
Tackling Continual Offline RL through Selective
Weights Activation on Aligned Spaces

Jifeng Hu1 Sili Huang2∗ Li Shen3 Zhejian Yang1 Shengchao Hu4

Shisong Tang5 Hechang Chen1∗ Lichao Sun6

Yi Chang1∗ Dacheng Tao7
1Jilin University 2Minzu University of China 3Shenzhen Campus of Sun Yat-sen University

4Shanghai Jiao Tong University 5Tsinghua University 6Lehigh University
7Nanyang Technological University

{hujf21, zjyang22}@mails.jlu.edu.cn {chenhc, yichang}@jlu.edu.cn
huangsili@muc.edu.cn mathshenli@gmail.com charles-hu@sjtu.edu.cn
tangshisong13@gmail.com lis221@lehigh.edu dacheng.tao@gmail.com

Abstract

Continual offline reinforcement learning (CORL) has shown impressive ability in
diffusion-based continual learning systems by modeling the joint distributions of
trajectories. However, most research only focuses on limited continual task settings
where the tasks have the same observation and action space, which deviates from
the realistic demands of training agents in various environments. In view of this,
we propose Vector-Quantized Continual Diffuser, named VQ-CD, to break the
barrier of different spaces between various tasks. Specifically, our method contains
two complementary sections, where the quantization spaces alignment provides a
unified basis for the selective weights activation. In the quantized spaces alignment,
we leverage vector quantization to align the different state and action spaces of
various tasks, facilitating continual training in the same space. Then, we propose to
leverage a unified diffusion model attached by the inverse dynamic model to master
all tasks by selectively activating different weights according to the task-related
sparse masks. Finally, we conduct extensive experiments on 15 continual learning
(CL) tasks, including conventional CL task settings (identical state and action
spaces) and general CL task settings (various state and action spaces). Compared
with 17 baselines, our method reaches the SOTA performance.

1 Introduction

The endeavor of recovering high-performance policies from abundant offline samples gathered by
various sources and continually mastering future tasks learning and previous knowledge maintaining
gives birth to the issue of continual offline reinforcement learning (CORL) [62, 2, 39, 42]. Ever-
growing scenarios or offline datasets pose challenges for most continual RL methods that are trained
on static data and are prone to showing catastrophic forgetting of previous knowledge and ineffective
learning of new tasks [63, 57]. Facing these challenges, three categories of methods, rehearsal-
based [42, 74, 10], regularization-based [82, 105, 104], and structure-based methods [102, 67, 8], are
proposed to reduce forgetting and facilitate continual training.

However, most previous studies only focus on the continual learning (CL) setting with identical
state and action spaces [63, 82]. It deviates from the fact that the ever-growing scenarios or offline
datasets are likely to possess different state and action spaces with previous tasks for many reasons,

∗Corresponding authors: Hechang Chen, Sili Huang, and Yi Chang.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Figure 1: The high-level intuition of VQ-CD. Quantized space alignment (QSA) is used to expand
the application range of VQ-CD, while selective weight activation (SWA) is used to reduce forgetting
of historical tasks in continual learning.

such as the variation of demands and the number of sensors [98, 102]. Moreover, these datasets
often come from multiple behavior policies, which pose the additional challenge of modeling
the multimodal distribution of various tasks [2, 60]. Benefiting from diffusion models’ powerful
expressive capabilities and highly competitive performance, an increasing number of researchers
are considering incorporating them to address the CORL problems [4, 99, 17] from the perspective
of sequential modeling. There have been several attempts to combine diffusion-based models with
rehearsal-based and regularization-based techniques, which usually apply constraints to the continual
model learning process with previous tasks’ data or well-trained weights [82, 99, 63]. However,
constrained weight updating will limit the learning capability of new tasks and can not preserve
the previously acquired knowledge perfectly [98]. Although structure-based methods can eliminate
forgetting and strengthen the learning capability by preserving well-trained weights of previous tasks
and reserving disengaged weights for ongoing tasks, they are still limited in simple architectures
and CL settings with identical state and action spaces [102, 93, 66]. Thus, in this paper, we seek to
answer the question:

Can we merge the merits of diffusion models’ powerful expression and structure-based parameters
isolation to master CORL problems with any task sequence?

We answer this in the affirmative through the key insight of allocating harmonious weights for each
continual learning task. Figure 1 shows the intuitive design of our methods. Specifically, we propose
Vector-Quantized Continual Diffuser called VQ-CD, which contains two complementary sections:
the quantized spaces alignment (QSA) module and the selective weights activation diffuser (SWA)
module. To expand our method to any task sequences under the continual learning setting, we
adopt the QSA module to align the different state and action spaces. Concretely, we adopt vector
quantization to map the task spaces to a unified space for training based on the contained codebook
and recover it to the original task spaces for evaluation. In the SWA module, we first perform task
mask generation for each task, where the task masks are applied to the one-dimensional convolution
kernel of the U-net structure diffusion model. Then, we use the masked kernels to block the influence
of unrelated weights during the training and inference. Finally, after the training process, we propose
the weights assembling to aggregate the task-related weights together for simplicity and efficiency. In
summary, our main contributions are fourfold:

• We propose the Vector-Quantized Continual Diffuser (VQ-CD) framework, which can not only be
applied to conventional continual tasks but also be suitable for any continual tasks setting, which
makes it observably different from the previous CL method.

• In the quantized spaces alignment (QSA) module of VQ-CD, we adopt ensemble vector quantized
encoders based on the constrained codebook because it can be expanded expediently. During the
inference, we apply task-related decoders to recover the various observation and action spaces.

• In the selective weights activation (SWA) diffuser module of VQ-CD, we first perform task-related
task masks, which will then be used to the kernel weights of the diffuser. After training, we propose
assembling weights to merge all learned knowledge.

• Finally, we conduct extensive experiments on 15 CL tasks, including conventional CL settings and
any CL task sequence settings. The results show that our method surpasses or matches the SOTA
performance compared with 17 representative baselines.

2

2 Related Work

Offline RL. Offline reinforcement learning is becoming an important direction in RL because it
supports learning on large pre-collected datasets and avoids massive demand for expensive, risky
interactions with the environments [69, 71, 34, 7, 31, 46, 45]. Directly applying conventional RL
methods in offline RL faces the challenge of distributional shift [78, 62, 96, 100, 44] caused by
the mismatch between the learned and data-collected policies, which will usually make the agent
improperly estimate expectation return on out-of-distribution actions [78, 58, 2, 43, 47]. To tackle
this challenge, previous studies try to avoid the influences of out-of-distribution actions by adopting
constrained policy optimization [27, 20, 71, 58], behavior regularization [70, 59, 23, 37], importance
sampling [49, 24, 103], uncertainty estimation [3, 89, 61], and imitation learning [94, 81, 13, 40].

Continual RL. Continual learning (CL) aims to solve the plasticity and stability trade-off under the
task setting, where the agent can only learn to solve each task successively [92]. CL can be classified
into task-aware CL and task-free CL according to whether there are explicit task boundaries [5,
92]. In this paper, we mainly focus on task-aware CL. There are three main technical routes to
facilitate forward transfer (plasticity) and mitigate catastrophic forgetting (stability). Rehearsal-
based approaches [80, 66, 93, 102, 82] store a portion of samples from previous tasks and use
interleaving updates between new tasks’ samples and previous tasks’ samples. Simply storing samples
increases the memory burden in many scenarios; thus, generative models such as diffusion models
are introduced to mimic previous data distribution and generate synthetic replay for knowledge
maintenance [101, 75, 22]. Regularization-based approaches [51, 52, 104, 105] seek to find a
proficiency compromise between previous and new tasks by leveraging constraint terms on the total
loss function. Usually, additional terms of learning objectives will be adopted to penalize significant
changes in the behaviors of models’ outputs or the updating of models’ parameters [55, 51]. In the
structure-based approaches [93, 53, 93, 102, 82, 56], researchers usually consider parameter isolation
by using sub-networks or task-related neurons to prevent forgetting.

Diffusion RL. Recently, diffusion-based models have shown huge potential in RL under the
perspective of sequential modeling [30, 32, 48, 4, 38, 36]. A typical use of diffusion models is to
mimic the joint distribution of states and actions, and we usually use state-action value functions
as the classifier or class-free guidance when generating decisions [72, 29, 73, 33, 41]. Diffusion
models, as representative generative models, can also be used as environmental dynamics to model
and generate synthetic samples to improve sample efficiency or maintain previous knowledge in
CL [97, 28, 65, 16, 63]. It is noted that the diffusion model’s powerful expression ability on
multimodal distribution also makes it suitable for being used as policies to model the distribution of
actions and as planners to perform long-horizon planning [91, 50, 11]. Besides, diffusion models
can also be used as multi-task learning models to master several tasks simultaneously [26] or as
multi-agent models to solve more complex RL scenarios [106].

3 Preliminary

3.1 Continual Offline RL

We focus on the task-aware CL in the continual offline RL in this paper [1, 92, 82, 76, 90]. Suppose
that we have I successive tasks, and task j arises behind task i for any i < j. Each task i, i ∈ [1 : I] is
represented by a Markov Decision Process (MDP) Mi = ⟨Si,Ai,Pi,Ri, γ⟩, where we use supscript
i to differentiate different tasks, I is the number of total tasks, S is the state space, A is the action
space, respectively, P : S ×A → ∆(S) denotes the transition function, R : S ×A× S → R is the
reward function, and γ ∈ [0, 1) is the discount factor. Conventional CL tasks have the same state
and action spaces for all tasks, i.e., |Si| = |Sj |, |Ai| = |Aj |, ∀ i, j ∈ [1 : I]. While for any tasks
sequences, we have |Si| ̸= |Sj |, |Ai| ̸= |Aj |. In the offline RL, we can only access pre-collected
datasets {Di}i∈[1:I] of each task. The goal of continual offline RL is to find an optimal policy that
can maximize the objective

∑I
i Eπ[

∑∞
t=0 γ

tr(sit, a
i
t)] [19, 98, 84] on all tasks.

3.2 Conditional Generative Behavior Modeling

In this paper, we adopt the diffusion-based model with the U-net backbone as the generative model
to fit the joint distribution q(τs) =

∫
q(τ0:Ks)dτ1:Ks of state sequences τs and an inverse dynamics

3

Figure 2: The framework of VQ-CD. It contains two sections: The Quantized Space Alignment
(QSA) module and the Selective Weights Activation (SWA) module, where QSA enables our method
to adapt to general task-aware continual learning task settings by transferring the different state and
action spaces to the same spaces. SWA uses selective neural network weight activation to maintain
the knowledge of previous tasks through task-related weight masks. After the training, we perform
Weights Assembling to integrate the total weights and save the memory budget.

model finv,ψ(st, st+1) to produce actions at, where k ∈ [1 : K] is the diffusion step, t is the RL
time step, ψ is the parameters of inverse dynamics model, and we omit the identification of tasks for
the sake of simplicity because the training is same for all tasks. Through specifying the pre-defined
forward diffusion process q(τks |τk−1

s) = N (τks ;
√
αkτ

k−1
s , βkI) and the trainable reverse process

pθ(τ
k−1
s |τks) = N (τk−1

s ;µθ(τ
k
s , k),Σ

k) [30], we can train the diffusion model with the simplified
loss function

L(θ) = Ek∼U(1,2,...,K),ϵ∼N (0,I),τ0
s∼D,b∼B(λ)[||ϵ− ϵθ(τ

k
s , k, b ∗ C)||22], (1)

where τks =
√
ᾱkτ

0
s +

√
1− ᾱkϵ, µθ(τks) =

1√
αk

(τks − βk√
1−ᾱk

ϵθ(τ
k
s , k)), Σ

k = 1−ᾱk−1

1−ᾱk
βkI , αk is

the approximate discretization pre-defined parameters [12, 64], βk = 1− αk, ᾱk =
∏k
ι=1 αι, U is

the uniform distribution, ϵ is standard Gaussian noise, I is the identity matrix, τ0s ∼ D is the state
sequences stored in the task replay buffer D, B is binomial distribution, λ = 0.25 is the parameter of
B, C is condition, which is usually selected as discounted returns or value function in RL, and θ is the
total parameters of model ϵθ. The following is

τ̂k−1
s =

1
√
αk

(τ̂ks − βk√
1− ᾱk

ϵ̂) +

√
1− ᾱk−1

1− ᾱk
βkϵ. (2)

generation function, where we use τ̂ks to denote the generated state sequences, ϵ̂ = ϵθ(τ̂
k
s , k, ∅) +

ω(ϵθ(τ̂
k
s , k, C) − ϵθ(τ̂

k
s , k, ∅)), ω is the guidance scale, ∅ means b = 0. We use inverse dynamics

model finv,ψ(·) to produce actions, where the training loss is

L(ψ) = E(st,at,st+1)∼D[||at − finv,ψ(st, st+1)||22]. (3)

4 Method

Our method enables training on general task-aware CL task sequences through two sections (as
shown in Figure 2): the selective weights activation diffuser (SWA) module and the quantized spaces
alignment (QSA) module. Algorithm 2 shows how to generate the actions during inference. The
detailed training process is shown in Algorithm 1 of Appendix A.1. In the following parts, we
introduce these two modules in detail.

4

Table 1: The comparison of VQ-CD, diffusion-based baselines, and LoRA methods on Ant-dir tasks,
where the continual task sequence is 10-15-19-25. The results are average on 30 evaluation rollouts
with 30 random seeds.

Method VQ-CD
(ours) CoD Multitask

CoD
IL-

rehearsal
CoD-

LoRA
Diffuser-w/o

rehearsal
CoD-
RCR MTDIFF DD-w/o

rehearsal

Mean
return 558.22±1.14 478.19±15.84 485.15±5.86 402.53±17.67 296.03±11.95 270.44±5.54 140.44±32.11 84.01±41.10 -11.15±45.27

4.1 Quantized Spaces Alignment

To make our method suitable for solving any CL task sequence setting, we propose aligning the
different state and action spaces with the quantization technique. Specifically, we propose to solve
the following quantized representation learning problem

min
θe,θd,θq

LQSA(x; θe, θd, θq),

s.t. ||zq||22 < ρ,
(4)

where LQSA(x) = E
[
||x− fV QD(zq; θd)||22

]
+ E

[
||sg(zq)− ze||22

]
+ E

[
||sg(ze)− zq||22

]
is the

total quantized loss, sg(·) represents the stop gradient operation, θe and θd are the parameters of the
vector quantized encoder (VQE) and vector quantized decoder (VQD), θq is the parameters of the
codebook, ρ limits the range of codebook embeddings, x can represent the states or actions for each
specific CL task, zq = fθq (ze) is the quantized representation which is consisted of fixed number
of fixed-length quantized vectors, and ze = fV QE(x; θe) is the output of the encoder. Here, we
propose searching the constrained optimal solution of the above problem for the consideration of the
diffusion model training within a limited value range, just like the limit normalization in CV [30, 14]
and RL [4, 64]. There are many methods to force optimization under restricted constraints, such as
converting the constraints to a penalty term [9]. In our method, for simplicity and convenience, we
propose to directly clip the quantized vector zq to meet the constraints after every codebook updating
step. Moreover, to meet the potential demand for extra tasks beyond the predefined CL tasks, we
design the codebook as easy to equip, where the quantized spaces of different tasks are separated so
that we can expediently train new task-related encoders, decoders, and quantized vectors.

For tasks where the state and action spaces are different, we can use the well-trained QSA
module to obtain the aligned state feature sizq = f is,θq (f

i
V QEs

(si; θe)) and the action feature
aizq = f ia,θq (f

i
V QEa

(ai; θe)) for each task i. Thus, we can use τ iszq and τ iazq to represent the state and
action feature sequences. Now, the action is produced through ait = f iV QDa

(finv(szq,t, szq,t+1); θd).

4.2 Selective Weights Activation

In this section, we introduce how to selectively activate different parameters of the diffusion model to
reduce catastrophic forgetting and reserve disengaged weights for ongoing tasks.

Task Mask Generation. Suppose that the diffusion model contains L blocks, and the weights
(i.e., parameters) of block l are denoted by Wl, l ∈ {1, ..., L}. There are two ways to disable the
influence of the weights on the model outputs. One is masking the output neurons Ol = fl(·;Wl)
of each block, where fl(·) is the neural network function of block l. This strategy is friendly to
MLP-based neural networks for two reasons: 1) the matrix calculation, such as Wl ∗ x, is relatively
simple so that we can easily recognize the disabled weights; 2) we do not need to apply any special
operation on the optimizer because the output masking will cut off gradient flow naturally. However,
we can not arbitrarily apply the above masking strategy to more expressive network structures, such
as convolution-based networks, because we can not easily distinguish the dependency between
parameters and outputs. Thus, we search for another masking strategy: masking the parameters Wl

with Ml, which permits us to control each parameter accurately.

Specifically, suppose that the total available mask positions of block l are Ml. In this paper, Ml is a
ones matrix, and the entries with 0 mean that we will perform masking. Before training on task i, we
first pre-define the specific mask Mi,l of task i on block l by randomly sampling unmasked positions
from the remaining available mask positions. Then, with the increase of the tasks, the remaining
available mask positions decrease until Ml =

∑I
i=1Mi,l.

5

Selective Weights Forward and Backward Propagation. After obtaining the mask Mi,l, we can
perform forward propagation with masked weights

ϵθ(τ
k
· , k, C) = fL(fL−1(...(f1(·))))

Ol+1 = fl+1(Ol, k;Mi,l+1 ◦Wl+1), O0 = τ i,kszq /τ
i,k
azq
,

(5)

where ϵθ is the noise prediction model introduced in Equation 1, and Mi,l+1 ◦Wl+1 represents the
pairwise product. τ i,kszq and τ i,kazq denote the perturbed state or action sequences of task i at diffusion
step k. Through forward designing, we can selectively activate different weights for different tasks
through the mask Mi,l+1, thus preserving previously acquired knowledge and reserving disengaged
weights for other tasks. Though we can expediently calculate the masked output Ol+1 during
forward propagation with weights or neurons masking, it poses a challenge to distinguishing the
dependency from weights to loss and updating the corresponding weights during the backward
propagation. In order to update the corresponding weights, we realize two methods. 1) Intuitively, we
propose to update the neural network with the sparse optimizer rather than the dense optimizer [15],
where the position and values of the parameters are recorded to update the corresponding weights.
However, in the implementation, we find that the physical time consumption of the sparse optimizer
is intractable (Refer to Table 9 of Appendix B.8 for more details.), which encourages us to find a
more straightforward and convenient method. 2) Thus, we propose extracting and assembling the
corresponding weights at the end of the training rather than updating the corresponding weights
during training. This choice brings two benefits: (1) It can significantly reduce the time consumption
spent on training. (2) It is friendly to implementation on complex network structures.

Weights Assembling. Assembling weights after training permits us to save the total acquired
knowledge and do not need extra memory budgets. Concretely, after training on task i, we will obtain
the weights Wi, which can be extracted with the mask Mi from the total weights W [i ∗Ω], including
all the diffusion model weights. We use Wi to denote the weights related to task i, Ω is the training
step on each CL task, and W [i ∗Ω] represents the total weight checkpoint at training step i ∗Ω. Then,
at the end of the training, we can assemble weights {Wi|i ∈ I} by simply adding these weights
together because of the exclusiveness property, i.e., W =

∑I
i=1Wi =

∑I
i=1Mi ◦W [i ∗ Ω].

5 Experiments

In this section, we will introduce environmental settings, evaluation metrics, and baselines in the
following sections. Then, we will report and analyze the comparison results, ablation study, and
parameter sensitivity analysis. Other implementation details are shown in Appendix A.2 and A.3.

5.1 Environmental Settings

Following previous studies [98], we select MuJoCo Ant-dir and Continual World (CW) to formulate
traditional CL settings with the same state and action spaces. In Ant-dir, we select 10-15-19-25
and 4-18-26-34-42-49, for training and evaluation. In CW, we adopt the task setting of CW10,
which contains 10 robotic manipulation tasks. Additionally, we propose to leverage D4RL tasks [18]
to construct the CL settings with diverse state and action spaces, where the task datasets in D4RL
(Hopper, Walker2d, and HalfCheetah) contains 6 difficulty settings (random, medium, expert, medium-
expert, medium-replay, and full-replay).

5.2 Evaluation Metrics

Considering the various reward structures of different environments, we should adopt different
performance comparison metrics. For Ant-dir, we adopt the average episodic return over all tasks as
the performance comparison, i.e., the final performance P = mean(

∑
iRi) is calculated based on the

task i’s return Ri. In the CW environment, previous works [95, 6] usually adopt the success rate Ψ as
the performance metric. Thus, we adopt the average success rate on all tasks as the final performance,
i.e., P = mean(

∑
iΨi). For the D4RL environments, we use the normalized score Φ [91, 42] as

the metric to calculate the performance P = mean(
∑
i Φi), where Φi =

Ri−Rrandom

Rexpert−Rrandom
∗ 100.

Usually, we can use the interface of these environments to obtain the score expediently.

6

Figure 3: The comparison of VQ-CD and several baselines on the continual tasks setting (Ant-dir
task 4-18-26-34-42-49). We train on each task for 500k steps. We report the normalized evaluation
performance of VQ-CD in the top left corner, where the coordinates, e.g., task 4, represent evaluation
on task 4 at different training tasks. To show the overall performance on all tasks, we show the
normalized evaluation performance on the six tasks after finishing the training at the right part.

Table 2: The feature difference between the aligned features produced by the space alignment module.
We randomly sample thousands of aligned state and action features to calculate the difference.

Method VQ-CD AE-CD

feature difference state difference action difference state difference action difference

[Hopper-fr,Walker2d-fr,Halfcheetah-fr] 8.83±1.98 4.54±0.74 51.31±26.91 14.06±2.09

[Hopper-mr,Walker2d-mr,Halfcheetah-mr] 9.03±1.97 4.45±0.74 48.12±21.94 15.39±3.71

[Hopper-m,Walker2d-m,Halfcheetah-m] 8.53±1.56 4.22±0.79 42.27±24.29 13.59±2.63

[Hopper-me,Walker2d-me,Halfcheetah-me] 8.93±2.00 4.05±0.56 57.91±36.94 13.93±3.20

5.3 Baselines

We select various representative CL baselines, which can be classified into diffusion-based and non-
diffusion-based methods. For example, the diffusion-based methods consist of CRIL [21], DGR [80],
t-DGR [99], MTDIFF [25], CuGRO [63], CoD [35], and CoD variants. The non-diffusion-based
methods include L2M [79], EWC [55], PackNet [66], Finetune, IL-rehearsal [88], and Multitask.
From the perspective of mainstream CL classification standards, these baselines can also be sorted
as rehearsal-based methods (CRIL, DGR, t-DGR, CoD, and IL-rehearsal), regularization-based
methods (L2M, EWC, CuGRO, and Finetune), and structure-based methods (PackNet, Multitask,
and MTDIFF).

5.4 Experimental Results

In this section, we mainly separate the experimental settings into two categories, the traditional CL
settings with the same state and action spaces and the arbitrary CL settings with different state and
action spaces, to show the effectiveness of our method. Besides, we also investigate the influence of
the alignment techniques, such as auto-encoder, variational auto-encoder, vector-quantized variational
auto-encoder (we adopt this in our method). More deeply, we investigate how to deal with the
potential demand for additional tasks beyond the pre-defined task length by releasing nonsignificant
masks or expanding more available weights (Refer to Appendix B.7 for more details.).

The traditional CL settings correspond to the first question we want to answer: Can VQ-CD achieve
superior performance compared with previous methods in the traditional CL tasks?

We use Ant-dir and Continual World [98] to formulate the continual task sequence, where we select
two types of task sequence in Ant-dir and “hammer-v2, push-wall-v2, faucet-close-v2, push-back-v2,
stick-pull-v2, handle-press-side-v2, push-v2, shelf-place-v2, window-close-v2, peg-unplug-side-v2”
to construct CW10 CL setting. For simplicity, we do not align the state and action spaces with
quantized alignment techniques because the traditional CL setting naturally has the same spaces.

7

Figure 4: The comparison on the arbitrary CL settings. We select the D4RL tasks to formulate the CL
task sequence. In order to align the state and action spaces, we use the pre-trained QSA module (the
same as our method) to provide aligned spaces during training. The experiments are conducted on
various dataset qualities, where the results show that our method surpasses the baselines not only at
the expert datasets but also at the non-expert datasets, which illustrates the wide task applicability of
our method. The datasets characteristic “fr”, “mr”, “m”, and “me” represent “full-replay”, “medium-
replay”, “medium”, and “medium-expert”, respectively. “Hopper", “Walker2d", and “Halfcheetah"
are the different environments.

The comparison results between our method and several diffusion-based baselines are shown in
Table 1, where these baselines include rehearsal-based (CoD and IL-rehearsal), parameter-sharing
(CoD-LoRA), multitask training (Multitask CoD and MTDIFF), and representative diffusion RL
methods (Diffuser-w/o rehearsal, CoD-RCR, and DD-w/o rehearsal). Our method surpasses all
baselines in the Ant-dir setting by a large margin in Figure 3, which directly shows the effectiveness
of our method. As another experiment of CL setting with the same state and action spaces, we report
the results in Figure 11. Compared with the upper bound performance of Multitask, our method
reaches the same performance after the CL training. With the increase in new tasks, our method
continually masters new tasks and sustains the performance, while the baselines show varying degrees
of performance attenuation, which can be found in the fluctuation of the curves. Moreover, the
final performance difference between one method and the Multitask method indicates the forgetting
character, which can be reflected by the overall upward trend of these curves. More experiments of
shuffling task orders can be found in Appendix B.2.

The arbitrary CL settings correspond to the second question we want to answer: Can we use the
proposed space alignment method to enable VQ-CD to adapt to incoming tasks with various spaces?

To answer the above question, we select D4RL to formulate the CL task sequence because
of the various state and action spaces, and the results are shown in Figure 4. Considering
the dataset qualities of D4RL [18], we choose different dataset quality settings and report the
mean episode score that is calculated with Ri−Rrandom

Rexpert−Rrandom
∗ 100. Generally, from the four sub-

experiments (a, b, c, and d), we can see that our method (VQ-CD) surpasses these baselines
in all CL settings. Especially in the CL settings (Figure 4 a and b), where the datasets contain

8

low-quality trajectories, our method achieves a large performance margin even compared with
the Multitask method. We can attribute the reason to the return-based action generation that
helps our method distinguish different quality trajectories and generate high-reward actions during

Figure 5: The ablation study of space alignment
module and diffusion network structure. For each
type of ablation study, we fix the other same and
retrain the model on four D4RL CL settings.

evaluation, as well as the selective weights acti-
vation that can reserve the previous knowledge
and reduce forgetting. While other methods just
possess the ability to continue learning and lack
the ability to separate different qualities and ac-
tions, thus leading to poor performance. For
trajectory qualities that are similar across the
datasets (Figure 4 c and d), we can see lower
improvement gains between our method and
baselines. However, it should be noted that our
method can still reach better performance than
other baselines. Apart from the pre-trained QSA
alignment, we also conduct experiments (Fig-
ure 12) on baselines that adopt padding to align
state and action spaces in Appendix B.6.

5.5 Ablation Study

In this section, we want to investigate the influence of different modules of VQ-CD. Thus, the
experiments contain two investigation directions: space alignment module ablation study and diffuser
network structure ablation study. To show the importance of vector quantization, we change the
space alignment module with auto-encoder (AE) and variational auto-encoder (VAE). Based on this
modification, we retrain our method and report the results in Figure 5. The results show significant
improvements in the D4RL CL settings, illustrating the importance and effectiveness of vector
quantization in our method. Compared with AE-CD, VAE-CD performs poorly on all D4RL CL
settings. The reason lies in that the implicit Gaussian constraint on each dimension may hurt the
space alignment. Compared with the codebook in VQ-CD, AE-CD may cause a bigger difference
between aligned features produced by AE (shown in Table 2), posing challenges for the diffusion
model to model the distribution of the aligned features and leading to low performance. As for
the diffuser network structure, we conduct the selective weights activation on the mlp-based and
unet-based diffusion models. The latter structure is beneficial to making decisions with temporal
information inside the trajectories, leading to higher performance evaluation.

5.6 Parameter Sensitivity Analysis

Figure 6: The effects of different codebook sizes about the states.

When performing on
the aligned feature
with diffusion models,
the hyperparameters of
the state and action of
the quantized spaces
alignment module
matter. Usually, the
complexity of states
is more significant
than the actions, so the
codebook size controls
the performance of reconstruction. Thus, we investigate the effect of different codebook sizes
and report the results in Figure 6. Obviously, a small codebook size limits performance, and a
negative effect arises when it exceeds a certain value, such as 512. Additionally, we also conduct
the experiments of parameter sensitivity analysis on actions latent and put the resutls in Figure 10,
Appendix B.3.

9

6 Discussion

The Interplay of VQ and CD. In this paper, we investigate broadening the application scenarios
of the same state and action spaces to tasks of arbitrary state and action spaces by space alignment.
Vector quantization is verified as one effective way to achieve space alignment compared with AE,
VAE, and padding. Furthermore, we adopt the diffusion model to perform continual learning based
on VQ due to its strong model expressiveness and competitive performance. The ablation study
illustrates that integrating VQ and CD induces the proposed powerful method VQ-CD.

The Intuition of Constraint in QSA Module. In Equation (4), We add a constraint to encourage a
more concentrated distribution of the quantized representation vectors as shown in Table 2, which
benefits the diffusion model in learning the data distribution in a limited range [30, 4]. However,
this may not necessarily benefit other methods that do not focus on modeling distributions (Refer
to Figure 4) because concentrated representations can make originally dissimilar state and action
vectors from different tasks appear more similar, making them harder to distinguish and learn. We
use the clip operation rather than convert the constraint to a penalty because our goal is to ensure that
the magnitude of the quantized representation vectors does not exceed a certain value, rather than
minimize the norm of the constraint. More discussion can be found in Appendix C.

7 Conclusion and Limitation

In this paper, we propose Vector-Quantized Continual Diffuser, called VQ-CD, which opens the door
to training on any CL task sequences. The advantage of this general ability to adapt to any CL task
sequences stems from the two sections of our framework: the selective weights activation diffuser
(SWA) module and the quantized spaces alignment (QSA) module. SWA preserves the previous
knowledge by separating task-related parameters with task-related masking. QSA aligns the different
state and action spaces so that we can perform training in the same aligned space. Finally, we show
the superiority of our method by conducting extensive experiments, including conventional CL task
settings (identical state and action spaces) and general CL task settings (various state and action
spaces). The results illustrate that our method achieves the SOTA performance by comparing with 17
baselines on 15 continual learning task settings. For limitations, our method belongs to task-aware
CORL and is not suitable for task boundary-agnostic CORL, where an additional mechanism is
needed to detect whether a task change has occurred. Clearly, this demands extra task similarity
measurement mechanisms for detection. This is currently a limitation of our approach. However, we
are confident that further progress will be reflected in our future research.

Acknowledgement

We would like to thank Lijun Bian for her contributions to the figures and tables of this manuscript.
We thank Siyuan Guo for his contributions to the writing suggestions of this manuscript. This
work is supported in part by the National Key R&D Program of China (No. 2023YFF0905400,
No. 2021ZD0112500); the National Natural Science Foundation of China (No. 62476110, No.
U2341229); the National Key R&D Program of China (No. 2023YFF0905400, No. 2021ZD0112500);
the Key R&D Project of Jilin Province (No. 20240304200SF); NSFC Grant (No. 62576364).

10

References
[1] David Abel, André Barreto, Benjamin Van Roy, Doina Precup, Hado van Hasselt, and Satinder

Singh. A definition of continual reinforcement learning. arXiv preprint arXiv:2307.11046,
2023.

[2] Suzan Ece Ada, Erhan Oztop, and Emre Ugur. Diffusion policies for out-of-distribution
generalization in offline reinforcement learning. IEEE Robotics and Automation Letters, 2024.

[3] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective
on offline reinforcement learning. In International conference on machine learning, pages
104–114. PMLR, 2020.

[4] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit
Agrawal. Is conditional generative modeling all you need for decision-making? arXiv
preprint arXiv:2211.15657, 2022.

[5] Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
11254–11263, 2019.

[6] Nishanth Anand and Doina Precup. Prediction and control in continual reinforcement learning.
arXiv preprint arXiv:2312.11669, 2023.

[7] Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement
learning with offline data. In International Conference on Machine Learning, pages 1577–1594.
PMLR, 2023.

[8] Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for
continual learning and streaming. Advances in neural information processing systems, 33:
14879–14890, 2020.

[9] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

[10] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Effi-
cient lifelong learning with a-gem. arXiv preprint arXiv:1812.00420, 2018.

[11] Chang Chen, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, and Sungjin Ahn. Simple
hierarchical planning with diffusion. arXiv preprint arXiv:2401.02644, 2024.

[12] Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement
learning via high-fidelity generative behavior modeling. arXiv preprint arXiv:2209.14548,
2022.

[13] Xinyue Chen, Zijian Zhou, Zheng Wang, Che Wang, Yanqiu Wu, and Keith Ross. Bail:
Best-action imitation learning for batch deep reinforcement learning. Advances in Neural
Information Processing Systems, 33:18353–18363, 2020.

[14] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in neural information processing systems, 34:8780–8794, 2021.

[15] P Kingma Diederik. Adam: A method for stochastic optimization. (No Title), 2014.

[16] Zihan Ding, Amy Zhang, Yuandong Tian, and Qinqing Zheng. Diffusion world model. arXiv
preprint arXiv:2402.03570, 2024.

[17] Mohamed Elsayed and A Rupam Mahmood. Addressing loss of plasticity and catastrophic
forgetting in continual learning. arXiv preprint arXiv:2404.00781, 2024.

[18] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[19] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement
learning. Advances in neural information processing systems, 34:20132–20145, 2021.

11

[20] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International conference on machine learning, pages 2052–2062.
PMLR, 2019.

[21] Chongkai Gao, Haichuan Gao, Shangqi Guo, Tianren Zhang, and Feng Chen. Cril: Continual
robot imitation learning via generative and prediction model. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 6747–5754. IEEE, 2021.

[22] Rui Gao and Weiwei Liu. Ddgr: Continual learning with deep diffusion-based generative
replay. In International Conference on Machine Learning, pages 10744–10763. PMLR, 2023.

[23] Dibya Ghosh, Anurag Ajay, Pulkit Agrawal, and Sergey Levine. Offline rl policies should be
trained to be adaptive. In International Conference on Machine Learning, pages 7513–7530.
PMLR, 2022.

[24] Assaf Hallak and Shie Mannor. Consistent on-line off-policy evaluation. In International
Conference on Machine Learning, pages 1372–1383. PMLR, 2017.

[25] Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao,
and Xuelong Li. Diffusion model is an effective planner and data synthesizer for multi-task
reinforcement learning. arXiv preprint arXiv:2305.18459, 2023.

[26] Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao,
and Xuelong Li. Diffusion model is an effective planner and data synthesizer for multi-task
reinforcement learning. Advances in neural information processing systems, 36, 2024.

[27] Longxiang He, Deheng Ye, Junbo Tan, Xueqian Wang, and Li Shen. Robust policy expansion
for offline-to-online rl under diverse data corruption. arXiv preprint arXiv:2509.24748, 2025.

[28] Charles A Hepburn and Giovanni Montana. Model-based trajectory stitching for improved
behavioural cloning and its applications. Machine Learning, 113(2):647–674, 2024.

[29] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

[30] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–6851, 2020.

[31] Jifeng Hu, Yanchao Sun, Hechang Chen, Sili Huang, Yi Chang, Lichao Sun, et al. Distribu-
tional reward estimation for effective multi-agent deep reinforcement learning. Advances in
Neural Information Processing Systems, 35:12619–12632, 2022.

[32] Jifeng Hu, Yanchao Sun, Sili Huang, SiYuan Guo, Hechang Chen, Li Shen, Lichao Sun,
Yi Chang, and Dacheng Tao. Instructed diffuser with temporal condition guidance for offline
reinforcement learning. arXiv preprint arXiv:2306.04875, 2023.

[33] Jifeng Hu, Sili Huang, Siyuan Guo, Zhaogeng Liu, Li Shen, Lichao Sun, Hechang
Chen, Yi Chang, and Dacheng Tao. Decision flow policy optimization. arXiv preprint
arXiv:2505.20350, 2025.

[34] Jifeng Hu, Sili Huang, Zhejian Yang, Shengchao Hu, Li Shen, Hechang Chen, Lichao Sun,
Yi Chang, and Dacheng Tao. Analytic energy-guided policy optimization for offline reinforce-
ment learning. arXiv preprint arXiv:2505.01822, 2025.

[35] Jifeng Hu, Li Shen, Sili Huang, Zhejian Yang, Hechang Chen, Lichao Sun, Yi Chang, and
Dacheng Tao. Continual diffuser (cod): Mastering continual offline rl with experience rehearsal.
IEEE Transactions on Neural Networks and Learning Systems, 2025.

[36] Shengchao Hu, Ziqing Fan, Chaoqin Huang, Li Shen, Ya Zhang, Yanfeng Wang, and Dacheng
Tao. Q-value regularized transformer for offline reinforcement learning. In International
Conference on Machine Learning, pages 19165–19181. PMLR, 2024.

[37] Shengchao Hu, Ziqing Fan, Li Shen, Ya Zhang, Yanfeng Wang, and Dacheng Tao. Harmodt:
Harmony multi-task decision transformer for offline reinforcement learning. In International
Conference on Machine Learning, pages 19182–19197. PMLR, 2024.

12

[38] Shengchao Hu, Li Shen, Ya Zhang, Yixin Chen, and Dacheng Tao. On transforming reinforce-
ment learning with transformers: The development trajectory. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 46(12):8580–8599, 2024.

[39] Shengchao Hu, Yuhang Zhou, Ziqing Fan, Jifeng Hu, Li Shen, Ya Zhang, and Dacheng
Tao. Continual task learning through adaptive policy self-composition. arXiv preprint
arXiv:2411.11364, 2024.

[40] Shengchao Hu, Li Shen, Ya Zhang, and Dacheng Tao. Graph decision transformer for offline
reinforcement learning. SCIENCE CHINA-INFORMATION SCIENCES, 68(6), 2025.

[41] Shengchao Hu, Wanru Zhao, Weixiong Lin, Li Shen, Ya Zhang, and Dacheng Tao. Prompt
tuning with diffusion for few-shot pre-trained policy generalization. In Proceedings of the 24th
International Conference on Autonomous Agents and Multiagent Systems, pages 2556–2558,
2025.

[42] Kaixin Huang, Li Shen, Chen Zhao, Chun Yuan, and Dacheng Tao. Solving continual offline
reinforcement learning with decision transformer. arXiv preprint arXiv:2401.08478, 2024.

[43] Sili Huang, Bo Yang, Hechang Chen, Haiyin Piao, Zhixiao Sun, and Yi Chang. Ma-trex:
Mutli-agent trajectory-ranked reward extrapolation via inverse reinforcement learning. In
International Conference on Knowledge Science, Engineering and Management, pages 3–14.
Springer, 2020.

[44] Sili Huang, Yanchao Sun, Jifeng Hu, Siyuan Guo, Hechang Chen, Yi Chang, Lichao Sun, and
Bo Yang. Learning generalizable agents via saliency-guided features decorrelation. Advances
in Neural Information Processing Systems, 36:39363–39381, 2023.

[45] Sili Huang, Hechang Chen, Haiyin Piao, Zhixiao Sun, Yi Chang, Lichao Sun, and Bo Yang.
Boosting weak-to-strong agents in multiagent reinforcement learning via balanced ppo. IEEE
Transactions on Neural Networks and Learning Systems, 2024.

[46] Sili Huang, Jifeng Hu, Zhejian Yang, Liwei Yang, Tao Luo, Hechang Chen, Lichao Sun, and
Bo Yang. Decision mamba: Reinforcement learning via hybrid selective sequence modeling.
Advances in Neural Information Processing Systems, 37:72688–72709, 2024.

[47] Sili Huang, Jifeng Hu, Hechang Chen, Peng Cui, Haiyin Piao, Lichao Sun, and Bo Yang.
Generalizable causal reinforcement learning for out-of-distribution environments. IEEE
Transactions on Industrial Informatics, 2025.

[48] Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion
for flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

[49] Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning.
In International conference on machine learning, pages 652–661. PMLR, 2016.

[50] Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies
for offline reinforcement learning. Advances in Neural Information Processing Systems, 36,
2024.

[51] Christos Kaplanis, Murray Shanahan, and Claudia Clopath. Policy consolidation for continual
reinforcement learning. arXiv preprint arXiv:1902.00255, 2019.

[52] Samuel Kessler, Jack Parker-Holder, Philip Ball, Stefan Zohren, and Stephen J Roberts.
Unclear: A straightforward method for continual reinforcement learning. In Proceedings of
the 37th International Conference on Machine Learning, 2020.

[53] Samuel Kessler, Jack Parker-Holder, Philip Ball, Stefan Zohren, and Stephen J Roberts. Same
state, different task: Continual reinforcement learning without interference. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36, pages 7143–7151, 2022.

[54] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

13

[55] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526, 2017.

[56] Tatsuya Konishi, Mori Kurokawa, Chihiro Ono, Zixuan Ke, Gyuhak Kim, and Bing Liu.
Parameter-level soft-masking for continual learning. In International Conference on Machine
Learning, pages 17492–17505. PMLR, 2023.

[57] Lukasz Korycki and Bartosz Krawczyk. Class-incremental experience replay for continual
learning under concept drift. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 3649–3658, 2021.

[58] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

[59] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning
for offline reinforcement learning. Advances in Neural Information Processing Systems, 33:
1179–1191, 2020.

[60] Dongsu Lee, Chanin Eom, and Minhae Kwon. Ad4rl: Autonomous driving benchmarks for
offline reinforcement learning with value-based dataset. arXiv preprint arXiv:2404.02429,
2024.

[61] Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on
Robot Learning, pages 1702–1712. PMLR, 2022.

[62] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review. and Perspectives on Open Problems, 5, 2020.

[63] Jinm ei Liu, Wenbin Li, Xiangyu Yue, Shilin Zhang, Chunlin Chen, and Zhi Wang. Continual
offline reinforcement learning via diffusion-based dual generative replay. arXiv preprint
arXiv:2404.10662, 2024.

[64] Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive
energy prediction for exact energy-guided diffusion sampling in offline reinforcement learning.
In International Conference on Machine Learning, pages 22825–22855. PMLR, 2023.

[65] Cong Lu, Philip Ball, Yee Whye Teh, and Jack Parker-Holder. Synthetic experience replay.
Advances in Neural Information Processing Systems, 36, 2024.

[66] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by
iterative pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pages 7765–7773, 2018.

[67] Imad Eddine Marouf, Subhankar Roy, Enzo Tartaglione, and Stéphane Lathuilière. Weighted
ensemble models are strong continual learners. arXiv preprint arXiv:2312.08977, 2023.

[68] Christos N Mavridis and John S Baras. Vector quantization for adaptive state aggregation
in reinforcement learning. In 2021 American Control Conference (ACC), pages 2187–2192.
IEEE, 2021.

[69] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[70] Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans.
Algaedice: Policy gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.

[71] Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

[72] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic
models. In International Conference on Machine Learning, pages 8162–8171. PMLR, 2021.

14

[73] Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu,
Sergio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating
human behaviour with diffusion models. arXiv preprint arXiv:2301.10677, 2023.

[74] Liangzu Peng, Paris Giampouras, and René Vidal. The ideal continual learner: An agent that
never forgets. In International Conference on Machine Learning, pages 27585–27610. PMLR,
2023.

[75] Daiqing Qi, Handong Zhao, and Sheng Li. Better generative replay for continual federated
learning. arXiv preprint arXiv:2302.13001, 2023.

[76] Yunpeng Qing, Jingyuan Cong, Kaixuan Chen, Yihe Zhou, Mingli Song, et al. Advantage-
aware policy optimization for offline reinforcement learning. arXiv preprint arXiv:2403.07262,
2024.

[77] Aurko Roy, Ashish Vaswani, Arvind Neelakantan, and Niki Parmar. Theory and experiments
on vector quantized autoencoders. arXiv preprint arXiv:1805.11063, 2018.

[78] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
arXiv preprint arXiv:1511.05952, 2015.

[79] Thomas Schmied, Markus Hofmarcher, Fabian Paischer, Razvan Pascanu, and Sepp Hochreiter.
Learning to modulate pre-trained models in rl. Advances in Neural Information Processing
Systems, 36, 2024.

[80] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep
generative replay. Advances in neural information processing systems, 30, 2017.

[81] Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael
Neunert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing
what worked: Behavioral modelling priors for offline reinforcement learning. arXiv preprint
arXiv:2002.08396, 2020.

[82] James Seale Smith, Yen-Chang Hsu, Lingyu Zhang, Ting Hua, Zsolt Kira, Yilin Shen, and
Hongxia Jin. Continual diffusion: Continual customization of text-to-image diffusion with
c-lora. arXiv preprint arXiv:2304.06027, 2023.

[83] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

[84] Yanchao Sun, Shuang Ma, Ratnesh Madaan, Rogerio Bonatti, Furong Huang, and Ashish
Kapoor. Smart: Self-supervised multi-task pretraining with control transformers. arXiv
preprint arXiv:2301.09816, 2023.

[85] Gido M Van de Ven, Tinne Tuytelaars, and Andreas S Tolias. Three types of incremental
learning. Nature Machine Intelligence, 4(12):1185–1197, 2022.

[86] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances
in neural information processing systems, 30, 2017.

[87] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[88] Weikang Wan, Yifeng Zhu, Rutav Shah, and Yuke Zhu. Lotus: Continual imitation learning
for robot manipulation through unsupervised skill discovery. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pages 537–544. IEEE, 2024.

[89] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020.

[90] Yuanfu Wang, Chao Yang, Ying Wen, Yu Liu, and Yu Qiao. Critic-guided decision transformer
for offline reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 15706–15714, 2024.

15

[91] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive
policy class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

[92] Zhenyi Wang, Li Shen, Tiehang Duan, Qiuling Suo, Le Fang, Wei Liu, and Mingchen Gao.
Distributionally robust memory evolution with generalized divergence for continual learning.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

[93] Zhi Wang, Chunlin Chen, and Daoyi Dong. A dirichlet process mixture of robust task models
for scalable lifelong reinforcement learning. IEEE Transactions on Cybernetics, 2022.

[94] Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg,
Scott E Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic
regularized regression. Advances in Neural Information Processing Systems, 33:7768–7778,
2020.

[95] Maciej Wołczyk, Michał Zajac, Razvan Pascanu, Łukasz Kucinski, and Piotr Miłoś. Continual
world: A robotic benchmark for continual reinforcement learning. Advances in Neural
Information Processing Systems, 34:28496–28510, 2021.

[96] Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning:
Bridging sample-efficient offline and online reinforcement learning. Advances in neural
information processing systems, 34:27395–27407, 2021.

[97] Shin’ya Yamaguchi and Takuma Fukuda. On the limitation of diffusion models for synthesizing
training datasets. arXiv preprint arXiv:2311.13090, 2023.

[98] Yijun Yang, Tianyi Zhou, Jing Jiang, Guodong Long, and Yuhui Shi. Continual task allocation
in meta-policy network via sparse prompting. In International Conference on Machine
Learning, pages 39623–39638. PMLR, 2023.

[99] William Yue, Bo Liu, and Peter Stone. t-dgr: A trajectory-based deep generative replay method
for continual learning in decision making. arXiv preprint arXiv:2401.02576, 2024.

[100] Yang Yue, Bingyi Kang, Xiao Ma, Zhongwen Xu, Gao Huang, and Shuicheng Yan. Boosting
offline reinforcement learning via data rebalancing. arXiv preprint arXiv:2210.09241, 2022.

[101] Mengyao Zhai, Lei Chen, Frederick Tung, Jiawei He, Megha Nawhal, and Greg Mori. Lifelong
gan: Continual learning for conditional image generation. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 2759–2768, 2019.

[102] Qizhe Zhang, Bocheng Zou, Ruichuan An, Jiaming Liu, and Shanghang Zhang. Split & merge:
Unlocking the potential of visual adapters via sparse training. arXiv preprint arXiv:2312.02923,
2023.

[103] Ruiyi Zhang, Bo Dai, Lihong Li, and Dale Schuurmans. Gendice: Generalized offline
estimation of stationary values. arXiv preprint arXiv:2002.09072, 2020.

[104] Tiantian Zhang, Xueqian Wang, Bin Liang, and Bo Yuan. Catastrophic interference in
reinforcement learning: A solution based on context division and knowledge distillation. IEEE
Transactions on Neural Networks and Learning Systems, 2022.

[105] Tiantian Zhang, Zichuan Lin, Yuxing Wang, Deheng Ye, Qiang Fu, Wei Yang, Xueqian Wang,
Bin Liang, Bo Yuan, and Xiu Li. Dynamics-adaptive continual reinforcement learning via
progressive contextualization. IEEE Transactions on Neural Networks and Learning Systems,
2023.

[106] Zhengbang Zhu, Minghuan Liu, Liyuan Mao, Bingyi Kang, Minkai Xu, Yong Yu, Stefano
Ermon, and Weinan Zhang. Madiff: Offline multi-agent learning with diffusion models. arXiv
preprint arXiv:2305.17330, 2023.

16

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer to Section 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

17

Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to Section 5 and Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

18

Answer: [Yes]
Justification: The source code is available at here.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to Appendix A.2, Appendix A.3, Appendix A.5, and Appendix A.6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please refer to Section 5.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

19

https://anonymous.4open.science/r/Vector_Quantized_Continual_Diffuser-A1D1/README.md
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to Appendix A.3 and Appendix A.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

20

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

21

paperswithcode.com/datasets

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

22

Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

23

https://neurips.cc/Conferences/2025/LLM

Appendix of “Tackling Continual Offline RL through Selective Weights Activation on
Aligned Spaces”

A Algorithm

A.1 Pseudocode of VQ-CD

Algorithm 1: Vector-Quantized Continual Diffuser (VQ-CD)
Input: Noise prediction model ϵθ, inverse dynamic model finv,ψ, state and action quantized

model fq(θe, θd, θq), tasks set Mi, i ∈ {1, ..., I}, each task training step Ω, max
diffusion step K, sequence length Te, state dimension ds, action dimension da, reply
buffer Di, i ∈ {1, ..., I}, noise schedule α0:K and β0:K

Output: ϵθ, finv,ψ , θe, θd, θq
1 Initialization: θ, ψ, θe, θd, and θq
2 Separate the state-action trajectories of Di, i ∈ {1, ..., I} into state-action sequences with length

Te and calculate the discounted returns Rit =
∑∞
t′=t γ

t′−trt′ for each step t
3 for each task i do
4 // Quantized Spaces Alignment (QSA) Pretraining
5 for each train epoch do
6 for each train step do
7 Sample states and actions from task i’s buffer Di

8 Calculate the quantization loss and reconstruction loss
9 Updating the parameters θe of f iV QE(·; θe), θd of f iV QD(·; θd), and θq of f iθq (·) by

solving the problem of Equation 4
10 end
11 end
12 Save the task i’s well-trained f iV QE(·; θe), f iV QD(·; θd), and f iθq (·)
13 // Selective Weights Activation (SWA) Diffuser Training
14 Generate the task-related mask Mi for task i
15 for each train epoch do
16 for each train step m do
17 Sample b sequences τ0i = {sit:t+Te

, ait:t+Te
, Rit:t+Te

} ∈ RTe×(ds+da+1) from task
i’s buffer Di

18 Obtain the quantized state and action feature sizq = f is,θq (f
i
V QEs

(si; θe)) and
aizq = f ia,θq (f

i
V QEa

(ai; θe)) with the QSA module
19 Train the inverse dynamic model finv according to Equation 3
20 Formulate sizq , a

i
zq as sequences τ i,0zq = {sizq,t:t+Te

, aizq,t:t+Te
}

21 Sample the corresponding discounted returns Rit:t+Te
from task i’s buffer Di

22 Sample diffusion time step k ∼ Uniform(K) and return coefficient b ∼ B(λ)
23 Sample Gaussian noise ϵ ∼ N (0, I), ϵ ∈ Rb×Te×dszq

24 Obtain τ i,ks,zq =
√
ᾱkτ

i,0
s,zq +

√
1− ᾱkϵ

25 Perform the forward propagation with Equation 5
26 Train ϵθ according to Equation 1
27 end
28 end
29 Save task i’s related models as ϵi∗Ω,θ
30 end
31 // Weights Assembling
32 Construct new models ϵ̃θ with the same structure as ϵθ
33 for each task i do
34 Extract the task-related parameters Wi with mask information Mi from ϵi∗Ω,θ
35 Fill the corresponding task-related parameters Wi =Mi ◦Wi into ϵ̃θ
36 end

24

Algorithm 2: Evaluation Process
1 for For each environmental step t in task i do
2 Receive the environmental state sit
3 Set the return condition R = 0.8, st,zq = f is,θq (f

i
V QEs

(sit; θe))

4 Construct τ̂Kszq = [st,zq , ŝ
K
t+1,zq , ŝ

K
t+2,zq , ...], where ŝKt′,zq ∼ N (0, I) for t′ > t.

5 for For k from K to 1 do
6 Calculate ϵ̂ with ϵθ
7 Obtain τ̂k−1

szq
with Equation 2

8 Replace the first state of τ̂k−1
szq

with st,zq
9 end

10 Extract [st,zq , ŝt+1,zq] from τ̂0szq
11 Obtain at,zq = finv(st,zq , ŝt+1,zq)

12 Interact with ait = f iV QDa
(at,zq ; θd)

13 end

The training of VQ-CD (Pseudocode is shown in Algorithm 1) contains three stages. 1) We first
pre-train the QSA module for space alignment, as shown in lines 4-12, where we mainly want to
solve the constrained problem of Equation 4. 2) Then, in lines 13-29, for each task i, we generate the
task-related mask Mi followed by a standard diffusion model training process (Refer to Equation 1
and Equation 5 for the training loss) on the aligned state and action spaces. 3) Finally, we assemble
the task-related weights Wi together with the mask information {Mi|i ∈ [1 : I]} according to
W =

∑
Mi ◦W [i ∗ Ω], where Ω is the training steps for each CL task, and W [i ∗ Ω] is the weights

checkpoints of ϵi∗Ω,θ. It is noted that the pre-training of the QSA module and the training of the
SWA module can be merged together, i.e., for each task i, we can first train the QSA module related
to task i and then train the SWA module. The source code is available at https://github.com/JF-
Hu/Vector_Quantized_Continual_Diffuser.

A.2 Hyperparameters

We classify the hyperparameters shown in Table 3 into three categories: QSA module-related, SWA
module-related, and training-related hyperparameters. We use the learning rate schedule when pre-
training the QSA module, so the VQ learning rate decreases from 1e-3 to 1e-4. In our experiments,
the maximum diffusion steps are set as 200, and the default structure is Unet. Usually, it is time-
consuming for the diffusion-based model to generate actions in RL. Thus, we consider the speed-up
technique DDIM [83] and realize it in our method to improve the generation efficiency during
evaluation. For all models, we use the Adam [54] optimizer to perform parameter updating.

A.3 Computation

We conduct the experiments on NVIDIA GeForce RTX 3090 GPUs and NVIDIA A10 GPUs, and the
CPU type is Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz. Each run of the experiments spanned
about 24-72 hours, depending on the algorithm and the length of task sequences.

A.4 Generation Speed-up Technique

The time and memory consumption of diffusion models is attributed to the mechanism of the diffusion
generation process that requires multiple computation rounds to generate data [30]. Fortunately,
previous studies provide useful speed-up strategies to accelerate the generation process [72, 83]. In
this paper, we adopt DDIM as the default generation speed-up technique and reduce the reverse
diffusion generation step to 10 compared to the original 200 generation steps. In Table 4, we use the CL
setting of Ant-dir task-4-18-26-34-42-49 as an example to compare the time consumption of different
generation steps. Compared with the original 200 diffusion steps, we can see that incorporating
DDIM will significantly (19.76×) improve the efficiency of generation. In the experiments, we find
that 10 diffusion steps setting performs well on performance and generation efficiency. Thus, we set
the default sampling speed-up stride to 20, and the diffusion step is 200/20=10 steps.

25

Table 3: The hyperparameters of VQ-CD.
Hyperparameter Value

QSA section

network backbone MLP
hidden dimension of QSA module 256
commitment cost coefficient 0.25
codebook embedding limit ρ 3.0
state codebook size per task 512
number of state latent 10
state latent dimension 2
action codebook size per task 512
number of action latent 5
action latent dimension 2
alignment type VQ/AE/VAE
VQ learning rate [1e-4,1e-3]

SWA section

network backbone Unet/MLP
hidden dimension 256
sequence length Te 8
diffusion learning rate 3e-4
guidance value 0.95
mask rate 1/I
condition dropout λ 0.25
max diffusion step K 200
sampling speed-up stride 20
condition guidance ω 1.2
sampling type of diffusion DDIM

Training

loss function MSE
batch size 32
optimizer Adam
discount factor γ 0.99

Table 4: The comparison of generation speed with different generation steps under the CL setting of
Ant-dir task-4-18-26-34-42-49. In the main body of our manuscript, we use the 10 diffusion steps
setting for all experiments.

Diffusion steps 200 (original) 100 50 25 20 10

sampling speed-up stride 1 (original) 2 4 8 10 20

Time consumption of
per generation (s) 5.73±0.29 2.88±0.21 1.41±0.16 0.71±0.18 0.58±0.17 0.29±0.15

Speed-up ratio 1× 1.99× 4.06× 8.07× 9.88× 19.76×

A.5 Computational Cost Analysis

In Table 5, we report the GPU memory consumption during the training process. We mainly consider
the experiments on the D4RL, Ant-dir, and CW CL tasks. We can change the first block of the
diffusion model to make our model suitable for a longer CL task sequence. For example, we expand
the dimension length from 512 to 1024 when switching the CL training task from ‘task-10-15-19-25’
to ‘task-4-18-26-34-42-49’.

We compare the computational cost, including generation time and memory consumption, with
diffusion-based methods, such as CuGRO, and transformer-based methods, such as L2M, and report
the results in Table 6 and Table 7. The results show that, compared to the baselines, our method
achieves lower time overhead and better performance with similar memory usage.

26

Table 5: The GPU memory consumption.

domain CL task setting GPU memory consumption (GB)

D4RL

[Hopper-fr,Walker2d-fr,Halfcheetah-fr] 4.583
[Hopper-mr,Walker2d-mr,Halfcheetah-mr] 4.583
[Hopper-m,Walker2d-m,Halfcheetah-m] 4.583
[Hopper-me,Walker2d-me,Halfcheetah-me] 4.583

Ant-dir task-10-15-19-25 4.711
task-4-18-26-34-42-49 5.955

CW CW10 5.897

Table 6: The computational cost of generation speed with different generation steps in D4RL [Hopper-
m,Walker2d-m,Halfcheetah-m] tasks.

method base VQ-CD CuGRO

time consumption 5.73 0.29 0.33
speed-up ratio 1× 19.8× 17.4×
score - 45.4 27.6

Table 7: The comparison of GPU memory consumption. We conduct the experiment with NVIDIA
GeForce RTX 3090 GPUs and Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz.

domain CL task setting Method
GPU

overhead
(GB)

Parameters
size
(M)

Physical
training
time (h)

Performance

D4RL [Hopper-fr,Walker2d-fr,Halfcheetah-fr] VQ-CD 4.6 89.1 55 48.0
D4RL [Hopper-fr,Walker2d-fr,Halfcheetah-fr] L2M 6.7 57.8 92 13.4
D4RL [Hopper-fr,Walker2d-fr,Halfcheetah-fr] L2M-large 8.8 96.0 94 16.0

A.6 Baselines Implementation

All the comparison methods used in this paper utilize their official codebases. Specifically,

• For L2M, we use the official source code: https://github.com/ml-jku/L2M

• For CuGRO, we use the official source code: https://github.com/NJU-RL/CuGRO

• For CoD, we use the official source code: https://github.com/JF-Hu/Continual_Diffuser

• For MTDIFF, we use the official source code: https://openreview.net/forum?id=fAdMly4ki5

A.7 Network Details

In the diffusion model (SWA module), we utilize a UNet network structure, incorporating residual
connections at both the input and output of each block. Additionally, residual connections are
applied between the down-sampling and up-sampling blocks, meaning that the output of the down-
sampling block serves as the input to the up-sampling block. The convolution kernels in the UNet are
one-dimensional, with their shapes corresponding to the shape of the mask matrix.

In the QSA module, there are no shared parameters. The primary purpose of the QSA module is to
align the state and action spaces across different environments. Consequently, for different tasks,
the internal components of the QSA module, vector quantized encoder (VQE), vector quantized
decoder (VQD), and codebook are task-specific, and none of their parameters are shared. Thanks to
the alignment provided by the QSA module, the inverse dynamics model in the SWA module can
be shared. This is because the state and action spaces of different environments are mapped into an
alignment space with the same value range.

27

https://github.com/ml-jku/L2M
https://github.com/NJU-RL/CuGRO
https://github.com/JF-Hu/Continual_Diffuser
https://openreview.net/forum?id=fAdMly4ki5

Figure 7: The QSA module loss under different codebook sizes about states. We explore five
codebook size settings: 128, 256, 512, 768, and 1024. The red line represents the experimental
codebook size setting for states.

Figure 8: The QSA module loss under different latent numbers about actions. The setting includes 3,
5, 7, 9, and 11, which correspond to the aligned action space sizes 6, 10, 14, 18, and 22. The red line
represents the experimental latent numbers setting for actions.

B Additional Experiments

B.1 QSA Module Loss Analysis

Under the same hyperparameter settings in Section 5.6, we report the loss of the QSA Module to
investigate the effects of codebook size and latent number. For the states, we investigate the influence
of codebook size, where we set codebook size as 128, 256, 512, 768, 1024, and select D4RL CL
setting [Hopper-fr, Walker2d-fr, Halfcheetah-fr] and [Hopper-mr, Walker2d-mr, Halfcheetah-mr] as
the example. The results are shown in Figure 7, where we train the QSA module on each task for 5e5
steps. We can see that for states, a codebook size of 512 is good enough for aligning the different
tasks’ state spaces. A larger codebook size, such as 768 and 1024 in Figure 7 a and b, will not bring
significant loss improvements. Smaller codebook sizes can not provide sufficient latent vectors to
map the state spaces to a uniform space.

For the action, we select the latent number to explore the QSA action loss and report the results
in Figure 8. We can see the same trend that has been seen in QSA state loss (Figure 7). Though
the lower loss value of the more latent number indicates that we should use more action latent
vectors, we find that the gap between action latent number settings 5 and 7 is small when we
increase computation resources. Besides, we also see inconspicuous performance gains in the final
performance in Figure 10, which urges us to use 5 as the default action latent number setting. For the
action latent vector dimension, we directly use 2 as the default setting.

28

Figure 9: The experiments of Ant-dir with shuffled task order. We investigate the influence of shuffled
task order in the Ant-dir environment, where the experiments include inserting new tasks into the
predefined task order ‘4-18-26-34-42-49’ and disrupting the tasks order.

Figure 10: The effects of the number of latent vectors about the actions.

B.2 Experiments of Task Order Shuffling

To investigate the influence of task order in CORL, we choose Ant-dir as the testbed and change the
task order for new CL training. We change the task order by inserting new tasks into the predefined
task order ‘4-18-26-34-42-49’ and disrupting the task order. We can see from the results shown in
Figure 9 that our method achieves the best performance in almost all CL task orders. The task order
will affect the final performance of other baselines. For example, CRIL performs better in the task
orders ‘task 18-4-26-34-42-49’ and ‘task 49-42-34-26-18-4’ than in other task order experiments.
Another example is PackNet, which achieves the best performance only in the task order ‘task

29

Figure 11: The experiments on the CW10 tasks, which contain various robotics control tasks. We train
each method on each task for 5e5 steps and use the mean success rate on all tasks as the performance
metric. Generally, we can see the superiority of our method from the above figure.

34-18-4-26-42-49’. Different from the baselines, whose performance fluctuates with the changing of
task orders, our method (VQ-CD) shows stable training performance no matter what task orders are
defined.

B.3 Experiments of Parameter Sensitivity

In Figure 6 we investigate the effect of different codebook sizes and find that a small codebook size
limits performance, and a negative effect arises when it exceeds a certain value. For the actions, we
believe the actions can be decomposed into several small latent vectors, and the number of latent
vectors is crucial for reconstructing actions. Similarly, we also see the same trend in Figure 10, which
shows that more latent vectors are not always better.

B.4 The Benefits of Inverse Dynamics

Following previous studies [4], the inverse dynamics is introduced to produce actions based on the
state sequence generated by the diffusion model. We choose to model the distribution of the state
sequence rather than the state-action sequence on the basis of two reasons: 1) Usually, in many
robotics control scenarios, the actions are often represented as joint torques, which are high-frequency
and less smooth, making it hard to model and predict the action sequence. 2)The state is usually
continuous in RL, but the mode of action is diverse, such as discrete and continuous. Modeling state
sequences separately makes the diffusion-based model more generic to extensive RL scenarios. Using
the diffusion model to model the state sequences and producing actions with the inverse dynamics
are not related to accommodating different action spaces across tasks.

To further investigate the benefit of producing actions with inverse dynamics rather than generating
(s, a) together with diffusion models, we conduct the experiments of modeling state and action
sequences together with diffusion models and only modeling state sequences with diffusion models.
Table 8 shows that when using inverse dynamics, our method can achieve better performance
compared with directly producing action with diffusion models.

B.5 Experiments on Continual World

We select CW10 as another experiment of CL setting with the same state and action spaces, where the
task number is 10. We report the results in Figure 11. Compared with the upper bound performance
of Multitask, our method reaches the same performance after the CL training. With the increase
in new tasks, our method continually masters new tasks and sustains the performance, while the
baselines show varying degrees of performance attenuation, which can be found in the fluctuation of
the curves.

30

Figure 12: The comparison on the arbitrary CL settings. We select the D4RL tasks to formulate the
CL task sequence. We leverage state and action padding to align the spaces. The experiments are
conducted on various dataset qualities, where the results show that our method surpasses the baselines
not only at the expert datasets but also at the non-expert datasets. The datasets characteristic “fr”,
“mr”, “m”, and “me” represent “full-replay”, “medium-replay”, “medium”, and “medium-expert”,
respectively. “Hopper", “Walker2d", and “Halfcheetah" are the different environments.

Table 8: The comparison of producing actions with the diffusion model and the inverse dynamics.

task producing action with
diffusion model

producing action with
inverse dynamics

Ant-dir 4-18-26-34-42-49 498.2 524.1
[Hopper-m,Walker2d-m,Halfcheetah-m] 39.5 45.4

B.6 Experiments of Baselines Equipped QSA

In Section 5.4, we report the comparison of our method and baselines in the arbitrary CL settings,
where in the D4RL CL settings, we adopt the pre-trained QSA module to align the state and action
spaces. Apart from the pre-trained QSA module, we can also use the state and action padding to
align the different state and action spaces. In Figure 12, we report the results of baselines equipped
with state and action padding. From the results, we can also see that our method still achieves the
best performance compared with these baselines. Considering the results of Figure 12, Figure 5
(VQ-MLPCD), and Figure 4 (VQ baselines), we can see the importance of complementary sections:
QSA and SWA.

B.7 Supporting Tasks Training Beyond the Pre-defined Task Sequence

After training on pre-defined task sequences, we may hope the model has the capacity to support
training on potential tasks, which means that we need more weights or weight masks. Releasing
weight masks that are used to learn previous tasks is a straightforward choice when the total weights
are fixed. We conduct the experiments of mask pruning on Ant-dir ‘task 4-18-26-34-42-49’ and

31

Figure 13: The mask pruning experiments of Ant-dir ‘task 4-18-26-34-42-49’. We investigate the
task pruning according to the absolute weight values, i.e., we release the weights to train on potential
new tasks according to the mask prune threshold.

Table 9: The comparison of time consumption per update between sparse and dense (normal)
optimizers. We compare these two types of optimizers on the CL settings and find that when we first
use the normal optimizer, such as Adam, to train the model and then use weights assembling to obtain
the final model, the total physical time consumption is significantly smaller than sparse optimizer
(e.g., sparse Adam).

domain CL task setting time consumption per update (s)
dense optimizer sparse optimizer

D4RL

[Hopper-fr,Walker2d-fr,Halfcheetah-fr] 0.089±0.219 0.198±0.224

[Hopper-mr,Walker2d-mr,Halfcheetah-mr] 0.096±0.223 0.197±0.223

[Hopper-m,Walker2d-m,Halfcheetah-m] 0.089±0.211 0.195±0.224

[Hopper-me,Walker2d-me,Halfcheetah-me] 0.090±0.223 0.206±0.225

Ant-dir task-10-15-19-25 0.062±0.064 0.239±0.282

task-4-18-26-34-42-49 0.064±0.061 0.214±0.270

CW CW10 0.061±0.065 0.218±0.286

report the performance and weight mask prune rate when pruning weight masks according to certain
absolute value thresholds in Figure 13. The results illustrate that we can indeed release some weight
masks under the constraint of preserving 90% or more performance compared with the unpruned
model. On the other hand, we can also see that this mask pruning method can only provide finite

32

Figure 14: Mask matrices visualization. we select [Hopper-m, Walker2d-m, Halfcheetah-m] as an
example to report the mask results. For each mask matrix, we only draw the first 100 channels of the
weights mask matrix if the mask matrix is too large.

capacity for tasks beyond the predefined task sequence. We postpone the systematic investigation of
mask pruning to future work.

B.8 Time Consumption of Different Optimizers

In the CL settings of our experiments, we compare two types of optimizers and find that when we first
use the normal optimizer, such as Adam, to train the model and then use weights assembling to obtain
the final model, the total physical time consumption is significantly smaller than sparse optimizer
(e.g., sparse Adam). Thus, we propose the weights assembling to obtain the final well-trained model
after the training rather than suffering huge time burden of sparse optimizer during the training.

B.9 Mask Visualization

We select [Hopper-m, Walker2d-m, Halfcheetah-m] to visualize the weights mask of our method in
Figure 14. To make it easy to show the mapping relation between masks and the weights, we draw
the network structure and mask matrices, where we only report the first 100 channels of the mask
matrices.

B.10 Alignment Space Visualization

In order to further demonstrate the effectiveness of our method. We conduct the visualization
experiments of aligned state feature and report the visualization results in Figure 15. From the
experimental results, we can see that the state features learned by the AE method are not well-mapped
to separate regions but are instead mapped to multiple areas. In contrast, the features obtained by
our method are better partitioned into individual regions, which is more conducive for the model to
capture the data distribution.

C Further Discussion of Experiments

The Interplay of VQ and CD. In this paper, we investigate broadening the application scenarios
of the same state and action spaces to tasks of arbitrary state and action spaces by space alignment.
Vector quantization is verified as one effective way to achieve space alignment compared with AE,

33

Figure 15: Visualization of aligned state feature. We use the QSA module to process the different
state spaces and align them in the same space. Then we use t-SNE [87] to visualize aligned state
features.

VAE, and padding. Furthermore, we adopt the diffusion model to perform continual learning based
on VQ due to its strong model expressiveness and competitive performance. The ablation study
illustrates that integrating VQ and CD induces the proposed powerful method VQ-CD.

The Intuition of Constraint in QSA Module. In Equation (4), We add a constraint to encourage a
more concentrated distribution of the quantized representation vectors as shown in Table 2, which
benefits the diffusion model in learning the data distribution in a limited range [30, 4]. However,
this may not necessarily benefit other methods that do not focus on modeling distributions (Refer
to Figure 4) because concentrated representations can make originally dissimilar state and action
vectors from different tasks appear more similar, making them harder to distinguish and learn. We
use the clip operation rather than convert the constraint to a penalty because our goal is to ensure that
the magnitude of the quantized representation vectors does not exceed a certain value, rather than
minimize the norm of the constraint.

Further Discussion of Experiments. In Figure 4 (a) and (b), we can see that VQ-CD surpasses
Multitask. The reason is as follows. 1) The Action Quality Discrimination Ability Differences: The
datasets contain trajectories collected from the entire training process, i.e., from a random policy to a
well-trained policy. Our method leverages accumulated discounted returns to guide the generation
of state sequences, encouraging the generation of higher-return state sequences. Consequently, the
actions generated by the inverse dynamics model also yield higher returns. In contrast, Multitask does
not currently incorporate returns, resulting in lower performance. In Figures 4 (c) and (d), the variance
of trajectory returns in the dataset is smaller, allowing Multitask to achieve better learning outcomes.
2) Architecture Differences: The multitask baseline is implemented using the MLP architecture,
which is often insufficient to model the complex state-action mappings across diverse tasks. In
contrast, our VQ-CD method leverages a diffusion-based policy model, which has demonstrated
superior expressiveness and stability in high-dimensional generative modeling. This difference leads

34

Figure 16: A graphical depiction of QSA training. From the figure, it is intuitively clear that the
training of the QSA module can fully adhere to the CL training setup.

to the performance differences in the experiments. 3) Representation Ambiguity Across Tasks: As
shown in Table 3, the QSA module maps task-specific state-action pairs into a shared aligned latent
space, where the distances between different tasks’ state- and action-aligned vectors are relatively
small. This results in high semantic proximity across tasks. For Multitask training, all tasks’ state-
and action-aligned vectors are blended together, which makes it challenging to learn the mapping
of a state-aligned vector to the correct action-aligned vector, leading to degraded performance. In
contrast, VQ-CD separates alignment with QSA and generation via the conditional diffusion model,
which enables more precise modeling and avoids such interference.

The Motivation of Adopting Diffusion Models. We select diffusion models as our foundational
method primarily based on the following reasons:

• Natural support for multi-modal action distribution modeling: Diffusion models can effectively
avoid the limitations of traditional Gaussian models that cannot model multi-peak action distribu-
tions.

• Powerful model expressiveness: Diffusion models support the modeling of complex data or
trajectory distributions.

• Stable log-likelihood training: Diffusion models can effectively prevent mode collapse and training
instability issues.

• Competitive model performance: Diffusion-based RL methods have also shown huge potential in
many robotic control scenarios.

SWA is specifically designed for diffusion models with one-dimensional convolutional structures
because diffusion models exhibit a different dependency pattern: every output of a given channel is
influenced by all weights of the convolution kernel in that channel due to the weight-sharing nature
of convolutions. Thus, traditional output neuron masking is not suitable for diffusion models with
one-dimensional convolutional structures because we can not enable task-related parameters through
masking certain output neurons. However, SWA applies masking directly on convolution kernel
parameters, allowing us to selectively activate neurons in the convolution kernel to control the training
of task-related parameters. QSA is applicable to any model. Different state and action spaces lead
to significant distribution differences between tasks, making it impossible to use a single diffusion
model for learning. QSA aligns these varying state and action spaces into the same latent space,
enabling effective continual training under the same diffusion backbone.

D Discussion of Future Research Directions

Adaptation to Dramatic Shifts across Tasks. Our work currently focuses on tasks with certain
similarities, rather than dramatic shifts in state representation formats across tasks. Usually, the

35

applicability of continual learning across tasks with completely different state spaces is quite narrow,
and previous studies rarely explore this area [85]. The purpose of continual learning is to progressively
master new tasks by discovering common knowledge between tasks. There are several substantial
challenges facing high-dimensional image-based observations, particularly in terms of representation
alignment, codebook generalization, and action generation. 1) For representation, we can introduce a
visual encoder, e.g., ViT, to extract compact latent representations from images before passing them
into the diffusion models, thereby aligning the modalities. 2) For the codebook, the QSA module can
be modified to support modality-specific encoders while maintaining a shared codebook space or
adopting modality-conditional quantization. 3) For the inverse dynamics, if we use inverse dynamics
to directly produce actions with image-like states, then we need to upgrade inverse dynamics to a
vision-conditioned architecture.

Theoretical Analysis about the QSA and SWA. We can see that the current version lacks
theoretical proof to demonstrate that space-aligned representations can effectively extract common
knowledge between tasks. However, our method has a theoretical foundation for the representation
with vector quantization [77, 68]. In our paper, the QSA module maps tasks’ states and actions
into a shared discrete latent space using the codebook. This process enables structural alignment
between otherwise heterogeneous observation spaces, making it easier for the diffusion model to
generalize across tasks. We can obtain that under Robbins–Monro stepsizes and Lipschitz gradients,
the expected gradient of the QSA loss limn→∞ E[||∇θe,θdLQSA||] vanishes as the training iteration
increases, where n is the training iteration [86].

For the convergence proof of SWA, according to the previous studies of diffusion model [30], the
denoising score-matching loss (L(θ) = E[||ϵ− ϵθ(τ

k
s , k, b ∗ C)||22]) is a lower bound on the negative

log-likelihood. Under the Lipschitz constraint, the loss landscape is smooth, and optimization using
Adam or SGD with diminishing learning rates satisfies the Robbins–Monro conditions. Thus, the
training process converges to a stationary point of the objective.

Extension to General Online RL Tasks. Our method is currently designed for the offline RL
setting primarily due to the multiple-step sampling process inherent in diffusion models, which leads
to significant computational latency during interaction in online RL. To enable online RL extensions
in the future, several promising research lines can be explored: 1) Parallelized sampling techniques
to reduce per-decision latency. 2) Advanced samplers (e.g., DDIM and DPM-solver) to accelerate
generation. 3) Distilling the diffusion model into the consistency model that can realize single-step
generation.

36

	Introduction
	Related Work
	Preliminary
	Continual Offline RL
	Conditional Generative Behavior Modeling

	Method
	Quantized Spaces Alignment
	Selective Weights Activation

	Experiments
	Environmental Settings
	Evaluation Metrics
	Baselines
	Experimental Results
	Ablation Study
	Parameter Sensitivity Analysis

	Discussion
	Conclusion and Limitation
	Algorithm
	Pseudocode of VQ-CD
	Hyperparameters
	Computation
	Generation Speed-up Technique
	Computational Cost Analysis
	Baselines Implementation
	Network Details

	Additional Experiments
	QSA Module Loss Analysis
	Experiments of Task Order Shuffling
	Experiments of Parameter Sensitivity
	The Benefits of Inverse Dynamics
	Experiments on Continual World
	Experiments of Baselines Equipped QSA
	Supporting Tasks Training Beyond the Pre-defined Task Sequence
	Time Consumption of Different Optimizers
	Mask Visualization
	Alignment Space Visualization

	Further Discussion of Experiments
	Discussion of Future Research Directions

