case of TD+E-HND in Figure 14(b), we
see that Acadian Flycatcher has evidence in the lower region
than Old World Flycatcher. Therefore, for the particular
sample in Figure 9(a), our method is able to distinguish the

Bird

Passeriform
Bird

Oscine Bird

Old World
Flycatcher

Yellow Bellied
Flycatcher

TD+E-HND

Acadian
Flycatcher

TD+LOO

Sparrow

LOO, Evidential

Bird

Passeriform
Bird

Oscine Bird

Old World
Flycatcher

LOO, TD+LOO

Acadian
Flycatcher

TD+E-HND

Warbler

Evidential

(a) (b)

Figure 9. Qualitative study for representative test samples: (a) Pre-
diction for novel sample from Yellow Bellied Flycatcher (b)
Prediction for known sample from Acadian Flycatcher.

closest parent class. Similarly, in Figure 9(b), we have the
prediction for the known sample from Acadian Flycatcher
class. LOO and TD+LOO predict the representative sample
as Old World Flycatcher. This is due to confusion between
logits of Old World Flycatcher and Acadian Flycatcher. We
present a qualitative study of representative samples from
the Traffic dataset in the Appendix C.4.

5. Conclusion
In this paper, we formulate a novel evidential framework
to address the unique challenges associated with hierarchi-
cal novelty detection. The proposed E-HND framework
leverages fine-grained evidence quantification, creating an
evidence margin to distinguish between known and novel
classes in the hierarchy. In order to guide the model to learn
the evidence margin, we provide the design of a novel loss
function with theoretical guarantees. Further, we provide
a natural way to encode prior beliefs of completeness of
hierarchy by leveraging base rate distribution. The proposed
framework shows effectiveness in our extensive experiments
with real-world hierarchical datasets.
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Appendix

Organization of the Appendix
• In section A, we provide a summary of notations with the corresponding description used in the paper and proofs.

• In section B, we provide proof of Theorems 3.1 and 3.2.

• In section C, we provide the details of experiments and additional results.

• In section D, we discuss the limitations of this work.

• In section E, we provide the link to the source code.

A. Summary of Notations

Notation Description
H A training hierarchy of known classes
y A class from hierarchy H

Pa(y) A set of parents of class y in H
Ch(y) A set of children of a class y in H
An(y) A set of ancestors of a class y in H
De(y) A set of descendants of a class y in H
N(y) A set of novel classes for closest known parent y
Le(H) A set of leaf classes of hierarchy H
NLe(H) A set of non-leaf classes of hierarchy H
p(kn) Probability distribution for known classes
p(no) Probability distribution for novel classes
H \ c Hierarchy obtained by removing class c

Le′(H \ c) Leaf classes for the hierarchy H \ c
LCE(θ) Cross Entropy based loss function for LOO training

b Belief distribution for K classes
a Base rate distribution for K classes
u Uncertainty mass
w Multinomial opinion
α Parameters of Dirichlet PDF
r Evidence distribution for K classes
W Non-informative prior weight

Li(θ) E-HND loss function for sample i
L(1)
i (θ) E-HND loss term when no class is removed

L(2)
i,c (θ) E-HND loss term when class c is removed
jH Ground truth index for L(1)

i (θ)

jH\c Ground truth index for L(2)
i,c (θ)

β1 Baseline Dirichlet parameter for jH

β2 Baseline Dirichlet parameter for jH\c

a(kn) Base rate distribution for known classes
a(no) Base rate distribution for novel classes

S(α(H)) A set of Dirichlet parameters of hierarchy H
S(α

(1)
i (H)) A set of Dirichlet parameters by L(1)

i (θ)

S(α
(2)
i (H)) A set of Dirichlet parameters by L(2)

i (θ)
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B. Proof of Theorems
B.1. Proof of Theorem 1

To prove the theorem, we first define a general KL divergence-based loss with target ground truth parameter β as given by:

L = KL[D(p|α)||D(p|α̂)] = lnΓ(α0)− ln Γ(α̂0) +

K∑
k=1

ln Γ(α̂k)− ln Γ(αk) +

K∑
k=1

(αk − α̂k)[ψ(αk)− ψ(α0)] (12)

α̂j = β, α̂0 = β +K − 1. For k ̸= j, α̂k = 1, we have the value as:

L = lnΓ(α0)− ln Γ(β +K − 1) + lnΓ(β)− ln Γ(αj) + (αj − β)[ψ(αj)− ψ(α0)]

+

K∑
k=1,k ̸=j

ln Γ(1)− ln Γ(αk) +

K∑
k=1,k ̸=j

(αk − 1)[ψ(αk)− ψ(α0)] (13)

The non-ground truth Dirichlet parameter αk, k ̸= j is fixed at 1 to make the analysis easier. The loss function becomes

L[αk,k ̸=j = 1] = lnΓ(α0)− ln Γ(β +K − 1) + lnΓ(β)− ln Γ(αj) + (αj − β)[ψ(αj)− ψ(α0)]

= lnΓ(αj +K − 1)− ln Γ(β +K − 1) + lnΓ(β)− ln Γ(αj) + (αj − β)[ψ(αj)− ψ(αj +K − 1)]
(14)

For derivative, we use the following relations:

d lnΓ(z)

dz
= ψ(z)

dψ(z)

dz
= ψ1(z)

ψ1(z + 1) = ψ1(z)− 1

z2

ψ(z) = ln(z)− 1

2z

Taking the derivative w.r.t loss function, we have:

dL[αk,k ̸=j = 1]

dαj
= ψ(αj +K − 1)− 0 + 0− ψ(αj) + (αj − β)[ψ1(αj)

− ψ1(αj +K − 1)] + 1[ψ(αj)− ψ(αj +K − 1)] (15)

= (αj − β)[ψ1(αj)− ψ1(αj +K − 1)] (16)

= (αj − β)[ψ1(αj)− {ψ1(αj)−
1

(αj +K − 2)2
− 1

(αj +K − 3)2
− ...− 1

α2
j

}] (17)

= (αj − β)[
1

(αj +K − 2)2
+

1

(αj +K − 3)2
+ ...+

1

α2
j

] (18)

Now, we prove that L decreases when there is increase in ground truth parameter αj till β; it becomes 0 at αj = β and
increases after αj becomes greater than β using Lemma B.1, B.2, and B.3.

Lemma B.1. KL divergence loss becomes zero when ground truth Dirichlet parameter αj is equal to β.
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Proof.

L[αj = β, αk,k ̸=j = 1] = lnΓ(β +K − 1)− ln Γ(β +K − 1) + lnΓ(β)− ln Γ(β) + (β − β)[ψ(β)− ψ(β +K − 1)]

+

K∑
k=1,k ̸=j

ln Γ(1)− ln Γ(1) +

K∑
k=1,k ̸=j

(1− 1)[ψ(1)− ψ(β +K − 1)] = 0 (19)

Lemma B.2. KL divergence loss decreases when there is an increase in ground truth Dirichlet parameter αj until it reaches
the fixed value β.

Proof. Using equation 18, when ground truth αj < β,
dL[αk,k ̸=j=1]

dαj
< 0. Hence, for αj < β, loss decreases for increases in

αj .

Lemma B.3. KL divergence loss increases when there is an increase in ground truth Dirichlet parameter, αj when αj

becomes greater than the fixed value β.

Proof. Using equation 18, when ground truth αj > β,
dL[αk,k ̸=j=1]

dαj
> 0. Hence, for αj > β, loss increases for increases in

αj .

B.2. Proof of Theorem 2

S(.) denotes the operation that converts a vector to a set. The total Dirichlet parameters from the model are given by
S(α(H)). For the purpose of analysis, we use a data sample i and separate the parameters trained by L(1)

i (θ) and L(2)
i (θ)

for the sample into two sets: S(α(1)
i (H)) and S(α(2)

i (H)) respectively. In a more fine-grained manner, let S(α(2)
i (H \ c))

denote parameters trained by L(2)
i,c (θ). The total Dirichlet parameters in the model can be obtained as:

S(αi(H)) = S(α
(1)
i (H))

⋃
y∈Le(H)

⋃
c∈An(y)

S(α
(2)
i (H \ c)) (20)

The common parameters between S(α(1)
i (H)) and S(α(2)

i (H \ c)) denoted by S(αi(H,H \ c)) is obtained by

S(αi(H,H \ c)) = S(α
(1)
i (H)) ∩ S(α(2)

i (H \ c)) (21)

= S(α
(1)
i (H)) \

⋃
d∈Le(H),d∈De(c)

αid (22)

The common parameters do not include ground truth parameters from L(1)
i (θ) and L(2)

i,c (θ) given by αijH and αijH\c , but
only the non-ground truth parameters for sample i that doesn’t belong to descendants of class c. Now, the difference of
parameters between S(α(1)

i (H)) and S(α(2)
i (H \ c)) is given by:

S(α
(1)
i (H)) \ S(α(2)

i (H \ c)) = {αijH}
⋃

d∈Le(H),d∈De(c)

αid (23)

S(α
(2)
i (H \ c)) \ S(α(1)

i (H)) = {αijH\c} (24)

Now, the common and difference of parameters between S(α(1)
i (H)) and

⋃
c∈An(c) S(α

(2)
i (H \ c)) is obtained by

14
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S(αi(H,
⋃

c∈An(c)

H \ c)) = S(α
(1)
i (H)) \ {αijH} (25)

S(α
(1)
i (H)) \

⋃
c∈An(c)

S(α
(2)
i (H \ c)) = {αijH} (26)

[
⋃

c∈An(c)

S(α
(2)
i (H \ c))] \ S(α(1)

i (H)) =
⋃

c∈An(c)

{αijH\c} (27)

From (25), we see that the common parameters between L(1)
i (θ) and L(2)

i (θ) include parameters only from non-ground
truth known leaf classes. Moreover, the parameter only trained by L(1)

i (θ) is parameter of ground truth known leaf class.
Finally, the parameters only trained by L(2)

i (θ) are ground truth novel non-leaf classes. Now, we provide the definition of
conflicting update.

Definition B.4 (Conflicting update). A conflicting update is defined for L(1)
i (θ), L(2)

i (θ) and a parameter α when either of
the following conditions is true:

• Condition I: L(1)
i (θ) increases α and L(2)

i (θ) decreases α.

• Condition II: L(1)
i (θ) decreases α and L(2)

i (θ) increases α.

Next, for ground truth parameters, we prove that there is no conflicting update between loss terms using lemma B.5.

Lemma B.5. For the ground truth parameters, {αijH} and
⋃

c∈An(c){αijH\c}, conditions I and II from Definition B.4 do
not hold.

Proof. • dL(2)
i (θ)

dαijH
= 0 as L(2)

i (θ) is not the function of αijH .

• From the definition B.4, both conditions I and II do not hold, as L(2)
i (θ) neither increases nor decreases αijH .

• ∀c, c ∈ An(y),
dL(1)

i (θ)

dα
ijH\c

= 0 as L(1)
i (θ) is not the function of αijH\c .

• From the definition B.4, both conditions I and II do not hold, as L(1)
i (θ) neither increases nor decreases αijH\c .

• Hence, there are no conflicting updates for the parameters: {αijH} and
⋃

c∈An(c){αijH\c}

Now, for analysis of updates for non-ground truth parameters, we prove that KL divergence-based loss trains the model to
output 1 using Lemma B.6.

Lemma B.6. KL divergence loss increases when there is an increase in non-ground truth Dirichlet parameter αk, for k ̸= j.

For ease of analysis, fix αj = β. For K Dirichlet parameters, suppose K is the ground truth index, α1, α2, ..., αK−1 are
non-ground truth Dirichlet parameters.

L[αj = αK = β] = ln Γ(α0)− ln Γ(β +K − 1) +

K−1∑
k=1,k ̸=j

ln Γ(1)− ln Γ(αk) +

K−1∑
k=1,k ̸=j

(αk − 1)[ψ(αk)− ψ(α0)]

(28)

Taking the derivative of equation 28 w.r.t α1, we have
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dL[αj = αK = β]

dα1
= ψ(α0)− ψ(α1) + (α1 − 1)[ψ1(α1)− ψ1(α0)] + ψ(α1)− ψ(α0) +

K−1∑
k=2,k ̸=j

(αk − 1)[−ψ1(α0)]

(29)

= (α1 − 1)[ψ1(α1)− {ψ1(α1)−
1

(α0 − 1)2
− 1

(α0 − 2)2
− ...− 1

(α1)2
}]

+

K−1∑
k=2,k ̸=j

(αk − 1)[−ψ1(α0)] (30)

= (α1 − 1)[
1

(α0 − 1)2
+

1

(α0 − 2)2
+ ...+

1

(α1)2
] +

K−1∑
k=2,k ̸=j

(αk − 1)[−ψ1(α0)] (31)

Here, the first term is positive, and for the second, term we use the limit definition to take the derivative of ψ(α0), we have
the relation:

ψ1(α0) = lim
△α1→0

ψ(α0 +△α1)− ψ(α0)

△α1

= lim
△α1→0

ln(α0 +△α1)− 1
2(α0+△α1)

− ln(α0) +
1

2α0

△α1

= lim
△α1→0

ln(1 + △α1

α0
) + 1

2
△α1

α0(α0+△α1)

△α1

This is a 0
0 form. Hence, using L’Hopital rule, taking derivative on both numerator and denominator, we have

ψ1(α0) = lim
△α1→0

1
α0+△α1

+ 1
2(α0+△α1)2

− 1
α0

− 1
2α2

0

1

ψ1(α0) = lim
△α1→0

− △α1

α0(α0 +△α1)
− 2α0△α1 +△α2

1

2α2
0(α0 +△α1)2

< 0

Hence, the second term is also positive, making dL[αj=αK=β]
dα1

> 0. Therefore, KL divergence loss increases when there is
an increase in non-ground truth Dirichlet parameter α1. The minimum allowed value of the Dirichlet parameter is 1. Hence,
the non-ground truth parameter approaches 1. This can be proved similarly for other non-ground truth Dirichlet parameters
αk, k ̸= j.

Finally, for common parameters between loss terms: non-ground truth parameters, we prove that there is no conflicting
update between loss terms using lemma B.7.

Lemma B.7. For the common parameters, S(αi(H,
⋃

c∈An(c) H \ c)), conditions I and II from definition B.4 do not hold.

Proof. • We observe that the common parameter αi ∈ S(α
(1)
i (H)) \ {αijH} is a non-ground truth parameter for both

L(1)
i (θ) and L(2)

i,c (θ), c ∈ An(y).

• For a non-ground truth parameter, αik, k ̸= jH, k ̸= jH\c,∀c ∈ An(y), the updates from loss terms are given by
dL(1)

i (θ)

dαik
> 0 and dL(2)

i (θ)

dαik
> 0.

• From the definition B.4, condition I is false as L(1)
i (θ) decreases αik.

• From the definition B.4, condition II is false as L(2)
i (θ) decreases αik. Hence, both conditions I and II do not hold.
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Table 2. Significance Test

CUB Tiny Imagenet AWA2 Traffic
NA@50 AUC NA@50 AUC NA@50 AUC NA@50 AUC

TD+LOO 44.82±0.52 34.50±0.14 19.16±0.33 14.31±0.36 50.13±0.12 42.23±0.24 42.41±0.50 38.22±0.39
TD+E-HND 46.92 ± 0.23 35.83 ± 0.07 21.80 ± 0.10 16.39 ± 0.14 53.76 ± 1.2 45.39 ± 0.40 47.69±0.14 43.11±0.11

p-value 8.20× 10−10 7.71× 10−16 3.94× 10−15 2.98× 10−13 1.94× 10−8 3.14× 10−14 2.13× 10−17 1.08× 10−18

• Hence, there are no conflicting updates for the common parameters: S(αi(H,
⋃

c∈An(c) H \ c)).

C. Details of Experiments and Additional Results
C.1. Significance Test

The result presented in table 1 is from a single run of the method. Therefore, we perform a t-test to find out if the difference
between evaluation metrics between our method and the baselines is significant enough. We run our method(TD+HND) and
the best performing baseline(TD+LOO) for 10 times using different values of random seed. The obtained mean, standard
deviation and p-values obtained are presented in table 2. We can see from the table that p-values obtained for the combination
of all the datasets and evaluation metrics are low. Hence, the gap between the evaluation metrics of TD+E-HND and
TD+LOO is significant.

C.2. Training Details

To speed up the training, we use a standard Resnet-101 architecture as a backbone to extract the features from the training
samples for CUB, AWA2 and Tinyimagenet datasets. For traffic(MTSD) dataset, we use Resnet101 features provided by
(Ruiz & Serrat, 2022). We train the model using the full batch of Resnet-101 features with Adam optimizer and an initial
learning rate of 10−2. We use the validation set to select the suitable hyperparameters β1 and β2. The validation set does not
include samples from the novel classes. We use the set of (β1, β2) values of (65, 20), (30, 5), (20, 5) and (40, 5) for CUB,
AWA2, Tiny Imagenet and Traffic respectively. For obtaining evidence from the classification network, we use Softplus
activation on logit. The detailed algorithm is provided in Algorithm 1.

All the experiments are conducted using NVIDIA GeForce RTX 3060 with 32GB memory. The training algorithm is
implemented in pytorch version: 1.13.0 and cuda version: 11.6. The hierarchy information associated with datasets is first
computed and stored in a .npy file using numpy(a library of python) to avoid runtime computations of hierarchy information
during the model training.

Algorithm 1 E-HND Training
1: Require Hyperparameters: β1, β2
2: Require Hierarchy definition: H of the known classes.
3: Input Initialized Model: θ.
4: Input A set of training samples with ground truth labels {(xi, yi)}Ni=1.
5: while not StopCriterion do
6: for a pair of training sample with ground truth label (xi, yi) do
7: Calculate observed evidences for all the classes ri = [ri1, ri2, ...riK ] using the model using the equation: rk =

softplus(θ(xi))
8: Calculate model predicted Dirichlet parameters αi for each class k using equation 5.
9: Calculate the loss Li(θ) using equation 8.

10: end for
11: Calculate the total loss for all the samples L(θ) = 1

N

∑N
i=1 Li(θ).

12: Update model parameter θ by backpropagating loss L(θ)
13: end while
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Table 3. Comparison with the evidential design of loss in HND

Method CUB
NA@50 AUC

Log loss (Sensoy et al., 2018) 35.06 25.86
Digamma loss (Sensoy et al., 2018) 37.01 26.77

MSE loss (Sensoy et al., 2018) 13.15 15.32

E-HND 46.18 35.31

C.3. Additional Experiment Results

IMPACT OF EVIDENTIAL LOSS

We designed the loss function to learn fine-grained evidence for known and novel classes. In this section, we study the
impact of using the loss function based on the evidential formulation provided by (Sensoy et al., 2018). We carry out
experiments on the CUB dataset. We design these loss functions in the setting of Hierarchical Novelty Detection:

Llog
i (θ) =

|Le(H)|∑
k=1

yik[ln(St
H
i )− ln(αik)] +

∑
c∈An(y)

|Le′(H\c)|∑
k=1

yik[ln(St
H\c)− ln(αik)] (32)

Ldigamma
i (θ) =

|Le(H)|∑
k=1

yik[ψ(St
H
i )− ψ(αik)] +

∑
c∈An(y)

|Le′(H\c)|∑
k=1

yik[ψ(St
H\c
i )− ψ(αik)] (33)

Lmse
i (θ) =

|Le(H)|∑
k=1

[(yik − αik/St
H
i )2 +

αik(St
H
i − αik)

(StHi )2(StHi + 1)
]

+
∑

c∈An(y)

|Le′(H\c)|∑
k=1

[(yik − αik/St
H\c
i )2 +

αik(St
H\c
i − αik)

(St
H\c
i )2(St

H\c
i + 1)

] (34)

The strengths are calculated using the following relations:

StHi =

|Le(H)|∑
k=1

αik, St
H\c
i =

|Le′(H\c)|∑
k=1

αik (35)

The results are presented in table 3. We observe that E-HND has the best performance as provided by NA@50 and the AUC.
As other forms of evidential loss from equations [32, 33, 34] do not allow to upper bound the evidence for ground truth. We
can not use these formulations to create evidence-margin between known and novel classes. Hence, the design of the loss
function of E-HND is justified.

ADDITIONAL DATASETS

We conduct the experiments on two additional datasets, ImageNet-1k (Deng et al., 2009) and TT100K (Zhu et al., 2016).
We compare with the competitive baselines, and the results are summarized in Table 4 . More specifically, the depth of the
hierarchy for ImageNet-1k is 14, with 1000 leaf nodes and 396 non-leaf nodes, making it the most challenging dataset for
HND. The proposed method clearly outperforms the competitive baselines. The depth of TT100K is 4 with 80 leaf nodes
and 15 non-leaf nodes. Our method outperforms competitive baselines for both datasets. It is worth noting that HCL is
designed specifically for the traffic dataset as the hierarchy of this dataset is very closely related to the visual appearances of
the classes (Ruiz & Serrat, 2022) and the traffic signs have relatively simple visual appearances. This leads to the superior
performance of HCL on TT100k. Since these key properties do not always hold for the general datasets, HCL achieves
sub-optimal performance on the general datasets.
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Table 4. Comparison Results on Additional Datasets

Method Imagenet-1k TT100K
NA@50 AUC NA@50 AUC

LOO 14.93 11.73 65.71 60.82
E-HND 17.14 12.27 69.76 60.94

TD+LOO 16.63 13.44 70.36 57.41
TD+E-HND 19.26 14.23 71.62 63.64
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Figure 10. Comparison of distribution of (a) logits and (b) evidences for known and novel test samples in Tiny Imagenet dataset
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Figure 11. Comparison of distribution of (a) logits and (b) evidences for known and novel test samples in AWA2

IMPACT OF THE EVIDENCE MARGIN

We show the effect of learning evidence margin in Figure 5 for CUB test samples in the main paper. Learning to create
evidence margin for known and novel classes has the effect of lower evidence allocation to novel test samples than known
test samples, while LOO allocates high logits to both known and novel test samples. We plot the logits and evidence
distribution of (a) E-HND and (b) LOO methods for Tiny Imagenet dataset in Figure 10, AWA2 dataset in Figure 11 and
Traffic dataset in Figure 12. A similar effect is observed for known and novel test samples in the rest of the datasets. Due to
this effect, our method has improved novelty detection performance in comparison to LOO.

COMPARISON WITH NOVELTY DETECTION METHODS

In table 1, we use the features from one of the hierarchical classification augmented with novelty detection(HC-ND) methods
as input to LOO and E-HND methods. We see that, when features from HC-ND method are used, the performance increases
for all the datasets. In this section, we compare the result for (i+) flatten methods with (ii∗) HC-ND methods. For HC-ND
methods, each non-leaf node is treated as a classifier. O(nle)) are the leaf nodes that do not belong to the descendants of the
non-leaf node nle as a classifier. We describe HC-ND methods as:
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Figure 12. Comparison of distribution of (a) logits and (b) evidences for known and novel test samples in Traffic dataset

• Top-Down(TD)∗ (Lee et al., 2018): The classifiers are trained with cross-entropy loss. A regularization is used to
induce uniform probability values for samples that do not belong to the descendants of the classifier. The loss function
and confidence score comparison are defined by (Lee et al., 2018) for every non-leaf class in the hierarchy as:

∀nle ∈ NLe(H),LTD = E
p(x,y|nle)

[− ln p(y|x, nle; θnle)] + E
p(x,y|O(nle))

KL[U(.|nle)||p(.|x, nle; θnle)] (36)

KL[U(.|nle)||p(.|x, nle; θnle)] ≥ λnle (37)

• Maximum Softmax Probability(MSP)∗ (Vaze et al., 2021) Maximum Softmax Probability is one of the most widely
used baselines in the field of novelty detection. For MSP baseline, we use the loss from equation 36. For the final
prediction, we use the confidence score comparison as:

max(Pr(.|x, nle; θnle)) ≥ λnle (38)

• HC-ND with |Ch(nle)|+1 class∗ (Neal et al., 2018) The baseline denotes novel class by K +1 for novelty detection
in multi-class classification of K classes. Following the method, we modify the HC-ND method such that each
non-leaf class contains an extra novel class to classify. Now, instead of using regularization that induces uniform
probability distribution, data samples from O(nle) are used as the samples of novel |Ch(nle)|+ 1 class. The resulting
baseline becomes threshold free and contains |NLe(H)| novel nodes. We define the loss function and confidence score
comparison as:

∀nle ∈ NLe(H),L|Ch(nle)|+1 = E
p(x,y|nle)

[− ln p(y|x, nle; θnle)] + E
p(x,y|O(nle))

[− ln p(N(nle)|x, nle; θnle)] (39)

max(Pr(.|x, nle; θnle)) ≥ p(N(nle)|x, nle; θnle) (40)

• Evidential Uncertainty∗ (Sensoy et al., 2018) We use uncertainty mass from evidential theory as an uncertainty
measure. We use log loss (Sensoy et al., 2018) to train the classifier to classify correct class and output low uncertainty
to known samples. To train the classifier to output high uncertainty for novel samples, we define the regularization
using KL divergence between uniform Dirichlet distribution and model Dirichlet distribution:

∀nle ∈ NLe(H),LHC-evidential = E
p(x,y|nle)

|Ch(nle)|∑
k=1

yik[ln(St
nle
i )− ln(αik)]

+ E
p(x,y|O(nle))

KL[D(.|x, nle; θnle)||D(.| < 1, 1, ..., >, nle)] (41)

|Ch(nle)|
Stnlei

≤ λnle (42)
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Table 5. Comparison with the novelty detection methods for CUB dataset
Category Method Known Accuracy Novel Accuracy Harmonic Mean

Hierarchical

TD∗ 45.94 24.69 32.12
Max Softmax Probability∗ 46.34 25.65 33.02

HC-ND with |Ch(nle)|+ 1 class∗ 46.83 26.02 33.45
Energy Score∗ 47.69 30.56 37.25

Max Logit Score∗ 47.80 30.76 37.43
Evidential uncertainty∗ 47.37 27.50 34.80

Flatten
Relabel+ 50.00 38.23 43.33
LOO+ 50.00 42.25 45.80

E-HND+ 50.00 46.18 48.01

• Energy Score∗ (Liu et al., 2020) We use the loss function as equation 41 to train the model. If fk(x; θnle) represents
the logit for kth children of non-leaf node nle. The uncertainty comparison is given by:

− ln

|Ch(nle)|∑
k=1

efk(x;θnle) ≤ λnle (43)

• Maximum Logit Score∗ (Vaze et al., 2021) We use the loss function as equation 41 to train the model. The uncertainty
comparison is given by:

max(fk(x; θnle)) ≥ λnle (44)

For the prediction, a sample is classified at each classifier starting from top from towards leaf nodes. Each classifier
quantifies a confidence/uncertainty score to denote how confident/uncertain the classifier is towards the prediction. If the
confidence/uncertainty is greater/smaller than a threshold, then its predicted class is used as next classifier till we get the final
prediction. Thresholds required for confidence/uncertainty comparison are calculated using validation set that maximizes
the harmonic mean between known and novel accuracy. Since the validation set does not contain real novel samples, novel
samples are defined as samples from leaf nodes that do not belong to the descendants of the classifier. For flatten methods(+):
Relabel, LOO, and our method(E-HND), we use the result where known accuracy is fixed at 50%. We also report the
harmonic mean between known accuracy and novel accuracy for each method.

We use CUB dataset to report the results for the baselines along with our method(E-HND) in table 5. We see that in
comparison to TD method, using the maximum softmax probability score is effective for both known and novel classes.
Similarly, with the use of other novelty scores like energy scores, maximum logit scores, and evidential uncertainty, the
performance improves for both known and novel classes. However, these are still outperformed by all the compared flatten
baselines like Relabel, LOO, and E-HND. A reason behind this might be the need to set the total of |NLe(H)| thresholds,
each for a classifier, in HC-ND methods. Even when we eliminate the need to set thresholds as in HC-ND with |Ch(nle)|+
1 class∗, the result does not improve much. All HC-ND methods share a common top-down inference mechanism that can
cause error accumulations. However, this is not prevalent in flatten methods. The comparison results show that the common
baselines for novelty detection do not yield the best performances in the setting of hierarchical novelty detection.

EXPERIMENTS ON FAR-OOD

Novelty (or OOD) detection can be generally categorized into far-OOD and near-OOD detection. Most existing works
focus on the former category, where the novel class samples have very different semantics from the known class samples.
There have been increasing interest in the later category (Ren et al., 2021; Fort et al., 2021; Fang et al., 2022), where novel
samples share some similar semantics with the known class samples, making the problem much more challenging. HND can
be regarded as one type of near-OOD detection and by leveraging the existing hierarchical relationship among the known
classes, we can perform effective fine-grained OOD detection to identify novel data samples that are semantically similar
(i.e., being siblings) of the known classes. As mentioned in the introduction, most real-world objects can be described using
a hierarchical structure based on their relationship with other relevant objects. Furthermore, since the proposed method
performs evidential learning, detecting a sample that is outside of the entire hierarchy, a far-OOD situation, (i.e., an object

21



Hierarchical Novelty Detection via Fine-Grained Evidence Allocation

that is not a Traffic Sign in Figure 1) can be achieved by checking the predicted evidence over all the nodes within the
hierarchy. If a low evidence is assigned to all the nodes, it implies that the model recognizes this object as not being part of
the hierarchy.
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Figure 13. Evidence distribution

In this set of experiments, we apply the proposed method to the far-OOD problem.
We study the evidence distribution of the proposed method on known and OOD
datasets in Figure 13. We select 150 classes of CUB as known and Cifar10 as the far-
OOD dataset. We can see that samples from known classes are in the high-evidence
region, and samples from OOD dataset are in the low-evidence region. As far-ood
classes are semantically far away from the known classes along with their ancestors
in the hierarchy, the evidence of separation for far-ood classes is more prominent.
This confirms the effectiveness of the proposed method on far-ood situation as well.
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Figure 14. Comparison of the distribution of (a) logit and (b) evidence for Acadian Flycatcher and Old World Flycatcher by (a)
TD+LOO and (b) TD+E-HND
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Figure 15. Qualitative study for representative test samples: (a) Prediction for novel sample from Regulatory no-buses (b) Prediction
for known sample from Regulatory no-bicycles.
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C.4. Qualitative Study

We present the qualitative analysis of representative samples of CUB dataset in Figure 9 along with the distribution of logits
and evidence in Figure 14 for the prediction of TD+LOO and the proposed method. In this section, we present the prediction
of TD+E-HND with some of the baselines for the representative samples from Traffic dataset in Figure 15. A similar trend
can be found in representative samples, as seen with the CUB dataset. Baseline like LOO, and TD+LOO mistakes the novel
samples with known samples and can predict a novel sample from Regulatory–no-buses sign as Regulatory–no-bicycles.
Similarly, a known sample from Regulatory–no-bicycles is mistaken to be its parent class Regulatory–no-something.

D. Limitations
While the proposed work is generalizable towards all the domains given the construction of a hierarchy associated with
the training classes, the relationship between training classes may occur in a different format, e.g., a graph. It would be
interesting to explore novelty detection in the other forms of relationship that can occur between novel samples and training
data. Similarly, we have two hyperparameters β1 and β2 for defining the loss function, which could be viewed as a limitation.
We have a general recommendation for setting the hyperparameters, which is presented in Section 4.5.

E. Source Code
The source code can be accessed here: https://github.com/ritmininglab/EHND
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