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Abstract

Large language models are increasingly used001
as evaluators in natural language generation002
tasks, offering scalability and interpretability003
advantages over traditional evaluation methods.004
However, current LLM-based evaluations of-005
ten suffer from biases and misalignment, par-006
ticularly in domain-specific tasks, due to lim-007
ited functional understanding and knowledge008
gaps. To address these challenges, we intro-009
duce the Co-Eval framework, which employs a010
criteria planner model and optimized machine011
metric to improve scalability, fairness of LLM-012
based evaluation. Experimental results on both013
general and domain-specific tasks show that014
Co-Eval reduces biases across LLMs by up to015
0.4903 in self-preference bias and improves016
alignment with human preferences by up to017
0.324 in Spearman correlation.018

1 Introduction019

Evaluating natural language generation (NLG)020

quality is challenging, as these tasks often involve021

subjective judgments, and what constitutes high-022

quality output can vary depending on the specific023

context or audience. While human evaluation is024

a common method for assessing the quality of025

generated text, it is time-consuming. Recently,026

researchers (Liu et al., 2023; Chan et al., 2023;027

Zheng et al., 2023a) have started using large lan-028

guage models (LLMs) as evaluators, noting their029

impressive performance in aligning with human030

preferences when assessing generated text.031

However, studies (Koo et al., 2023; Panickssery032

et al., 2024) have shown that LLMs exhibit certain033

biases, such as a preference for text generated by034

the models themselves, and factors like presenta-035

tion order (Wang et al., 2023) and text length (Hu036

et al., 2024) can affect fairness as well. More-037

over, general-purpose LLMs often fall short when038

it comes to evaluating natural language generation039

tasks within specific domains (Dorner et al., 2025).040

Task: Generate executable Python code for a given requirement.
Requirement: decode a hex string '4a4b4c' to UTF-8.

Sample1: print(4a4b4c.decode('utf-8’))

All seem like executable?

Sample 3: TypeError

Sample2: print(bytes.fromhex("4a4b4c"))

Sample3: unicodedata.name(int('4a4b4c', 16))

Sample 1: SyntaxError

Sample 2: Success

Sample 1: 0.5

Sample1 looks good !

Longer must be better !

Sample 2: 3.0

Sample 3: 1.5

Figure 1: Machine metrics augment scalability and fair-
ness of LLM-based evaluation.

Compared to LLM-based evaluators, machine 041

metrics are more objective, providing precise as- 042

sessments instead of the semantic evaluations typi- 043

cal of LLMs. Fine-tuned models can incorporate 044

domain-specific knowledge, while rule-based met- 045

rics reflect human preferences embedded in rule 046

design. For example, a compiler can definitively 047

indicate if code runs, and BERTScore (Zhang et al., 048

2019) with CodeBERT can assess code similar- 049

ity. Metrics like Cyclomatic Complexity (Watson 050

et al., 1996) quantify code complexity by count- 051

ing decision points. For fairer NLG evaluations 052

and improved domain-specific LLM performance, 053

machine metrics offer reliable benchmarks for con- 054

sistent, human-aligned measurements. 055

In this paper, we introduce Co-Eval, a zero-shot 056

reference-free LLM-based evaluation framework 057

that enhances LLM-based evaluation through ma- 058

chine metrics. Recognizing that individual metrics 059

often assess only specific aspects of a task, we fine- 060

tuned a LLaMA-3.1-8B-Instruct model to serve as 061

a criteria planner. This planner interprets diverse 062

task descriptions to establish evaluation criteria, 063

assign weights, and generate score-level descrip- 064

tions. Next, we developed a comprehensive ma- 065
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chine metrics library to link relevant metrics to the066

generated criteria based on similarity of their de-067

scription. The criteria planner is then utilized to re-068

fine the machine metric descriptions, ensuring they069

align closely with the specified criteria. Finally, the070

prompt-based LLM evaluator is used to generate071

the final evaluation of each sample, with the overall072

score calculated as a weighted sum across criteria.073

Extensive experiments are conducted across mul-074

tiple tasks, including four general and four domain-075

specific tasks, demonstrating that Co-Eval frame-076

work enhances LLM-based evaluators, improving077

agreement with human preferences by up to 0.162078

Spearman correlation in general generation tasks079

and up to 0.324 in domain-specific tasks, while080

reducing self-preference bias by up to 0.4903.081

To summarize, the main contributions of this082

paper are as follows:083

• We introduce Co-Eval, a novel LLM-based084

evaluation framework that enhances scalabil-085

ity and fairness in evaluation by incorporating086

machine metrics. We also provide a theoret-087

ical proof demonstrating that our framework088

reduces bias in LLM-based evaluations and089

improves alignment with human preferences.090

• We present a multi-task supervised fine-tuning091

dataset for the criteria planner, along with a092

comprehensive machine metric library that093

includes approximately 50 machine metrics094

with their implementations.095

• We conduct extensive experiments to demon-096

strate the effectiveness of the Co-Eval frame-097

work and, for the first time, explore LLM-098

based evaluation performance across domain-099

specific generation tasks.100

2 Related Work101

2.1 Metric-based Evaluation102

Formula-based metrics rely on predefined rules103

to evaluate the quality of generated responses. Ex-104

amples include BLEU (Papineni et al., 2002) and105

METEOR (Banerjee and Lavie, 2005) for machine106

translation tasks, ROUGE (Lin, 2004) for text107

summarization, and Flesch-Kincaid score (Flesch,108

1943) for readability in educational content.109

Model-based metrics leverage pre-trained neu-110

ral networks to assess the quality of generated re-111

sponses. For example, BERTScore (Zhang et al.,112

2019) computes cosine similarity between BERT113

embeddings (Devlin, 2018), while GPTScore (Fu 114

et al., 2023) utilizes embeddings from GPT (Rad- 115

ford, 2018). More recently, like UNIEVAL (Zhong 116

et al., 2022), improve embedding-based evaluation 117

by incorporating multiple evaluation dimensions. 118

Both kinds of machine metrics offer reliable and 119

consistent evaluations but are constrained by their 120

applicability. When used for inappropriate tasks, 121

they can introduce significant biases, leading to 122

misalignment with human preferences. 123

2.2 LLM-based Evaluation 124

LLM-based evaluation methods utilize LLMs as 125

sophisticated judges of text quality, often referred 126

to as LLMs-as-judges (Ashktorab et al., 2024; 127

Bavaresco et al., 2024; Tseng et al., 2024). 128

Prompt-based methods aim to teach LLMs how 129

to evaluate complex tasks through in-context learn- 130

ing. This includes providing fine-grained task cri- 131

teria (Liu et al., 2023; Zhuo, 2024; Yi et al., 2024; 132

Song et al., 2024a), learning from examples (shot 133

learning) (Fu et al., 2024; Lin and Chen, 2023; 134

Zhang et al., 2024; Jain et al., 2023; Song et al., 135

2024b), or breaking into multiple iterations (Hasan- 136

beig et al., 2023; Chiang and Lee, 2023; Liu et al., 137

2024b; Xu et al., 2024; Saha et al., 2024). 138

Tuning-based methods (Deshwal and Chawla, 139

2024; Yue et al., 2023; Ye et al., 2024b; Wang 140

et al., 2024; He et al., 2024; Kim et al., 2024; Liu 141

et al., 2024a; Ke et al., 2024), on the other hand, in- 142

volve training a pre-existing LLM on a specialized 143

dataset to adapt it to specific judgment tasks. 144

Unlike single-LLM systems, Multi-LLM evalua- 145

tion (Liang et al., 2024; Zhao et al., 2024a; Moniri 146

et al., 2025; Chan et al., 2023) leverages the col- 147

lective intelligence of multiple LLMs to enhance 148

evaluation performance. 149

Despite extensive research, issues such as hallu- 150

cinations and domain-specific knowledge gaps un- 151

dermine the robustness of LLM-based evaluation, 152

manifesting as biases, including self-preference 153

bias (Li et al., 2024; Panickssery et al., 2024), po- 154

sition bias (Shi et al., 2024; Zhao et al., 2024b), 155

and verbosity bias (Chen et al., 2024; Zheng et al., 156

2023b). Avoiding self-evaluation (Ye et al., 2024a) 157

and reference-based approaches (Badshah and Saj- 158

jad, 2024) have proven effective in mitigating 159

self-preference bias. However, obtaining accu- 160

rate models and references can be challenging for 161

open-ended tasks. Additionally, swap-based meth- 162

ods (Raina et al., 2024; Wang et al., 2023) have 163

been shown to effectively address position bias. 164
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Refined Metric: 
Sonar Reliability - … A lower Sonar Reliability score 
suggests that the code is more robust …

Multi-task Training

Criteria Plan

Metric Refine

Task: Generate executable Python code for a given requirement.

• Robustness (1 points): Does the generated code handle 
edge cases and potential errors?
- A float score near 0 (no) means …

• Efficiency (2 points): Is the generated code …

Criteria: 

Criteria: Robustness - Does the generated code …

Metric: Sonar Reliability - Assesses the reliability of a software project … 
More bugs and potential issues detected …

Robustness:
Requirement: decode a hex string '4a4b4c' to UTF-8.
Sonar Reliability - Assesses the reliability of a software project … A lower Sonar Reliability score … more robust … 
Sample 1: print(4a4b4c.decode(`utf-8`))
Sonar Reliability Score: 1
Sample 2: …

+ +Robustness:
Sample 1: 0.8, Sample 2: 0.5 …

Efficiency:
Sample 1: 1.2, Sample 2: 1.5 …

Correctness:
Sample 1: 3.4, Sample 2: 2.8 … + … =

Overall:
Sample 1: 8.8
Sample 2: 6.5
…

Figure 2: An overview of Co-Eval framework on executable Python code generation task. First, a fine-tuned criteria
planner generates scoring criteria and corresponding weights for evaluating the task. Next, each criterion is matched
with suitable machine metrics from a machine metric library based on semantic similarity between their descriptions.
The chosen machine metrics are then refined by the criteria planner to specify how changes in their scores reflect the
performance of the generated code against the criteria. Finally, the task description, original requirement, generated
code, machine metric descriptions, and scores are input to a prompt-based evaluator to assign scores to each criterion.
These scores are weighted and summed to produce the final evaluation score for each sample.

3 Methodology165

To enhance the scalability and fairness of LLM-166

based evaluators, we propose the Co-Eval frame-167

work, outlined in Figure 2.168

3.1 Criteria Planner169

The main tasks of the criteria planner are to gener-170

ate evaluation criteria and refine the descriptions of171

machine metrics.172

For the criteria plan task, we recognize that ma-173

chine metrics are suited for assessing well-defined174

criteria, which improves accuracy but limits scala-175

bility. Furthermore, criteria and their weights must176

be highly responsive to subtle differences across177

tasks, as even slight task variations can result in sig-178

nificant shifts in criteria and corresponding weights.179

Previous research (Kim et al., 2023) has also shown180

that using fine-grained criteria improves the perfor-181

mance of LLM-based evaluators. Therefore, a cri-182

teria planner is needed that can break down task cri-183

teria into fine-grained machine metrics and score-184

level descriptions, adjusting criteria and weights to185

capture nuanced task differences effectively.186

For the metric refine task, we observe that ma-187

chine metric descriptions tend to be straightfor-188

ward, focusing mainly on the applicability of each189

metric rather than linking scores to criteria perfor-190

mance. To address this, we refine the machine 191

metric descriptions to better reflect their relation- 192

ship to the criteria being assessed, rather than using 193

them directly in a prompt-based evaluation setting. 194

Data Preparation We constructed a multi-task 195

supervised fine-tuning dataset comprising a total 196

of 950 samples. For the criteria planning task, we 197

developed a dataset with 500 task descriptions and 198

corresponding criteria descriptions. Among these, 199

250 task descriptions were collected from agent 200

platforms such as Coze1 and GPT-Shop2, while 201

the remaining 250 were generated by GPT-4o fol- 202

lowing a consistent format to ensure diversity and 203

coverage. For the metric refinement task, we used 204

the 500 criteria produced in the criteria planning 205

task. For 250 of these criteria, we searched a metric 206

library to identify suitable metrics and had GPT- 207

4o generate refined metric descriptions. For the 208

remaining 250 criteria, GPT-4o was tasked with 209

both generating suitable metrics and refining their 210

descriptions. To ensure the quality and consistency 211

of the dataset, we extracted the required informa- 212

tion from the initial outputs, reorganized them into 213

a standardized format, and filtered out 50 outputs 214

with missing key information. The prompt used for 215

1https://www.coze.com
2https://chatgpt.com/gpts
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data preparation is detailed in Appendix D.216

Training Strategy Our primary objective is to217

distill GPT-4o’s performance on criteria planning218

and metric description refinement tasks, as well as219

to correct the output format bias of the Llama-3.1-220

8B-Instruct-based planner, enhancing its suitability221

for downstream tasks. Given that our training data222

consists of no more than 1,000 samples and the223

target task aligns closely with the native capabilities224

of the Llama-3.1-8B-Instruct model, we employ225

LoRA (Hu et al., 2021) as our fine-tuning method.226

3.2 Machine Metrics Library227

We compiled approximately 50 machine metrics for228

the machine metric library, which can be primarily229

divided into the following two categories:230

Formula-based Metric relies on predefined231

rules and patterns to assess specific criteria in gen-232

erated outputs, providing precise evaluations that233

LLMs may struggle to predict. For example, a234

syntax parser can accurately verify if generated235

code is syntactically correct and compilable, an236

assessment that may exceed the predictive capabil-237

ities of LLMs. Another key role of the formula-238

based metric is to guide the LLM-based evaluator239

toward aligning more closely with human prefer-240

ences, which are often embedded within the met-241

ric’s design. For instance, when evaluating text242

summarization, Information Density Formula can243

prioritize brevity and key information inclusion.244

To theoretically validate our approach, we245

demonstrate the benefits of integrating Formula-246

based Metrics in the following proof:247

Let f(X) be the LLM-based evaluator’s score248

based on sample X , and let M(X) represent a249

formula-based metric score derived from X . De-250

fine f(X,M(X)) as the LLM-based evaluator’s251

score that incorporates the formula-based metric252

score M(X). Let h(X) represent the human-253

assigned score. The error of the LLM-based evalu-254

ator relative to the human score is given by255

ϵf = |h(X)− f(X)|256

= |h(X)− Es∼p(s|X)[s]|, (1)257

where s denotes a potential scoring outcome,258

p(s|X) is the probability distribution over scores259

s conditioned on the sample X , and Es∼p(s|X)[s]260

represents the expected value of s under p(s|X).261

Similarly, the error of the LLM-based evaluator262

when incorporating the formula-based metric is263

given by264

ϵf ′ = |h(X)− f(X,M)| 265

= |h(X)− Es∼p(s|X,M)[s]|. (2) 266

According to Bayes’ rule and the principle of 267

maximum entropy, we have 268

p(s|X,M) ∝ p(s|X)·exp(−λ(s−βM)2), (3) 269

where λ is a regularization parameter that controls 270

the weight of the metric influence, and β is a scal- 271

ing factor for the metric M . 272

For a distribution p(s|X), V ar(p(s|X) quanti- 273

fies how much scores s are expected to vary around 274

their mean when conditioned on X alone. And by 275

the properties of variance, we have 276

V ar(p(s|X,M)) = 277

V ar(p(s|X)) · V ar(exp(−λ(s− βM(X))2))

V ar(p(s|X)) + V ar(exp(−λ(s− βM)2))
278

< V ar(p(s|X)). (4) 279

This reduction implies that formula-based metric 280

M can improve LLM-based evaluator to provide a 281

more concentrated estimate around the target score. 282

Meanwhile, given that M is designed based on 283

human-defined criteria, we assume Corr(h,M) = 284

ρ, where Corr represents the correlation between 285

the human-assigned score h(X) and the formula- 286

based metric M(X). We assume ρ > 0 implies 287

that h(X) and M(X) are positively correlated, if 288

and only if M is suitable for evaluating X accord- 289

ing to the defined criteria. This positive correlation 290

ensures that β > 0 and that the expected value of s 291

under p(s|X,M) is closer to h(X). Consequently, 292

|h(X)− Es∼p(s|X,M)[s]| 293

< |h(X)− Es∼p(s|X)[s]|, (5) 294

which implies 295

ϵf ′ < ϵf . (6) 296

Model-based Metric leverages well-trained 297

deep neural network models to assess specific cri- 298

teria for generated outputs. While LLMs are gener- 299

ally effective for broad generation tasks, we fo- 300

cus on smaller, domain-specific models trained 301

on specialized corpora, which are typically more 302

robust in their respective domains compared to 303

general-purpose LLMs. For instance, a BERT 304

model trained on a financial corpus may better 305

capture financial context similarities. This type 306

of model-based metric can augment an LLM-based 307

evaluator’s domain-specific knowledge. 308

4



Metrics Model Understand Natural Coherence Engaging Grounded Overall

ρ τ ρ τ ρ τ ρ τ ρ τ ρ τ

Formula-based Evaluators
BLEU-4 - .033 .025 .130 .100 .277 .219 .386 .316 .446 .396 .280 .223
ROUGE-L - .052 .040 .132 .095 .206 .163 .321 .267 .461 .405 .249 .193

Embedding-based Evaluators
BERTScore - .105 .080 .140 .101 .228 .184 .334 .275 .450 .395 .267 .213
BARTScore - .061 .039 .158 .124 .232 .188 .300 .237 .489 .422 .272 .215

Learning-based Evaluators
USR - .322 .266 .346 .280 .354 .299 .392 .330 .551 .476 .438 .365
UNIEVAL - .467 .360 .513 .373 .612 .465 .608 .458 .574 .451 .662 .486

LLM-based Evaluators

G-EVAL
GPT-4o .679 .598 .618 .535 .570 .484 .707 .602 .726 .650 .692 .596

Llama-3.1-70B .472 .404 .535 .443 .515 .431 .615 .521 .628 .553 .650 .559
Qwen-2.5-72B .571 .486 .618 .531 .590 .505 .744 .663 .696 .621 .689 .592

BATCHEVAL
GPT-4o .680 .591 .664 .562 .601 .514 .704 .607 .595 .525 .736 .651

Llama-3.1-70B .502 .433 .466 .391 .438 .376 .593 .499 .595 .522 .532 .450
Qwen-2.5-72B .500 .434 .488 .409 .455 .390 .662 .569 .530 .459 .551 .474

Co-Eval
GPT-4o .683 .594 .673 .579 .628 .547 .708 .607 .736 .656 .745 .650

Llama-3.1-70B .598 .508 .530 .437 .602 .512 .617 .522 .733 .646 .694 .593
Qwen-2.5-72B .594 .510 .622 .523 .616 .532 .660 .572 .722 .642 .698 .609

Table 1: Turn-level Spearman (ρ) and Kendall (τ ) correlations on Topical-Chat benchmark. The bold scores
represent the highest score generated by each LLM as the final prompt-based evaluator, while the grey scores
indicate the highest score across the entire column.

We also provide a theoretical justification for the309

benefits of integrating Model-based Metrics:310

Let D(X) represent a model-based metric score311

derived from X . Assuming that the domain-312

specific corpus aligns well with human preferences,313

we have314

KL(pd||ph) ≤ ϵ1, (7)315

where pd(x) denotes the distribution of the domain-316

specific corpus, ph(x) denotes the distribution im-317

plied by human preferences, and KL is Kullback-318

Leibler divergence. Since D is trained on the319

domain-specific corpus, it is optimized to min-320

imize minDEx∼pd [L(D(x), h(x))]. After suffi-321

cient training, we assume322

KL(pD||pd) ≤ ϵ2, (8)323

where pD is the distribution implied by D’s scores.324

By applying the triangle inequality for KL diver-325

gence, we obtain326

KL(pD||ph) ≤ KL(pD||pd) +KL(pd||ph)327

≤ ϵ2 + ϵ1 = ϵ, (9)328

implying Corr(h,D) = ρ > 0. Therefore, the er-329

ror of the LLM-based evaluator when incorporating330

the model-based metric is given by331

ϵf ′′ = |h(X)− f(X,D)| 332

= |h(X)− Es∼p(s|X,D)[s]| 333

< |h(X)− Es∼p(s|X)[s]| = ϵf . (10) 334

Since typical descriptions of machine metrics 335

sometimes fail to accurately reflect evaluation cri- 336

teria, we aim to improve their precision by identify- 337

ing the specific data features that influence changes 338

in metric scores. To achieve this, we provide GPT- 339

4o with pairwise evaluation samples for each met- 340

ric, enabling it to generate more precise descrip- 341

tions that highlight the specific features each ma- 342

chine metric effectively captures within its context. 343

3.3 Prompt-based Evaluator 344

For the final LLM-based evaluator, we simply 345

adopt the in-context learning and batchwise meth- 346

ods used in BATCHEVAL (Yuan et al., 2023), 347

along with its input and output format. The prompt 348

template is provided in the Appendix D. 349

4 Experiment 350

4.1 Experimental Settings 351

The criteria planner model, based on the Llama-3.1- 352

8B-Instruct model, was fine-tuned by LoRA (Hu 353
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Figure 3: Self-preference bias on CoNaLa and Mental Health Counseling Conversations benchmarks.

et al., 2021) for 3 epochs with a learning rate of354

1.0e-4, a cosine scheduler, and a warmup ratio of355

0.1. We set a total score of 10 with a maximum of356

5 evaluation criteria. Experimental results for the357

constrain are provided in Appendix E.3.358

In the machine metric search, we select the top359

three metrics with embedding similarity scores ex-360

ceeding 0.8, averaging scores across five evalua-361

tion runs. Detailed descriptions of LLMs used as362

prompt-based evaluators and baselines are provided363

in Appendix A and Appendix B, respectively.364

Experiments show that our Co-Eval framework365

enhances the scalability and fairness of LLM-based366

evaluation, especially in domain-specific tasks. De-367

tailed experimental implementation information for368

each benchmark is provided in Appendix C.369

4.2 Agreement on Human Preference370

For the Topical-Chat benchmark, as shown in Ta-371

ble 1, our proposed Co-Eval framework demon-372

strates remarkable improvements in Spearman373

and Kendall correlations across all three models374

and five original criteria. Even for GPT-4o, the375

use of suitable machine metrics improve ground-376

edness assessment by up to 0.141 compared to377

BATCHEVAL, while the Co-Eval framework con-378

sistently surpasses baselines in overall quality eval-379

uation. Similarly, on the Summeval and HANNA380

benchmarks, as shown in Table 3 and Figure 7,381

the Co-Eval framework, with its fine-tuned crite-382

ria planner and well-constructed machine metric383

library, achieves top correlations.384

As shown in Table 2, Co-Eval outperforms385

standard and batch evaluation methods on both386

the CoNaLa and MATH benchmarks, achiev-387

ing the highest correlations and even surpass-388

ing domain-specific evaluators and fine-tuned389

Method Model CoNaLa Model MATH

ρ τ ρ τ

Standard

Prometheus-7B .065 .063 Prometheus-7B .113 .108
Prometheus-8x7B .256 .253 Prometheus-8x7B .213 .211

Llama-3.1-8B .189 .194 Qwen-2.5-7B .454 .415
Llama-3.1-70B .223 .205 Qwen-2.5-72B .501 .470

Batch

Llama-3.1-8B .322 .318 Qwen-2.5-7B .397 .357
CodeLlama-7B .096 .109 Qwen-2.5-MATH-7B .326 .302
Llama-3.1-70B .453 .419 Qwen-2.5-72B .488 .466

CodeLlama-70B .259 .214 Qwen-2.5-MATH-72B .391 .376

Co-Eval Llama-3.1-8B .446 .420 Qwen-2.5-7B .457 .423
Llama-3.1-70B .547 .492 Qwen-2.5-72B .561 .535

Table 2: Spearman (ρ) and Kendall (τ ) correlations on
CoNaLa and MATH benchmarks.

evaluation-enhanced models. Notably, on the 390

CoNaLa benchmark, the LLaMA-3.1-70B-Instruct 391

model under Co-Eval improves by up to 0.324 over 392

standard methods. 393

These results suggest that, whether for general 394

or domain-specific generation tasks, the Co-Eval 395

framework effectively aligns LLM-based evalua- 396

tors with human preferences. This alignment is par- 397

ticularly beneficial in domain-specific tasks, where 398

functional correctness is critical and general LLMs 399

often struggle to assess accuracy reliably. In these 400

cases, the Co-Eval framework can maximize evalu- 401

ation effectiveness. In other words, Co-Eval frame- 402

work can significantly improve the scalability of 403

LLM-based evaluation. 404

4.3 Effectiveness on Bias Elimination 405

We demonstrate the effectiveness of the Co-Eval 406

framework in eliminating three types of bias: self- 407

preference bias, position bias, and verbosity bias. 408

Self-preference Bias We calculate the self- 409

preference bias using the following equation: 410

Bias(i) =
1

N

N∑
i=1

max(0, Ro(i)−Rs(i)), (11) 411
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Figure 4: Top-ranking rate on MATH benchmark based
on batch position.

where Rs(i) is the rank assigned by the LLM-based412

evaluator to its self-generated result for instance i,413

Ro(i) is the average rank assigned by other evalua-414

tors, N is the total number of instances.415

In the CoNaLa and Health Counseling bench-416

marks, as illustrated in Figure 3, the Co-Eval frame-417

work effectively reduces self-preference bias across418

all six LLM evaluators. Additionally, smaller419

LLMs exhibit greater shifts when aided by machine420

metric scores. The Qwen-2.5-72B-Instruct model421

achieves the most significant bias reduction com-422

pared to individual evaluation. Another notable423

observation is that certain models, such as Gemma-424

2-27B-Instruct and Qwen-2.5-72B-Instruct, show425

increased self-preference bias in batch evaluations.426

This suggests that while batch evaluation is an ef-427

fective and straightforward method, it can some-428

times amplify self-preference bias when an appro-429

priate baseline is lacking.430

Position Bias As shown in Figure 4, we observe431

that placing the same generated answer in the last432

position within a batch increases its likelihood of433

achieving the top rank. However, with the Co-Eval434

framework, the LLM-based evaluator achieves a435

more balanced ranking rate, allowing the same an-436

swer to attain the top rank consistently, regardless437

of its position within the batch.438

Verbosity Bias As shown in Figure 5, we ob-439

serve that compared to standard individual meth-440

ods, LLM-based evaluators using the batch method441

exhibit a pronounced preference for more verbose442

answers, even when these answers contain some443

functional errors. The Co-Eval framework, how-444

ever, enhances the evaluator’s ability to detect func-445

tional errors in generated responses, enabling the446

LLM-based evaluator to achieve a more balanced447

ranking across answers of varying verbosity.448

Based on the results above, the Co-Eval frame-449

work demonstrates outstanding effectiveness in mit-450

igating self-preference bias, position bias, and ver-451

bosity bias. In summary, Co-Eval framework can452

significantly improves the fairness of LLM-based453

evaluation.454

0 20 40 60 80 100

Co-EVAL

Batch

Standard

Extend Extend with Error Origin Brief

Figure 5: Top-ranking rate on FIQA benchmark based
on verbosity degree.

Model Llama-3.1-70B Qwen-2.5-72B

ρ τ ρ τ

Batch 0.510 0.422 0.532 0.448
Pure 0.465 0.384 0.502 0.413
+ Fine-tuned Planner 0.515 0.431 0.537 0.449
+ GPT-4o as Planner 0.517 0.437 0.543 0.452
+ Metric Library 0.477 0.401 0.521 0.428
+ Planner and Library 0.525 0.448 0.552 0.465

Table 3: Spearman (ρ) and Kendall (τ ) correlations on
Summeval benchmark.

4.4 Ablation Study 455

We conducted ablation studies on the two main 456

components: the fine-tuned criteria planner and the 457

machine metrics library. 458

Fine-tuning for Criteria Planner As shown 459

in Table 3 between the LLM-based evaluator and 460

human preferences, increasing the Spearman cor- 461

relation by up to 0.05. Moreover, the fine-tuned 462

planner retains over 90% of the performance of the 463

GPT-4o planner. We further analyzed cases before 464

and after fine-tuning the criteria planner. As shown 465

in Figure 6, compared to the original LLaMA- 466

3.1-8B-Instruct model, the fine-tuned planner pro- 467

vides more detailed criteria descriptions and as- 468

signs weights more aligned with human prefer- 469

ences. Simple errors, such as incorrect total scores, 470

are also corrected. Additionally, the fine-tuned 471

planner better captures subtle feature differences 472

between tasks. For instance, it identifies "Struc- 473

ture" as essential criteria for "structured outline" 474

task, but not for "summarization" task. 475

Machine Metric Library As shown in Table 476

3, machine metrics effectively improve the align- 477

ment of LLM-based evaluations with human pref- 478

erences. We further examined the influence of dif- 479

ferent machine metrics on the Kendall correlation 480

of LLM-based evaluations. As shown in Figure 7, 481

randomly selected metrics sometimes negatively 482

impact agreement, while the top 1 most similar 483

metric generally has a positive effect. Moreover, 484

machine metric scores from the fine-tuned model 485

have an even greater positive impact compared to 486
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LLaMA-3.1-8B-Instruct Fine-tuned Criteria Planner

1. Accuracy (4 points): Does the summary capture the main 
ideas and key details of the original content?
2. Clarity (2 points): Is the summary written in a clear, coherent, 
and easily understandable manner?
3. Brevity (2 points): Does the summary condense the content 
while maintaining all essential information?
4. Relevance (2 points): Does the summary focus only on the 
most important points and avoid unnecessary tangents?

Generate a summarization 
for a given content.

Task

1. Accuracy (3 points): Does the summarization capture the 
essential information and key findings?
2. Completeness (2 points): Are all the relevant topics and 
material included in the summarization?
3. Clarity (2 points): Is the language simple and easy to 
understand?
4. Organization (2 points): Are the main ideas and supporting 
details presented in a logical order?
5. Brevity (1 points): Is the summary free from redundancy and 
unnecessary information?

Create a structured outline 
for a given content.

1. Structure (4 points): Does the outline follow a clear, logical 
progression of ideas?
2. Comprehensiveness (3 points): Does the outline cover all the 
key points and important sections of the content?
3. Clarity (2 points): Is the outline clear and easy to understand, 
with appropriate labeling of sections and subsections?
4. Brevity (1 points): Is the outline concise, without including 
unnecessary details or extraneous information?

1. Content Coverage (2 points): Comprehensively cover the 
given content, addressing all key points and subtopics.
2. Organization and Hierarchy (2 points): Have a clear, logical 
structure, with suitable headings, subheadings, and bullet points.
3. Relevance and Clarity (2 points): Be easy to follow, with 
concise and non-ambiguous headings and subheadings.
4. Mechanics and Consistency (2 points): Follow a consistent 
structure, and use proper grammar and punctuation.
5. Adaptability to Content Requirements (4 points): Be 
adaptable to the specific requirements of the content.

Figure 6: Case study for the fine-tuned criteria planner.
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Figure 7: Kendall correlations on HANNA benchmark.

standard individual and batch methods. For criteria487

where LLM-based evaluations show the weakest488

performance, the appropriate machine metric and489

fine-tuned model scores achieve the most signifi-490

cant improvement compared to other criteria.491

4.5 Error Analysis492

Although we demonstrate the effectiveness of our493

proposed Co-Eval framework, some remaining er-494

rors in the process still need to be addressed:495

Criteria planner sometimes fails. While using496

state-of-the-art models such as GPT-4o as a planner497

can be costly and inconsistent, fine-tuned smaller498

LLMs offer a more stable and cost-effective alter-499

native while maintaining comparable performance.500

However, the generalization ability of fine-tuned501

smaller LLMs may not be sufficient, especially for502

long-tail tasks. Although we attempt to improve503

generalization by collecting data from real agent504

platforms, it is impossible to cover all real-world505

scenarios comprehensively. In such cases, using a506

state-of-the-art model is recommended.507

Machine metric library sometimes fails. We 508

rely on the semantic similarity to identify the most 509

suitable machine metric. While we set a high 510

threshold to ensure high precision and strive to 511

make the machine metric descriptions as accurate 512

as possible, semantic similarity does not always 513

yield the best results. In some cases, the identi- 514

fied machine metric may be accurate but not more 515

aligned with human preferences than the LLM it- 516

self, particularly for more general criteria. This can 517

potentially misguide the evaluator. 518

Prompt-based evaluator sometimes fails. To 519

counter occasional misguidance from the machine 520

metric, we allow the final prompt-based evalua- 521

tor to operate independently, without being strictly 522

bound by these metrics. However, this approach 523

also means that the evaluator may not always fol- 524

low the instructions of the correct machine metric. 525

Additionally, the limited format-following capabil- 526

ity of some LLMs, particularly smaller models, can 527

make parsing the final score more difficult. 528

A more detailed case study is presented in Ap- 529

pendix F. 530

5 Conclusion 531

In this paper, we present Co-Eval, a zero-shot LLM- 532

based evaluation framework that enhances scalabil- 533

ity and fairness. The Co-Eval framework integrates 534

machine metrics into the prompt-based evaluator by 535

utilizing a fine-tuned criteria planner and a compre- 536

hensive library of metrics. This approach addresses 537

limitations such as bias and misalignment, which 538

arise from inaccurate recognition of functional cor- 539

rectness and gaps in domain-specific knowledge. 540
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Limitations541

Although we demonstrate the effectiveness of our542

proposed Co-Eval framework, several limitations543

remain:544

• While we have collected machine metrics545

for natural language generation tasks across546

a diverse set of domains, including general,547

code, mathematical, health, and financial, it548

remains challenging to cover all potential met-549

rics. There is considerable room for expand-550

ing the range of machine metrics to enhance551

coverage.552

• Our metric retrieval algorithm currently de-553

pends on semantic similarity between criteria554

descriptions and metric descriptions. How-555

ever, this approach lacks adaptability, and mis-556

matches in metric selection may mislead the557

LLM-based evaluator.558

• The Co-Eval framework is primarily designed559

to support LLM-based evaluation, meaning560

its overall effectiveness largely relies on the561

capabilities of the LLM, which serves as a562

prompt-based evaluator. This factor lies be-563

yond the scope of this paper.564
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A Large Language Models 936

GPT Family (Radford, 2018), developed by Ope- 937

nAI, is a series of large language models designed 938

to understand and generate human-like text. Built 939

on transformer architecture and pre-trained on ex- 940

tensive datasets, these models primarily excel in 941

natural language generation tasks. 942

Llama Family (Touvron et al., 2023), developed by 943

Meta, comprises a series of advanced open-source 944

language models. Included within this family is 945

CodeLlama, a domain-specific model focused on 946

code generation. CodeLlama is trained on a sub- 947

stantial amount of code data, building on the foun- 948

dation of the general LLaMA models to enhance 949

its capabilities in software development tasks. 950

Qwen Family (Bai et al., 2023), developed by Al- 951

ibaba Cloud, is distinguished by its targeted op- 952

timization for conversational AI and information 953

retrieval. Additionally, it offers the Qwen-Math 954

series, which enhances the mathematical perfor- 955

mance of the general Qwen models. 956

Gemma Family (Team et al., 2024), developed by 957

EleutherAI, focuses on lightweight, state-of-the-art 958

open models, with the largest model containing 27 959

billion parameters. 960

Mixtral Family (Jiang et al., 2024), developed by 961

Mistral AI, comprises a series of advanced open- 962

source language models, with its notable feature 963

being the implementation of Sparse Mixture of 964

Experts (SMoE) architecture. 965

B Baselines 966

B.1 Formula-based 967

BLEU (Papineni et al., 2002) is an automated met- 968

ric for evaluating the quality of machine-translated 969

text against one or more human reference transla- 970

tions. In this study, since we focus on zero-shot 971
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reference-free evaluation performance of each base-972

line method, we calculate the BLEU score between973

the generated response and the source conversation974

concatenated with knowledge-based content from975

the Topical-Chat benchmark.976

ROUGE (Lin, 2004) measures the overlap of n-977

grams, word sequences, and word pairs between a978

generated summary and reference summaries. Sim-979

ilar to BLEU, we calculate the ROUGE-L score980

between the generated response and the source con-981

versation concatenated with knowledge-based con-982

tent from the Topical-Chat benchmark.983

B.2 Embedding-based984

BERTScore (Zhang et al., 2019) leverages pre-985

trained BERT embeddings to capture semantic sim-986

ilarity between tokens in the generated and refer-987

ence texts. For our evaluation, we use the source988

conversation concatenated with knowledge-based989

content as the reference text for each generated990

response in the Topical-Chat benchmark.991

BARTScore (Yuan et al., 2021) measures the likeli-992

hood of a generated text relative to a reference text993

using the BART model, treating the evaluation as a994

text generation task itself. We also use the source995

conversation concatenated with knowledge-based996

content as the reference text for each generated997

response in the Topical-Chat benchmark.998

B.3 Learning-based999

USR (Mehri and Eskenazi, 2020) is a reference-1000

free metric and leverages pre-trained language mod-1001

els and unsupervised learning techniques to esti-1002

mate how well a generated response aligns with1003

context and meets conversational quality standards.1004

UNIEVAL (Zhong et al., 2022) is a unified,1005

reference-free evaluation framework designed for1006

assessing text generation quality. It leverages pre-1007

trained language models to assess these qualities,1008

enabling it to handle a diverse range of text genera-1009

tion tasks with a consistent, robust methodology.1010

B.4 LLM-based1011

G-EVAL (Liu et al., 2023) is a generative evalu-1012

ation framework for assessing the quality of gen-1013

erated text. It employs LLMs to directly evaluate1014

generated text based on criteria across a variety of1015

text generation tasks.1016

BATCHEVAL (Yuan et al., 2023) is a large-scale,1017

automated evaluation framework designed to as- 1018

sess the quality of text generation models in batch 1019

settings. It leverages LLMs and customizable eval- 1020

uation criteria, allowing it to assess aspects across 1021

diverse tasks. 1022

Prometheus (Kim et al., 2023, 2024) is a family of 1023

open-source language models designed specifically 1024

for evaluating other language models. Compared to 1025

the Prometheus 1 models, Prometheus 2 introduces 1026

support for switch modes by offering different input 1027

prompt formats and system prompts. 1028

C Experimental Implementation 1029

C.1 Topical-Chat 1030

Topical-Chat (Gopalakrishnan et al., 2023) is a 1031

large-scale open-domain conversational benchmark 1032

containing crowd-sourced conversations on diverse 1033

topics, grounded in factual knowledge, and in- 1034

cludes human evaluation scores for generated re- 1035

sponses across five key criteria: naturalness, coher- 1036

ence, engagingness, groundedness, and understand- 1037

ability. 1038

In our work with the Topical-Chat benchmark, 1039

we adhere to the original six evaluation criteria: un- 1040

derstanding, naturalness, coherence, engagingness, 1041

groundedness, and overall quality. Since Topical- 1042

Chat is a multi-turn conversation benchmark, we 1043

follow previous studies (Liu et al., 2023; Yuan et al., 1044

2023) and use turn-level correlations, assessing 1045

alignment between generated evaluations and hu- 1046

man judgments by computing both Spearman (ρ) 1047

and Kendall (τ ) correlations for each turn response, 1048

then averaging the scores to obtain the final eval- 1049

uation. For the first five criteria, we adopt the de- 1050

scriptions provided by BATCHEVAL (Yuan et al., 1051

2023) and select relevant metrics from the machine 1052

metric library. To evaluate overall quality, we im- 1053

plement the full Co-Eval pipeline. Additionally, in 1054

our analysis of G-Eval (Liu et al., 2023), we focus 1055

on the zero-shot evaluation capability of the LLM- 1056

based evaluator, conducting assessments without 1057

any pre-existing evaluation samples. Results are 1058

presented in Table 1. 1059

C.2 Flores 1060

Flores (Costa-jussà et al., 2022) is a benchmark de- 1061

signed to provide high-quality human translations 1062

of standardized sentences, enabling the evaluation 1063

of translation accuracy across low-resource and 1064

diverse linguistic settings. 1065
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For the Flores benchmark, we examine the rela-1066

tionship between LLMs’ familiarity with the tar-1067

get task and their preference bias. Six languages1068

were selected for this study: French, Spanish, Chi-1069

nese, Vietnamese, Ukrainian, and Thai. We used1070

four LLMs: LLaMA-3.1-8B-Instruct, Qwen-2.5-1071

7B-Instruct, Gemma-2-9B-Instruct, and GPT-4o-1072

mini. Each model translated English text into these1073

six languages. To measure each LLM’s familiarity1074

with the task, we followed previous work (Kada-1075

vath et al., 2022) that evaluates familiarity based on1076

the self-consistency of LLMs in translation genera-1077

tion. Specifically, we selected ten samples, gener-1078

ated ten translations per sample with a temperature1079

setting of 0.7, and computed the average token-1080

level BLEU (Papineni et al., 2002) score across1081

these translations. The results were ranked from1082

1 to 6, indicating each model’s familiarity with1083

the task, from most to least familiar. Results are1084

presented in Figure 8.1085

C.3 CoNaLa1086

CoNaLa (Yin et al., 2018) is a large-scale bench-1087

mark designed for research in code generation and1088

understanding from natural language. It includes1089

manually curated examples of Python code paired1090

with corresponding natural language intents.1091

For the CoNaLa benchmark, we used six LLMs,1092

including LLaMA-3.1-8B-Instruct, LLaMA-3.1-1093

70B-Instruct, Qwen-2.5-7B-Instruct, Qwen-2.5-1094

72B-Instruct, Gemma-2-9B-Instruct, and Gemma-1095

2-27B-Instruct, to generate executable Python code1096

based on specific requirements. The six responses1097

were then randomly shuffled, and all six models1098

served as LLM-based evaluators to examine their1099

self-preference biases across three methods: the1100

standard method, the batch method, and the Co-1101

Eval framework. The results are displayed in Fig-1102

ure 3.1103

To further demonstrate that our proposed frame-1104

work not only reduces bias but also aligns LLM-1105

based evaluations with human preferences, we1106

sampled the first 50 examples from the bench-1107

mark, manually scoring the code generated by1108

LLaMA-3.1-8B-Instruct, Qwen-2.5-7B-Instruct,1109

and Gemma-2-9B-Instruct. We invited three an-1110

notators. Each annotator with at least one year of1111

Python coding experience was tasked with eval-1112

uating responses for correctness, readability, ad-1113

herence to coding standards, and alignment with1114

problem requirements. They were also encour-1115

aged to run the generated code to verify its func-1116

tionality. The final human annotation score is 1117

calculated as the average of the scores provided 1118

by the three annotators. We then calculated the 1119

Spearman (ρ) and Kendall (τ ) correlations be- 1120

tween these models’ scores and human prefer- 1121

ences within the standard, batch, and Co-Eval 1122

frameworks, using the LLaMA-3.1-8B-Instruct and 1123

LLaMA-3.1-70B-Instruct models. Additionally, 1124

we applied domain-specific LLMs, CodeLLaMA- 1125

7B-Instruct and CodeLLaMA-70B-Instruct, using 1126

batch method. Results are shown in the Table 2. 1127

C.4 Mental Health Counseling Conversations 1128

Mental Health Counseling Conversations (Amod, 1129

2024) is a comprehensive collection of conversa- 1130

tional data designed to support research and devel- 1131

opment in the field of mental health counseling. It 1132

consists of real-world dialogues between mental 1133

health professionals and their clients, focusing on 1134

therapeutic interactions aimed at addressing vari- 1135

ous psychological issues. 1136

For the Health Counseling benchmark, similar to 1137

the CoNaLa benchmark, we used six LLMs as well, 1138

including LLaMA-3.1-8B-Instruct, LLaMA-3.1- 1139

70B-Instruct, Qwen-2.5-7B-Instruct, Qwen-2.5- 1140

72B-Instruct, Gemma-2-9B-Instruct, and Gemma- 1141

2-27B-Instruct, to generate responses to previous 1142

mental health dialogues. The six responses were 1143

then randomly shuffled, and all six models served 1144

as LLM-based evaluators to examine their self- 1145

preference biases across three methods: the stan- 1146

dard method, the batch method, and the Co-Eval 1147

framework. The results are shown in Figure 3. 1148

C.5 MATH 1149

MATH (Hendrycks et al., 2021) is a large-scale 1150

benchmark designed to assess mathematical reason- 1151

ing abilities, featuring problems that span a wide 1152

range of topics from middle school to high school 1153

mathematics, including algebra, geometry, calcu- 1154

lus, and more. Each problem is accompanied by a 1155

detailed step-by-step solution. 1156

For the MATH benchmark, we sampled the 1157

first 10 problems from each of the seven cate- 1158

gories. Using LLaMA-3.1-8B-Instruct, Qwen-2.5- 1159

7B-Instruct, and Gemma-2-9B-Instruct, we gener- 1160

ated answers for each question. We then organized 1161

the generated answers in three different orders, en- 1162

suring that each model’s answer was evaluated in 1163

all positions in the batch. We used GPT-4o as 1164

an LLM-based evaluator to assess the generated 1165

answers across different orderings. We then calcu- 1166
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lated the rate at which each answer achieved the1167

highest score at different positions, with results1168

shown in Figure 4.1169

Similar to CoNaLa benchmark, we also manu-1170

ally scored 70 examples with answers generated1171

by all three models. We invited three annotators1172

as well. Each annotators who had completed at1173

least one mathematics course was instructed to as-1174

sess responses for accuracy, clarity, logical reason-1175

ing, and adherence to problem-solving approaches.1176

The final human annotation score is calculated as1177

the average of the scores provided by the three1178

annotators. We then calculated the Spearman (ρ)1179

and Kendall (τ ) correlations between the models’1180

scores and human preferences across the standard,1181

batch, and Co-Eval frameworks, using Qwen-2.5-1182

7B-Instruct and Qwen-2.5-72B-Instruct. Domain-1183

specific LLMs, Qwen-2.5-MATH-7B-Instruct and1184

Qwen-2.5-MATH-72B-Instruct, were also applied1185

using the batch method. Results are presented in1186

Table 2.1187

C.6 FIQA1188

FIQA (Yang et al., 2023) is a benchmark designed1189

for research in financial question-answering tasks.1190

It contains a collection of financial questions paired1191

with corresponding answers, covering a wide range1192

of topics such as stock markets, investments, and1193

economic policies.1194

For the FIQA benchmark, we sampled the first1195

50 examples and used LLaMA-3.1-8B-Instruct to1196

generate answers for each question. GPT-4o was1197

then used to create both a brief and an extended1198

version of each answer. From the extended ver-1199

sions, we sampled 25 examples and manually intro-1200

duced errors, such as adding incorrect information,1201

reversing the meaning of some sentences, and mak-1202

ing calculation mistakes. We then organized the1203

brief, original, and extended versions, both with1204

and without errors, into a single batch, shuffling1205

the presentation order. Using GPT-4o as an LLM-1206

based evaluator, we calculated the rate at which1207

each version received the highest score across the1208

standard, batch, and Co-Eval frameworks. The1209

results are shown in Figure 5.1210

C.7 Summeval1211

Summeval (Fabbri et al., 2021) is a comprehen-1212

sive benchmark for evaluating abstractive summa-1213

rization models, featuring human evaluations of1214

machine-generated summaries based on four key1215

criteria: coherence, consistency, fluency, and rele- 1216

vance. 1217

For the Summeval benchmark, we conducted 1218

an ablation experiment for the two main compo- 1219

nents of the Co-Eval framework: the fine-tuned 1220

criteria planner and the machine metric library. 1221

We selected the first 6 generated responses from 1222

the initial 50 samples and evaluated the Spearman 1223

(ρ) and Kendall (τ ) correlations of these samples 1224

against human preferences, using the LLaMA-3.1- 1225

70B-Instruct and Qwen-2.5-72B-Instruct models as 1226

LLM-based evaluators. The evaluation employed 1227

both the batch method and the Co-Eval framework 1228

across four configurations: (1) with a non-fine- 1229

tuned criteria planner and no machine metric, (2) 1230

with only a fine-tuned criteria planner and no ma- 1231

chine metric, (3) with GPT-4o as criteria planner 1232

and no machine metric, (4) with a non-fine-tuned 1233

criteria planner and machine metric, and (5) with 1234

both a fine-tuned criteria planner and machine met- 1235

ric. Results are presented in Table 3, with the com- 1236

plete leaderboard for each criterion shown in Table 1237

4. 1238

C.8 HANNA 1239

HANNA (Chhun et al., 2022) is a large-scale, an- 1240

notated benchmark designed for evaluating story 1241

generation models. It includes human-written and 1242

model-generated narratives with detailed annota- 1243

tions for five key aspects: coherence, relevance, 1244

empathy, surprise, and engagement. 1245

For the HANNA benchmark, we investigated the 1246

impact of machine metric alignment with human 1247

preferences on the agreement of LLM-based eval- 1248

uators with human preferences. We skipped the 1249

criteria planning step, using the original criteria 1250

descriptions instead. For each criterion, we applied 1251

three types of machine metrics: (1) a randomly 1252

selected metric from the top 10 retrieved metrics 1253

in the machine metric library, (2) the top 1 metric 1254

retrieved from the machine metric library, and (3) 1255

BERTScore using our fine-tuned BERT model. We 1256

then used the LLaMA-3.1-70B-Instruct model as 1257

an LLM-based evaluator across the five key aspects 1258

using the standard, batch, and Co-Eval frameworks 1259

on the first five generated stories of the initial 30 1260

samples. The Spearman (τ ) correlations of the eval- 1261

uation results against human preferences are shown 1262

in Figure 7. 1263

In our training setup for the BERT model, we al- 1264

located 50 of the remaining 70 samples for training 1265

and 20 for validation. The Adam optimizer is used 1266
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with a learning rate of 1e-5, and training runs for1267

a maximum of 30 epochs. We employ a pairwise1268

ranking loss on batches generated from the same1269

prompt, with early stopping applied if the Kendall1270

correlation does not improve on the validation set1271

for 5 consecutive epochs.1272

D Prompts1273

D.1 Criteria Plan1274

Default for Fine-tuned Criteria Planner1275

Please provide the evaluation criteria for this1276

task, including the weight of each criterion. The1277

total score should be 10 points.1278

Task: {{task description}}1279

Default for Data Preparation1280

Task: {{task description}}1281

Instruction: Please provide the evaluation cri-1282

teria for this task, including the weight of each1283

criterion. The total score should be 10 points, with1284

no more than 5 criteria in total. Present the infor-1285

mation in the following format:1286

No. Criterion Name (Weight in points) - Descrip-1287

tion of what this criterion evaluates. Provide clear1288

guidance on how this aspect of the response will1289

be assessed.1290

An Example:1291

1. Efficiency (2 points): Is the generated code1292

optimized in terms of time and space complexity?1293

- A float score near 0 (no) means the code is in-1294

efficient and has significant room for optimization.1295

- A float score near 1 (somewhat) means the1296

code has a moderate level of efficiency but could1297

be improved.1298

- A float score near 2 (yes) means the code is1299

highly optimized in both time and space complexity.1300

Return the complete list. Note: Efficiency is1301

included as an example and is not required to be1302

part of the final list.1303

D.2 Machine Metric Refinement1304

Default for Fine-tuned Criteria Planner1305

Please provide a detailed metric description that1306

clearly explains how the metric reflects and aligns1307

with the corresponding criterion.1308

Criteria: {{criteria name}} - {{criteria descrip-1309

tion}}1310

Machine Metric: {{machine metric name}} - 1311

{{machine metric description}} 1312

Default for Data Preparation 1313

Instruction: First, generate the most suitable 1314

machine metric for the given criterion with met- 1315

ric description. Then, provide a detailed metric 1316

description that clearly explains how the metric re- 1317

flects and aligns with the corresponding criterion. 1318

An Example: 1319

Criteria: Coherence – Measures how logically 1320

the summary flows, ensuring clarity and consis- 1321

tency in the ideas presented. 1322

Machine Metric: BERTScore – Evaluates the 1323

semantic similarity between two pieces of text. 1324

Detailed Machine Metric: BERTScore – Evalu- 1325

ates the semantic similarity between two pieces of 1326

text. A higher BERTScore reflects a greater degree 1327

of coherence, indicating that the summary aligns 1328

more closely with the logical flow and meaning of 1329

the original content. 1330

Criteria: {{criteria name}} - {{criteria descrip- 1331

tion}} 1332

Machine Metric: {{machine metric name}} - 1333

{{machine metric description}} 1334

D.3 Evaluation 1335

Example of Standard Individual Evaluation 1336

You will be given a sample, containing a gener- 1337

ated code for given requirement. 1338

Your task is to assign a float score to the response 1339

on one metric. 1340

You should carefully horizontally compare the 1341

given samples in order to assign a suitable float 1342

score to each sample. 1343

Please make sure you read and understand these 1344

instructions carefully. Please keep this document 1345

open while reviewing, and refer to it as needed. 1346

Evaluation Criteria: 1347

Overall (floating point numbers within the inter- 1348

val [1,5]): What is your overall impression of the 1349

quality of the generated code? 1350

- A float score near 1 (very poor): The generated 1351

code is of very low quality. It contains significant 1352

errors or does not run at all, lacks any meaningful 1353

structure, and does not meet the requirements in 1354

any substantial way. The code might be difficult or 1355

impossible to salvage for further use. 1356

- A float score near 2 (poor): The code runs but 1357

is largely incorrect or ineffective. There are numer- 1358
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ous logical errors or missing functionality, and it1359

does not align well with the provided requirements.1360

The code may also suffer from poor readability1361

or lack of proper structure, making it difficult to1362

understand or maintain.1363

- A float score near 3 (neutral): The code is1364

functional but unremarkable. It may have some er-1365

rors or areas for improvement but generally follows1366

the basic requirements and runs with acceptable1367

results. The code is neither highly readable nor1368

efficient, but it’s not overly difficult to understand1369

or extend.1370

- A float score near 4 (good): The generated code1371

is of good quality, meeting most of the requirements1372

with only minor issues. It runs correctly for the1373

majority of test cases and is fairly easy to read1374

and maintain. The code could be improved, but1375

any changes would be enhancements rather than1376

necessary fixes.1377

- A float score near 5 (excellent): The code is1378

of very high quality, demonstrating strong adher-1379

ence to all requirements. It is free from significant1380

errors, highly readable, well-structured, efficient,1381

and maintainable. The code is clear, concise, and1382

easy to understand, with well-considered logic and1383

style. There are no significant flaws or areas for1384

improvement.1385

Generated code and given requirement:1386

Source: {{requirement source}}1387

System Response: {{response output}}1388

Evaluation Form (scores ONLY):1389

- Overall:1390

Example of Batch Evaluation1391

You will be given a batch of 8 samples. Each1392

sample contains a generated code for given require-1393

ment.1394

Your task is to assign a float score to the response1395

on one metric.1396

You should carefully horizontally compare the1397

given samples in order to assign a suitable float1398

score to each sample.1399

Please make sure you read and understand these1400

instructions carefully. Please keep this document1401

open while reviewing, and refer to it as needed.1402

Evaluation Criteria:1403

Overall (floating point numbers within the inter-1404

val [1,5]): What is your overall impression of the1405

quality of the generated code?1406

- A float score near 1 (very poor): The generated1407

code is of very low quality. It contains significant 1408

errors or does not run at all, lacks any meaningful 1409

structure, and does not meet the requirements in 1410

any substantial way. The code might be difficult or 1411

impossible to salvage for further use. 1412

- A float score near 2 (poor): The code runs but 1413

is largely incorrect or ineffective. There are numer- 1414

ous logical errors or missing functionality, and it 1415

does not align well with the provided requirements. 1416

The code may also suffer from poor readability 1417

or lack of proper structure, making it difficult to 1418

understand or maintain. 1419

- A float score near 3 (neutral): The code is 1420

functional but unremarkable. It may have some er- 1421

rors or areas for improvement but generally follows 1422

the basic requirements and runs with acceptable 1423

results. The code is neither highly readable nor 1424

efficient, but it’s not overly difficult to understand 1425

or extend. 1426

- A float score near 4 (good): The generated code 1427

is of good quality, meeting most of the requirements 1428

with only minor issues. It runs correctly for the 1429

majority of test cases and is fairly easy to read 1430

and maintain. The code could be improved, but 1431

any changes would be enhancements rather than 1432

necessary fixes. 1433

- A float score near 5 (excellent): The code is 1434

of very high quality, demonstrating strong adher- 1435

ence to all requirements. It is free from significant 1436

errors, highly readable, well-structured, efficient, 1437

and maintainable. The code is clear, concise, and 1438

easy to understand, with well-considered logic and 1439

style. There are no significant flaws or areas for 1440

improvement. 1441

Generated code and given requirement: 1442

Source: {{requirement source}} 1443

Sample 1: 1444

System Response: {{sample 1 response output}} 1445

Sample 2: 1446

System Response: {{sample 2 response output}} 1447

... 1448

Sample 6: 1449

System Response: {{sample 6 response output}} 1450

Evaluation Form (Answer by starting with "Anal- 1451

ysis:" to analyze the given samples regarding the 1452

evaluation criteria and offer insights derived from 1453

the machine metric scores as concise as possible 1454

(Attention: Don’t give your scores during this step). 1455

After analyzing all the samples, please give all 1456

the float scores in order following the template 1457
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"Float Scores: [Sample1:score of Sample1, Sam-1458

ple2:score of Sample2, Sample3:score of Sample3,1459

Sample4:score of Sample4, Sample5:score of Sam-1460

ple5, Sample6:score of Sample6]".1461

Example of Co-Eval Evaluation1462

You will be given a batch of 8 samples. Each1463

sample contains a generated code for given require-1464

ment.1465

Your task is to assign a float score to the response1466

on one metric.1467

You should carefully horizontally compare the1468

given samples in order to assign a suitable float1469

score to each sample.1470

You can refer to the machine metric scores of1471

each sample if you are not confidence.1472

Please make sure you read and understand these1473

instructions carefully. Please keep this document1474

open while reviewing, and refer to it as needed.1475

Evaluation Criteria:1476

Robustness (floating point numbers within the1477

interval [0,2]): Does the generated code handle1478

edge cases and potential errors gracefully?1479

- A float score near 0 (no) means the code fails1480

to handle edge cases or crashes on invalid inputs.1481

- A float score near 1 (somewhat) means the code1482

handles some edge cases but misses others or lacks1483

comprehensive error handling.1484

- A float score near 2 (yes) means the code effec-1485

tively handles all edge cases and includes compre-1486

hensive error handling.1487

Given Content and potentially useful Machine1488

Metric Score:1489

Source: {{requirement source}}1490

Sonar Reliability - Assesses the robustness and1491

fault-tolerance of software code, focusing on its1492

potential to contain bugs or defects that could lead1493

to malfunctions in production. The lower the nu-1494

merical score, the better the reliability of the code,1495

indicating fewer bugs and a lower risk of defects1496

impacting the software’s functionality.1497

Sample 1:1498

System Response: {{sample 1 response output}}1499

Score: {{sample 1 sonar reliability score}}1500

Sample 2:1501

System Response: {{sample 2 response output}}1502

Score: {{sample 2 sonar reliability score}}1503

...1504

Sample 6:1505

System Response: {{sample 6 response output}}1506
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Figure 8: Self-preference bias on Flores benchmark.

Score: {{sample 6 sonar reliability score}} 1507

Evaluation Form (Answer by starting with "Anal- 1508

ysis:" to analyze the given samples regarding the 1509

evaluation criteria and offer insights derived from 1510

the machine metric scores as concise as possible 1511

(Attention: Don’t give your scores during this step). 1512

After analyzing all the samples, please give all 1513

the float scores in order following the template 1514

"Float Scores: [Sample1:score of Sample1, Sam- 1515

ple2:score of Sample2, Sample3:score of Sample3, 1516

Sample4:score of Sample4, Sample5:score of Sam- 1517

ple5, Sample6:score of Sample6]". 1518

- Robustness: 1519

E Additional Experiment Results 1520

E.1 Self-preference on Flores Benchmark 1521

For the Flores benchmark, we attempt to explore 1522

the relationship between self-preference bias and 1523

LLMs’ familiarity with different languages. Unfor- 1524

tunately, as shown in Figure 8, our results indicate 1525

that self-preference bias does not exhibit a clear 1526

correlation with language familiarity. This may be 1527

due to variations in language familiarity affecting 1528

the accuracy of self-preference bias calculations 1529

based on average rank. Nevertheless, regardless 1530

of the direction of these variations, batch evalu- 1531

ations help reduce self-preference across models 1532

and languages, with the Co-Eval framework fur- 1533

ther minimizing bias to near-uniform levels across 1534

languages. 1535

E.2 Complete Summeval Leaderboard 1536

We present complete experimental results on the 1537

Summeval benchmark, a meta-benchmark with 1538

fine-grained labels. The results are summarized 1539
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Figure 9: Pearson correlations on Topical-chat bench-
mark.

in Table 4.1540

The results on the Summeval benchmark with1541

fine-grained labels exhibit a trend similar to that of1542

the Topical-Chat benchmark. While G-EVAL and1543

BATCHEVAL outperform in certain criteria, our1544

proposed Co-Eval framework consistently achieves1545

the best performance on the "Overall" criteria.1546

E.3 Criteria Number and Sample Times1547

We evaluate the impact of the number of criteria1548

and sample times on the Pearson correlations using1549

the Topical-Chat benchmark in relation to our pro-1550

posed Co-Eval framework. Specifically, we assess1551

the performance of the Co-Eval framework with1552

criteria numbers of 1, 3, 5, 7, and 10, and sample1553

times of 1 and 5. As shown in Figure 9, the per-1554

formance is more consistently aligned with human1555

preferences when we sample 5 times and take the1556

average score, compared to sampling only once,1557

which is consistent with the findings reported in1558

prior work (Yuan et al., 2023).1559

Regarding the number of criteria, the Pearson1560

correlation shows an increasing trend from 1 (equiv-1561

alent to the batch method) to 5. However, when the1562

number of criteria exceeds 5, the Pearson correla-1563

tion begins to decrease, indicating that 5 criteria is1564

the most suitable choice for common generation1565

tasks. Too few criteria fail to provide a comprehen-1566

sive evaluation of the task, while too many criteria1567

can lead to diminishing returns, potentially intro-1568

ducing redundant or conflicting evaluation metrics1569

that compromise the accuracy and coherence of the1570

overall assessment.1571

E.4 Impact of Temperature1572

We evaluate the impact of temperature on self-1573

preference bias, position bias, and verbosity bias1574

by testing temperatures of 0.0, 0.3, 0.5, 0.7, and1575

1.0, and reproducing the experiments for each type 1576

of bias. 1577

As shown in Figure 10, while the effect of 1578

temperature on self-preference bias varies across 1579

models, our proposed Co-Eval framework consis- 1580

tently enables the LLM-based evaluator to achieve 1581

the lowest self-preference bias. Furthermore, for 1582

position bias and verbosity bias, GPT-4o, when 1583

used as an LLM-based evaluator with the Co-Eval 1584

framework, consistently maintains a balanced top- 1585

ranking rate while being less influenced by the 1586

position and verbosity of each response. 1587

F Detailed Case Study 1588

We further analyze the cases throughout the entire 1589

process: 1590

Case 1: For some long-tail tasks, the generaliza- 1591

tion ability of the fine-tuned criteria planner is in- 1592

sufficient to generate a comprehensive set of evalu- 1593

ation criteria. For example, consider the task: Gen- 1594

erate architectural drawings for a supermarket. The 1595

fine-tuned criteria planner accounts for the follow- 1596

ing aspects: Accuracy of Store Layout, Adherence 1597

to Building Codes and Regulations, Effective Use 1598

of Space, Aesthetic Appeal and Brand Identity, and 1599

Technical Quality and Presentation. However, all 1600

five criteria are equally weighted, each contributing 1601

2 points to the total 10-point score. In contrast, hu- 1602

man preferences suggest that Regulations and Store 1603

Layout should carry the most weight, making the 1604

evaluation misaligned with human judgment. Addi- 1605

tionally, compared to the GPT-4o, budget consider- 1606

ations and branding alignment, both critical factors 1607

in supermarket architectural design, are missing 1608

from the criteria set. This gap further highlights the 1609

planner’s limitations in capturing human-centric 1610

evaluation priorities. 1611

Case 2: For some criteria descriptions, the ma- 1612

chine metric with the highest semantic similarity 1613

score does not necessarily align best with human 1614

preferences. For example, in the Fluency crite- 1615

rion of the SummEval benchmark, perplexity is the 1616

machine metric whose description is most semanti- 1617

cally similar to the criterion description. However, 1618

BARTScore exhibits a significantly higher Spear- 1619

man correlation with human judgment. This mis- 1620

alignment leads to lower performance when Llama- 1621

3.1-70B-Instruct serves as the final prompt-based 1622

evaluator within the Co-Eval framework. The mis- 1623

take arises despite regenerating machine metric de- 1624

scriptions via sampling to better reflect the specific 1625
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Metrics Model Coherence Consistency Fluency Relevance Overall

ρ τ ρ τ ρ τ ρ τ ρ τ

G-EVAL
Llama-3.1-70B .542 .454 .550 .486 .423 .366 .395 .338 .517 .423
Qwen-2.5-72B .509 .425 .624 .563 .529 .469 .413 .349 .474 .399

BATCHEVAL
Llama-3.1-70B .444 .366 .547 .483 .427 .372 .421 .354 .510 .422
Qwen-2.5-72B .514 .424 .552 .497 .430 .373 .407 .343 .532 .448

Co-Eval
Llama-3.1-70B .548 .502 .452 .413 .391 .355 .464 .427 .525 .448
Qwen-2.5-72B .483 .415 .592 .544 .558 .511 .457 .391 .552 .465

Table 4: Complete Spearman (ρ) and Kendall (τ ) correlations on Summeval benchmark.
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(c) Verbosity Bias

Figure 10: Impact of temperature on three kinds of bias.

aspects each metric evaluates. However, human1626

evaluation does not always have clearly defined1627

boundaries between different criteria—especially1628

for closely related aspects. As a result, scores for1629

Coherence can inadvertently influence the evalua-1630

tion of Fluency, leading to discrepancies in align-1631

ment.1632

Case 3: For some general tasks, the machine1633

metric score is less aligned with human preferences1634

than the LLM itself. For example, as shown in the1635

results in Table 1 and 4, LLM-based evaluation1636

achieves the highest scores in some criteria using1637

the batch method, even when the standard method1638

is used without a machine metric. This is true1639

even when the reference machine metric is suitable,1640

particularly for criteria that are more subjective1641

and dependent on the evaluator. In such cases,1642

the machine metric may interfere with the prompt-1643

based evaluator to some extent.1644

Case 4: The prompt-based evaluator demon-1645

strates critical thinking when assessing the refer-1646

ence machine metric score. For example, "Upon re-1647

viewing the samples, it is evident that the machine1648

metric scores do not directly reflect the readabil-1649

ity of the code... However, analyzing the samples1650

based on readability, we find that..." This capabil-1651

ity strengthens the robustness of our proposed Co-1652

Eval framework against unsuitable machine metric1653

scores. However, it also introduces the possibility 1654

that the prompt-based evaluator may resist follow- 1655

ing the instructions of the augmented machine met- 1656

ric. As shown in the experiment on verbosity bias, 1657

an 8% extended response containing error informa- 1658

tion still achieved the highest score, even though 1659

the machine metric detected the error. 1660

Case 5: Some LLMs, particularly smaller mod- 1661

els, exhibit weak format-following capabilities. For 1662

example, when LLaMA-3.1-8B-Instruct is used as 1663

the final prompt-based evaluator, it may present 1664

scores in inconsistent formats such as: "Float 1665

Scores: Sample1: [3], Sample2: [2], Sample3: 1666

[3], Sample4: [4]" and "Float Scores: [4.5: Sam- 1667

ple1, 2: Sample2, 4: Sample3, 4.5: Sample4]", 1668

whereas the expected standard format is: "Float 1669

Scores: [Sample1: 2.5, Sample2: 2.5, Sample3: 4, 1670

Sample4: 4]". These inconsistencies complicate 1671

score parsing and may lead to misinterpretations of 1672

evaluation results. 1673

Case 6: Compared to the diversity of tasks, the 1674

coverage of machine metrics is limited. As a result, 1675

some criteria lack suitable machine metrics, such 1676

as the "Completeness" criteria in the MATH bench- 1677

mark. Determining whether a solution step is both 1678

complete and reasonable remains an open question. 1679

In our experiment, we design a metric to evaluate 1680

completeness using the BERTScore between con- 1681
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secutive steps in a solution. A higher average score1682

across all solution steps indicates a more complete1683

and detailed response. Additionally, the Co-Eval1684

framework makes it easy to incorporate new and1685

useful machine metrics into the evaluation process,1686

improving adaptability and coverage.1687
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