
Wasserstein distributional robustness of neural
networks

Xingjian Bai
Department of Computer Science

University of Oxford, UK
xingjian.bai@sjc.ox.ac.uk

Guangyi He
Mathematical Institute

University of Oxford, UK
guangyihe2002@outlook.com

Yifan Jiang
Mathematical Institute

University of Oxford, UK
yifan.jiang@maths.ox.ac.uk

Jan Obłój˚

Mathematical Institute
University of Oxford, UK

jan.obloj@maths.ox.ac.uk

Abstract

Deep neural networks are known to be vulnerable to adversarial attacks (AA). For
an image recognition task, this means that a small perturbation of the original can
result in the image being misclassified. Design of such attacks as well as methods
of adversarial training against them are subject of intense research. We re-cast
the problem using techniques of Wasserstein distributionally robust optimization
(DRO) and obtain novel contributions leveraging recent insights from DRO sensitiv-
ity analysis. We consider a set of distributional threat models. Unlike the traditional
pointwise attacks, which assume a uniform bound on perturbation of each input
data point, distributional threat models allow attackers to perturb inputs in a non-
uniform way. We link these more general attacks with questions of out-of-sample
performance and Knightian uncertainty. To evaluate the distributional robustness of
neural networks, we propose a first-order AA algorithm and its multistep version.
Our attack algorithms include Fast Gradient Sign Method (FGSM) and Projected
Gradient Descent (PGD) as special cases. Furthermore, we provide a new asymp-
totic estimate of the adversarial accuracy against distributional threat models. The
bound is fast to compute and first-order accurate, offering new insights even for the
pointwise AA. It also naturally yields out-of-sample performance guarantees. We
conduct numerical experiments on CIFAR-10, CIFAR-100, ImageNet datasets us-
ing DNNs on RobustBench to illustrate our theoretical results. Our code is available
at https://github.com/JanObloj/W-DRO-Adversarial-Methods.

1 Introduction

Model uncertainty is a ubiquitous phenomenon across different fields of science. In decision theory
and economics, it is often referred to as the Knightian uncertainty (Knight, 1921), or the unknown
unknowns, to distinguish it from the risk which stems from the randomness embedded by design
in the scientific process, see Hansen and Marinacci (2016) for an overview. Transcribing to the
context of data science, risk refers to the randomness embedded in a training by design, e.g., through
random initialization, drop-outs etc., and uncertainty encompasses the extent to which the dataset
is an adequate description of reality. Robustness, the ability to perform well under uncertainty,
thus relates to several themes in ML including adversarial attacks, out-of-sample performance and

˚Corresponding author. www.maths.ox.ac.uk/people/jan.obloj

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/JanObloj/W-DRO-Adversarial-Methods

out-of-distribution performance. In this work, we mainly focus on the former but offer a unified
perspective on robustness in all of its facets.

Vulnerability of DNNs to crafted adversarial attacks (AA), diagnosed in Biggio et al. (2013), Good-
fellow et al. (2015), relates to the ability of an attacker to manipulate network’s outputs by changing
the input images only slightly – often in ways imperceptible to a human eye. As such, AA are of key
importance for security-sensitive applications and an active field of research. Most works so far have
focused on attacks under pointwise lp-bounded image distortions but a growing stream of research,
pioneered by Staib and Jegelka (2017) and Sinha et al. (2018), frames the problem using Wasserstein
distributionally robust optimization (DRO). We offer novel contributions to this literature.

Our key contributions can be summarized as follows. 1) We propose a unified approach to adversarial
attacks and training based on sensitivity analysis for Wasserstein DRO. We believe this approach,
leveraging results from Bartl et al. (2021), is better suited for gradient-based optimization methods
than duality approach adopted in most of the works to date. We further link the adversarial accuracy
to the adversarial loss, and investigate the out-of-sample performance. 2) We derive a general
adversarial attack method. As a special case, this recovers the classical FGSM attack lending it a
further theoretical underpinning. However, our method also allows one to carry out attacks under a
distributional threat model which, we believe, has not been done before. We also propose a rectified
DLR loss suitable for the distributional attacks. 3) We develop asymptotically certified bounds on
adversarial accuracy, applicable to a general threat, including the classical pointwise perturbations.
The bounds are first-order accurate and much faster to compute than, e.g., the AutoAttack (Croce
and Hein, 2020) benchmark. The performance of our methods is documented using CIFAR-10
(Krizhevsky, 2009), CIFAR-100 (Krizhevsky, 2009), ImageNet (Deng et al., 2009) datasets and
neural networks from RobustBench (Croce et al., 2021).

2 Related Work

Adversarial Attack (AA). Original research focused on the pointwise lp-bounded image distortion.
Numerous attack methods under this threat model have been proposed in the literature, including Fast
Gradient Sign Method (FGSM) (Goodfellow et al., 2015), Projected Gradient Descent (PGD) (Madry
et al., 2018), CW attack (Carlini and Wagner, 2017), etc. In these white-box attacks, the attacker
has full knowledge of the neural network. There are also black-box attacks, such as Zeroth Order
Optimization (ZOO) (Chen et al., 2017), Boundary Attack (Brendel et al., 2018), and Query-limited
Attack (Ilyas et al., 2018). AutoAttack (Croce and Hein, 2020), an ensemble of white-box and black-
box attacks, provides a useful benchmark for pointwise lp-robustness of neural networks. Notably
Hua et al. (2022) considered AA with lp distance replaced by a proxy for human eye evaluation.

Adversarial Defense. Early works on data augmentation (Goodfellow et al., 2015, Madry et al.,
2018, Tramèr et al., 2018) make use of strong adversarial attacks to augment the training data with
adversarial examples; more recent works (Gowal et al., 2021, Xing et al., 2022, Wang et al., 2023)
focus on adding randomness to training data through generative models such as GANs and diffusion
models. Zhang et al. (2019) consider the trade-off between robustness and accuracy of a neural
network via TRADES, a regularized loss. Analogous research includes MART (Wang et al., 2020)
and SCORE (Pang et al., 2022). Other loss regularization methods such as adversarial distributional
training (Dong et al., 2020) and adversarial weight perturbation (Wu et al., 2020) have been shown
to smooth the loss landscape and improve the robustness. In addition, various training techniques
can be overlaid to improve robustness, including droup-out layers, early stopping and parameter
fine-tuning Sehwag et al. (2020). The closest to our setting are Sinha et al. (2018), García Trillos and
García Trillos (2022) which employ Wasserstein penalization and constraint respectively. However,
so far, even the papers which used distributional threat models to motivate DRO-based training
methods actually used classical pointwise attacks to evaluate robustness of their trained DNNs. This
highlights the novelty of our distributional threat attack.

Robust Performance Bounds. Each AA method gives a particular upper bound on the adversarial
accuracy of the network. In contrast, research on certified robustness aims at classifying images which
are robust to all possible attacks allowed in the threat model and thus providing an attack-agnostic
lower bound on the classification accuracy. To verify robustness of images, deterministic methods
using off-the-shelf solvers (Tjeng et al., 2019), relaxed linear programming (Wong and Kolter, 2018,

2

Weng et al., 2018a) or semi-definite programming (Raghunathan et al., 2018, Dathathri et al., 2020)
have been applied. Hein and Andriushchenko (2017), Weng et al. (2018b) derive Lipschitz-based
metrics to characterize the maximum distortion an image can uphold; Cohen et al. (2019) constructs a
certifiable classifier by adding smooth noise to the original classifier; see Li et al. (2023) for a review.

Distributionally Robust Optimization (DRO). Mathematically, it is formulated as a min-max
problem

inf
θPΘ

sup
QPP

EQrfθpZqs, (1)

where we minimize the worst-case loss over all possible distributions Q P P . In financial economics,
such criteria appear in the context of multi-prior preferences, see (Gilboa and Schmeidler, 1989,
Föllmer and Weber, 2015). We refer to (Rahimian and Mehrotra, 2019) for a survey of the DRO.

We focus on the Wasserstein ambiguity set P “ BδpP q, which is a ball centered at the reference
distribution P with radius δ under the Wasserstein distance. We refer to Gao and Kleywegt (2022)
for a discussion of many advantages of this distance. In particular, measures close to each other
can have different supports which is key in capturing data perturbations, see Sinha et al. (2018).
Staib and Jegelka (2017) interpreted pointwise adversarial training as a special case of Wasserstein
DRO (W-DRO). Volpi et al. (2018) utilized W-DRO to improve network performance on unseen data
distributions. More recently, Bui et al. (2022) unified various classical adversarial training methods,
such as PGD-AT, TRADES, and MART, under the W-DRO framework.

W-DRO, while compelling theoretically, is often numerically intractable. In the literature, two lines of
research have been proposed to tackle this problem. The duality approach rewrites (1), changing the
sup to a univariate inf featuring a transform of fθ. We refer to Mohajerin Esfahani and Kuhn (2018)
for the data-driven case, Blanchet and Murthy (2019), Bartl et al. (2020), Gao and Kleywegt (2022)
for general probability measures and Huang et al. (2022) for a further application with coresets. The
second approach, which we adopt here, considers the first order approximation to the original DRO
problem. This can be seen as computing the sensitivity of the value function with respect to the model
uncertainty as derived in Bartl et al. (2021), see also Lam (2016), García Trillos and García Trillos
(2022) for analogous results in different setups.

3 Preliminaries

Image Classification Task. An image is interpreted as a tuple px, yq where the feature vector
x P X encodes the graphic information and y P Y “ t1, . . . ,mu denotes the class, or tag, of the
image. W.l.o.g., we take X “ r0, 1sn. A distribution of labelled images corresponds to a probability
measure P on X ˆ Y . We are given the training set Dtr and the test set Dtt, subsets of X ˆ Y , i.i.d.
sampled from P . We denote pP (resp. qP) the empirical measure of points in the training set (resp. test
set), i.e., pP “ 1

|Dtr|

ř

px,yqPDtr
δpx,yq. A neural network is a map fθ : X Ñ Rm

fθpxq “ f l ˝ ¨ ¨ ¨ ˝ f1pxq, where f ipxq “ σpwix ` biq,

σ is a nonlinear activation function, and θ “ twi, bi : 1 ď i ď lu is the collection of parameters. We
denote S the set of images equipped with their labels generated by fθ, i.e.,

S “

!

px, yq P X ˆ Y : arg max
1ďiďm

fθpxqi “ tyu

)

.

The aim of image classification is to find a network fθ with high (clean) prediction accuracy A :“
P pSq “ EP r1Ss. To this end, fθ is trained solving2 the stochastic optimization problem

inf
θPΘ

EP rLpfθpxq, yqs, (2)

where Θ denotes the set of admissible parameters, and L is a (piecewise) smooth loss function, e.g.,
cross entropy loss3CE : Rm ˆ Y Ñ R given by

CEpz, yq “ ´plog ˝ softmaxpzqqy. (3)
2In practice, P is not accessible and we use pP or qP instead, e.g., in (2) we replace P with pP and then

compute the clean accuracy as qP pSq. In our experiments we make it clear which dataset is used.
3By convention, cross entropy is a function of two probability measures. In this case, we implicitly normalize

the logit z by applying softmax, and we associate a class y with the Dirac measure δy .

3

Wasserstein Distances. Throughout, pp, qq is a pair of conjugate indices, 1{p ` 1{q “ 1, with
1 ď p ď 8. We consider a norm } ¨ } on X and denote } ¨ }˚ its dual, }x̃}˚ “ suptxx, x̃y : }x} ď 1u.
Our main interest is in } ¨ } “ } ¨ }r the lr-norm for which } ¨ }˚ “ } ¨ }s, where pr, sq are conjugate
indices, 1 ď r ď 8. We consider adversarial attacks which perturb the image feature x but not its
label y. Accordingly, we define a pseudo distance4 d on X ˆ Y as

dppx1, y1q, px2, y2qq “ }x1 ´ x2} ` 81ty1‰y2u. (4)

We denote ΠpP,Qq the set of couplings between px, yq and px1, y1q whose first margin is P and
second margin is Q, and T#P :“ P ˝ T´1 denotes the pushforward measure of P under a map T .

The p-Wasserstein distance, 1 ď p ă 8, between probability measures P and Q on X ˆ Y is

WppP,Qq :“ inf tEπrdppx1, y1q, px2, y2qqps : π P ΠpP,Qqu
1{p

. (5)

The 8-Wasserstein distance W8 is given by

W8pP,Qq :“ inftπ– ess sup dppx1, y1q, px2, y2qq : π P ΠpP,Qqu. (6)

We denote the p-Wasserstein ball centered at P with radius δ by BδpP q. We mainly consider the
cases where p, r P t2,8u. Intuitively, we can view p as the index of image-wise flexibility and r as
the index of pixel-wise flexibility. Unless p “ 1 is explicitly allowed, p ą 1 in what follows.

4 Wasserstein Distributional Robustness: adversarial attacks and training

W-DRO Formulation. The Wasserstein DRO (W-DRO) formulation of a DNN training task is
given by:

inf
θPΘ

sup
QPBδpP q

EQrLpfθpxq, yqs, (7)

where BδpP q is the p-Wasserstein ball centered at P and δ denotes the budget of the adversarial
attack. In practice, P is not accessible and is replaced with pP . When p “ 8, the above adversarial
loss coincides with the pointwise adversarial loss of Madry et al. (2018) given by

inf
θPΘ

EP rsuptLpfθpx1q, yq : }x1 ´ x} ď δus.

Recently, Bui et al. (2022) considered a more general criterion they called unified distributional
robustness. It can be re-cast equivalently as an extended W-DRO formulation using couplings:

inf
θPΘ

sup
πPΠδpP,¨q

EπrJθpx, y, x1, y1qs, (8)

where ΠδpP, ¨q is the set of couplings between px, yq and px1, y1q whose first margin is P and the
second margin is within a Wasserstein δ-ball centered at P . This formulation was motivated by the
observation that for p “ 8, taking Jθpx, y, x1, y1q “ Lpfθpxq, yq ` βLpfθpxq, fθpx1qq, it retrieves
the TRADES loss of (Zhang et al., 2019) given by

inf
θPΘ

EP

”

Lpfθpxq, yq ` β sup
x1:}x´x1}ďδ

Lpfθpxq, fθpx1qq

ı

.

W-DRO Sensitivity. In practice, training using (7), let alone (8), is computationally infeasible. To
back propagate θ it is essential to understand the inner maximization problem denoted by

V pδq “ sup
QPBδpP q

EQrJθpx, yqs,

where we write Jθpx, yq “ Lpfθpxq, yq. One can view the adversarial loss V pδq as a certain
regularization of the vanilla loss. Though we are not able to compute the exact value of V pδq for
neural networks with sufficient expressivity, DRO sensitivity analysis results allow us to derive a
numerical approximation to V pδq and further apply gradient-based optimization methods. This is the
main novelty of our approach — previous works considering a W-DRO formulation mostly relied on
duality results in the spirit of Blanchet and Murthy (2019) to rewrite (7).

4Our results can be adapted to regression tasks where the class label y is continuous and sensitive to the
perturbation. In such a setting a different d would be appropriate.

4

Assumption 4.1. We assume the map px, yq ÞÑ Jθpx, yq is L-Lipschitz under d, i.e.,

|Jθpx1, y1q ´ Jθpx2, y2q| ď Ldppx1, y1q, px2, y2qq.

The above assumption is weaker than the L-smoothness assumption encountered in the literature
which requires Lipschitz continuity of gradients of Jθ, see for example Sinha et al. (2018)[Assumption
B] and Volpi et al. (2018)[Assumptions 1 & 2]. We also remark that our assumption holds for any
continuously differentiable Jθ as the feature space X “ r0, 1sn is compact.

The following result follows readily from (Bartl et al., 2021, Theorem 2.2) and its proof.

Theorem 4.1. Under Assumption 4.1, the following first order approximations hold:

(i) V pδq “ V p0q ` δΥ ` opδq, where

Υ “

´

EP }∇xJθpx, yq}
q
˚

¯1{q

.

(ii) V pδq “ EQδ
rJθpx, yqs ` opδq, where

Qδ “

”

px, yq ÞÑ
`

x ` δhp∇xJθpx, yqq}Υ´1∇xJθpx, yq}
q´1
˚ , y

˘

ı

#
P,

and h is uniquely determined by xhpxq, xy “ }x}˚.

The above holds for any probability measure, in particular with P replaced consistently by an
empirical measure pP or qP . In Figure 1, we illustrate the performance of our first order approximation
of the adversarial loss on CIFAR-10 (Krizhevsky, 2009) under different threat models.

0.00 0.01 0.02 0.03 0.04

0.7

0.8

0.9

1.0

1.1

1.2

(W∞, l∞) Threat Model

V (δ)

V (0) + δΥ

0.0 0.1 0.2 0.3 0.4 0.5 0.6

−0.7

−0.6

−0.5

−0.4

−0.3

(W2, l2) Threat Model

V (δ)

V (0) + δΥ

Figure 1: Performance of the first order approximation for the W-DRO value derived in Theorem 4.1.
Left: WideResNet-28-10 (Gowal et al., 2020) under CE loss (3) and pW8, l8q threat model with
δ “ 1{255, . . . , 10{255. Right: WideResNet-28-10 (Wang et al., 2023) under ReDLR loss (10) and
pW2, l2q threat models with δ “ 1{16, . . . , 10{16.

WD-Adversarial Accuracy. We consider an attacker with perfect knowledge of the network fθ
and the data distribution P , aiming to minimize the prediction accuracy of fθ under an admissible
attack. Complementing the W-DRO training formulation, Staib and Jegelka (2017), Sinha et al.
(2018) proposed Wasserstein distributional threat models under which an attack is admissible if the
resulting attacked distribution Q stays in the p-Wasserstein ball BδpP q, where δ is the attack budget,
i.e., the tolerance for distributional image distortion. We define the adversarial accuracy as:

Aδ :“ inf
QPBδpP q

QpSq “ inf
QPBδpP q

EQr1Ss. (9)

Note that Aδ is decreasing in δ with A0 “ A, the clean accuracy. For p “ 8, the Wasserstein
distance essentially degenerates to the uniform distance between images and hence the proposed
threat model coincides with the popular pointwise threat model. For 1 ď p ă 8, the distributional
threat model is strictly stronger than the pointwise one, as observed in Staib and Jegelka (2017,
Prop. 3.1). Intuitively, it is because the attacker has a greater flexibility and can perturb images close
to the decision boundary only slightly while spending more of the attack budget on images farther
away from the boundary. The threat is also closely related to out-of-distribution generalization, see
Shen et al. (2021) for a survey.

5

WD-Adversarial Attack. We propose Wasserstein distributionally adversarial attack methods.
As mentioned above, to date, even the papers which used distributional threat models to motivate
DRO-based training methods then used classical pointwise attacks to evaluate robustness of their
trained DNNs. Our contribution is novel and enabled by the explicit first-order expression for the
distributional attack in Theorem 4.1(ii), which is not accessible using duality methods.

We recall the Difference of Logits Ratio (DLR) loss of Croce and Hein (2020). If we write z “

pz1, . . . , zmq “ fθpxq for the output of a neural network, and zp1q ě ¨ ¨ ¨ ě zpmq are the order
statistics of z, then DLR loss is given by

DLRpz, yq “

$

’

’

&

’

’

%

´
zy ´ zp2q

zp1q ´ zp3q

, if zy “ zp1q,

´
zy ´ zp1q

zp1q ´ zp3q

, else.

The combination of CE loss and DLR loss has been widely shown as an effective empirical attack
for pointwise threat models. However, under distributional threat models, intuitively, an effective
attack should perturb more aggressively images classified far from the decision boundary and leave
the misclassified images unchanged. Consequently, neither CE loss nor DLR loss are appropriate —
this intuition is confirmed in our numerical experiments, see Table 1 for details. To rectify this, we
propose ReDLR (Rectified DLR) loss:

ReDLRpz, yq “ ´pDLRq´pz, yq “

$

&

%

´
zy ´ zp2q

zp1q ´ zp3q

, if zy “ zp1q,

0, else.
(10)

Its key property is to leave unaffected those images that are already misclassified. Our experiments
show it performs superior to CE or DLR.

An attack is performed using the test data set. For a given loss function, our proposed attack is:

xt`1 “ projδ
`

xt ` αhp∇xJθpxt, yqq}qΥ´1∇xJθpxt, yq}
q´1
˚

˘

, (11)

where α is the step size and projδ is a projection which ensures the empirical measure qP t`1 :“
1

|Dtt|

ř

px,yqPDtt
δpxt`1,yq stays inside the Wasserstein ball Bδp qP q. In the case p “ r “ 8, one can

verify hpxq “ sgnpxq and write (11) as

xt`1 “ projδ
`

xt ` α sgnp∇xJθpxt, yqq
˘

.

This gives exactly Fast Gradient Sign Method (single step) and Projected Gradient Descent (multi-
step) proposed in Goodfellow et al. (2015), Madry et al. (2018) and we adopt the same labels for our
more general algorithms.5 A pseudocode for the above attack is summarized in Appendix C.

Finally, note that Theorem 4.1 offers computationally tractable approximations to the W-DRO
adversarial training objectives (7) and (8). In Appendix D we propose two possible training methods
but do not evaluate their performance and otherwise leave this topic to future research.

5 Performance Bounds

Understanding how a DNN classifier will perform outside the training data set is of key importance.
We leverage the DRO sensitivity results now to obtain a lower bound on Aδ . We then use results on
convergence of empirical measures in Fournier and Guillin (2015) to translate our lower bound into
guarantees on out-of-sample performance.

Bounds on Adversarial Accuracy. We propose the following metric of robustness:

Rδ :“
Aδ

A
P r0, 1s.

Previous works mostly focus on the maximum distortion a neural network can withhold to retain
certain adversarial performance, see Hein and Andriushchenko (2017), Weng et al. (2018b) for

5To stress the Wasserstein attack and the particular loss function we may write, e.g., W-PGD-ReDLR.

6

local robustness and Bastani et al. (2016) for global robustness. However, there is no immediate
connection between such a maximum distortion and the adversarial accuracy, especially in face of a
distributionally adversarial attack. In contrast, since A “ A0 is known, computing Rδ is equivalent
to computing Aδ. We choose to focus on the relative loss of accuracy as it provides a convenient
normalization: 0 ď Rδ ď 1. Rδ “ 1 corresponds to a very robust architecture which performs
as well under attacks as it does on clean test data, while Rδ “ 0 corresponds to an architecture
which loses all of its predictive power under an adversarial attack. Together the couple pA,Aδq

thus summarizes the performance of a given classifier. However, computing Aδ is difficult and
time-consuming. Below, we develop a simple and efficient method to calculate theoretical guaranteed
bounds on R and thus also on Aδ .
Assumption 5.1. We assume that for any Q P BδpP q

(i) 0 ă QpSq ă 1.

(ii) WppQp¨|Sq, P p¨|Sqq ` WppQp¨|Scq, P p¨|Scqq “ opδq, where Sc “ pX ˆ YqzS and the
conditional distribution is given by QpE|Sq “ QpE X Sq{QpSq.

The first condition stipulates non-degeneracy: the classifier does not perform perfectly but retains
some accuracy under attacks. The second condition says the classes are well-separated: for δ small
enough an admissible attack can rarely succeed.

We write the adversarial loss condition on the correctly classified images and misclassified images as

Cpδq “ sup
QPBδpP q

EQrJθpx, yq|Ss and W pδq “ sup
QPBδpP q

EQrJθpx, yq|Scs.

We note that an upper bound on Rδ is given by any adversarial attack. In particular,

Rδ ď Ru
δ :“ QδpSq{A. (12)

Theorem 5.1. Under Assumptions 4.1 and 5.1, we have an asymptotic lower bound as δ Ñ 0

Rδ ě
W p0q ´ V pδq

W p0q ´ V p0q
` opδq “ rRl

δ ` opδq “ Rl

δ ` opδq, (13)

where the first order approximations are given by

rRl
δ “

W p0q ´ EQδ
rJθpx, yqs

W p0q ´ V p0q
and Rl

δ “
W p0q ´ V p0q ´ δΥ

W p0q ´ V p0q
. (14)

The equality between the lower bound and the two first-order approximations rRl
δ and Rl

δ follows
from Theorem 4.1. Consequently, Rl

δ :“ mint rRl
δ,R

l

δu allows us to estimate the model robustness
without performing any sophisticated adversarial attack. Our experiments, detailed below, show
the bound is reliable for small δ and is orders of magnitude faster to compute than Rδ even in the
classical case of pointwise attacks. The proof is reported in Appendix A. Its key ingredient is the
following tower-like property.
Proposition 5.2. Under Assumptions 4.1 and 5.1, we have

V pδq “ sup
QPBδpP q

EQrCpδq1S ` W pδq1Scs ` opδq.

Bounds on Out-of-Sample Performance. Our results on distributionally adversarial robustness
translate into bounds for performance of the trained DNN on unseen data. We rely on the results of
Fournier and Guillin (2015) and refer to Lee and Raginsky (2018) for analogous applications to finite
sample guarantees and to Gao (2022) for further results and discussion.

We fix 1 ă p ă n{2 and let N “ |Dtr|, M “ |Dtt|. If sampling of data from P is described on
a probability space pΩ,F ,Pq then pP is a random measure on this space and, by ergodic theorem,
P-a.s., it converges weakly to P as N Ñ 8. In fact, Wpp pP , P q converges to zero P-a.s. Crucially
the rates of convergence were obtained in Dereich et al. (2013), Fournier and Guillin (2015) and yield

ErWpp pP , P qs ď KN´ 1
n and PpWpp pP , P q ě εq ď K expp´KNεnq, (15)

where K is a constant depending on p and n which can be computed explicitly, see for example Guo
and Obłój (2019, Appendix). This, with triangle inequality and Theorem 5.1, gives

7

Corollary 5.3. Under Assumptions 4.1 and 5.1 on measure pP , with probability at least 1 ´

2K expp´Kεn mintM,Nuq it holds that

qA “ qP pSq ě pA pRl
2ε ` opεq.

Next results provide a finer statistical guarantee on the out-of-sample performance for robust (W-DRO)
training. Its proof is reported in Appendix B.
Theorem 5.4. Under Assumption 4.1, with probability at least 1 ´ K expp´KNεnq we have

V pδq ď pV pδq ` ε sup
QPB‹

δ p pP q

´

EQ}∇xJθpx, yq}qs

¯1{q

` opεq ď pV pδq ` Lε

where B‹
δ p pP q “ argmaxQPBδp pP q

EQrJθpx, yqs and constant K only depends on p and n.

Our lower bound estimate in Theorem 5.1 can be restated as

∆ pAδ :“ pA ´ pAδ ď
pV pδq ´ pV p0q

xW p0q ´ pCp0q
` opδq.

We now use Theorem 5.4 to bound ∆Apδq, the shortfall of the adversarial accuracy under P , using
quantities evaluated under pP .
Corollary 5.5. Under Assumptions 4.1 and 5.1, with probability at least 1 ´ K expp´KNδnq it
holds that

∆AδpP q ď
pV pδq ´ pV p0q

xW p0q ´ pCp0q
`

2Lδ

xW p0q ´ pCp0q
` opδq.

We remark that the above results are easily extended to the out-of-sample performance on the test
set, via the triangle inequality Wpp pP , qP q ď Wpp pP , P q ` WppP, qP q. By using complexity measures
such as entropy integral (Lee and Raginsky, 2018), Rademacher complexity (Gao, 2022, Gao et al.,
2022) a further analysis can be undertaken for

inf
θPΘ

sup
QPBδpP q

EQrJθpx, yqs and inf
θPΘ

sup
QPBδp pP q

EQrJθpx, yqs. (16)

In particular, a dimension-free estimate of out-of-sample performance is obtained in (Gao, 2022)
under a Lipschitz framework with light-tail reference measures.

6 Numerical Experiments

Experimental Setting. We conduct experiments on a high performance computing server equipped
with 49 GPU nodes. The algorithms are implemented in Python. Experiments are conducted on
CIFAR-10, CIFAR-100, and ImageNet datasets. Numerical results are consistent across different
datasets, and we present the results on CIFAR-10 in body paragraph only for the sake of brevity.
Results on CIFAR-100 and ImageNet are reported in Appendix F.

CIFAR-10 (Krizhevsky, 2009) comprises 60,000 color images across 10 mutually exclusive classes,
with 6,000 images per class. Each image contains 32 ˆ 32 pixels in 3 color channels. We normalize
the input feature as a vector x P r0, 1s3ˆ32ˆ32. The dataset is further divided into training and
test sets, containing 50,000 and 10,000 images respectively. We evaluate the robustness of neural
networks on the test set only.

We consider four threat models pWp, lrq with p, r P t2,8u with different range of attack budget δ
depending on the relative strength of the attack. E.g., roughly speaking, if an l8-attack modifies one
third of the pixels of an image with strength 4/255, then it corresponds to an l2-attack with strength
1/2. When clear from the context, we drop the δ subscript.

We take top neural networks from RobustBench (Croce et al., 2021), a lively maintained repository
that records benchmark robust neural networks on CIFAR-10 against pointwise attacks. For pointwise
threat models pW8, lrq, RobustBench reports Aδ obtained using AutoAttack (Croce and Hein,
2020) for l8, δ “ 8{255 and l2, δ “ 1{2, see Appendix H. However, due to high computational

8

cost of AutoAttack, we apply PGD-50 based on CE and DLR losses as a substitute to obtain the
reference adversarial accuracy for attacks with relatively small budgets δ “ 2{255, 4{255 for l8
and δ “ 1{8, 1{4 for l2. For distributional threat models pW2, lrq, there is no existing benchmark
attacking method. Therefore, W-PGD attack (11) based on ReDLR loss is implemented to obtain the
reference adversarial accuracy Aδ . All PGD attacks are run with 50 iteration steps and take between
1 and 12 hours to run on a single GPU environment. Bounds Rl,Ru compute ca. 50 times faster.

Table 1: Comparison of adversarial accuracy of neural networks on RobustBench under different
empirical attacks. Set attack budget δ “ 8{255 for l8 threat models and δ “ 1{2 for l2 threat models.

W8 W2

Methods AutoAttack W-PGD-CE W-PGD-DLR W-PGD-ReDLR

l8 57.66% 61.32% 79.00% 45.46%
l2 75.78% 74.62% 78.69% 61.69%

Distributionally Adversarial Attack. We report in Table 1 the average accuracy of top neural
networks on RobustBench against pointwise and distributional attacks under different loss functions.
The predicted drop in accuracy between a pointwise, i.e., 8-W-DRO attack and a distributional
2-W-DRO attack is only realized using the ReDLR loss.

In Figure 2, we compare the adversarial accuracy of robust networks on RobustBench against
pointwise threat models and distributional threat models. We notice a significant drop of the
adversarial accuracy even for those neural networks robust against pointwise threat models.

30% 40% 50% 60% 70% 80% 90% 100%

Adversarial Accuracy (W∞, l∞)

30%

40%

50%

60%

70%

80%

90%

100%

A
d

ve
rs

ar
ia

l
A

cc
u

ra
cy

(W
2
,l
∞

)

δ = 2/255

δ = 4/255

δ = 8/255

y = x

50% 60% 70% 80% 90% 100%

Adversarial Accuracy (W∞, l2)

50%

60%

70%

80%

90%

100%

A
d

ve
rs

ar
ia

l
A

cc
u

ra
cy

(W
2
,l

2
)

δ = 1/8

δ = 1/4

δ = 1/2

y = x

Figure 2: Shortfall of WD-adversarial accuracy with different metrics l8 (left) and l2 (right).

Bounds on Adversarial Accuracy. We report in Table 2 the computation time of our proposed
bounds Rl

δ “ mint rRl
δ,R

l

δu in (14) and Ru
δ in (12) with the computation time of Rδ obtained from

AutoAttack. Computing our proposed bounds Rl,Ru is orders of magnitude faster than performing
an attack to estimate R. This also holds for distributional threat attacks.

Table 2: Computation times of pW8, l8q, δ “ 8{255 attack for one mini-batch of size 100, in seconds.
We compute R by AutoAttack and average the computation time over models on RobustBench
grouped by their architecture.

PreActResNet-18 ResNet-18 ResNet-50 WRN-28-10 WRN-34-10 WRN-70-16

R 197 175 271 401 456 2369
Rl&Ru 0.52 0.49 0.17 0.55 0.53 1.46

To illustrate the applications of Theorem 5.1, we plot the bounds Rl and Ru against R for neural
networks on RobustBench. The results are plotted in Figure 3 and showcase the applicability of
our bounds across different architectures.6 Note that smaller δ values are suitable for the stronger
W2-distributional attack. For pointwise threat models (top row) we compute the bounds using CE
loss. For distributional threat models (bottom row), reference adversarial accuracy is obtained from a

6We use all 60 available networks on RobustBench (model zoo) for l8 and all 20 available networks for l2.

9

W-PGD-ReDLR attack and, accordingly, we use ReDLR loss to compute Ru and Rl. In this case,
the width of the gap between our upper and lower bounds varies significantly for different DNNs. To
improve the bounds, instead of Rl, we could estimate V pδq and use the lower bound in (13). This
offers a trade-off between computational time and accuracy which is explored further in Appendix E.

0.88 0.90 0.92 0.94 0.96 0.98

0.88

0.90

0.92

0.94

0.96

0.98

(W∞, l∞) Threat Model with δ = 2/255
Ru
Rl
R

0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

(W∞, l∞) Threat Model with δ = 4/255
Ru
Rl
R

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

(W∞, l2) Threat Model with δ = 1/8
Ru
Rl
R

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

(W∞, l2) Threat Model with δ = 1/4
Ru
Rl
R

0.75 0.80 0.85 0.90 0.95 1.00

0.75

0.80

0.85

0.90

0.95

1.00

(W2, l∞) Threat Model with δ = 1/510
Ru
Rl
R

0.6 0.7 0.8 0.9 1.0

0.6

0.7

0.8

0.9

1.0

(W2, l∞) Threat Model with δ = 1/255
Ru
Rl
R

0.90 0.92 0.94 0.96 0.98 1.00

0.90

0.92

0.94

0.96

0.98

1.00

(W2, l2) Threat Model with δ = 1/32
Ru
Rl
R

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

(W2, l2) Threat Model with δ = 1/16
Ru
Rl
R

Figure 3: Ru & Rl versus R. Top row: W8-attack with bounds computed based on CE loss across
neural networks on RobustBench. Bottom row: W2-attack for the same sets of neural networks with
bounds computed using ReDLR loss.

7 Limitations and Future Work

Limitations. Our theoretical results are asymptotic and their validity is confined to the linear
approximation regime. We believe that the empirical results we presented from all the leaderboard
models on RobustBench across different attack types provide an overwhelming evidence that our
results are valid and relevant for the range of attack budget δ considered in AA settings. However, as
δ increases we are likely to go outside of the linear approximation regime, see Figure 1. In Appendix
E we plot the results for pointwise attack with δ “ 8{255 where some of neural networks have a
lower bound Rl greater than the reference R. We do not have theoretical results to provide guarantees
on the range of applicability but, in Appendix E, discuss a possible rule of thumb solution.

Future Work. We believe our research opens up many avenues for future work. These include:
developing stronger attacks under distributional threat models, testing the performance of the two
training algorithms derived here and investigating further sensitivity-based ones, as well as analyzing
the relation between the values and optimizers in (16), verifying empirical performance of our out-of-
sample results, including Corollary 5.5, and extending these to out-of-distribution performance.

Broader Impact. Our work contributes to the understanding of robustness of DNN classifiers. We
believe it can help users in designing and testing DNN architectures. It also offers a wider viewpoint
on the question of robustness and naturally links the questions of adversarial attacks, out-of-sample
performance, out-of-distribution performance and Knightian uncertainty. We provide computationally
efficient tools to evaluate robustness of DNNs. However, our results are asymptotic and hence valid
for small attacks and we acknowledge the risk that some users may try to apply the methods outside
of their applicable regimes. Finally, in principle, our work could also enhance understanding of
malicious agents aiming to identify and attack vulnerable DNN-based classifiers.

Acknowledgements

The authors are grateful to Johannes Wiesel for his most helpful comments and suggestions in the
earlier stages of this project. JO gratefully acknowledges the support from St John’s College, Oxford.
YJ’s research is supported by the EPSRC Centre for Doctoral Training in Mathematics of Random
Systems: Analysis, Modelling and Simulation (EP/S023925/1). XB and GH’s work, part of their
research internship with JO, was supported by the Mathematical Institute and, respectively, St John’s
College and St Anne’s College, Oxford.

10

References
D. Bartl, S. Drapeau, and L. Tangpi. Computational aspects of robust optimized certainty equivalents

and option pricing. Mathematical Finance, 30(1):287–309, 2020.
D. Bartl, S. Drapeau, J. Obłój, and J. Wiesel. Sensitivity analysis of Wasserstein distributionally

robust optimization problems. Proc. R. Soc. A., 477(2256):20210176, Dec. 2021.
O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and A. Criminisi. Measuring neural

net robustness with constraint. In Advances in Neural Information Processing Systems, volume 29.
Curran Associates, Inc., 2016.

B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto, and F. Roli. Evasion
attacks against machine learning at test time. In Machine Learning and Knowledge Discovery
in Databases, Lecture Notes in Computer Science, pages 387–402, Berlin, Heidelberg, 2013.
Springer.

J. Blanchet and K. Murthy. Quantifying distributional model risk via optimal transport. Mathematics
of Operations Research, 44(2):565–600, May 2019.

W. Brendel, J. Rauber, and M. Bethge. Decision–based adversarial attacks: reliable attacks against
black-box machine learning models. In International Conference on Learning Representations,
2018.

A. T. Bui, T. Le, Q. H. Tran, H. Zhao, and D. Phung. A unified Wasserstein distributional robustness
framework for adversarial training. In International Conference on Learning Representations, Jan.
2022.

N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 39–57. IEEE, May 2017.

P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh. ZOO: zeroth order optimization based
black-box attacks to deep neural networks without training substitute models. In Proceedings of
the 10th ACM Workshop on Artificial Intelligence and Security, pages 15–26. ACM, Nov. 2017.

J. Cohen, E. Rosenfeld, and Z. Kolter. Certified adversarial robustness via randomized smoothing. In
Proceedings of the 36th International Conference on Machine Learning, pages 1310–1320. PMLR,
May 2019.

F. Croce and M. Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse
parameter–free attacks. In Proceedings of the 37th International Conference on Machine Learning,
pages 2206–2216. PMLR, Nov. 2020.

F. Croce, M. Andriushchenko, V. Sehwag, E. Debenedetti, N. Flammarion, M. Chiang, P. Mittal, and
M. Hein. RobustBench: A standardized adversarial robustness benchmark, Oct. 2021.

S. Dathathri, K. Dvijotham, A. Kurakin, A. Raghunathan, J. Uesato, R. R. Bunel, S. Shankar,
J. Steinhardt, I. Goodfellow, P. S. Liang, and P. Kohli. Enabling certification of verification–
agnostic networks via memory–efficient semidefinite programming. In Advances in Neural
Information Processing Systems, volume 33, pages 5318–5331. Curran Associates, Inc., 2020.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

S. Dereich, M. Scheutzow, and R. Schottstedt. Constructive quantization: approximation by empirical
measures. In Annales de l’IHP Probabilités et statistiques, volume 49, pages 1183–1203, 2013.

Y. Dong, Z. Deng, T. Pang, J. Zhu, and H. Su. Adversarial distributional training for robust deep
learning. In Advances in Neural Information Processing Systems, volume 33, pages 8270–8283.
Curran Associates, Inc., 2020.

H. Föllmer and S. Weber. The axiomatic approach to risk measures for capital determination. Annual
Review of Financial Economics, 7(1):301–337, 2015.

N. Fournier and A. Guillin. On the rate of convergence in wasserstein distance of the empirical
measure. Probability Theory and Related Fields, 162(3-4):707–738, 2015.

R. Gao. Finite-sample guarantees for wasserstein distributionally robust optimization: breaking the
curse of dimensionality. Operations Research, 2022.

R. Gao and A. Kleywegt. Distributionally robust stochastic optimization with Wasserstein distance.
Mathematics of OR, Aug. 2022.

11

R. Gao, X. Chen, and A. J. Kleywegt. Wasserstein distributionally robust optimization and variation
regularization. Operations Research, 2022.

C. A. García Trillos and N. García Trillos. On the regularized risk of distributionally robust learning
over deep neural networks. Res Math Sci, 9(3):54, Aug. 2022.

I. Gilboa and D. Schmeidler. Maxmin expected utility with non-unique prior. Journal of Mathematical
Economics, 18(2):141–153, 1989.

I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In
International Conference on Learning Representations, 2015.

S. Gowal, C. Qin, J. Uesato, T. Mann, and P. Kohli. Uncovering the limits of adversarial training
against norm-bounded adversarial examples. arXiv preprint arXiv:2010.03593, 2020.

S. Gowal, S.-A. Rebuffi, O. Wiles, F. Stimberg, D. A. Calian, and T. A. Mann. Improving robustness
using generated data. In Advances in Neural Information Processing Systems, volume 34, pages
4218–4233. Curran Associates, Inc., 2021.

G. Guo and J. Obłój. Computational methods for martingale optimal transport problems. The Annals
of Applied Probability, 29(6):3311 – 3347, 2019.

L. P. Hansen and M. Marinacci. Ambiguity aversion and model misspecification: an economic
perspective. Statistical Science, 31(4):511–515, 2016.

M. Hein and M. Andriushchenko. Formal guarantees on the robustness of a classifier against
adversarial manipulation. In Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

X. Hua, H. Xu, J. Blanchet, and V. A. Nguyen. Human imperceptible attacks and applications to
improve fairness. In 2022 Winter Simulation Conference (WSC), pages 2641–2652, 2022.

R. Huang, J. Huang, W. Liu, and H. Ding. Coresets for Wasserstein distributionally robust optimiza-
tion problems. In Advances in Neural Information Processing Systems, Oct. 2022.

A. Ilyas, L. Engstrom, A. Athalye, and J. Lin. Black-box adversarial attacks with limited queries and
information. In Proceedings of the 35th International Conference on Machine Learning, pages
2137–2146. PMLR, July 2018.

F. H. Knight. Risk, Uncertainty and Profit. Boston, New York, Houghton Mifflin Company, 1921.
A. Krizhevsky. Learning multiple layers of features from tiny images. 2009.
H. Lam. Robust sensitivity analysis for stochastic systems. Mathematics of OR, 41(4):1248–1275,

Nov. 2016.
M. Larsson, J. Park, and J. Wiesel. On concentration of the empirical measure for general transport

costs, 2023.
J. Lee and M. Raginsky. Minimax statistical learning with Wasserstein distances. Advances in Neural

Information Processing Systems, 31, 2018.
L. Li, T. Xie, and B. Li. SoK: Certified robustness for deep neural networks. In 44th IEEE Symposium

on Security and Privacy. IEEE, 2023.
A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models resistant

to adversarial attacks. In International Conference on Learning Representations, 2018.
P. Mohajerin Esfahani and D. Kuhn. Data–driven distributionally robust optimization using the

Wasserstein metric: Performance guarantees and tractable reformulations. Math. Program., 171(1):
115–166, Sept. 2018.

J. L. M. Olea, C. Rush, A. Velez, and J. Wiesel. The out-of-sample prediction error of the square-
root-lasso and related estimators, 2023.

T. Pang, M. Lin, X. Yang, J. Zhu, and S. Yan. Robustness and accuracy could be reconcilable by
(proper) definition. In Proceedings of the 39th International Conference on Machine Learning,
pages 17258–17277. PMLR, June 2022.

A. Raghunathan, J. Steinhardt, and P. S. Liang. Semidefinite relaxations for certifying robustness to
adversarial examples. In Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

H. Rahimian and S. Mehrotra. Distributionally robust optimization: A review, Aug. 2019.

12

V. Sehwag, S. Wang, P. Mittal, and S. Jana. HYDRA: pruning adversarially robust neural networks.
In Advances in Neural Information Processing Systems, volume 33, pages 19655–19666. Curran
Associates, Inc., 2020.

Z. Shen, J. Liu, Y. He, X. Zhang, R. Xu, H. Yu, and P. Cui. Towards out-of-distribution generalization:
a survey, Aug. 2021.

A. Sinha, H. Namkoong, and J. Duchi. Certifying some distributional robustness with principled
adversarial training. In International Conference on Learning Representations, 2018.

M. Staib and S. Jegelka. Distributionally robust deep learning as a generalization of adversarial
training. In NIPS workshop on Machine Learning and Computer Security, volume 3, page 4, 2017.

V. Tjeng, K. Y. Xiao, and R. Tedrake. Evaluating robustness of neural networks with mixed integer
programming. In International Conference on Learning Representations, 2019.

F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel. Ensemble adversarial
training: attacks and defenses. In International Conference on Learning Representations, 2018.

R. Volpi, H. Namkoong, O. Sener, J. C. Duchi, V. Murino, and S. Savarese. Generalizing to unseen
domains via adversarial data augmentation. Advances in Neural Information Processing Systems,
31, 2018.

Y. Wang, D. Zou, J. Yi, J. Bailey, X. Ma, and Q. Gu. Improving adversarial robustness requires
revisiting misclassified examples. In International Conference on Learning Representations, 2020.

Z. Wang, T. Pang, C. Du, M. Lin, W. Liu, and S. Yan. Better diffusion models further improve
adversarial training. In Proceedings of the 40th International Conference on Machine Learning,
2023.

L. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, L. Daniel, D. Boning, and I. Dhillon. Towards fast
computation of certified robustness for ReLU networks. In Proceedings of the 35th International
Conference on Machine Learning, pages 5276–5285. PMLR, July 2018a.

T. W. Weng, H. Zhang, P.-Y. Chen, J. Yi, D. Su, Y. Gao, C.-J. Hsieh, and L. Daniel. Evaluating the
robustness of neural networks: an extreme value theory approach. In International Conference on
Learning Representations. International Conference on Learning Representations, ICLR, 2018b.

E. Wong and Z. Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In Proceedings of the 35th International Conference on Machine Learning,
pages 5286–5295. PMLR, July 2018.

D. Wu, S.-T. Xia, and Y. Wang. Adversarial weight perturbation helps robust generalization. In Ad-
vances in Neural Information Processing Systems, volume 33, pages 2958–2969. Curran Associates,
Inc., 2020.

Y. Xing, Q. Song, and G. Cheng. Why do artificially generated data help adversarial robustness. In
Advances in Neural Information Processing Systems, Oct. 2022.

H. Zhang, Y. Yu, J. Jiao, E. Xing, L. E. Ghaoui, and M. Jordan. Theoretically principled trade-off
between robustness and accuracy. In Proceedings of the 36th International Conference on Machine
Learning, pages 7472–7482. PMLR, May 2019.

13

A Bounds on Adversarial Accuracy

Recall that Proposition 5.2 states the following tower-like property

V pδq “ sup
QPBδpP q

EQrCpδq1S ` W pδq1Scs “ opδq,

where
Cpδq “ sup

QPBδpP q

EQrJθpx, yq|Ss and W pδq “ sup
QPBδpP q

EQrJθpx, yq|Scs.

Proof of Proposition 5.2. One direction follows directly from the usual tower property of conditional
expectation:

V pδq “ sup
QPBδpP q

EQrJpx, yqs “ sup
QPBδpP q

EQrEQrJpx, yq|σpSqss

ď sup
QPBδpP q

EQrCpδq1S ` W pδq1Scs.

For the other direction, note that

QpE|Sq “ QpE X Sq{QpSq and QpE|Scq “ QpE X Scq{QpScq,

are well-defined for any Borel E by Assumption 5.1. Take an arbitrary ε ą 0 and Qc, Qw P BδpP q

such that
EQc

rJpx, yq|Ss ě Cpδq ´ ε and EQw
rJpx, yq|Scs ě W pδq ´ ε.

We further take Q‹ P BδpP q such that

EQ‹
rCpδq1S ` W pδq1Scs ě sup

QPBδpP q

EQrCpδq1S ` W pδq1Scs ´ ε,

and write distribution rQ given by

rQpEq “ QcpE|SqQ‹pSq ` QwpE|ScqQ‹pScq.

These give us

sup
QPBδpP q

EQrCpδq1S ` W pδq1Scs ďEQ‹
rCpδq1S ` W pδq1Scs ` ε

ďEQ‹

“

EQc
rJθpx, yq|Ss1S ` EQw

rJθpx, yq|Scs1Sc

‰

` 3ε

“E
rQrJθpx, yqs ` 3ε.

Recall Assumption 5.1 (ii) gives for any Q P BδpP q

WppQp¨|Sq, P p¨|Sqq ` WppQp¨|Scq, P p¨|Scqq “ opδq.

Now we take πc P ΠpQ‹p¨|Sq, Qcp¨|Sqq such that Eπc
rdpX,Y qps “ WppQ‹p¨|Sq, Qcp¨|Sqqp, and

similarly πw P ΠpQ‹p¨|Scq, Qwp¨|Scqq. Then by definition of rQ, we have π “ Q‹pSqπc `

Q‹pScqπw P ΠpQ‹, rQq. Moreover, we derive

WppQ‹, rQqp ď EπrdpX,Y qps “ Q‹pSqEπcrdpX,Y qps ` Q‹pScqEπw rdpX,Y qps

“ Q‹pSqWppQ‹p¨|Sq, Qcp¨|Sqqp ` Q‹pScqWppQ‹p¨|Scq, Qwp¨|Scqqp

“ opδpq,

which implies WppP, rQq “ δ ` opδq by triangle inequality. Hence, by L-Lipschitzness of Jθ and
(Bartl et al., 2021, Appendix Corollary 7.5) we obtain

sup
QPBδpP q

EQrCpδq1S ` W pδq1Scs ď V pδ ` opδqq ` 3ε ď V pδq ` opδq ` 3ε.

Finally, by taking ε Ñ 0, we deduce

V pδq “ sup
QPBδpP q

EQrCpδq1S ` W pδq1Scs ` opδq

which concludes the proof of Proposition 5.2.

14

Now, we present the proof of the lower bound estimate in Theorem 5.1,

Rδ “
Aδ

A
ě

W p0q ´ V p0q

W p0q ´ V p0q
.

Proof of Theorem 5.1. By adding and subtracting W pδq1S , Proposition 5.2 now gives
V pδq “ sup

QPBδpP q

EQrCpδq1S ` W pδq1Scs ` opδq

“ sup
QPBδpP q

EQrW pδq ´ pWδ ´ Cpδqq1Ss ` opδq

“ W pδq ´ pW pδq ´ CpδqqAδ ` opδq.

Naturally, we can rewrite loss V p0q using the usual tower property
V p0q “ ACp0q ` p1 ´ AqW p0q “ W p0q ´ pW p0q ´ Cp0qqA.

Together these yield
V pδq ´ V p0q “ p1 ´ AδqpW pδq ´ W p0qq ` AδpCpδq ´ Cp0qq ` pW p0q ´ Cp0qqpA ´ Aδq ` opδq

ě pW p0q ´ Cp0qqpA ´ Aδq ` opδq.

Plugging in Cp0q “ rV p0q ´ p1 ´ AqW p0qs{A completes the proof.

B Bounds on Out-of-Sample Performance

The concentration inequality in Fournier and Guillin (2015) is pivotal to derive the out-of-sample
performance bounds. It characterizes how likely an empirical measure can deviate from its generating
distribution. We note that recently (Larsson et al., 2023, Olea et al., 2023) obtained concentration
inequalities considering other transport costs, including sliced Wasserstein distances which are of
particular interest for regression tasks. Recall we denote pP as the empirical measure of training set
Dtr with size N and qP as the empirical measure of test set Dtt with size M . We use the same p, q

notations to denote quantities computed from pP and qP , respectively. We restate the concentration
inequality as

PpWpp pP , P q ě εq ď K expp´KNεnq,

where K is a constant only depending on n and p. For convenience, K might change from line to
line in this section. Together with Theorem 5.1, we give an out-of-sample clean accuracy guarantee
in Corollary 5.3.

Proof of Corollary 5.3. By triangle inequality and concentration inequality, we have

PpWpp qP , pP q ě 2εq ď PpWpp qP , P q ě εq ` PpWppP, pP q ě εq ď 2K expp´Kεn mintM,Nuq.

With Theorem 5.1, it implies that with probability at least 1´ 2K expp´Kεn mintM,Nuq, we have
qA ě pA2ε ě pA pRl

2ε ` opεq.

The following results provide a guarantee on the out-of-sample adversarial performance.

Proof of Theorem 5.4. Estimates in Fournier and Guillin (2015) imply that with probability at least
1 ´ K expp´KNεnq, we have Bδp pP q Ď Bδ`εpP q. Hence, we derive V pδq ď pV pδ ` εq. On the
other hand, since Jθ is L-Lipschitz, from (Bartl et al., 2021, Appendix Corollary 7.5) we obtain

pV pδ ` εq “ pV pδq ` ε sup
QPB‹

δ p pP q

´

EQ}∇xJθpx, yq}
q
˚

¯1{q

` opεq,

where B‹
δ p pP q “ argmaxQPBδp pP q

EQrJθpx, yqs. Combining above results, we conclude that with
probability at least 1 ´ K expp´KNεnq

V pδq ď pV pδq ` ε sup
QPB‹

δ p pP q

´

EQ}∇xJθpx, yq}
q
˚

¯1{q

` opεq ď pV pδq ` Lε.

15

Proof Corollary 5.5. By Theorem 5.1, we have

∆AδpP q ď
V pδq ´ V p0q

W p0q ´ Cp0q
` opδq.

We now bound the numerator and denominator separately. By taking ε “ δ in Theorem 5.4, we have
with probability at least 1 ´ K expp´KNδnq, V pδq ď pV pδq ` Lδ. Similarly, we can also show that
V p0q ě pV p0q ´ Lδ. Hence, we have with probability at least 1 ´ K expp´KNδnq,

V pδq ´ V p0q ď pV pδq ´ pV p0q ` 2Lδ.

For the denominator, notice that Pp pP P BδpP qq ě 1 ´ K expp´KN exppδnqq. By Assumption 5.1
(ii), we have with probability at least 1 ´ K expp´KNδnq,

Wpp pP p¨|Sq, P p¨|Sqq ` Wpp pP p¨|Scq, P p¨|Scqq “ opδq.

This implies

|Cp0q ´ W p0q ´ pCp0q ` xW p0q| “ opδq.

Combining above results, we conclude that with probability at least 1 ´ K expp´KNδnq,

∆AδpP q ď
pV pδq ´ pV p0q

xW p0q ´ pCp0q
`

2Lδ

xW p0q ´ pCp0q
` opδq.

C W-PGD Algorithm

We give the details of W-PGD algorithm implemented in this paper. Recall in Section 4, we propose

xt`1 “ projδ
`

xt ` αhp∇xJθpxt, yqq}Υ´1∇xJθpxt, yq}q´1
s

˘

, (17)

where we take } ¨ } “ } ¨ }r and hence h is given by xhpxq, xy “ }x}s. In particular, hpxq “ sgnpxq

for s “ 1 and hpxq “ x{}x}2 for s “ 2. The projection step projδ is based on any off-the-shelf
optimal transport solver S which pushes the adversarial images back into the Wasserstein ball along
the geodesics. The solver S gives the optimal matching T between the original test data Dtt and the
perturbed test data D1

tt. Formally, projδ maps

x1 ÞÑ x ` δd´1pT pxq ´ xq,

where d “

!

1
|Dtt|

ř

px,yqPDtt
}T pxq ´ x}pr

)1{p

the Wasserstein distance between qP and qP 1. See
Algorithm 1 for pseudocodes. In numerical experiments, due to the high computational cost of the
OT solver, we always couple each image with its own perturbation.

16

Algorithm 1: W-PGD Attack
Input: Model parameter θ, attack strength δ, ratio r, iteration step I , OT solver S ;
Data: Test set Dtt “ tpx, yq|px, yq „ P u with size M ;
def projδpDtt,D1

ttq:
T “ S pDtt,D1

ttq; // Generate transport map from OT solver

d “

!

1
M

ř

px,yqPDtt
}T pxq ´ x}pr

)1{p

; // Calculate the Wasserstein distance

for px, yq in Dtt do
x1 Ð x ` δd´1pT pxq ´ xq; // Project back to the Wasserstein ball
x1 Ð clamppx1, 0, 1q;

return D1
tt.

def attackpDttq:
α Ð rδ{I; // Calculate stepsize
Dadv

tt Ð Dtt;
for 1 ď i ď I do

Υ “

´

1
M

ř

px,yqPDadv
tt

}∇xJθpx, yq}qs

¯1{q

; // Calculate Υ

for px, yq P Dadv
tt do

px, yq Ð
`

x ` αhp∇xJθpx, yqq}Υ´1∇xJθpx, yq}q´1
s , y

˘

;

Dadv
tt “ projδpDtt,Dadv

tt q;
return Dadv

tt .

D Wasserstein Distributionally Adversarial Training

Theorem 4.1 offers natural computationally tractable approximations to the W-DRO training objective

inf
θPΘ

sup
QPBδpP q

EQrJθpx, yqs

and its extension
inf
θPΘ

sup
πPΠδpP,¨q

EπrJθpx, y, x1, y1qs.

First, consider a regularized optimization problem:

inf
θPΘ

EP rJθpx, yq ` δΥs.

The extra regularization term δΥ allows us to approximate the W-DRO objective above. A similar
approach has been studied in García Trillos and García Trillos (2022) in the context of Neural ODEs,
and Sinha et al. (2018) considered Wasserstein distance penalization and used duality.

Training is done by replacing P with pP . Note that pΥ is a statistics over the whole data set. In order to
implement stochastic gradient descent method, an asynchronous update of the parameters is needed.
We consider } ¨ }˚ “ } ¨ }s and, by a direct calculation, obtain

∇θ
pΥ “ pΥ1´qE

pP rx∇x∇θJθpx, yq, sgnp∇xJθpx, yqqy}∇xJθpx, yq}q´1
s s.

We calculate the term pΥ1´q from the whole training dataset using parameter θ˚ from previous epoch;
we estimate

E
pP rx∇x∇θJθpx, yq, sgnp∇xJθpx, yqqy}∇xJθpx, yq}q´1

s s

on a mini-batch and update current parameter θ after each batch. At the end of an epoch, we update
θ˚ to θ. See Algorithm 2 for pseudocodes.

Another classical approach consists in clean training the network but on the adversarial perturbed
data. To this we employ the Wasserstein FGSM attack described in Section 4 and shift training data
px, yq by

px, yq ÞÑ

´

projδ
`

x ` δhp∇xJθpx, yqq}pΥ´1∇xJθpx, yq}q´1
s

˘

, y
¯

.

17

Similarly to the discussion above, an asynchronous update of parameters is applied, see Algorithm 3
for details. Empirical evaluation of the performance of Algorithms 2 and 3 is left for future research.

Algorithm 2: Loss Regularization
Input: Initial parameter θ0, hyperparameter δ, learning rate η;
Data: Training set Dtr “ tpx, yq|px, yq „ P u with size N ;
θ˚ Ð θ0, θ Ð θ0;
repeat

Υ “

´

1
N

ř

px,yqPDtr
}∇xJθ˚ px, yq}qs

¯1{q

; // Calculate Υ from θ˚

repeat
Generate a mini-batch B with size |B|;
// Calculate gradient ∇θJθpx, yq

∇θJθpx, yq “ 1
|B|

ř

px,yqPB ∇θJθpx, yq;

// Calculate gradient ∇θΥ

∇θΥ “ Υ1´q 1
|B|

ř

px,yqPBx∇x∇θJθpx, yq, hp∇xJθpx, yqqy}∇xJθpx, yq}q´1
s ;

// Update θ by stochastic gradient descent
θ Ð θ ´ ηp∇θJθpx, yq ` δ∇θΥq;

until the end of epoch;
θ˚ Ð θ;

until the end condition.

Algorithm 3: Adversarial Data Perturbation
Input: Initial parameter θ0, hyperparameter δ, learning rate η;
Data: Training set Dtr “ tpx, yq|px, yq „ P u with size N ;
θ˚ Ð θ0, θ Ð θ0;
repeat

Υ “

´

1
N

ř

px,yqPDtr
}∇xJθ˚ px, yq}qs

¯1{q

; // Calculate Υ from θ˚

repeat
Generate a mini-batch B with size |B|;
// Do W-FGSM attack on B

px, yq Ð
`

projδpx ` δhp∇xJθpx, yqq}Υ´1∇xJθpx, yq}q´1
s q, y

˘

;
// Update θ by stochastic gradient descent
θ Ð θ ´ η 1

|B|

ř

px,yqPB ∇θJθpx, yq;
until the end of epoch;
θ˚ Ð θ;

until the end condition.

E Robust Performance Bounds

As pointed out in Section 7, with attack budget δ “ 8{255 some neural networks have lower bounds
Rl surpassing the reference value R obtained from AutoAttack. It is because for most of neural
networks δ “ 8{255 is outside the linear approximation region of the adversarial loss V pδq, and we
underestimate V pδq by using first order approximations in Theorem 4.1. In Figure 4, we plot our
proposed bounds Ru and Rl against R for pW8, l8q threat model with δ “ 8{255.

In general, to compute more accurate lower bounds on the adversarial accuracy, as explained in
Section 6, we can consider the first lower bound in (13). We thus introduce Rlpnq given by

Rlpnq “
W p0q ´ V pδ, nq

W p0q ´ V p0q
,

where V pδ, nq is the approximated adversarial loss computed by a W-PDG-(n) attack. In Figures
5 and 6, we include plots for different bounds of R under W2 threat models which illustrate the
changing performance of the lower bound in Theorem 5.1 as V pδq is computed to an increasing
accuracy. We achieve this performing a W-PDG-(n) attack, where n “ 5, 50. An n “ 50 attack takes

18

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80

0.4

0.5

0.6

0.7

0.8

(W∞, l∞) Threat Model with δ = 8/255

Ru
Rl
R

Figure 4: Ru&Rl versus R. Bounds are computed based on CE loss across neural networks on
RobustBench under a pW8, l8q threat model with budget δ “ 8{255. At this δ linear approximation
may be inefficient as seen from the blue dots crossing the diagonal.

10 times more computational time than the n “ 5 attack and the latter is 5 times more computational
costly than the one-step bound Rl. The plots thus illustrate a trade-off between computational time
and accuracy of the proposed lower bound. For clarity, we also point out that Figure 5 has a different
scaling from the other plots.

In practice, we would compare our one-step-attack bound Rl with the bound obtained by iterating the
attack several steps: we propose W-PGD(5) in our paper and report Rlp5q. If the difference between
the two is small it indicates linear approximation is working very well. If the difference is significant,
we would use Rlp5q and maybe compare it against Rlp10q. If we observe that V pδq is convex - as
for the CE loss under pW8, l8q attack - the lower bound should decrease. In this case, the one-step
bound may in fact not be a lower bound for too large as shown in Figure 4. If we observe V pδq is
concave - as for the ReDLR loss and our W2 attacks - the one-step lower bound might be too low and
will increase with additional PGD steps. This is visible in Figures 5 and 6.

0.90 0.92 0.94 0.96 0.98 1.00

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00
δ = 1/510

Ru
Rl
Rl(5)

Rl(50)

y = x

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
0.70

0.75

0.80

0.85

0.90

0.95

1.00
δ = 1/255

Ru
Rl
Rl(5)

Rl(50)

y = x

Figure 5: Comparison of lower bounds computed from different W-PDG-(n) attacks, where n “ 5, 50.
Bounds are computed based on CE loss across neural networks on RobustBench under pW2, l8q

threat models with budget δ “ 1{510, 1{255.

F Experiments on Other Datasets

We illustrate our theoretical results on CIFAR-100 (Krizhevsky, 2009) and ImageNet (Deng et al.,
2009) datasets. We analyze all the networks included on RobustBench leaderboards. Only l8 norm on
images is considered as RobustBench does not provide any models for l2 for these datasets. Similar
to CIFAR-10, CIFAR-100 is a low resolution dataset but with 100 classes. Each class contains 500
training images and 100 testing images, and each image has 32 ˆ 32 pixels in 3 color channels. For

19

0.90 0.92 0.94 0.96 0.98 1.00

0.90

0.92

0.94

0.96

0.98

1.00

δ = 1/32

Ru
Rl
Rl(5)

Rl(50)

y = x

0.80 0.85 0.90 0.95 1.00

0.80

0.85

0.90

0.95

1.00

δ = 1/16

Ru
Rl
Rl(5)

Rl(50)

y = x

Figure 6: Comparison of lower bounds computed from different W-PDG-(n) attacks, where n “ 5, 50.
Bounds are computed based on ReDLR loss across neural networks on RobustBench under pW2, l2q

threat models with budget δ “ 1{32, 1{16.

ImageNet dataset, we use a subset of 5000 images selected by RobustBench. The size of image may
vary among different preprocessing. A typical size is 224ˆ224 pixels in 3 color channels. Numerical
results mirror those for CIFAR-10 in the body paragraph.

Before the discussion on the numerical results, we remark that the computation time of our proposed
methods do not suffer from the curse of dimensionality. Despite the fact that complexity of Wasserstein
distance in higher dim can cause troubles, this does not happen for our methods due to our formulae for
the first order sensitivity. This means that the approximation to the worst case Wasserstein adversarial
attack is explicit and only requires us to compute the gradient ∇xJθpx, yq. In consequence, the size
of the image only affects the first layer of the DNN and the number of classes affects the last layer of
the DNN. The computational time is thus mostly determined by the (hidden) architecture of the DNN
model we consider.

In Figure 7, we compare the adversarial accuracy under pointwise threat models and distributional
threat models. For W8 threat model, we apply a combination PGD-50 attack based on CE, DLR
losses to obtain the reference adversarial accuracy; for W2 threat model, we apply a 50-step W-PGD-
ReDLR to obtain the reference WD-adversarial accuracy. Similar to CIFAR-10, we observe a drop of
adversarial accuracy under distributional threat models on CIFAR-100 and ImageNet.

In Figure 8, we plot the bounds Rl and Ru against R on CIFAR-100 and ImageNet. We compute
bounds under W8-attack based on CE loss across neural networks on RobustBench; W2-attack for
the same sets of neural networks with bounds computed using ReDLR loss, where Rlp5q denotes
the lower bound (eq. (13)) computed from a 5-step W-PGD attack. For pointwise threat models, our
upper and lower bounds sandwich the true (AutoAttack) accuracy ratio very well at a fraction of the
computational cost. For distributional threat models, our bounds work but the tightness of the bound
is model-dependent. We display also the improved bound obtained with 5 steps of W-PGD attack
which leads to a marked improvement in the lower bound’s performance. This is akin to Figure 5 in
Appendix E.

G Comparison to Existing Attack Methods

In this section, we compare our proposed W-PGD attack with existing attack methods. We reiterate
that our method focuses on distributional threats under a given budget δ. While the W-DRO
formulation has been explored in numerous works, as discussed, we believe that none of them
proposed an AA method specifically tailored for the distributional threat under a given attack budget.

We illustrate the main difference between our sensitivity approach and duality approach employed in
Sinha et al. (2018), Volpi et al. (2018), Hua et al. (2022), etc. When using duality of W-DRO, the
optimization involves a minimization over the Lagrangian multiplier λ. However, in the aforemen-
tioned works, a fixed λ is used. While their choice of λ may be optimal for some budget δ, there is
no universal approach to achieve an optimal attack for a given budget δ. In contrast, our attack is
an explicit first-order approximation designed to be optimal for a given budget δ. It only involves
∇xJθpx, yq and its norms which are fast to compute using standard methods.

20

10% 20% 30% 40% 50% 60% 70% 80%

Adversarial Accuracy (W∞, l∞)

10%

20%

30%

40%

50%

60%

70%

80%

A
d

ve
rs

ar
ia

l
A

cc
u

ra
cy

(W
2
,l
∞

)

CIFAR-100

δ = 2/255

δ = 4/255

δ = 8/255

y = x

0% 10% 20% 30% 40% 50% 60% 70%

Adversarial Accuracy (W∞, l∞)

0%

10%

20%

30%

40%

50%

60%

70%

A
d

ve
rs

ar
ia

l
A

cc
u

ra
cy

(W
2
,l
∞

)

ImageNet

δ = 2/255

δ = 4/255

δ = 8/255

y = x

Figure 7: Shortfall of WD-adversarial accuracy on CIFAR-100 (left) and ImageNet (right).

0.70 0.75 0.80 0.85 0.90 0.95

0.70

0.75

0.80

0.85

0.90

0.95

(W∞, l∞) Threat Model with δ = 2/255

Ru
Rl
R

0.4 0.5 0.6 0.7 0.8

0.4

0.5

0.6

0.7

0.8

(W∞, l∞) Threat Model with δ = 4/255

Ru
Rl
R

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(W2, l∞) Threat Model with δ = 1/510

Ru
Rl
Rl(5)

R

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0
(W2, l∞) Threat Model with δ = 1/255

Ru
Rl
Rl(5)

R

0.65 0.70 0.75 0.80 0.85 0.90

0.65

0.70

0.75

0.80

0.85

0.90

(W∞, l∞) Threat Model with δ = 2/255

Ru
Rl
R

0.3 0.4 0.5 0.6 0.7 0.8

0.3

0.4

0.5

0.6

0.7

0.8

(W∞, l∞) Threat Model with δ = 4/255

Ru
Rl
R

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(W2, l∞) Threat Model with δ = 1/510

Ru
Rl
Rl(5)

R

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0
(W2, l∞) Threat Model with δ = 1/255

Ru
Rl
Rl(5)

R

Figure 8: Ru & Rl versus R on CIFAR-100 (top) and ImageNet (bottom).

Despite no existing baseline for addressing distributional threat, it is possible to reverse engineer a
comparison setup ex post. We employ CW attack which gives the minimum distortion needed to
successfully attack an image. Due to the computational cost of CW attack, the experiment is conducted
on the first 1000 correctly classified images from the ImageNet subset used by RobustBench. By
calculating the square root of the mean square of the minimum distortion over this chosen dataset,
we obtain a reference pW2, l8q budget 0.000711 to perform our distributional attacks. Employing
our W-PGD(50)-ReDLR attack results in 934 images being successfully attacked out of the 1000.
The CW attack, which by construction was successful on all 1000 images, took ca 4.5h to run (on a
Tesla V100-SXM2-32GB-LS GPU) and the time needed to be scaled linearly with the number of
images as the attack has to be performed image by image. In contrast, our attack took ca 50min to
run (on a NVIDIA A100-SXM4-40GB GPU). In addition, we use mini-batches, which allows for
computational speed improvements based on the available GPU memory.

H Additional Numerical Results

In Tables 3 and 4, we report the clean accuracy and the adversarial accuracy under different threat
models for all but 4 neural networks available on RobustBench (model zoo). All networks are named
after their labels on RobustBench (model zoo). We remove Standard l8-network and Standard
l2-network because they are not robust to any attacks. In addition, we also remove Kang2021Stable
which contains NeuralODE blocks and Ding2020MMA which has a huge gap between adversarial
accuracies obtained from PGD and AutoAttack.

In Tables 5, 6, 7 and 8, we include the complete list of R and its bounds used in Figure 3. We write
∆Ru “ Ru ´ R and ∆Rl “ Rl ´ R.

21

Table 3: Complete list of adversarial accuracies under pW8, l8q and pW2, l8q threat models.
δ=1/8 δ=1/4 δ=1/8

Network Clean W8 W2 W8 W2 W8 W2

Augustin2020Adversarial 91.08 87.88 82.03 84.48 73.17 72.91 56.66
Augustin2020Adversarial_34_10 92.23 89.20 83.70 85.80 74.06 76.25 56.33
Augustin2020Adversarial_34_10_extra 93.96 91.63 84.86 88.32 75.04 78.79 59.73
Ding2020MMA 88.02 83.57 77.69 78.44 69.67 66.09 53.47
Engstrom2019Robustness 90.83 86.81 81.99 82.37 73.77 69.24 57.77
Gowal2020Uncovering 90.89 87.62 83.19 84.26 75.83 74.50 60.94
Gowal2020Uncovering_extra 94.73 92.64 88.08 89.52 79.74 80.53 60.18
Rade2021Helper_R18_ddpm 90.57 88.03 83.57 84.58 77.26 76.15 62.74
Rebuffi2021Fixing_28_10_cutmix_ddpm 91.79 89.26 86.09 86.43 81.06 78.80 67.18
Rebuffi2021Fixing_70_16_cutmix_ddpm 92.41 90.36 87.27 87.69 81.67 80.42 67.93
Rebuffi2021Fixing_70_16_cutmix_extra 95.74 93.78 89.73 91.18 81.59 82.32 63.43
Rebuffi2021Fixing_R18_cutmix_ddpm 90.33 87.48 84.24 84.48 78.38 75.86 63.85
Rice2020Overfitting 88.68 85.07 80.62 80.35 73.28 67.68 56.83
Rony2019Decoupling 89.04 84.74 78.47 79.25 69.39 66.44 51.15
Sehwag2021Proxy 90.93 88.42 85.50 85.66 80.50 77.24 67.96
Sehwag2021Proxy_R18 89.76 87.08 83.34 83.87 77.62 74.41 65.02
Wang2023Better_WRN-28-10 95.16 93.44 88.99 90.79 82.58 83.68 68.65
Wang2023Better_WRN-70-16 95.54 93.76 89.94 91.79 83.47 84.97 70.09
Wu2020Adversarial 88.51 85.32 81.33 82.05 75.31 73.66 62.21

22

Table 4: Complete list of adversarial accuracies under pW8, l8q and pW2, l8q threat models.
δ=2/255 δ=4/255 δ=8/255

Network Clean W8 W2 W8 W2 W8 W2

Addepalli2021Towards_RN18 80.23 73.85 68.54 66.70 58.76 51.06 42.91
Addepalli2021Towards_WRN34 85.32 79.87 73.41 73.18 64.60 58.04 48.12
Addepalli2022Efficient_RN18 85.71 79.16 71.75 71.37 59.59 52.48 37.84
Addepalli2022Efficient_WRN_34_10 88.70 82.95 74.75 75.52 63.35 57.81 42.03
Andriushchenko2020Understanding 79.85 72.30 66.16 64.45 55.83 43.93 37.86
Carmon2019Unlabeled 89.69 84.59 77.02 77.87 66.59 59.53 46.32
Chen2020Adversarial 86.04 79.68 67.45 71.61 51.23 51.56 29.66
Chen2020Efficient 85.34 78.48 70.91 70.64 59.24 51.12 39.32
Chen2021LTD_WRN34_10 85.21 79.78 72.74 72.97 61.86 56.94 41.48
Chen2021LTD_WRN34_20 86.03 80.71 75.31 74.19 64.95 57.71 44.87
Cui2020Learnable_34_10 88.22 81.95 71.25 74.20 57.88 52.86 40.14
Cui2020Learnable_34_20 88.70 82.20 72.16 74.46 57.74 53.57 37.73
Dai2021Parameterizing 87.02 82.39 77.35 76.96 69.28 61.55 52.43
Debenedetti2022Light_XCiT-L12 91.73 86.59 78.09 79.42 66.77 57.58 44.90
Debenedetti2022Light_XCiT-M12 91.30 86.14 77.83 78.89 66.86 57.27 43.90
Debenedetti2022Light_XCiT-S12 90.06 84.91 77.11 77.50 65.35 56.14 44.28
Engstrom2019Robustness 87.03 80.34 74.30 72.22 63.43 49.25 41.85
Gowal2020Uncovering_28_10_extra 89.48 84.78 78.08 78.77 67.93 62.80 48.51
Gowal2020Uncovering_34_20 85.64 79.84 73.22 73.47 62.78 56.86 42.87
Gowal2020Uncovering_70_16 85.29 79.81 72.89 73.47 62.25 57.20 43.29
Gowal2020Uncovering_70_16_extra 91.10 86.86 79.81 81.06 70.01 65.88 50.55
Gowal2021Improving_28_10_ddpm_100m 87.50 83.37 78.46 78.30 70.50 63.44 54.95
Gowal2021Improving_70_16_ddpm_100m 88.74 84.76 80.48 80.08 73.27 66.11 59.34
Gowal2021Improving_R18_ddpm_100m 87.35 82.08 76.83 76.22 68.16 58.63 51.17
Hendrycks2019Using 87.11 81.36 74.48 74.21 63.45 54.92 44.19
Huang2020Self 83.48 77.59 69.33 70.55 58.46 53.34 38.96
Huang2021Exploring 90.56 85.77 77.78 79.50 67.52 61.56 47.30
Huang2021Exploring_ema 91.23 86.84 79.28 80.79 69.02 62.54 48.46
Huang2022Revisiting_WRN-A4 91.59 87.35 79.76 81.69 69.62 65.79 50.22
Jia2022LAS-AT_34_10 84.98 79.26 73.00 72.44 62.88 56.26 43.92
Jia2022LAS-AT_70_16 85.66 80.29 73.90 73.52 63.76 57.61 44.19
Pang2020Boosting 85.14 79.34 71.93 72.60 61.17 53.74 39.40
Pang2022Robustness_WRN28_10 88.61 83.73 78.46 77.16 69.51 61.04 51.67
Pang2022Robustness_WRN70_16 89.01 84.77 79.57 78.58 70.61 63.35 52.93
Rade2021Helper_ddpm 88.16 83.26 77.54 76.83 67.49 60.97 47.37
Rade2021Helper_extra 91.47 86.72 80.47 80.29 69.48 62.83 47.57
Rade2021Helper_R18_ddpm 86.86 81.12 75.67 74.39 64.92 57.09 43.99
Rade2021Helper_R18_extra 89.02 83.21 77.16 76.36 66.10 57.67 43.38
Rebuffi2021Fixing_106_16_cutmix_ddpm 88.50 84.32 78.88 78.83 70.59 64.64 52.31
Rebuffi2021Fixing_28_10_cutmix_ddpm 87.33 82.36 76.33 76.08 66.35 60.75 46.73
Rebuffi2021Fixing_70_16_cutmix_ddpm 88.54 84.31 78.64 78.79 68.95 64.25 49.75
Rebuffi2021Fixing_70_16_cutmix_extra 92.23 88.02 81.21 82.76 70.39 66.58 47.97
Rebuffi2021Fixing_R18_ddpm 83.53 77.99 71.46 71.68 61.83 56.66 44.26
Rice2020Overfitting 85.34 79.60 74.06 72.82 64.81 53.42 43.66
Sehwag2020Hydra 88.98 83.49 76.02 76.18 65.38 57.14 44.37
Sehwag2021Proxy 86.68 81.72 76.91 76.39 68.84 60.27 53.29
Sehwag2021Proxy_R18 84.59 79.25 73.87 72.74 64.73 55.54 46.58
Sehwag2021Proxy_ResNest152 87.21 82.55 78.08 77.30 70.78 62.79 56.67
Sitawarin2020Improving 86.84 80.21 74.16 72.47 63.54 50.72 43.25
Sridhar2021Robust 89.46 84.34 77.42 78.03 66.42 59.66 46.45
Sridhar2021Robust_34_15 86.53 81.45 73.95 75.63 64.18 60.41 45.77
Wang2020Improving 87.51 82.15 74.59 75.47 63.17 56.29 42.57
Wang2023Better_WRN-28-10 92.44 88.40 81.51 83.10 71.42 67.31 52.03
Wang2023Better_WRN-70-16 93.26 89.72 82.88 84.90 73.95 70.69 55.17
Wong2020Fast 83.34 75.77 69.60 67.23 58.38 43.21 36.96
Wu2020Adversarial 85.36 79.69 73.33 72.90 62.64 56.17 42.28
Wu2020Adversarial_extra 88.25 82.98 76.83 76.61 66.45 60.04 46.70
Zhang2019Theoretically 84.92 78.96 71.68 71.15 60.30 53.08 40.05
Zhang2019You 87.20 79.42 72.40 70.29 60.61 44.83 36.65
Zhang2020Attacks 84.52 78.48 71.10 71.32 59.45 53.51 40.76
Zhang2020Geometry 89.36 84.01 81.57 77.10 73.45 59.64 53.50

23

Table 5: Complete list of R and its bounds under pW8, l2q threat model based on CE loss.
δ=1/8 δ=1/4

Network R ∆Ru ∆Rl R ∆Ru ∆Rl

Augustin2020Adversarial 0.9649 0.0026 -0.0153 0.9275 0.0083 -0.0324
Augustin2020Adversarial_34_10 0.9669 0.0035 -0.0097 0.9303 0.0115 -0.0201
Augustin2020Adversarial_34_10_extra 0.9752 0.0031 -0.0150 0.9400 0.0084 -0.0239
Ding2020MMA 0.9496 0.0016 -0.0176 0.8912 0.0081 -0.0434
Engstrom2019Robustness 0.9557 0.0019 -0.0087 0.9069 0.0057 -0.0256
Gowal2020Uncovering 0.9640 0.0022 -0.0063 0.9271 0.0045 -0.0191
Gowal2020Uncovering_extra 0.9779 0.0013 -0.0121 0.9451 0.0050 -0.0209
Rade2021Helper_R18_ddpm 0.9720 0.0017 -0.0124 0.9339 0.0061 -0.0209
Rebuffi2021Fixing_28_10_cutmix_ddpm 0.9724 0.0034 -0.0107 0.9416 0.0060 -0.0232
Rebuffi2021Fixing_70_16_cutmix_ddpm 0.9778 0.0021 -0.0137 0.9489 0.0052 -0.0259
Rebuffi2021Fixing_70_16_cutmix_extra 0.9795 0.0018 -0.0091 0.9524 0.0040 -0.0184
Rebuffi2021Fixing_R18_cutmix_ddpm 0.9686 0.0032 -0.0150 0.9352 0.0061 -0.0339
Rice2020Overfitting 0.9593 0.0030 -0.0178 0.9061 0.0090 -0.0342
Rony2019Decoupling 0.9517 0.0015 -0.0144 0.8899 0.0077 -0.0316
Sehwag2021Proxy 0.9724 0.0027 -0.0099 0.9420 0.0065 -0.0235
Sehwag2021Proxy_R18 0.9703 0.0028 -0.0133 0.9344 0.0057 -0.0271
Wang2023Better_WRN-28-10 0.9819 0.0013 -0.0098 0.9541 0.0047 -0.0147
Wang2023Better_WRN-70-16 0.9814 0.0015 -0.0069 0.9609 0.0029 -0.0163
Wu2020Adversarial 0.9640 0.0024 -0.0088 0.9270 0.0051 -0.0221

Table 6: Complete list of R and its bounds under pW2, l2q threat model based on ReDLR loss.
δ=1/32 δ=1/16

Network R ∆Ru ∆Rl R ∆Ru ∆Rl

Augustin2020Adversarial 0.9844 0.0058 -0.0358 0.9723 0.0131 -0.0505
Augustin2020Adversarial_34_10 0.9868 0.0026 -0.0518 0.9738 0.0094 -0.0743
Augustin2020Adversarial_34_10_extra 0.9879 0.0049 -0.0452 0.9756 0.0105 -0.0652
Ding2020MMA 0.9788 0.0087 -0.0694 0.9644 0.0148 -0.1079
Engstrom2019Robustness 0.9834 0.0036 -0.0798 0.9719 0.0085 -0.1250
Gowal2020Uncovering 0.9837 0.0048 -0.0581 0.9719 0.0110 -0.0918
Gowal2020Uncovering_extra 0.9915 0.0026 -0.0574 0.9855 0.0039 -0.0898
Rade2021Helper_R18_ddpm 0.9879 0.0055 -0.0530 0.9802 0.0075 -0.0871
Rebuffi2021Fixing_28_10_cutmix_ddpm 0.9902 0.0034 -0.0572 0.9826 0.0069 -0.0912
Rebuffi2021Fixing_70_16_cutmix_ddpm 0.9920 0.0023 -0.0610 0.9852 0.0055 -0.0966
Rebuffi2021Fixing_70_16_cutmix_extra 0.9922 0.0020 -0.0539 0.9851 0.0050 -0.0852
Rebuffi2021Fixing_R18_cutmix_ddpm 0.9894 0.0034 -0.0711 0.9791 0.0081 -0.1104
Rice2020Overfitting 0.9859 0.0046 -0.0825 0.9738 0.0104 -0.1263
Rony2019Decoupling 0.9829 0.0045 -0.0855 0.9672 0.0116 -0.1267
Sehwag2021Proxy 0.9918 0.0018 -0.0767 0.9824 0.0047 -0.1165
Sehwag2021Proxy_R18 0.9890 0.0039 -0.0558 0.9789 0.0097 -0.0868
Wang2023Better_WRN-28-10 0.9902 0.0023 -0.0492 0.9832 0.0054 -0.0775
Wang2023Better_WRN-70-16 0.9919 0.0020 -0.0494 0.9850 0.0043 -0.0780
Wu2020Adversarial 0.9867 0.0037 -0.0704 0.9759 0.0092 -0.1114

24

Table 7: Complete list of R and its bounds under pW8, l8q threat model based on CE loss.
δ=2/255 δ=4/255

Network R ∆Ru ∆Rl R ∆Ru ∆Rl

Addepalli2021Towards_RN18 0.9205 0.0172 -0.0234 0.8314 0.0403 -0.0390
Addepalli2021Towards_WRN34 0.9361 0.0144 -0.0266 0.8577 0.0374 -0.0399
Addepalli2022Efficient_RN18 0.9236 0.0126 -0.0194 0.8327 0.0329 -0.0312
Addepalli2022Efficient_WRN_34_10 0.9352 0.0097 -0.0167 0.8514 0.0275 -0.0218
Andriushchenko2020Understanding 0.9054 0.0125 -0.0200 0.8071 0.0296 -0.0496
Carmon2019Unlabeled 0.9431 0.0056 -0.0122 0.8682 0.0236 -0.0144
Chen2020Adversarial 0.9261 0.0074 -0.0319 0.8323 0.0206 -0.0495
Chen2020Efficient 0.9199 0.0111 -0.0107 0.8273 0.0293 -0.0177
Chen2021LTD_WRN34_10 0.9363 0.0099 -0.0224 0.8564 0.0275 -0.0347
Chen2021LTD_WRN34_20 0.9382 0.0105 -0.0280 0.8624 0.0322 -0.0476
Cui2020Learnable_34_10 0.9290 0.0070 -0.0178 0.8410 0.0196 -0.0324
Cui2020Learnable_34_20 0.9267 0.0079 -0.0150 0.8395 0.0224 -0.0296
Dai2021Parameterizing 0.9468 0.0069 -0.0173 0.8844 0.0139 -0.0362
Debenedetti2022Light_XCiT-L12 0.9440 0.0041 -0.0154 0.8658 0.0162 -0.0233
Debenedetti2022Light_XCiT-M12 0.9435 0.0049 -0.0164 0.8641 0.0194 -0.0233
Debenedetti2022Light_XCiT-S12 0.9428 0.0048 -0.0239 0.8605 0.0198 -0.0357
Engstrom2019Robustness 0.9231 0.0101 -0.0203 0.8298 0.0263 -0.0406
Gowal2020Uncovering_28_10_extra 0.9476 0.0072 -0.0149 0.8803 0.0221 -0.0214
Gowal2020Uncovering_34_20 0.9323 0.0081 -0.0156 0.8579 0.0206 -0.0331
Gowal2020Uncovering_70_16 0.9357 0.0055 -0.0144 0.8614 0.0155 -0.0279
Gowal2020Uncovering_70_16_extra 0.9535 0.0050 -0.0129 0.8898 0.0196 -0.0137
Gowal2021Improving_28_10_ddpm_100m 0.9528 0.0073 -0.0192 0.8949 0.0177 -0.0347
Gowal2021Improving_70_16_ddpm_100m 0.9551 0.0061 -0.0147 0.9024 0.0169 -0.0265
Gowal2021Improving_R18_ddpm_100m 0.9397 0.0065 -0.0166 0.8726 0.0117 -0.0387
Hendrycks2019Using 0.9340 0.0057 -0.0250 0.8519 0.0215 -0.0447
Huang2020Self 0.9294 0.0075 -0.0139 0.8451 0.0270 -0.0201
Huang2021Exploring 0.9471 0.0051 -0.0091 0.8779 0.0227 -0.0091
Huang2021Exploring_ema 0.9519 0.0054 -0.0103 0.8856 0.0226 -0.0103
Huang2022Revisiting_WRN-A4 0.9537 0.0052 -0.0101 0.8919 0.0167 -0.0127
Jia2022LAS-AT_34_10 0.9327 0.0102 -0.0173 0.8524 0.0262 -0.0277
Jia2022LAS-AT_70_16 0.9372 0.0070 -0.0178 0.8585 0.0229 -0.0262
Pang2020Boosting 0.9319 0.0181 -0.0349 0.8526 0.0430 -0.0611
Pang2022Robustness_WRN28_10 0.9449 0.0095 -0.0199 0.8708 0.0229 -0.0325
Pang2022Robustness_WRN70_16 0.9524 0.0056 -0.0220 0.8828 0.0225 -0.0331
Rade2021Helper_ddpm 0.9444 0.0068 -0.0195 0.8715 0.0188 -0.0317
Rade2021Helper_extra 0.9481 0.0057 -0.0158 0.8778 0.0186 -0.0247
Rade2021Helper_R18_ddpm 0.9339 0.0098 -0.0203 0.8564 0.0220 -0.0407
Rade2021Helper_R18_extra 0.9347 0.0095 -0.0183 0.8578 0.0220 -0.0370
Rebuffi2021Fixing_106_16_cutmix_ddpm 0.9528 0.0063 -0.0196 0.8907 0.0226 -0.0295
Rebuffi2021Fixing_28_10_cutmix_ddpm 0.9432 0.0088 -0.0193 0.8713 0.0262 -0.0286
Rebuffi2021Fixing_70_16_cutmix_ddpm 0.9522 0.0071 -0.0204 0.8899 0.0208 -0.0311
Rebuffi2021Fixing_70_16_cutmix_extra 0.9544 0.0051 -0.0169 0.8973 0.0191 -0.0282
Rebuffi2021Fixing_R18_ddpm 0.9337 0.0078 -0.0140 0.8584 0.0242 -0.0270
Rice2020Overfitting 0.9327 0.0091 -0.0273 0.8532 0.0199 -0.0548
Sehwag2020Hydra 0.9383 0.0055 -0.0123 0.8561 0.0262 -0.0126
Sehwag2021Proxy 0.9428 0.0073 -0.0150 0.8813 0.0166 -0.0348
Sehwag2021Proxy_R18 0.9369 0.0091 -0.0209 0.8598 0.0240 -0.0364
Sehwag2021Proxy_ResNest152 0.9466 0.0062 -0.0138 0.8864 0.0151 -0.0308
Sitawarin2020Improving 0.9237 0.0084 -0.0190 0.8345 0.0243 -0.0428
Sridhar2021Robust 0.9428 0.0063 -0.0112 0.8722 0.0221 -0.0171
Sridhar2021Robust_34_15 0.9413 0.0067 -0.0065 0.8740 0.0208 -0.0089
Wang2020Improving 0.9387 0.0119 -0.0216 0.8624 0.0362 -0.0303
Wang2023Better_WRN-28-10 0.9563 0.0067 -0.0149 0.8990 0.0166 -0.0248
Wang2023Better_WRN-70-16 0.9620 0.0049 -0.0149 0.9104 0.0165 -0.0239
Wong2020Fast 0.9093 0.0128 -0.0282 0.8068 0.0301 -0.0608
Wu2020Adversarial 0.9336 0.0068 -0.0161 0.8540 0.0225 -0.0267
Wu2020Adversarial_extra 0.9403 0.0073 -0.0139 0.8681 0.0228 -0.0230
Zhang2019Theoretically 0.9298 0.0061 -0.0190 0.8381 0.0238 -0.0289
Zhang2019You 0.9107 0.0073 -0.0196 0.8061 0.0203 -0.0506
Zhang2020Attacks 0.9285 0.0082 -0.0167 0.8438 0.0257 -0.0267
Zhang2020Geometry 0.9402 0.0187 -0.0307 0.8629 0.0404 -0.0514

25

Table 8: Complete list of R and its bounds under pW2, l8q threat model based on ReDLR loss.
δ=1/510 δ=1/255

Network R ∆Ru ∆Rl R ∆Ru ∆Rl

Addepalli2021Towards_RN18 0.9762 0.0080 -0.1301 0.9533 0.0202 -0.1902
Addepalli2021Towards_WRN34 0.9774 0.0102 -0.0849 0.9590 0.0197 -0.1257
Addepalli2022Efficient_RN18 0.9740 0.0088 -0.1012 0.9534 0.0195 -0.1480
Addepalli2022Efficient_WRN_34_10 0.9749 0.0124 -0.0645 0.9563 0.0231 -0.0942
Andriushchenko2020Understanding 0.9679 0.0140 -0.0969 0.9438 0.0294 -0.1357
Carmon2019Unlabeled 0.9775 0.0079 -0.0803 0.9584 0.0178 -0.1162
Chen2020Adversarial 0.9639 0.0182 -0.0351 0.9371 0.0351 -0.0485
Chen2020Efficient 0.9713 0.0147 -0.0742 0.9495 0.0281 -0.1073
Chen2021LTD_WRN34_10 0.9758 0.0140 -0.0622 0.9578 0.0236 -0.0960
Chen2021LTD_WRN34_20 0.9780 0.0078 -0.1077 0.9635 0.0124 -0.1615
Cui2020Learnable_34_10 0.9694 0.0121 -0.0663 0.9462 0.0228 -0.0838
Cui2020Learnable_34_20 0.9710 0.0132 -0.0722 0.9492 0.0231 -0.0982
Dai2021Parameterizing 0.9814 0.0082 -0.0825 0.9654 0.0164 -0.1206
Debenedetti2022Light_XCiT-L12 0.9760 0.0076 -0.0730 0.9579 0.0181 -0.1063
Debenedetti2022Light_XCiT-M12 0.9781 0.0127 -0.0477 0.9574 0.0280 -0.0682
Debenedetti2022Light_XCiT-S12 0.9795 0.0078 -0.0911 0.9620 0.0161 -0.1370
Engstrom2019Robustness 0.9746 0.0086 -0.1117 0.9550 0.0174 -0.1600
Gowal2020Uncovering_28_10_extra 0.9791 0.0075 -0.0813 0.9623 0.0153 -0.1213
Gowal2020Uncovering_34_20 0.9748 0.0110 -0.0786 0.9546 0.0220 -0.1166
Gowal2020Uncovering_70_16 0.9722 0.0162 -0.0583 0.9552 0.0232 -0.0906
Gowal2020Uncovering_70_16_extra 0.9801 0.0070 -0.0786 0.9639 0.0136 -0.1145
Gowal2021Improving_28_10_ddpm_100m 0.9814 0.0070 -0.0852 0.9690 0.0119 -0.1281
Gowal2021Improving_70_16_ddpm_100m 0.9838 0.0072 -0.0778 0.9726 0.0114 -0.1150
Gowal2021Improving_R18_ddpm_100m 0.9797 0.0069 -0.1049 0.9626 0.0160 -0.1520
Hendrycks2019Using 0.9778 0.0090 -0.0963 0.9582 0.0183 -0.1398
Huang2020Self 0.9714 0.0117 -0.0764 0.9478 0.0252 -0.1082
Huang2021Exploring 0.9770 0.0109 -0.0556 0.9593 0.0208 -0.0803
Huang2021Exploring_ema 0.9792 0.0091 -0.0625 0.9623 0.0189 -0.0923
Huang2022Revisiting_WRN-A4 0.9810 0.0088 -0.0521 0.9646 0.0181 -0.0766
Jia2022LAS-AT_34_10 0.9762 0.0139 -0.0743 0.9575 0.0232 -0.1118
Jia2022LAS-AT_70_16 0.9751 0.0138 -0.0707 0.9583 0.0219 -0.1091
Pang2020Boosting 0.9745 0.0093 -0.0244 0.9528 0.0195 -0.0330
Pang2022Robustness_WRN28_10 0.9823 0.0055 -0.1311 0.9707 0.0095 -0.1988
Pang2022Robustness_WRN70_16 0.9836 0.0078 -0.0882 0.9711 0.0139 -0.1378
Rade2021Helper_ddpm 0.9808 0.0068 -0.0936 0.9672 0.0124 -0.1430
Rade2021Helper_extra 0.9809 0.0066 -0.0846 0.9674 0.0130 -0.1298
Rade2021Helper_R18_ddpm 0.9778 0.0056 -0.1266 0.9627 0.0098 -0.1904
Rade2021Helper_R18_extra 0.9784 0.0127 -0.0720 0.9587 0.0244 -0.1073
Rebuffi2021Fixing_106_16_cutmix_ddpm 0.9829 0.0046 -0.0787 0.9681 0.0130 -0.1163
Rebuffi2021Fixing_28_10_cutmix_ddpm 0.9816 0.0050 -0.1001 0.9651 0.0115 -0.1436
Rebuffi2021Fixing_70_16_cutmix_ddpm 0.9824 0.0072 -0.0694 0.9680 0.0141 -0.1035
Rebuffi2021Fixing_70_16_cutmix_extra 0.9809 0.0056 -0.0718 0.9661 0.0126 -0.1058
Rebuffi2021Fixing_R18_ddpm 0.9758 0.0104 -0.0855 0.9564 0.0194 -0.1276
Rice2020Overfitting 0.9773 0.0082 -0.1061 0.9593 0.0159 -0.1547
Sehwag2020Hydra 0.9758 0.0096 -0.0805 0.9577 0.0192 -0.1201
Sehwag2021Proxy 0.9818 0.0073 -0.0831 0.9657 0.0162 -0.1202
Sehwag2021Proxy_R18 0.9795 0.0071 -0.0964 0.9609 0.0154 -0.1370
Sehwag2021Proxy_ResNest152 0.9805 0.0144 -0.0361 0.9667 0.0243 -0.0573
Sitawarin2020Improving 0.9747 0.0088 -0.1054 0.9511 0.0204 -0.1505
Sridhar2021Robust 0.9766 0.0087 -0.0832 0.9594 0.0160 -0.1240
Sridhar2021Robust_34_15 0.9749 0.0105 -0.0602 0.9537 0.0221 -0.0858
Wang2020Improving 0.9738 0.0195 -0.0134 0.9552 0.0341 -0.0185
Wang2023Better_WRN-28-10 0.9840 0.0054 -0.0767 0.9692 0.0129 -0.1120
Wang2023Better_WRN-70-16 0.9835 0.0049 -0.0747 0.9727 0.0074 -0.1121
Wong2020Fast 0.9674 0.0163 -0.0901 0.9448 0.0268 -0.1281
Wu2020Adversarial 0.9776 0.0089 -0.0837 0.9577 0.0221 -0.1215
Wu2020Adversarial_extra 0.9778 0.0077 -0.0963 0.9588 0.0158 -0.1419
Zhang2019Theoretically 0.9774 0.0132 -0.0670 0.9565 0.0277 -0.1003
Zhang2019You 0.9720 0.0135 -0.1073 0.9502 0.0247 -0.1580
Zhang2020Attacks 0.9724 0.0208 -0.0225 0.9504 0.0386 -0.0312
Zhang2020Geometry 0.9875 0.0035 -0.1267 0.9777 0.0068 -0.1838

26

	Introduction
	Related Work
	Preliminaries
	Wasserstein Distributional Robustness: adversarial attacks and training
	Performance Bounds
	Numerical Experiments
	Limitations and Future Work
	Bounds on Adversarial Accuracy
	Bounds on Out-of-Sample Performance
	W-PGD Algorithm
	Wasserstein Distributionally Adversarial Training
	Robust Performance Bounds
	Experiments on Other Datasets
	Comparison to Existing Attack Methods
	Additional Numerical Results

