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ABSTRACT

Multimodal representation learning aims to construct a shared embedding space
in which heterogeneous modalities are semantically aligned. Despite strong em-
pirical results, InfoNCE-based objectives introduce inherent conflicts that yield
distribution gaps across modalities. We identify and formally analyze two con-
flicts in the multimodal regime, both exacerbated as the number of modalities M
increases: (i) an alignment–uniformity conflict, whereby uniform repulsion under-
mines positive-pair alignment, and (ii) an intra-alignment conflict stemming from
the non-collinearity of multi-way positives. To address these issues, we propose a
principled decoupling of alignment and uniformity. We then demonstrate a theoreti-
cal guarantee that our method mitigates the distribution gap by introducing a global
Hölder divergence over multiple modality distributions. We show that our decou-
pled losses act as efficient proxies for minimizing this cross-modal divergence.
Extensive experiments on retrieval and UnCLIP-style generation demonstrate con-
sistent gains. Overall, this work provides a conflict-free recipe and theoretical
guidance for multimodal learning that simultaneously supports discriminative and
generative use cases without task-specific modules.

1 INTRODUCTION

Multimodal representation learning (Ruan et al., 2023; Girdhar et al., 2023) aims to construct a
shared embedding space where semantically related signals from different modalities (e.g., image,
text, audio, video, speech) are well aligned. A landmark example is CLIP (Radford et al., 2021),
which employs an InfoNCE objective to align paired image–text representations by maximizing
similarity for positive pairs while pushing negative pairs apart. This framework has since been
extended beyond two modalities. For instance, ImageBind (Girdhar et al., 2023), VAST (Chen et al.,
2023), and LanguageBind (Zhu et al., 2023) incorporate additional streams into a common space,
while GRAM (Cicchetti et al., 2024) generalizes the pairwise cosine similarity to the Gramian volume
among multiple modalities in the InfoNCE loss and achieves promising performance.

Despite notable successes, InfoNCE-based methods exhibit inherent conflicts that induce distribution
gaps (Liang et al., 2022; Shi et al., 2023; Yin et al., 2025). Consequently, UnCLIP-type generative
models (e.g., DALL-E 2 (Ramesh et al., 2022) and Kandinsky (Razzhigaev et al., 2023)) add a
diffusion module to transform CLIP embeddings. Prior work (Yin et al., 2025) shows that, in
vision–language learning, this gap arises from a conflict between uniformity and alignment (Wang &
Isola, 2020): the uniformity term spreads embeddings on the unit hypersphere, whereas the alignment
term pulls positive (multimodal) pairs together. However, existing analyses are limited to two
modalities and lack a principled extension to the multimodal setting. This leaves a research question:
how can we learn representations such that their distributions are well-aligned across modalities
(beneficial for generation) while maintaining separability (beneficial for retrieval)? Addressing this
requires a comprehensive analysis of the internal conflicts in multimodal learning. Yet the geometry
of multimodal representation spaces is more complex and heterogeneous, making it challenging to
quantify these conflicts and their scaling with the number of modalities.

Contributions. In this work, we take a step forward by systematically analyzing and addressing
the inherent conflicts in multimodal InfoNCE that give rise to modality and distributional gaps. Our
contributions are four-fold and are highlighted below.
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First, we provide a comprehensive theoretical analysis of the InfoNCE objective in multimodal
settings, i.e., modality count M ≥ 3. We theoretically formalize two distinct conflicts: (1) an
alignment-uniformity conflict (ζa), where uniformity forces oppose alignment, exacerbating distribu-
tional gaps across modalities (see Fig. 1a and Corollary 1 in Sec. 2), and (2) an intra-alignment conflict
(χa), driven by non-collinear positive embeddings across modalities, which widens the modality gap
as the number M of modalities increases (see Fig. 1b and Corollary 2 in Sec. 2). Together, these
conflicts explain why multimodal InfoNCE struggles to scale: the same objective that enforces global
uniformity undermines the alignment of positive pairs, especially as the modality count M grows.

Second, to resolve these issues, we propose a principled decoupling of alignment and uniformity. We
enforce intra-modality uniformity within each modality’s samples, ensuring uniform coverage on the
unit hypersphere and preventing representation collapse. In parallel, we introduce an anchor-based
alignment strategy that aligns embeddings of the same sample across modalities with respect to a
designated anchor. This explicitly avoids non-collinearity among positive pairs, thereby closing
modality gaps without introducing competing forces. Following the uniformity and alignment
principle, we name our method as UniAlign.

Third, beyond this geometric intuition, we provide a theoretical guarantee that our method minimizes
the distribution gap. Specifically, we introduce a global Hölder divergence applicable to an arbitrary
number of modality distributions. We then connect our decoupled losses to this divergence, showing
that the intra-modality uniformity and anchor-based alignment terms act as efficient computational
proxies for minimizing it, thereby providing formal theoretical justification.

Extensive experiments demonstrate the effectiveness of our approach. Our framework consistently
outperforms InfoNCE-based baselines in representation quality, retrieval accuracy, and generation
fidelity. Without additional task-specific modules, the learned embeddings support both discriminative
(cross-modal retrieval) and generative (UnCLIP-style conditional generation) tasks, yielding around
2 R@1 gains and 10–40 lower FID, respectively. These results confirm that our decoupled principle
not only resolves the modality and distributional gaps introduced by InfoNCE, but also provides a
scalable recipe for robust and versatile multimodal learning.

2 MOTIVATION: CONFLICT ANALYSIS IN MULTIMODAL LEARNING

In this section, we first revisit the previous analysis of the InfoNCE objective for two modalities
(vision and language). Then, we present a general and principled analysis for multimodal learning.

2.1 UNIFORMITY AND ALIGNMENT CONFLICT OF INFONCE.

Let M be the number of modalities and B the batch size. For sample index i ∈ {1, . . . , B} and
modality m ∈ {1, . . . ,M}, denote the ℓ2-normalized embedding by Z(m) = {z(m)

i }Bi=1 ∈ Rd. The
generalized multi-modal InfoNCE objective (Oord et al., 2018) (sum over all paiers) is

LInfoNCE = − 1∑
m̸=n wmn

B∑
i=1

∑
m̸=n

wmn log
exp
(
z
(m)
i

⊤
z
(n)
i /τ

)
∑B

k=1 exp
(
z
(m)
i

⊤
z
(n)
k /τ

) , (1)

where wmn > 0 denotes weight and τ > 0 is the temperature. This loss has been extensively used in
recent multimodal applications (Girdhar et al., 2023; Guzhov et al., 2022). Then for two modalities
(i.e., M = 2), InfoNCE can be decomposed into alignment and uniformity (Wang & Isola, 2020) :

Alignment: Eppair

[
∥z(1) − z(2)∥22

]
, Uniformity: logEpdata

[
exp(−∥z(1) − z(2)∥22/2τ)

]
, (2)

where ppair is the paired data distribution, and pdata is the overall data distribution. Uniformity spreads
embeddings over the unit hypersphere, thereby avoiding collapse and promoting semantic coverage,
while alignment pulls paired cross-modal representations together to enforce semantic consistency.
In vision–language learning, Yin et al. (2025) clearly demonstrate that uniformity across modalities
(“inter-uniformity”) conflicts with the alignment term, resulting in a systemic distributional gap.

However, when extending to more modalities, the analysis is insufficient to present the relationship
between conflict degree and the number of modalities, which is important to understand the learning
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Figure 1: Two conflicts of multi-modal InfoNCE. (a) Alignment–uniformity: positives are pulled
together yet repelled by the uniformity force; (b) Intra-alignment: non-collinear positives induce
angular tension. Both grow with M .

mechanism of multimodal representation. Due to a much more complex geometry in representation
space of multiple modalities , where each modality is influenced by multiple factors, quantifying the
conflict in multimodal representation learning is challenging.

2.2 SYSTEMIC ANALYSIS CONFLICTS IN MULTIMODAL LEARNING

We first reveal two modes of conflict in multimodal learning with InfoNEC, and then prove that the
two conflicts become severe when the number of modalities M increases by Corollary 1 and 2.

To quantify the conflict in multimodal learning, we first choose one modality z(a) as the anchor, and
analyze how it is updated by other modalities from the gradient perspective. Differentiating Eq. (1)
with respect to an anchor z(a)i exposes a “push–pull” structure. For a single modality pair (a→n),

∇
z
(a)
i

L = −
∑
n ̸=a

wan

τ z
(n)
i︸ ︷︷ ︸

Va

+
∑
n ̸=a

wan

τ

B∑
k=1

p
(an)
ik z

(n)
k︸ ︷︷ ︸

Φa

, p
(an)
ik =

exp(z
(a)
i

⊤
z
(n)
k /τ)∑B

ℓ=1 exp(z
(a)
i

⊤
z
(n)
ℓ /τ)

, (3)

where Va is the resultant force (alignment), and Φa is the repulsion force (uniformity).

Eq. (3) exposes two levels of conflicts. (i) Inter-modality alignment–uniformity conflict: when the
uniformity push and alignment pull are directionally aligned, i.e., ⟨Va,Φa⟩ > 0, the term −Va+Φa

cancels in the gradient, yielding a small update for z(a) (see Fig. 1a). This is induced by inter-modality
uniformity, leading to a distribution gap. (ii) Intra-alignment conflict: the alignment force itself may
weaken when the positive targets are not co-linear (see Fig. 1b). Non-collinear or even opposing
{z(n)}n ̸=a partially cancel in Va =

∑
n ̸=a aanz

(n), producing a weak alignment signal.

Conflict quantification (ζa, χa). We define alignment-uniformity conflict ζa ∈ [−1, 1] to measure
directional opposition between the alignment and uniformity forces, and introduce the intra-alignment
conflict χa ∈ [0, 1] to quantify cancellation among non-collinear positive pulls within Va :

ζa ≜ cos
(
Va,Φa

)
= V⊤

a Φa/
(
∥Va∥2 ∥Φa∥2

)
. χa ≜ 1− ∥Va∥2/

(∑
n ̸=a

wan/τ
)
, (4)

A high positive ζa (near 1) indicates severe conflict, which occurs when hard negatives lie in the same
direction as positives. χa indicates the magnitude of the vector. A value of χa = 0 indicates perfect
alignment (no conflict), whereas χa → 1 indicates severe conflict.
Assumption 1 (Systematic conflict per-modality ). Let V̂a = Va/∥Va∥ denote the unit alignment
direction for anchor a. For each modality n ̸= a, the uniformity component admits the decomposition

Φ(n)
a = cn V̂a + εn, (5)

where cn ≜ ⟨Φ(n)
a , V̂a⟩ quantifies the magnitude of systematic conflict from modality n in this

direction, and satisfies cn ≥ c0 for some positive constant c0 The residuals {εn}n are zero-mean,
mutually independent, and have bounded covariance.

3
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For each modality, non-matching yet semantically similar samples (“hard negatives”) exert a weak
but systematic pull in the same direction as the true cross-modal alignment; this shared component is
modeled by cnV̂a. Negatives that are not semantically similar (“easy negatives”) are approximately
isotropic with respect to V̂a and thus have (nearly) zero expected projection; their effects are absorbed
into the residual term. Residual variation due to batch composition, data augmentations, and encoder
stochasticity is modeled as zero-mean, bounded perturbations εn that are approximately independent
across modalities. As the M increases, the systematic components add coherently while the residuals
(including easy negatives) average out, leading to the accumulation of alignment–uniformity conflict.

Corollary 1 (Alignment–Uniformity Conflict). Let Φa =
∑

n ̸=a Φ
(n)
a be the total uniformity force

on anchor a, and define ζa=cos
(
Va,Φa

)
. Under Assumption 1, the alignment–uniformity conflict

converges to its maximum as the number of modalities M increases:

E[ζa] = E
[
cos
(
Va,Φa

)]
−→ 1 as M → ∞. (6)

See its proof in Appendix A. This shows that even if the conflict from each modality (cn) is small,
their systematic accumulation inevitably causes the total, observable conflict (ζa) to become severe.
Corollary 2 (Intra-alignment Conflict). The expected intra-alignment conflict, E[χa], is governed by
M and the average pairwise alignment µ̄ = E[z(m)⊤

i z
(n)
i ] ∈ [0, 1] for m ̸= n between modalities:

E[χa] ≥ 1−
√
(1 + (M − 2)µ̄)/(M − 1). (7)

For imperfect alignment (µ̄ < 1), the conflict increases with the number of modalities M and admits
a non-zero asymptotic lower bound:

lim infM→∞ E[χa] ≥ 1−
√
µ̄. (8)

See its proof in Appendix B. Corollary 2 shows that the internal conflict of the alignment force gets
severe with more modalities, resulting in ineffective alignment.

By combining Corollary 1 and 2, one can conclude that the standard multi-modal InfoNCE objective
is fraught with a two-level conflict system: an intra-alignment conflict, and a classic alignment-
uniformity conflict. Such conflicts result in a distinct distributional modality gap. This motivates
the exploration of alternative frameworks that decouple these objectives, by optimizing uniformity
separately and employing a more direct, conflict-free alignment mechanism.

3 METHODOLOGY

In Section 2, our analysis has identified two fundamental conflicts that impede multi-modal contrastive
learning: the intra-alignment conflict (χ), and the alignment-uniformity conflict (ζ). To circumvent
these issues, we propose a generic principle to decouple the learning objectives. Then, we show that
our principle essentially minimizes the global distribution gap with a theoretical guarantee.

3.1 GENERAL PRINCIPLE FOR MULTIMODAL LEARNING

A general principle for multimodal learning

As the alignment-uniformity and intra-alignment conflicts are the root for the modality/distribution
gap, a generic principle is to avoid these conflicts from the uniformity and alignment perspectives:

1 Intra-modality uniformity: Promote uniform coverage of each modality m on the
unit hypersphere Sd−1 within that modality only. This preserves separability and avoids
collapse while not inducing inter-modality uniformity forces that oppose alignment.

2 Conflict-free alignment: Explicitly or implicitly maximize the consensus magnitude to
avoid the non-collinearity problem between positive pairs.

1 avoids the cross-modality uniformity conflict but still pushes the embeddings uniformly
spreading in a unit hypersphere. 2 avoids the non-collinear positive pulls in the consensus vector.

Following this generic principle, we present our design for the uniformity and alignment terms in
Euclidean space. See a summarization of alternatives for each component in Table 4 of Appendix D.

4
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Uniformity. To promote uniformity of multimodal representations and mitigate inter-modality
conflict, we adopt an intra-modality uniformity term to prevent collapse. Let Z(m) = {z(m)

i }Bi=1 ⊂
Rd denote a batch of unit-normalized embeddings from modality m. Our intra-modality uniformity is

U
(
Z(m)

)
=

1

B

B∑
i=1

log

(
1

B − 1

∑
j ̸=i

κ
(
z
(m)
i , z

(m)
j

))
, κ(zi, zj) = exp

(
−∥zi − zj∥22

2τ2

)
, (9)

where τ > 0 is the temperature and κ is a Gaussian kernel. The sample-wise gradient satisfies

∇
z
(m)
i

U = − 1
τ2

∑
j ̸=i pij

(
z
(m)
i − z

(m)
j

)
, pij =

exp
(
−∥z(m)

i −z
(m)
j ∥2

2/(2τ
2)
)

∑
ℓ ̸=i exp

(
−∥z(m)

i −z
(m)
ℓ ∥2

2/(2τ
2)
) , so the softmax

weights pij decay exponentially with distance, effectively suppressing far-away contributions. Conse-
quently, the uniformity term concentrates gradients on nearby hard negatives (semantically similar
samples) while leaving distant points largely unaffected, improving local uniformity and preventing
collapse. Note that, as the U(Z(m)) is defined for each modality separately, which is different from
the Φa term in Eq.( 1), the conflict ζa is avoided.

Conflict-free alignment. To address the intra-alignment conflict (χ) inherent in standard multimodal
(M ≥ 3) contrastive objectives, we propose a two-level alignment scheme: (i) an anchor-based
alignment and (ii) a volume-based alignment. These either avoid non-collinearity (i) or explicitly
promote collinearity among positive pairs (ii).

We choose one modality Z(a) as the anchor. The anchor modality is optimized only with the
uniformity objective, providing a uniform template for the remaining modalities. For the rest, each
sample has a single alignment direction to the anchor, avoiding the non-collinearity conflict. Hence,
we define the alignment loss by the mean squared Euclidean distance over positive pairs:

Lalign =
1

B(M − 1)

∑B

i=1

∑
n ̸=a

∥∥z(a)i − z
(n)
i

∥∥2
2
. (10)

Volume-based complement. The above anchor formulation is a straightforward demonstration.
Considering the geometry of multimodal embeddings, both uniformity and alignment can be further
strengthened. To this end, we introduce volume-based counterparts that operate at the tuple level.

For the volume-based uniformity, we treat each multimodal tuple {Z(1), . . . ,Z(M)} (e.g., text, vision,
audio) as a single sample via its weighted centroid C = {ci}Bi=1:

ci =
∑M

m=1
wm z

(m)
i /

∥∥∑M

m=1
wm z

(m)
i

∥∥
2
, wm ≥ 0,

∑M

m=1
wm = 1. (11)

We then apply the same uniformity objective to the centroids, U(C), using uniform weights wm =
1/M by default. This encourages tuple-level dispersion and improves separability for retrieval.
Similarly, for alignment, we directly penalize the volume spanned by the modality vectors, which
maximizes collinearity among modality embeddings. For each sample i, let Gi ∈ RM×M be the
Gram matrix (Cicchetti et al., 2024) with [Gi]mn = ⟨z(m)

i , z
(n)
i ⟩. The simplex volume is proportional

to
√
detGi; collinear vectors have zero volume. det denotes the matrix determinant. Minimizing

this term complements the anchor-based alignment by explicitly encouraging collinearity across
modalities. Hence, the volume-based complement is given:

Lvol = U(C) +
1

B

∑B

i=1
(

√
det G(z

(1)
i , . . . , z

(M)
i ). (12)

Overall objective. The final objective with hyperparameters, λuni, λalign, λvol ≥ 0, is defined by:

L = λuni

∑M

m=1
U
(
Z(m)

)
+ λalign Lalign + λvol Lvol. (13)

Extension to the unit hypersphere space and geometric constraint. The above demonstration is
one option following the principle. Our principle is generic and can be extended to different variations
when considering different representation spaces and geometry properties. For example, as both our
uniformity and original InfoNCE loss want embeddings uniformly spreading on the unit hypersphere
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Sd−1, a straightforward design is to use representations often based on geodesic distance in the
hypersphere space instead of the Euclidean space. To this end, the geodesic distance:

dS(z
i, zj) = arccos

(
⟨zi, zj⟩

)
, kS(z

i, zj ; τ) = exp
(
− dS(z

i,zj)2

2 τ2

)
. ∥zi∥2 = ∥zj∥2 = 1.

(14)
Thus, our principle is generic and flexible across design choices. We present instantiations in both
Euclidean and manifold settings in Table 4 of Appendix D.

3.2 THEORETICAL ANALYSIS FROM DIVERGENCE PERSPECTIVE

In the previous section, we introduced our objective based on the proposed principle. A natural
question is whether this objective is theoretically guaranteed to reduce the distribution gap across
modalities. Here, we show that optimizing intra-modality uniformity and cross-modality alignment
minimizes a global distribution divergence, thereby mitigating the cross-modal (distribution) gap.

Classical divergences (Jenssen et al., 2006; Shlens, 2014) are typically defined between two distribu-
tions, but our setting involves M modalities. We therefore introduce a new global Hölder divergence
to jointly measure the discrepancy among all modality distributions. Let {pm(z)}Mm=1 denote the
densities of the M modalities. By Hölder’s inequality, they satisfy∣∣∣∣∫ ∏M

m=1
pm(z) dz

∣∣∣∣M ≤
∏M

m=1

∫
|pm(z)|Mdz, (15)

and takes equality if and only if p1 = · · · = pM .. This inequality motivates the definition of the
global Hölder divergence as the log of ratio between the LHS and RHS or Eq. 15:

DHölder = − log

∫ ∏M
m=1 pm(z) dz(∏M

m=1

∫
|pm(z)|Mdz

) 1
M

=
1

M

M∑
m=1

log

∫
|pm(z)|Mdz︸ ︷︷ ︸

Uniformity Term

− log

∫ M∏
m=1

pm(z) dz︸ ︷︷ ︸
Alignment Term

.

(16)

We empirically estimate this global divergence in a non-parametric way via the kernel density es-
timator (KDE) with a Gaussian kernel κ(zi, zj) = exp

(
− ∥zi − zj∥22/(2τ2)

)
. Our intra-modality

uniformity loss U(Z(m)) acts as a computational proxy for the uniformity component of the diver-
gence by enforcing repulsion and promoting per-distribution entropy. Concurrently, our instance-wise
alignment loss provides a tractable objective for the alignment component by targeting its low-
temperature limit (τ → 0), where the goal of distributional overlap becomes instance matching.

Thus, our principle is theoretically guaranteed and offers a principled and computationally efficient
method for minimizing the global Hölder divergence in Eq. (16). Full KDE derivation for the
empirical estimator of the global Hölder divergence is provided in Appendix C.

4 RELATED WORK

CLIP (Radford et al., 2021) pioneered aligning two modalities (vision and language) using the
InfoNCE objective (Oord et al., 2018). It has enabled substantial progress in image–text retrieval (Jang
et al., 2024; Koukounas et al., 2024; Huang et al., 2024) and text-to-image (T2I) generation (Ramesh
et al., 2022; Rombach et al., 2022). CLIP-style contrastive objectives have since been applied to
additional modality pairs, including audio–text (Elizalde et al., 2023; Wu et al., 2023) and point
cloud–text (Zhang et al., 2022). Beyond pairs, recent work such as CMRC (Wang et al., 2023b),
CLIP4VLA (Ruan et al., 2023), ImageBind (Girdhar et al., 2023), and LanguageBind (Zhu et al.,
2023) extends CLIP by introducing more modalities (e.g., video, audio, depth, IMU) into a unified
space using pairwise InfoNCE objectives. In parallel, VAST (Chen et al., 2023), mPLUG-2 (Xu
et al., 2023), and InternVideo2 (Wang et al., 2024) advance the state of the art through large-scale
training and architectural refinements. Complementing these trends, GRAM (Cicchetti et al., 2024)
introduces the cross-modality Gram matrix to replace pairwise cosine similarity in InfoNCE with a
volume score given by the modality Gram matrix to better handle multimodal alignment.

Despite the success of these methods, embeddings from different modalities still exhibit distinct
distribution gaps (Fig. 2), largely attributable to the InfoNCE objective. Prior studies (Zhou et al.,

6
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Table 1: Zero-shot multimodal text-to-video (T2V) and video-to-text (V2T) retrieval results
(Recall@1). Our method, UniAlign, consistently outperforms baselines in most tasks.

Method Modality MSR-VTT DiDeMo ActivityNet Average

T2V V2T T2V V2T T2V V2T T2V V2T

UMT (Liu et al., 2022) T–V 33.3 – 34.0 – 31.9 – 33.1 –
OmniVL (Wang et al., 2022a) T–V 34.6 – 33.3 – – – 34.0 –
UMT-L (Li et al., 2023) T–V 40.7 37.1 48.6 49.9 41.9 39.4 43.7 42.1
TVTSv2 (Zeng et al., 2023) T–V 38.2 – 34.6 – – – 36.4 –
ViCLIP (Wang et al., 2023a) T–V 42.4 41.3 18.4 27.9 15.1 24.0 25.3 31.1
VideoCoCa (Yan et al., 2022) T–V 34.3 64.7 – – 34.5 33.0 34.4 48.9
Norton (Lin et al., 2024) T–V 10.7 – – – – – 10.7 –
ImageBind (Girdhar et al., 2023) T–V 36.8 – – – – – 36.8 –
InternVideo-L (Wang et al., 2022b) T–V 40.7 39.6 31.5 33.5 30.7 31.4 34.3 34.8
HiTeA (Ye et al., 2023) T–V 34.4 – 43.2 – – – 38.8 –
mPLUG-2 (Xu et al., 2023) T–V 47.1 – 45.7 – – – 46.4 –
VideoPrism-b (Zhao et al., 2024) T–V 51.4 50.2 – – 49.6 47.9 50.5 49.1
LanguageBind (Zhu et al., 2023) T–V 44.8 40.9 39.9 39.8 41.0 39.1 41.9 39.9
VAST (Chen et al., 2023) T–VA 49.3 43.7 49.5 48.2 51.4 46.8 50.1 46.2
GRAM (Cicchetti et al., 2024) T–VA 54.2 50.5 54.2 52.2 59.0 50.4 55.8 51.0

UniAlign (Ours) T–VA 58.7 54.6 58.2 51.6 59.4 51.7 58.8 52.6

2023; Liang et al., 2022; Shi et al., 2023) have reported this phenomenon in vision–language learning:
Liang et al. (2022) observe that the InfoNCE objective can encourage modality gaps, while Yin et al.
(2025) provide a theoretical account showing that uniformity and alignment (Wang & Isola, 2020)
conflict, inducing persistent distributional discrepancies. However, these analyses are restricted to
the bimodal case; a principled understanding of the conflict mechanisms in the multimodal regime
remains lacking, partly due to the geometric complexity of shared representation spaces. In this work,
we systematically analyze these conflicts for general multimodal learning and, based on this analysis,
propose a generic principle for multimodal representation learning.

5 EXPERIMENTS

We evaluate our method (UniAlign) from two aspects: (i) embedding separability and (ii) the
distributional modality gap. For (i), we assess the video retrieval performance (Section 5.1); for (ii),
we perform cross-modal generation using fixed image decoders (Section 5.2). More implementation
details and experimental results can be found in Appendix F.

5.1 VIDEO RETRIEVAL

Experimental setting. Following GRAM (Cicchetti et al., 2024), we train on VAST150K (Chen et al.,
2023) and evaluate zero-shot video retrieval on three standard benchmarks: MSR-VTT (Xu et al.,
2016), DiDeMo (Anne Hendricks et al., 2017), and ActivityNet (Caba Heilbron et al., 2015). For fair
comparison, we keep modality encoders identical to VAST/GRAM: BERT-B for text, BEATs (Chen
et al., 2022) for audio, and EVA-CLIP ViT-G (Sun et al., 2023) for video. We report zero-shot
Recall@1 (R@1) for both text-to-video (T2V) and video-to-text (V2T). For joint multimodal retrieval,
where text queries retrieve the most compatible video + audio tuple (T-VA) and vice versa, we follow
GRAM and use the volume score, i.e., the determinant of the cross-modal Gram matrix.

Experimental results. Table 1 shows that our method consistently outperforms the baselines across
most tasks. All methods (VAST, GRAM, and ours) use the same backbone architecture. Initialized
from the VAST pretrained weights, our approach improves VAST by approximately 8 R@1 on T2V
and 6 R@1 on V2T, demonstrating the effectiveness of our principle-instantiated objective. Notably,
VAST (pairwise InfoNCE) suffers from both the alignment–uniformity and intra-alignment conflicts;
GRAM, which uses a Gramian volume score within InfoNCE, mitigates the intra-alignment conflict
by promoting collinearity (the Gramian volume is minimized when vectors are collinear), but the
alignment–uniformity conflict remains. By addressing both conflicts, our method further improves
over GRAM (about +3 R@1 on T2V and +1.6 on V2T), underscoring the benefit of explicitly
resolving InfoNCE’s internal tensions in the multimodal regime.
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(a) ImageBind (paired InfoNCE). (b) GRAM (volume InfoNCE). (c) Ours

Figure 2: T-SNE visualizations of vision, text, and audio features. InfoNCE-type of objective
results in clear distribution gaps (2a and 2b). Our method mitigates the distribution gap (2c).

Table 2: Ablation on U(C) and Lvol.

U(C) Lvol T2V V2T Avg.

✗ ✗ 36.5 36.8 36.6
✗ ✓ 38.3 36.9 37.6
✓ ✗ 37.4 39.8 38.6
✓ ✓ 40.2 43.4 41.8

Ablation study. To understand how the volume-based
uniformity U(C) using centroid C and the volume-based
alignment (Lvol) affect the retrieval performance, we ab-
late both components to quantify their individual and com-
bined contributions to retrieval performance. We train
and evaluate the performance on the MSRVTT dataset.
To exclude external factors (e.g., similarity matrix refine-
ment or additional image-text matching refinement) that
are commonly used in retrieval, we use the plain cosine
similarity-based retrieval for this ablation. As shown in Table 2, both the volume-based unifor-
mity and alignment can effectively increase embedding separability, and thus improve the retrieval
performance on MSRVTT. More ablation studies can be found in the Appendix F.2.

5.2 CROSS-MODAL GENERATION

To evaluate the distributional modality gap, we use a simple proxy: if multiple modalities are well
aligned to a common distribution, embeddings from non-image modalities (e.g., audio or text) should
be usable by an image generator trained on image embeddings. In that case, cross-modal generation
quality directly reflects the degree of cross-modal alignment. To this end, we employ UnCLIP-type
generators, which consist of a separate image generator trained on CLIP image embeddings.

Dataset. We use the VGGSound dataset (Chen et al., 2020) to evaluate the generation performance.
VGGSound is an audio-visual correspondent, allowing us to build a semantically aligned vision-
audio-text triplet. VGGSound has around 200K video clips, annotated with 309 sound classes. The
dataset does not provide the video caption. Hence, we use the captioner provided by VAST (Chen
et al., 2023) to generate video captions. Then, we use 1024 videos for testing, and the rest for training.

Experimental setting. We map all modalities into a shared image-anchored embedding space and
evaluate two encoder–decoder configurations compatible with UnCLIP-style generators. (i) ViT-H:
a CLIP ViT-H/14 image-text encoders paired with the ImageBind audio encoder, compatible with
the Stable UnCLIP decoder (Ramesh et al., 2022). (ii) ViT-bigG: a CLIP ViT-bigG-14 text/vision
model combined with the BEATs audio encoder (Chen et al., 2022), compatible with the Kandinsky
decoder (Razzhigaev et al., 2023). We re-train GRAM and use the released ImageBind weights
pretrained on large-scale data for comparison. We evaluate text-to-image (T2I), audio-to-image (A2I),
and modality interpolation with Fréchet Inception Distance (FID) (Heusel et al., 2017).

T-SNE visualization. We first visualize the joint embedding space using 2D t-SNE (Fig. 2) to
illustrate modality gaps under different training objectives. We extract text, vision, and audio
embeddings from the VGGSound test set, ℓ2-normalize them, and compute t-SNE. As shown in
Fig. 2, training with an InfoNCE-type objective yields clearly separated, modality-specific clusters
(i.e., modality gap), whereas our method produces substantially tighter cross-modal co-location,
indicating a smaller modality gap.

Results. We compare against GRAM and ImageBind using both Kandinsky and Stable UnCLIP
decoders. When fed image embeddings, these decoders achieve FID 32.99 and 34.61, respectively,

8
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Table 3: Cross-modal generation with different decoders. We report FID (↓). Kandinsky and
Stable UnCLIP, evaluated in self-reconstruction by feeding image embeddings to the decoder (marked
∗), serve as upper-bound references. Our method consistently outperforms both baselines.

Decoder Method T2I ↓ A2I ↓ (T+A)→I ↓ Avg. ↓

Kandinsky

Kandinsky - - - 32.99∗

GRAM 62.11 106.97 92.63 87.23
Ours (Geodesic) 45.35 50.75 48.19 48.09
Ours (Euclidean) 42.72 50.51 46.56 46.60

Stable UnCLIP

Stable UnCLIP - - - 34.61∗

ImageBind 50.17 53.59 46.81 50.19
GRAM 45.53 55.40 47.15 49.36
Ours (Geodesic) 39.88 40.16 40.80 40.23
Ours (Euclidean) 39.63 39.95 41.03 40.20

ImageBind GRAM Ours ImageBind GRAM Ours

Dog “white creature in the river”Bird “sunny weather”

Figure 3: Modality-interpolation generation results (T+A) → I. When interpolating between text
and audio representations, our method has a better ability to fuse the semantic information across
modalities, leading to better generation.

providing dataset-specific upper bounds (decoder self-reconstruction). Our method yields substantial
gains in cross-modal generation for both text-to-image (T2I) and audio-to-image (A2I) relative to
InfoNCE-trained baselines. As shown in Table 3, with Kandinsky we significantly outperform GRAM;
with Stable UnCLIP we surpass ImageBind and GRAM by around 10 FID. These improvements
are consistent across architectures and decoders, indicating the robustness of our objective. The
performance further suggests that the learned cross-modal representations are tightly aligned (i.e., the
modality gap is small). We also evaluate a geodesic-kernel variant of our method, which performs on
par with the Euclidean version, indicating robustness to the choice of geometry and supporting the
generality of our principle. Additional qualitative results are provided in Appendix F.

Modality interpolation. If modalities are aligned to a common distribution, a straightforward
application is embedding interpolation, which blends information from different modalities directly
in the shared space for image synthesis (as opposed to conditioning a generator via cross-attention
from a single modality). Prior work has primarily demonstrated this for vision–language with
DALL-E 2 (Ramesh et al., 2022). Here, we interpolate modality embeddings (e.g., (T+A)/2 and
generate images with Kandinsky and Stable UnCLIP decoders. Our method outperforms baselines
both quantitatively (Table. 3) (lower FID) and qualitatively (Fig. 3), indicating an improved ability to
fuse complementary semantics across modalities. We attribute these gains to the reduced cross-modal
distribution gap and the resulting smoothness of the shared embedding manifold.

6 CONCLUSION

We introduced a conflict-aware principle for multimodal representation learning that decouples
uniformity from alignment, overcoming key limitations of InfoNCE when modality number M≥3.
By promoting intra-modality uniformity and anchoring positive alignment, our method directly
reduces cross-modal distribution gaps. A divergence-based analysis further shows that these objectives
serve as tractable estimators for minimizing a global discrepancy, providing theoretical guarantees.
Empirically, the learned embeddings achieve strong performance in video retrieval and cross-modal
generation with UnCLIP decoders, while t-SNE visualizations confirm improved modality integration.
Overall, our approach offers a conflict-free and theoretically grounded framework for unifying
discriminative and generative multimodal tasks without task-specific modules.
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USE OF LARGE LANGUAGE MODELS (LLMS).

LLMs (e.g., ChatGPT) were only used for minor language polishing. They did not contribute to
research ideation, experimental design, or substantive writing.

ETHICS STATEMENT

Our work presents a fundamental theoretical analysis and a generic principle concerning the training
dynamics of multimodal models. As our contribution is primarily theoretical, it is agnostic to specific
datasets or downstream applications and does not introduce new, direct ethical risks.

REPRODUCIBILITY STATEMENT

We provide the sufficient implementation details in Section 3.1, Section 5, and Appendix F for
reproducibility.
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A PROOF OF COROLLARY 1

Corollary 1 (Alignment–uniformity Conflict). Let Φa =
∑

n̸=a Φ
(n)
a be the total uniformity force

on anchor a. Assume each per-modality component admits the decomposition:

Φ(n)
a = cn V̂a + εn.

Here, V̂a ≜ Va/∥Va∥ is the direction of the total alignment force. The scalar cn ≜ Φ
(n)
a · V̂a

quantifies the magnitude of systematic conflict from modality n in this direction, and satisfies cn ≥ c0
for some positive constant c0. The vector εn is a random perturbation unique to modality n, assumed
to be zero-mean, mutually independent, and with bounded covariance.

Under these assumptions, the overall alignment-uniformity conflict ζa converges to its maximum
value as the number of modalities M increases:

E[ζa] = E
[
cos
(
Va,Φa

)]
→ 1 as M → ∞. (17)

Proof. The proof proceeds in three stages. First, we provide a formal justification for the decomposi-
tion of the per-modality uniformity force. Second, we derive a precise expression for the conflict
metric ζa based on this decomposition. Finally, we analyze the asymptotic behavior of this expression
as the number of modalities M → ∞.

Justification of the Decomposition The decomposition of Φ(n)
a is a formalization of the geometric

principle of orthogonal projection. For any vector Φ(n)
a and a given direction defined by the unit

vector V̂a, we can uniquely decompose Φ
(n)
a into a component parallel to V̂a and a component

orthogonal to it. The component parallel to V̂a is its orthogonal projection, which we define as the
systematic component:

ProjV̂a
(Φ(n)

a ) = (Φ(n)
a · V̂a)V̂a. (18)

Intuitively, in each modality, non-paired but semantically similar samples (“hard negatives”) exert a
weak but systematic pull in the same direction as the true cross-modal target; this shared component
is modeled by cnV̂a. Residual variation due to batch composition, data augmentations, and encoder
stochasticity is captured by zero-mean, bounded perturbations εn that are approximately independent
across modalities. As the number of modalities increases, the systematic components add coherently
while the residuals average out, leading to the observed accumulation of alignment–uniformity
conflict.

Derivation of the Conflict Metric ζa The conflict metric ζa is the cosine similarity between Va

and the total uniformity force Φa:

ζa = cos(Va,Φa) =
Va ·Φa

∥Va∥∥Φa∥
=

V̂a ·Φa

∥Φa∥
.

Let N = M − 1. The total uniformity force is Φa =
∑N

n=1 Φ
(n)
a = (

∑N
n=1 cn)V̂a+

∑N
n=1 εn. Let

Sc =
∑N

n=1 cn and Sε =
∑N

n=1 εn. Due to orthogonality, the numerator of ζa is V̂a ·Φa = Sc and
the squared norm of the denominator is ∥Φa∥2 = S2

c + ∥Sε∥2. Substituting these back, we obtain a
precise expression for ζa:

ζa =
Sc√

S2
c + ∥Sε∥2

=
1√

1 + ∥Sε∥2

S2
c

.

Asymptotic Analysis The proof now hinges on showing that the ratio ∥Sε∥2

S2
c

converges to zero as
N → ∞. The denominator S2

c = (
∑

cn)
2 ≥ (Nc0)

2 grows at least quadratically. For the numerator,
due to the independence and zero-mean properties of {εn}, its expected value grows at most linearly:

E[∥Sε∥2] =
N∑

n=1

E[∥εn∥2] ≤ NCε,
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for some constant Cε < ∞ implied by the bounded covariance. The ratio of the expected numerator
to the lower-bounded denominator is of the order O(N)/O(N2) = O(1/N), which converges to 0.
This implies that the random variable ∥Sε∥2

S2
c

converges to 0 in probability.

By the Continuous Mapping Theorem, ζa converges in probability to 1. As ζa is bounded in [−1, 1],
the Bounded Convergence Theorem ensures that convergence in probability to a constant implies
convergence in expectation. Therefore:

lim
M→∞

E[ζa] = 1.

B PROOF OF COROLLARY 2

Corollary 2 (Intra-alignment Conflict). The expected intra-alignment conflict, E[χa], is governed by
M and the average pairwise alignment µ̄ = E[z(m)⊤

i z
(n)
i ] ∈ [0, 1] for m ̸= n between modalities:

E[χa] ≥ 1−
√

1 + (M − 2)µ̄

M − 1
. (19)

For imperfect alignment (µ̄ < 1), the conflict increases with the number of modalities M and admits
a non-zero asymptotic lower bound:

lim inf
M→∞

E[χa] ≥ 1−
√
µ̄.

Proof. The intra-alignment conflict for an anchor modality a is defined as:

χa ≜ 1− ∥Va∥2∑
n ̸=a wan/τ

where the alignment force is Va =
∑

n ̸=a
wan

τ z
(n)
i . To derive the fundamental scaling relationship

with the number of modalities M , we make a simplifying assumption of uniform weighting, i.e.,
wan/τ = 1 for all n ̸= a. Under this assumption,

χa = 1− ∥Va∥2
M − 1

, Va =
∑
n̸=a

z
(n)
i .

Let N = M − 1. Then

∥Va∥22 =

N∑
n=1

N∑
m=1

z
(n)⊤
i z

(m)
i = N +

∑
n ̸=m

z
(n)⊤
i z

(m)
i .

Taking expectations and using µ̄ = E[z(n)⊤i z
(m)
i ] for n ̸= m,

E
[
∥Va∥22

]
= N +N(N − 1)µ̄ = (M − 1)

(
1 + (M − 2)µ̄

)
.

By Jensen’s inequality (since
√
· is concave),

E
[
∥Va∥2

]
≤
√
E
[
∥Va∥22

]
=
√

(M − 1)
(
1 + (M − 2)µ̄

)
.

Hence

E[χa] = 1− E∥Va∥2
M − 1

≥ 1−
√

1 + (M − 2)µ̄

M − 1
,

which proves equation 19. Finally,

lim
M→∞

√
1 + (M − 2)µ̄

M − 1
=

√
µ̄ ⇒ lim inf

M→∞
E[χa] ≥ 1−

√
µ̄.

14
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C GENERALIZED HÖLDER DIVERGENCE

KDE estimation of the global Hölder divergence. Let {pm(z)}Mm=1 be the (unknown) continuous
densities of M modalities and

DHölder = − log

∫ ∏M
m=1 pm(z) dz(∏M

m=1

∫
pm(z)M dz

)1/M
=

1

M

M∑
m=1

log

(∫
pm(z)M dz

)
− log

(∫ M∏
m=1

pm(z) dz

)
,

(20)

which is nonnegative by Hölder’s inequality and equals 0 iff the Hölder inequality is tight.

For modality m, let {z(m)
k }Bk=1 be a batch of embeddings on Rd and define the kernel density

estimator (KDE)

p̂m(z) =
1

B

B∑
k=1

Kτ

(
z, z

(m)
k

)
, Kτ (z, z

′) =
1

(2πτ2)d/2
exp
(
− ∥z−z′∥2

2

2τ2

)
, (21)

with bandwidth τ > 0.1

Using
∫
pMm = EZ∼pm

[
pm(Z)M−1

]
and

∫ ∏M
m=1 pm = EZ∼p1

[∏M
m=2 pm(Z)

]
, we obtain Monte-

Carlo plug-in estimators by sampling from the empirical pm via {z(m)
j } and evaluating the KDEs:

∫
p̂m(z)M dz = EZ∼p̂m

[
p̂m(Z)M−1

]
≈ 1

B

B∑
j=1

(
1

B

B∑
k=1

Kτ

(
z
(m)
j , z

(m)
k

))M−1

, (22)

∫ M∏
m=1

p̂m(z) dz = EZ∼p̂1

[ M∏
m=2

p̂m(Z)
]

≈ 1

B

B∑
j=1

M∏
m=2

(
1

B

B∑
k=1

Kτ

(
z
(1)
j , z

(m)
k

))
. (23)

Equivalently, with the unnormalized Gaussian kernel κ (dropping constants), the formulas above
match∫

pMm ≈ 1

B

B∑
j=1

( 1

B

B∑
k=1

κ(z
(m)
j , z

(m)
k )

)M−1

,

∫ M∏
m=1

pm ≈ 1

B

B∑
j=1

M∏
m=2

( 1

B

B∑
k=1

κ(z
(1)
j , z

(m)
k )

)
.

(i) Leave-one-out (LOO). To reduce small-sample bias, one may replace 1
B

∑B
k=1 Kτ (z

(m)
j , z

(m)
k ) by

1
B−1

∑
k ̸=j Kτ (z

(m)
j , z

(m)
k ) in equation 22. (ii) Anchor averaging. In equation 23 we anchored at

m = 1; averaging the joint estimate over anchors (m = 1, . . . ,M ) lowers variance. (iii) Bandwidths.
One can use modality-specific bandwidths τm; the derivation is identical with Kτm per modality.

Define the (within-modality) kernel means s(m)
i ≜ 1

B

∑B
k=1 Kτ (z

(m)
i , z

(m)
k ) and the (cross-modality-

to-anchor) kernel means ci ≜
∏M

m=2
1
B

∑B
k=1 Kτ (z

(1)
i , z

(m)
k ). Then the Hölder divergence estimator

(up to an additive constant if using κ) is

D̂Hölder =
1

M

M∑
m=1

log

(
1

B

B∑
i=1

(
s
(m)
i

)M−1

)
− log

(
1

B

B∑
i=1

ci

)
. (24)

All terms are differentiable; the computation costs O(MB2) and can be vectorized via kernel matrices
K

(m)
ij = Kτ (z

(m)
i , z

(m)
j ) and K

(m→1)
ij = Kτ (z

(1)
i , z

(m)
j ).
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Table 4: Design space for uniformity and alignment. Uniformity can be instantiated in Euclidean
or manifold geometries; alignment can incorporate geometric constraints beyond pairwise distance.

Principle Space Kernel/Metric Notes

Uniformity
(repulsion)

Euclidean (Rd) exp
(
−∥z(m)

i − z
(m)
j ∥22/2τ2

) Gaussian kernel in Rd; encourages
spread.

Unit Hypersphere (Sd−1) exp
(
−dS(z

(m)
i , z

(m)
j )2/2τ2

) Geodesic (Riemannian) Gaussian
on Sd−1.

Alignment
(attraction)

Euclidean (Rd) ∥z(m)
i − z

(n)
i ∥22 Pairwise matching per sample.

Unit Hypersphere (Sd−1)
[
dS(z

(m)
i , z

(n)
i )
]2 Geodesic pairwise alignment.

Area/volume preservation
√

detG(z(1), . . . , z(M)
Penalizes global volume; G is the
Gram Matrix.

D DESIGN SPACE FOR UNIFORMITY AND ALIGNMENT

We illustrate some possible designs following our principle in Table 4, showing the generality and
flexibility of our framework.

E COMPUTATIONAL COMPLEXITY

Our framework is formulated upon the core principles of feature alignment and uniformity, which
are fundamental to the contrastive learning objective. The implementation of our method operates
within the standard computational pipeline of modern contrastive learning. For a given batch of size
B with d-dimensional representations, the dominant computational cost remains the construction of
the B ×B pairwise similarity matrix, an operation with O(B2d) time complexity. The objectives of
alignment and uniformity are then computed based on this matrix, inheriting the same computational
profile as the loss calculation and gradient backpropagation stages of standard contrastive methods.

Crucially, our formulation does not require any operations beyond those already present in the
baseline. As such, our method introduces no additional computational overhead and shares an
identical time and memory complexity profile with widely-used InfoNCE-based frameworks. This
efficiency ensures our approach is scalable and readily applicable to large-scale training regimes.

F EXPERIMENTAL DETAILS

F.1 IMPLEMENTATION DETAILS

All experiments use 4× NVIDIA A6000 GPUs. We train with AdamW, a learning rate of 2× 10−5,
and a batch size of 128 per GPU (global batch = 512); other optimizer settings are default. For
zero-shot T2V/V2T retrieval, we follow GRAM: each video clip is sampled with 8 frames during
training, and the model is trained for 5 epochs. For cross-modal generation, we train on VGGSound
for 50 epochs.

For hyperparameters, λuni, λalign, and λvol, we simply set them to 1 for retrieval, and use the
temperature to control them. For generation, we use λvol = 0.1 to have more emphasis on anchor-
based alignment. Specifically, for the intra-modality uniformity and alignment terms, we use the
temperature as τ = 0.07, the same as the standard CLIP.

1If one uses the unnormalized kernel κ(z, z′) = exp(−∥z− z′∥22/(2τ2)), then p̂m is scaled by a constant
depending on (d, τ). This yields an additive constant in DHölder that does not affect optimization; we drop such
constants in practice.
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Table 5: Ablation on centroid uniformity temperature τctr on MSR-VTT retrieval (Recall@1, %).

τctr T2V R@1 V2T R@1 Avg R@1

0.01 56.0 54.4 55.2
0.03 56.8 53.2 55.0
0.07 57.4 53.2 55.3

F.2 MORE EXPERIMENTAL RESULTS

F.2.1 MORE ABLATION STUDIES

As we mentioned above, we use the temperature τ = 0.07 for uniformity and the anchor-based
alignment. However, a separate temperature τctr for the volume-based centroid uniformity could
control the global separability. Hence, we perform an ablation study on this parameter. Table 5 shows
that the average performance is robust to the temperature τ , while controlling centroid τ may affect
the subtask performance (T2V and V2T).

F.2.2 EXPERIMENTAL RESULTS ON MODALITY INTERPOLATION

Beyond the bimodal cases in Fig. 3, we present tri-modal interpolation results. Conditioning jointly
on an image embedding, a text prompt, and an audio embedding, our model synthesizes images that
integrate complementary semantics from all three modalities, demonstrating effective cross-modal
fusion.

ImageBind GRAM Ours

“white creature ”

Dog

“sunny weather”

Bird

Figure 4: Modality-interpolation generation results (V+T+A) → I. When interpolating, vision,
text, and audio representations, our method has a better ability to fuse the semantic information across
modalities, leading to better generation.

F.3 GENERATION RESULTS OF VGGSOUND

We present more generated samples from VGGSound in Fig. 5. Note that the image quality of
VGGSound’s videos is quite noisy, making the generation results similar. Also, we adopt a raw
generation process for this demonstration, where the embeddings are directly passed to the decoder
without additional conditions (e.g., negative prompts or quality-enhancing constraints). This can
directly reflect the goodness of the multimodal alignment without external factors.
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Audio to Image Text to Image Audio & Text to Image

Figure 5: More generated results from VGGsound. We adopt a raw generation process for
demonstrating the multimodal alignment ability, where the embeddings are directly passed to the
decoder without additional conditions (e.g., negative prompts or quality-enhancing constraints)
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