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Abstract

Pre-trained Transformers inherently possess the
characteristic of sparse activation, where only a
small fraction of the neurons are activated for
each token. While sparse activation has been
explored through post-training methods, its po-
tential in pre-training remains untapped. In
this work, we first study how activation prop-
erties change during pre-training. Our exami-
nation reveals that Transformers exhibit sparse
activation throughout the majority of the pre-
training process while the activation correlation
keeps evolving as training progresses. Lever-
aging this observation, we propose Switchable
Sparse-Dense Learning (SSD). SSD adaptively
switches between the Mixtures-of-Experts (MoE)
based sparse training and the conventional dense
training during the pre-training process, leverag-
ing the efficiency of sparse training and avoiding
the static activation correlation of sparse training.
Compared to dense training, SSD achieves compa-
rable performance with identical model size and
reduces pre-training costs. Moreover, the models
trained with SSD can be directly used as MoE
models for sparse inference and achieve the same
performance as dense models with up to 2x faster
inference speed. Codes are available at https:
//github.com/thunlp/moefication.

1. Introduction

Recent studies have uncovered a notable characteristic of
pre-trained Transformers: the sparse activation of neurons
in their intermediate layers (Zhang et al., 2022b; Li et al.,
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2023; Liu et al., 2023; Dong et al., 2023; Mirzadeh et al.,
2023). During inference, it has been observed that only a
small fraction of the intermediate hidden states are activated,
rendering a non-zero state, while the majority remain inac-
tive. Sparse activation presents a promising direction for
improving the efficiency of Transformer-based models.

Previous work has primarily focused on leveraging the
sparse activation phenomenon to speed up the inference
process through post-training methods (Liu et al., 2023; Al-
izadeh et al., 2023). For instance, with model parameters
frozen, DejaVu (Liu et al., 2023) proposes to selectively
engage a subset of neurons likely to activate during infer-
ence, thereby reducing both the parameter communication
and model computation costs. However, the potential of
utilizing sparse activation in pre-training remains largely
unexplored.

Unlike the widely explored domain of post-training, where
model parameters are fixed, the pre-training of Transform-
ers is dynamic, requiring ongoing updates to model param-
eters. Therefore, a preliminary step is to investigate the
activation of Transformers during pre-training. We conduct
experiments on three representative text models, including
GPT (Radford et al., 2019), BERT (Devlin et al., 2019),
and T5 (Raffel et al., 2020), with different architectures and
pre-training objectives.

Our findings reveal that these models become sparsely acti-
vated in the early stage of pre-training, subsequently stabi-
lizing in this sparse state. It suggests that sparse activation
is a pervasive phenomenon across pre-trained models, ex-
isting throughout the majority of the pre-training process.
Meanwhile, although the activation sparsity becomes stable
after a certain stage of pre-training, the activation pattern
is still dynamic: the set of activated neurons for a certain
input varies across different stages of pre-training. Conse-
quently, the sparse training method for pre-training should
be adaptive to the change in the activation patterns.

Based on these observations, we propose Switchable Sparse-
Dense Learning (SSD), utilizing the phenomenon of sparse
activation to accelerate the pre-training of Transformers and
enhance the efficiency of inference. SSD contains two kinds
of training phases: the original dense training, which facili-
tates the evolution of activation patterns, and the subsequent
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sparse training, which aims to efficiently optimize model
parameters after the activation patterns have stabilized. SSD
switches between these two phases throughout the pre-
training process. Specifically, when the activation sparsity
grows high and the activation patterns become stable, we
switch to sparse training by converting the dense model
to a Sparsely-activated Mixture-of-Experts (SMoE) model,
thereby enabling an efficient approximation of the origi-
nal dense model. Unlike traditional Transformers, SMoE
models replace the feed-forward networks with SMoE lay-
ers, where each expert is a feed-forward network and the
SMOoE layer selectively engages a subset of experts, promot-
ing computational efficiency. To ensure the model sustains
its capability for dense computation and fully leverages
the model capacity, we alternate between sparse and dense
training multiple times, as opposed to a permanent shift to
sparse training. This strategy aims to mitigate the risk of
overfitting to the sparse computation paradigm shown in
previous work (Zuo et al., 2022a). Besides, the final dense
model is familiar with the sparse computation form, which
is beneficial for the subsequent sparse inference.

In the experiments, we evaluate GPT, BERT, and T5 on
language modeling and several representative downstream
tasks, including sentence classification (Socher et al., 2013),
natural language inference (Bowman et al., 2015; Williams
et al., 2018), reading comprehension (Rajpurkar et al.,
2016), and instruction-tuning (Honovich et al., 2022; Wang
et al., 2022b). Compared to traditional dense training, SSD
achieves comparable performance with the same model size
and fewer pre-training costs, up to 1.44 x speedup in FLOPs.
Besides, the models pre-trained with SSD can be used as an
SMoE model for inference without any additional training,
and reduces the inference time of feed-forward networks
by up to 2x while maintaining the performance as good
as densely pre-trained models. Moreover, by flexibly ad-
justing the number of selected experts during inference, our
method achieves the best trade-off between performance
and efficiency compared to other baseline methods, which
is impossible for the models pre-trained with SMoE.

2. Related Work

Activation Sparsity of Transformers. While non-linear
activation functions are prevalent in neural networks, the ac-
tivation of neurons is typically dense, for instance, 44% of
zeros in convolutional neural networks (Albericio et al.,
2016). Contrastingly, pre-trained Transformers exhibit
sparse activation, with over 90% of zeros in TS5 (Zhang
et al., 2022b), and similar phenomena are observed in other
pre-trained models spanning both language and vision do-
mains (Liu et al., 2023; Li et al., 2023). This sparsity has
stimulated researchers’ interest in utilizing it to accelerate
inference. There are two main approaches: neuron-based

acceleration (Liu et al., 2023) which dynamically selects
subsets of neurons likely to be activated for computation,
and SMoE-based acceleration (Zhang et al., 2022b), which
first groups the neurons into experts and then computes in an
SMOoE manner by selecting the experts likely to contain most
activated neurons. The former is a fine-grained approach
suitable for single-instance inference, while the latter is a
coarse-grained strategy well-suited for batch inference. In
this work, we align with the SMoE-based approach, given
that pre-training is commonly conducted in batch mode.

Sparse-Activated Mixture-of-Experts. SMoE is a rep-
resentative method to improve training efficiency of
Transformer-based large language models (Hazimeh et al.,
2021; Gao et al., 2022; Zuo et al., 2022b; Lee-Thorp &
Ainslie, 2022; Gururangan et al., 2022; Jang et al., 2023;
Liu et al., 2022; Chen et al., 2023b; Mugeeth et al., 2023)
and targets both feed-forward networks (FFNs) (Lewis et al.,
2021; Roller et al., 2021) and attention networks (Zhang
et al., 2022a). Based on the SMoE technique, we can train
Transformers that are dozens of times larger without signif-
icantly increasing computational overhead (Artetxe et al.,
2022; Riquelme et al., 2021). However, when we evaluate
the models on an equivalent parameter basis, the perfor-
mance of models pre-trained with the SMoE technique fre-
quently lags behind that of their dense counterparts (Chen
et al., 2023a).! The performance discrepancy of certain
models could potentially be attributed to a phenomenon
known as representation collapse (Chi et al., 2022), where
multiple experts redundantly encode similar information,
leading to inefficient parameter utilization. Furthermore, the
mandatory selection of all experts during inference typically
does not confer any notable benefits (Zuo et al., 2022a). To
alleviate this issue, we combine SMoE with dense training,
aiming to attain the model performance matching purely
dense training while concurrently curtailing training costs.
Similar to our work, Pan et al. (2024) propose to add con-
straints during dense training to induce SMoE-like behavior
thereby improving the inference efficiency of the model but
it may introduce additional training overhead.

Pre-training Acceleration Methods. In addition to SMoE,
there are other methods to accelerate pre-training, includ-
ing modifying the training objectives (Clark et al., 2020),
inheriting the parameters from previous models (Chen et al.,
2022; Qin et al., 2022; Gong et al., 2019), searching for
appropriate hyperparameters (Izsak et al., 2021), and chang-
ing the model architecture (Yang et al., 2022; Zhang & He,
2020). These methods are orthogonal to our work and can
be combined with our method to further improve efficiency.

! Although Mixtral 8x7B (Jiang et al., 2024) achieves better
performance than LLaMA-70B (Touvron et al., 2023b), which is a
larger dense model, the main reason may be that the pre-training
corpus of Mixtral is better than that of LLaMA-70B. The direct
comparison between Mixtral 8 x 7B and LLaMA-70B is not fair.
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Figure 1. Activation sparsity and activation pattern change of three different models during pre-training.
3. Preliminary Study Here, we study the activation pattern change of Transform-

We conduct a preliminary study on the evolution of the
activation properties throughout the pre-training and focus
on two aspects: activation sparsity and activation pattern.
Specifically, we train three different types of PLMs, i.e.,
GPT, T5, and BERT, on the Pile dataset (Gao et al., 2021a),
and report the statistics of the first 150, 000 steps. More
pre-training details are in Section 5.1.

(1) Activation Sparsity Change of Transformers. Acti-
vation sparsity is defined as the fraction of zeros in the
intermediate hidden states of FFNs, which is the basis of
sparse computation. We save the model checkpoints every
4,000 steps and calculate the activation sparsity of each
checkpoint on the validation corpus. We plot the activation
sparsity of the models during training in Figure 1(a). From
this figure, we can see that the activation sparsity is around
0.5 at the beginning due to the symmetry of the initialization
and quickly increases to about 0.9 after 20, 000 steps. After
that, the sparsity is stable and fluctuates around 0.9. This
observation is consistent with the previous work (Mirzadeh
et al., 2023) on auto-regressive models. Here we extend the
observation to other types of architectures and pre-training
tasks, including BERT and T5.

(2) Activation Pattern Change of Transformers. Acti-
vation pattern refers to the activation correlation among
neurons. While activation sparsity stabilizes after a certain
stage in pre-training, the activation pattern remains dynamic
due to the ongoing updates in model parameters through-
out the training process. For instance, a pair of neurons
activated together for a certain input at the onset of train-
ing may not exhibit the same behavior toward the end of
training. This dynamic nature of activation patterns poses
a challenge to existing sparse acceleration approaches (Liu
et al., 2023), which are primarily designed for inference and
may fall short in accommodating models with significantly
fluctuating activation patterns.

ers by analyzing the co-activation neuron groups. Utilizing
MokEfication (Zhang et al., 2022b), we categorize the neu-
rons activated together into the same group. By comparing
the neuron groups of two checkpoints, we could measure the
similarity of the activation patterns. This grouping process
essentially serves as a neuron clustering exercise, and we
use the Adjusted Rand Index (ARI) (Rand, 1971) to measure
the similarity between the two clustering results. The ARI
ranges from —0.5 to 1, where 1 means the two clustering
results are identical and 0 means the two clustering results
are random. We report the activation pattern similarity of
consecutive checkpoints in Figure 1(b) and the activation
pattern similarity of arbitrary checkpoints in Figure 1(c).

From these figures, we observe that the activation pat-
tern similarity of consecutive checkpoints begins at a low
point early in training, escalating to approximately 0.9 after
50, 000 steps. However, even as the activation pattern evo-
lution decelerates during mid to late training stages, check-
points separated by large step intervals continue to exhibit
low activation pattern similarity. Due to the limited com-
putational resources, we only study the models with about
100 million parameters. It would be interesting to investi-
gate how the activation pattern scales with the model size in
future work.

In summary, the observation of the high activation sparsity
and the slow activation pattern change in the middle and late
stages of training provides us with the possibility to incor-
porate sparse computation into dense training. After both
the activation sparsity and pattern stabilize, we can apply
existing sparse acceleration methods to pre-training. Note
that the stabilization of the activation pattern unfolds at a
slower pace compared to that of activation sparsity (50, 000
steps vs. 20, 000 steps). Consequently, we choose to em-
ploy the metric of activation pattern similarity to pinpoint
the transition juncture from dense to sparse training.
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Figure 2. Mlustration of SSD. During dense training, we monitor the activation pattern change for each checkpoint and transform the model
into an SMoE model when the activation pattern becomes stable. During sparse training, we only compute and update the parameters of

selected experts for better efficiency.

4. Method

In this section, we first describe the overall framework of
SSD and then introduce its two main components: the mech-
anism to transition between sparse and dense, and the crite-
ria to determine the opportune moment for such transitions.

4.1. Overall Framework

In this work, we focus on accelerating the feed-forward
networks within Transformers (Vaswani et al., 2017b),
which typically take more than 60% of the total compu-
tation (Wang et al., 2022a). The acceleration is achieved
by switching between sparse and dense modes during the
pre-training phase, as shown in Figure 2. Under sparse com-
putation, the model is transformed into an SMoE model,
incurring less computational costs compared to its origi-
nal form. The sparse activation phenomenon enables the
SMoE model to emulate the original model, thus achieving
a balance between efficiency and effectiveness. Conversely,
during dense computation, all model parameters are com-
puted and optimized to achieve better performance. The
final model reverts to a dense configuration to fully utilize
the model capacity. Moreover, the final model also is fa-
miliar with the sparse computation, which can be directly
used for efficient sparse inference without any additional
training.
In dense computation, the FFNs are computed by
FFN(z) = W,oo(W;x + b;) + b,, M

where W; € R dmoa | W, € R Xdit b, € R b, €
Rdmeel | & is the activation function, and dg and dpoqe are the

dimensions of the intermediate layer and the input/output,
respectively. For simplicity, we omit the bias term b; and
b, in the following discussion.

In sparse computation, the FFNs are equally split into N
experts and computed in an SMoE manner,

N
FENsMoE (@) = D anWono (Wi ), @)
n=1

where W, ,, € R Xdmowi and W, € Rebmosa X % are the
parameters of the n-th expert, and «,, is the importance
score of the n-th expert. A gating network is used to score
the importance of each expert for a given input x and the
experts with top-K scores are selected to compute the out-
put. The o, of unselected experts are set to 0. To ensure
the SMoE computation is equivalent to the dense computa-
tion when K = N, we set the «,, of selected experts to 1
through post-processing. The details of the post-processing
are provided in Appendix A

4.2. Transition between Sparse and Dense

Dense-to-Sparse Conversion. When the activation spar-
sity is high and the activation pattern is stable, we could
efficiently approximate the original forward computation
with sparse computation (Zhang et al., 2022b; Liu et al.,
2023). Specifically, our approach leverages SMoE-based
acceleration (Zhang et al., 2022b) over neuron-based accel-
eration (Liu et al., 2023) because fine-grained neuron-based
selection for each token is not feasible in processing numer-
ous tokens in a batch during pre-training.

The conversion from dense to SMoE needs to meet two
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requirements: (1) the conversion should be fast to avoid ad-
ditional training costs; (2) the conversion should be smooth,
ensuring the performance of the converted model remains
closely aligned with the original model to avoid unstable
training. With these requirements in mind, we propose a
method for fast and smooth conversion.

Specifically, the conversion contains two steps. (1) Neuron
Clustering. We group the neurons that are often activated
together into the same expert so that the SMoE model can
efficiently compute most of the activated neurons by en-
gaging a small fraction of experts to emulate the original
model. Inspired by Zhang et al. (2022b), we cluster the rows
of W;, each of which represents a certain neuron, into N
groups by balanced k-means clustering (Malinen & Frinti,
2014), assuming that the neurons having similar weights are
more likely to be activated simultaneously. This operation
bypasses the need for directly counting the co-activation
of neurons on a real-world corpus. The counting operation
is time-consuming because it requires a large number of
additional forward computations and cannot be replaced
by using the activation results during training due to the
dynamic nature of the activation pattern. Based on the clus-
tering result s € R, containing the corresponding expert
index for each neuron, we split the weight matrices W;, W,
into N sub-matrices W; ,,, W, ,,, respectively. To make
the conversion smoother, we propose to use the clustering
results of the previous checkpoint as the initialization of clus-
tering in the current checkpoint. Through pilot experiments,
we find that this simple strategy often provides better results,
i.e., the smaller within-cluster sum of squares (WCSS)?,
than random initialization. The computation of WCSS is
provided in Appendix A. To avert local optima, especially
in early training stages where clustering may swiftly evolve,
we conduct clustering twice, one with random initialization
and the other with the initialization from the previous check-
point, and select the better one. Formally, the clustering
results s; of the j-th checkpoint are computed by

WCSS(W;, s), 3)

= min
se{f(W;),f(Wi,s;_1)}

where f(W;) and f(W;,s;_1) are the clustering results
with random initialization and the initialization from the
previous checkpoint, respectively. (2) Expert Selection. We
use the similarity between the input & and the cluster centers
as the importance score to select the top-K experts. For-
mally, the importance score of the n-th expert is computed
by

dip

T N 5
Qp =& Cp, Cp = — W, )

where W[’:L is the m-th row of W, ,,, and ¢, is the cluster
center of the n-th expert.

2 A metric to measure the compactness of the clustering. The
smaller WCSS means the better clustering results.

Sparse-to-Dense Conversion. The performance of SMoE
models tends to lag behind their dense counterparts with
equivalent parameters, primarily due to the representation
collapse issue (Chi et al., 2022; Zuo et al., 2022a). To opti-
mally leverage the model capacity and avoid the overfitting
of the sparse computation form, we strategically revert to
dense training multiple times during training. The tran-
sition to dense is smooth given that SMoE computation
aligns with dense computation when K = N. We conduct
this conversion by concatenating the weight matrices of all
experts, thereby obtaining the dense weight matrices, and
concurrently omitting the gating network. This transition fa-
cilitates full-parameter optimization, effectively mitigating
the representation collapse issue caused by sparse training
and enabling the evolution of activation patterns.

Discussion of Sparse Approximation. Although we can
approximate the model with a parameter-equivalent SMoE
model, the approximation only holds for forward propaga-
tion. If we skip the computation of some neurons during
forward propagation, the gradients of these neurons will be
zero during backward propagation. However, the gradients
of these neurons are usually not zero in the original model,
posing an inconsistency between the SMoE model and the
original model during backward propagation. We argue that
this inconsistency may not be a problem. Intuitively, the
inactivated neurons do not have strong relationships with the
input, and the gradients of these neurons are not important,
as the idea of Hebbian learning (Seung, 2000) that focuses
on the neurons that are activated by the input.

4.3. Transition Time Determination

(1) Dense-to-Sparse Conversion. Considering the dy-
namic nature of the model activation during pre-training,
we conduct the conversion when the activation sparsity is
high and the activation pattern is stable. Inspired by the
observation in Section 3, we propose to monitor the activa-
tion pattern change to determine the transition time, where
the activation pattern similarity reflects the changing rate
of the activation pattern. Specifically, we set a threshold
7 and switch to sparse training when the activation pattern
similarity between two consecutive checkpoints is larger
than 7. (2) Sparse-to-Dense Conversion. To have a con-
trollable speed ratio, we propose to maintain a constant ratio
of sparse training steps to all training steps . For example,
if r = 0.5, we will train the model with 50% of the training
data in the sparse training phases and the remaining 50% in
the dense training phases. Specifically, we set the steps of
sparse training to 7" = - times the steps of the last dense
training. We give a detailed example in Figure 6. And, to
ensure the final model can be used densely, we adopt dense
training at the end of the training. Hence, the pre-training
process consists of several dense-sparse cycles and one fi-
nal dense training. We will pre-define the ratio of the final
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dense training steps as [, and the adjusted 7" is calculated as

_ T
T = 1—r—1"°

5. Experiments
5.1. Experimental Setup

Here we briefly introduce the setups of our experiments.
Please refer to Appendix A for more details.

Baselines. We compare our method with the following base-
lines: (1) Dense: We compute and update all the parameters
in the network, which is the default way of pre-training.
(2) SMoE: We replace the FFNSs in the Dense baseline with
MOoE layers and train the model in a sparsely-activated man-
ner (Fedus et al., 2022). Specifically, the number of pa-
rameters in experts (not including router networks) is the
same as the number of parameters in the FFNs. The final
model is computed sparsely. (3) Progressive Layer Drop-
ping (PLD) (Zhang & He, 2020): PLD randomly drops
layers during training to reduce the costs. After pre-training,
we use all the layers of the final model, i.e., the same as the
Dense baseline. (4) MoE-Dropout (Chen et al., 2023a): At
the beginning of pre-training, the model is an SMoE model.
During the training, MoE-Dropout gradually increases the
number of selected experts K to the number of experts V.
The final model is also densely computed.

Datasets. (1) Pre-training corpus: We use the Pile
dataset (Gao et al., 2021a) as the pre-training corpus. Due to
limited computational resources, we use the first part of the
Pile dataset with over 27GB of text data. (2) Downstream
tasks: We consider two kinds of downstream tasks, i.e., nat-
ural language understanding and instruction tuning. More
details are in Appendix A.

Training Details. (1) Model architecture: In this work, we
evaluate our method on all three variants of Transformers,
i.e., encoder-only BERT, decoder-only GPT, and encoder-
decoder T5. For these models, we use the base version with
12 layers, 768 hidden size, and 12 attention heads for each
encoder/decoder. Following Chen et al. (2023a), we set the
intermediate size of FFNs to 6,144. For MoE-Dropout and
SSD, we set the number of experts to 32 and the number
of selected experts to 6. For SMoE, we set the number of
experts to 3 and the number of selected experts to 2 to ensure
similar computational costs to MoE-Dropout and SSD. (2)
Pre-training: The training epoch is set to 10, which contains
about 200,000 steps, and the warmup steps are set to 2,000.
BERT and T5 adopt masked language modeling (MLM)
as the pre-training task, and GPT adopts causal language
modeling (CLM) as the pre-training task. (3) Fine-tuning: In
this stage, we use two fine-tuning strategies for SMoE, i.e.,
sparse fine-tuning and dense fine-tuning, which are denoted
as SMoE and SMoE (D), respectively. For the other models,
we only use dense fine-tuning. We run each experiment

5 times and report the average of their best results on the
development set. For the instruction tuning task, which
contains zero-shot transfer, we use the best checkpoint of
each run on the development set for evaluation.

5.2. Main Results

In this subsection, we study the training efficiency and in-
ference efficiency of different methods.

Training Efficiency. We report the computational costs per
batch and performance of different methods in Figure 3. For
model performance, we evaluate perplexity on a held-out
validation corpus. From this figure, we have three observa-
tions. (1) Although SMoE training can reduce the computa-
tional costs, the perplexity of SMoE is consistently higher
than that of dense training. (2) PLD and MoE-Dropout can
also reduce the cost while keeping the perplexity compara-
ble to that of dense training. However, in some cases, the
perplexity of PLD and MoE-Dropout is higher than that of
dense training, such as GPT with PLD and T5 with MoE-
dropout. (3) SSD has the same speedup as MoE-dropout (up
to 1.44x) and achieves slightly lower or equal perplexity
compared with dense training, i.e., the data points of SSD
are placed at the bottom left corner of the figure. It indicates
that SSD achieves the best trade-off between training costs
and performance.

Inference Efficiency. We conduct experiments to investi-
gate whether these dense models can be computed sparsely
for efficient inference without additional training. We con-
sider three methods, i.e., Dense, MoE-Dropout, and SSD,
and vary the number of selected experts k£ from 1 to 32,
which is the total number of experts. For the models pre-
trained with Dense, we use MoEfication to transform them
into SMoE models. For the models pre-trained with MoE-
Dropout and SSD, we directly adopt their MoE structure
used in pre-training. Note that we also try to use MoEfica-
tion to transform the models pre-trained with MoE-Dropout
and SSD into SMoE models, but the performance is slightly
worse than that of directly using their original MoE structure.
Additionally, we also report the performance of the models
pre-trained with SMoE. We also try to vary the number of
selected experts k for the models pre-trained with SMoE,
but the performance is consistently worse than that of using
the original number of selected experts. Therefore, we do
not report the results of SMoE with different k.

We report the perplexity on the validation set with different
computational costs per batch in Figure 4(a). From this fig-
ure, we have three observations. (1) The performance of the
models pre-trained with Dense is consistently worse than
that of the models pre-trained with SMoE, MoE-Dropout,
and SSD. Both MoE-Dropout and SSD adopt sparse training
during pre-training, which makes them more suitable for
sparse inference. It indicates that computing sparsely dur-
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Figure 4. Perplexity on the validation set with different computational costs and inference time by varying the number of selected experts.
For comparison, we also scatter the results of SMoE with its default number of selected experts and dense models without any sparsity.

ing pre-training is necessary for sparse inference. (2)
With the same computational cost, the performance of the
models pre-trained with MoE-Dropout and SSD is overall
better than that of the models pre-trained with SMoE. It
shows the potential of building various SMoE models with
different computational costs based on a single dense model
instead of training multiple SMoE models with different
numbers of experts from scratch. (3) The curve of SSD is al-
ways below that of MoE-Dropout, which indicates that SSD
achieves a better trade-off between costs and performance
than MoE-Dropout during inference.

We further investigate the inference time with different num-
bers of selected experts in Figure 4(b). Specifically, we
report the inference time of a single MoE layer with dif-
ferent numbers of selected experts. The inference time is
measured on a single NVIDIA RTX 3090 GPU, which is
a popular GPU for LLM inference, with a batch size of
32 and a sequence length of 512. The MoE layer is im-
plemented with the ScatterMoE library (Tan et al., 2024).
From this figure, we observe that with the same inference
time, the performance of the models pre-trained with SSD
is still better than that of the models pre-trained with SMoE
and MoE-Dropout. Besides, since the MoE implementa-
tion is different from the original FFN implementation, the
inference time of dense models without any sparsity (the
diamond points with dark blue color)is shorter than that of

GPT
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Figure 5. Perplexity on the validation set with different computa-
tional costs by truncating the experts with small importance scores.

the MoEfied dense models with large k. Despite this, the
performance of SSD models is still better than that of dense
models without any sparsity in the cases of BERT and T5
with the same inference time. Moreover, BERT trained with
SSD achieves the same performance as that of the dense
model with less than half the inference time (2.3ms vs.
5.1ms). It indicates that SSD can provide competitive per-
formance and efficiency compared to original dense models
and other sparse models during inference.

5.3. Dynamic Top-%

Based on SSD, we further investigate whether we can vary
the number of selected experts for each token in an input
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Table 1. Evaluation results (%) on natural language understanding
tasks. MoE-D refers to MoE-Dropout. SMoE (D) refers to densely
fine-tuned SMoE. Since the training costs of SMoE is smaller than
other methods, we color the results of SMoE in gray.

SST2 SNLI MNLI QNLI QQP SQuAD

Acc. Acc. Acc. Acc Acc. F1 Avg
BERT-based Models

Dense 90.0 884 80.1 872 89.7 789 832
SMoE 843 839 714 823 859 68.8 76.2
SMoE (D) 84.7 845 71.8 828 86,5 709 772
PLD 90.0 883 795 86.6 89.8 779 82.8
MoE-D 90.7 885 807 874 898 768 828
SSD 90.6 88.7 80.6 88.7 90.0 78.8 83.6

T5-based Models
Dense 91.5 894 817 88.8 90.2 839 859

SMoE 86.0 875 779 842 883 785 81.6
SMoE (D) 86.2 87.8 78.6 847 886 788 82.0
PLD 92.1 895 828 89 904 851 86.7
MoE-D 91.8 894 823 895 904 836 86.0
SSD 925 89.8 825 895 905 850 86.6

sequence. For example, some important tokens may need
more experts to compute, and some unimportant tokens may
need fewer experts to compute. Specifically, we first com-
pute the top-k experts for each token in the input sequence
as the expert candidates. Then, we truncate the experts with
small importance scores based on a given ratio. We report
the perplexity on the validation set with different truncation
ratios in Figure 5. From this figure, we observe that trun-
cating 75% of the experts can consistently achieve better
performance than that of using a fixed number of experts for
each token under the same computational cost. It opens up
a new direction for future research to dynamically identify
the number of experts for each token in an SMoE model.

5.4. Performance on Downstream Tasks

We report the model performance on natural language un-
derstanding tasks in Table 1, focusing on BERT and T5.
Besides, We report the model performance on instruction
tuning in Table 2, focusing on GPT and T5. The results with
variance are reported in Appendix B. From these tables, we
have three observations. (1) The perplexity is consistent
with the overall performance on downstream tasks. For
example, PLD and SSD achieve the lowest perplexity on
TS5, and they also achieve the top two overall performances
on downstream tasks. The same phenomenon also appears
on BERT and GPT. It indicates that the perplexity can be
used as a good performance indicator on downstream tasks,
which is also shown by Brown et al. (2021); Gordon et al.
(2020). (2) Densely fine-tuning SMoE can achieve better
performance than sparsely fine-tuning SMoE while still be-
ing worse than other methods. It indicates that pre-trained
SMoE models cannot fully utilize the model capacity even

Table 2. Evaluation results (%) on instruction tuning. MoE-D
refers to MoE-Dropout. SMoE (D) refers to densely fine-tuned
SMOoE. “Dev” represents the development set and “NI” represents
Super-Naturallnstructions. Since the training costs of SMoE are
smaller than other methods, we color the results of SMoE in gray.

Dev NI Av
Rouge-L.  Rouge-L &
GPT-based Models
Dense 19.2 16.7 18.0
SMoE 17.6 15.9 16.8
SMoE (D) 18.3 17.9 18.1
PLD 19.1 17.5 18.3
MOoE-D 18.8 18.2 18.5
SSD 194 18.0 18.7
T5-based Models
Dense 19.7 19.1 194
SMoE 16.7 15.8 16.3
SMOoE (D) 17.0 16.3 16.7
PLD 19.5 20.1 19.8
MOoE-D 18.6 18.9 18.7
SSD 18.6 20.4 19.5

with dense fine-tuning. (3) SSD achieves slightly better
overall performance than dense training on all evaluation
settings, the only one that achieves this result among the ac-
celeration methods. It demonstrates the general applicability
of SSD to different models and tasks.

5.5. Scalability

Due to the limited computational resources, we assess the
scalability of SSD on large models by continual pre-training,
which requires fewer training steps than pre-training from
scratch. Specifically, we continue pre-training Persimmon-
8B on a diverse Chinese corpus, containing encyclopedia,
news, books, and web texts. Persimmon-8B (Elsen et al.,
2023) is a sparse-activated large language model (LLM) and
has competitive performance to LLaMA-7B (Touvron et al.,
2023b) on several evaluation benchmarks. We compare
SSD with dense training under the same training steps with
nearly 4 billion tokens. The details of the training setup are
shown in Appendix A. We evaluate the model performance
on C-Eval (Huang et al., 2023), a widely-used Chinese
benchmark and report the average accuracy of subtasks
in Table 3. From this table, we observe that SSD also
achieves comparable performance to dense training, which
demonstrates the scalability of SSD to LLMs.

5.6. Speed Analysis

We report the average computation time of the origi-
nal dense training and SMoE-based training in Table 4.
We use four NVIDIA A800 GPU for training and adopt
MegaBlocks (Gale et al., 2022) as the SMoE implementa-



Exploring the Benefit of Activation Sparsity in Pre-training

Table 3. Performance (%) of Persimmon-8B on C-Eval. “Social”
represents social science, “Human” represents humanities, and
“Other” represents other subjects.

STEM Other Avg.
Original 21.0 23.6 28.2 213 235

Dense 28.7 355 30.1 316 315
SSD 30.8 34.1 32.7 303 320

Social Human

tion. From this table, we observe that SSD achieve better
time speedup on the larger model, i.e., Persimmon-8B. This
enhancement is attributed to the higher GPU utilization fa-
cilitated by the larger model, making the time speedup more
obvious. It highlights the promising speedup potential of
SSD on LLMs. However, a discrepancy is noted between
theoretical speedup and actual time. A deeper analysis into
time consumption across different operations reveals that
the expert selection process incurs additional time, thereby
presenting an avenue for future research to optimize the
computation of SMoE. Although the time speedup of SSD
is not fully matched with the theoretical speedup, the time re-
duction is indeed significant because the pre-training cost is
huge and it would be increasingly valuable for large models.

Table 4. Speedup of SSD compared with dense training on the
computational costs and times (hours).

GPT Persimmon-8B

Dense SSD Dense SSD
FLOPs  237T 178T (1.44x) 2.97P  2.25P (1.32x%)
Time 23.6h  21.5h (1.10x) 166h 134h (1.23x%)

Here we also report the training time of other methods on
GPT for comparison. PLD takes 20.3 hours, MoE-Dropout
takes 35.9 hours, and SSD takes 21.5 hours. It show that
our approach achieves competitive speedups compared with
other methods. It worth noting that the time speedups of
acceleration methods can be affected by their specific im-
plementations, making it challenging to directly compare
their time speedups, so that we mainly focus on the FLOP
speedups in the main text.

5.7. Ablation Study

In this subsection, we conduct ablation studies on the transi-
tion time determination and transition method. (1) For the
transition time determination, we compare the threshold-
based method with the random method. In the random
method, we will switch the computation mode at each
monitoring step with a probability of 0.5. We conduct
this experiment on GPT three times and report the per-
plexity in Table 5. From this table, we observe that the
random method is consistently worse than the threshold-
based method, which demonstrates the effectiveness of the
threshold-based method. The reason is that the random

Table 5. Impact of transition time determination and transition
method on the model perplexity.

Random SSD

PPL
17.3 18.6 19.8 16.0
op Original Random  Clustering SSD
18.4 3533.3 20.9 20.4

method may switch at the beginning of pre-training when
the activation pattern is unstable, or switch frequently in
a certain period, leading to unstable training. (2) For the
transition method, we choose one switch point of GPT pre-
training as the original model and apply different transition
methods to it, including random, clustering, and SSD. In
the random method, we randomly split the neurons into
groups. In the clustering method, we directly use the cluster-
ing method in Section 4.2 without the previous checkpoint
initialization as MoEfication does. From Table 5, we ob-
serve that SSD achieves the smallest gap compared with
the original model, which demonstrates the effectiveness of
checkpoint initialization in SSD. This minimal gap facili-
tates a smoother transition process, potentially culminating
in superior performance.

6. Conclusion

In this work, we utilize the phenomenon of sparse activation
to accelerate pre-training and inference of LLMs. Specifi-
cally, we propose Switchable Sparse-Dense Learning, which
adaptively switches between sparse and dense training. Ex-
perimental results on three different model architectures and
two kinds of downstream tasks show that our method can
achieve comparable performance to dense training with less
computational costs. Moreover, the models trained with
SSD can be directly used as MoE models for inference and
reduce the inference time of FFNs by up to 2x while keep-
ing the performance as good as dense models. We hope that
our work can provide a new perspective for the acceleration
based on sparse activation and inspire more research in this
direction.
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A. Other Experimental Details

Model Architecture. We use layer normalization before each attention and FFN layer (Xiong et al., 2020), which is
beneficial for convergence (Izsak et al., 2021), and use ReLU as the activation function for easier MoE transformation than
GeLU (Hendrycks & Gimpel, 2016; Zhang et al., 2022b).

Pre-training. We use part of the Pile dataset (Gao et al., 2021a) as the pre-training corpus. Based on observations from
previous work (Zhang et al., 2023), the emergence of sparse activations appears to be more closely tied to the inherent
training dynamics arising from the model architecture itself, rather than the type or scale of the data used. Therefore, we
believe that using a subset of the Pile dataset for our pretraining experiments does not significantly impact the degree of
activation sparsity observed. We use the Adam optimizer (Kingma & Ba, 2015) and Noam learning rate scheduler (Vaswani
et al., 2017a) for pre-training. The batch size is set to 512 and the learning rate is set to 1 for BERT and TS5 and 0.5 for GPT.
The mask rate of MLM is set to 0.15. PLD increases the overall dropout rate from O to 0.25 quickly at the beginning of
training and then keeps it at 0.25. For the MoE layers, we set the number of experts IV to 32 for MoE-Dropout and SSD.
MoE-Dropout linearly increases the number of selected experts K from 6 to 32 during the pre-training. For SSD, we set the
threshold 7 to 0.9 and monitor the activation pattern every 3,000 steps. In the sparse mode, we also select 6 experts for each
layer. The ratio of the sparse mode r is set to 0.5. The ratio of the final dense training [ is set to 0.1. For SMoE, we set the
number of experts NV to 3 and the number of selected experts K to 2 to ensure the computational cost is similar to that of
other methods.

Persimmon-8B. For the continual pre-training of Persimmon-8B, we set the batch size to 2,048, the learning rate to 0.00003,
and the max sequence length to 1024. The total pre-training steps are set to 128,000 and the gradient accumulation steps are
set to 64. As a result, the total number of optimization steps is 2000. We use the same ratio of the sparse mode r» = 0.5 as
the experiments on base-scale models. Since the total optimization steps are smaller than training from scratch, we divide
the SSD training into two stages: the first stage is 1000 steps of sparse training and the second stage is 1000 steps of dense
training. We compare the SSD performance on Persimmon-8B with the dense training performance on Persimmon-8B with
the same optimization steps. The total expert number N is set to 64 and the selected expert number K is set to 16, keeping
the expert size the same as that of the base models. The other hyperparameters are the same as those of base models. When
evaluating the performance of Persimmon-8B, we use LM Evaluation Harness (Gao et al., 2021b).

Downstream Tasks. First, we evaluate models on several natural language understanding tasks. For single-sentence
classification, we use SST-2 (Socher et al., 2013), which is a sentiment analysis dataset. For sentence-pair classification, we
use SNLI (Bowman et al., 2015), MNLI (Williams et al., 2018), QNLI (Rajpurkar et al., 2016), and QQP?, covering the tasks
of natural language inference and paraphrase identification. For reading comprehension, we use SQuAD v1.1 (Rajpurkar
et al., 2016), which is a widely used dataset for extractive question answering. Second, we evaluate models on instruction
tuning. Specifically, we follow the setups of Honovich et al. (2022), where the model is trained on a model-generated
instruction dataset and evaluated on several human-labeled instruction datasets. The training dataset is Unnatural Instruc-
tions (Honovich et al., 2022) and the development dataset contains 1,000 randomly sampled instances from the training set
of Super-Naturallnstructions (Wang et al., 2022b), which is used to select the best checkpoint. The test dataset is the test
set of Super-NaturalInstructions (Wang et al., 2022b). We conduct a grid search to find the best hyperparameters for each
model, including the learning rate varied from 4e-4 to 2e-3, the batch size varied from 16 to 32, and the number of training
epochs varied from 3 to 10.

SMoE Implementation. There are some frameworks optimized for SMoE, such as DeepSpeed-MoE (Rajbhandari et al.,
2022), MegaBlocks (Gale et al., 2022), and Tutel (Hwang et al., 2022). Among them, we implement SMoE based on the
MegaBlocks framework, which supports efficient dropless MoE layers.

Evaluation of Instruction Tuning. Following Honovich et al. (2022), we adopt greedy decoding to generate the responses
to the instructions. Super-Naturallnstructions (Wang et al., 2022b) is evaluated by Rouge-L (Lin, 2004).

WCSS Computation. In the paper, we follow the standard formulation for calculating WCSS: E,f:l > ies,, Z§:1 (i —
Tr;)%, where Sy, is the set of data points assigned to cluster k, z;; is the j-th feature value of data point i, and Ty is the
mean value of feature j across all points in cluster k. In our case of WCSS clustering, x; is the i-th row of W,

Post-processing of Expert Scores. In the paper, we set the o, of selected experts to 1 through post-processing. Specifically,
we compute o = 1 + « — a.detach() in Pytorch to ensure the gradient backpropagation.

31'1ttps ://data.quora.com/First-Quora-Dataset—-Release-Question-Pairs
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Clustering. The clustering operation is performed on the GPU using the faiss-gpu library (Johnson et al., 2019). To ensure
the balance of the number of neurons in each expert, we further apply the balanced assignment strategy (Lewis et al., 2021)
to the results of k-means clustering. The time of each clustering is less than 1 minute and has little impact on the training
time.

Table 6. Evaluation results (%) on natural language understanding tasks. MoE-D refers to MoE-Dropout. SMoE (D) refers to densely
fine-tuned SMoE. Since the training costs of SMoE are smaller than other methods, we color the results of SMoE in gray. The last column
represents the average of all previous columns.

SST2 SNLI MNLI-m QNLI QQP SQuAD A
Acc. Acc. Acc. Acc Acc. EM F1 Ve
BERT-based Models
Dense 90.0+£0.5 88.4+0.1 80.1+0.1 87.240.4 89.7+0.1 68.4+0.2 78.9+0.2 | 83.2
SMoE 84.3+0.2 83.9+0.2 71.440.7 82.3£0.2 859+0.7 56.84+1.0 68.84+0.7 | 76.2
SMoE (D) | 84.741.0 84.5+£0.1 71.8£0.2 82.8+0.1 86.5+0.4 59.0+1.0 70.9+0.8 | 77.2
PLD 90.0+£0.4 88.3+0.2 79.5+0.3 86.6+0.4 89.840.1 67.3£0.3 77.9+0.3 | 82.8
MoE-D 90.7£0.3 88.5+0.2 80.7+0.2 87.44+0.3 89.840.1 659+0.4 76.8+0.7 | 82.8
SSD 90.6+0.4 88.7+0.1 80.6+0.4 88.7+0.4 90.0+0.1 68.1£0.3 78.8+0.1 | 83.6
T5-based Models

Dense 91.5+0.5 89.4+0.2 81.7+0.1 88.840.2 90.24+0.1 75.5+0.4 83.9+0.3 | 85.9
SMoE 86.040.1 87.540.1 77.9+0.4 84.2+0.0 88.34+0.2 68.840.3 78.5£0.3 81.6
SMoE (D) | 86.24+0.6 87.8£0.2 78.6+0.5 84.7+0.2 88.6+0.1 69.1+0.3 78.84+0.2 | 82.0
PLD 92.1£0.1 89.5+0.1 82.8+0.1 89.94+0.1 90.4+0.1 76.8£0.3 85.1+£0.4 | 86.7
MoE-D 91.8+0.3 89.4+0.1 82.3+0.1 89.540.2 90.44+0.1 749+0.2 83.6+0.1 | 86.0
SSD 92.5+£0.2 89.8+0.1 82.5+0.1 89.5+0.1 90.5+0.1 76.5£0.4 85.0+0.2 | 86.6

B. Results with Standard Deviation

We report the evaluation results with standard deviation on natural language understanding tasks in Table 6 and instruction
tuning tasks in Table 7.

Table 7. Evaluation results (%) on instruction tuning. MoE-D refers to MoE-Dropout. SMoE (D) refers to densely fine-tuned SMoE.
“Dev” represents the development set and “NI” represents Super-Naturallnstructions. Since the training costs of SMoE are smaller than
other methods, we color the results of SMoE in gray. The last column represents the average result.

Dev NI

Rouge-L  Rouge-L Avg.
GPT-based Models
Dense 19.2+0.3 16.7£0.6 18.0
SMoE 17.6+0.4 15.940.8 16.8
SMoE (D) 18.3+0.5 17.940.9 18.1
PLD 19.1£0.7 17.5£0.4 183
MoE-D 18.840.5 18.2+1.7 18.5
SSD 19.4+0.4 18.0+£0.9 18.7
T5-based Models
Dense 19.7£0.3 19.1+£0.8 194
SMoE 16.7£0.2 158+0.2 16.3
SMoE (D) 17.0+0.7 16.3£1.0 16.7
PLD 19.5+£0.3 20.1+£0.7 19.8
MoE-D 18.6+£0.3 18.9+0.7 18.7
SSD 18.60.2 20.4+0.6 19.5

C. Case Study

To better understand the training process of SSD, we visualize the change of evaluation perplexity and the stages of sparse
mode in Figure 6. From this figure, we observe that there are three different lengths of sparse stages: the first one is the
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longest (22,500 steps), the second and third ones are the second longest (7,500 steps), and the rest are the shortest (3,750
steps). Here the proportion of the sparse mode to the dense mode is set to 1.25. The first dense training has 18,000 steps,
followed by 22,500 (18000 x 1.25) sparse training steps. The second dense training has 6,000 steps, followed by 7,500
(6000 x 1.25) sparse training steps. It reveals the change of activation pattern during pre-training, i.e., the activation pattern
changes dramatically at the beginning and then becomes stable. When the activation pattern is unstable, the length of
the dense stage is long, and the corresponding sparse stage is also long, vice versa. Mixing dense training with sparse
training will slow down the learning of the model, and the perplexity is higher than that of dense training in the middle stage.
However, the perplexity of SSD can quickly catch up with that of dense training after the final dense training. Note that
at the same step, the computational cost of SSD is much lower than that of dense training, which indicates that SSD can
achieve a good trade-off between computational cost and model performance.
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Figure 6. Change of evaluation perplexity during pre-training. The model architecture is GPT. The gray areas represent the stages of
sparse mode for SSD.
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Figure 7. Effect of SSD hyperparameters on perplexity. The model architecture is GPT.

D. Hyperparameter Analysis

In this section, we evaluate the effect of the conversion threshold 7, the ratio of the sparse mode r, and the steps of monitoring
the activation pattern on the performance of GPT with SSD.

The results are shown in Figure 7. From this figure, we have three observations. (1) The conversion threshold 7 cannot be
too large, e.g., 0.98, which will lead to a significant performance drop. The reason may be that a large 7 will result in a long
continuous period of sparse training, which may lead to the overfitting of the SMoE mode and affect the utilization of model
capacity. (2) The ratio of the sparse mode r has little effect on the performance of SSD, which suggests that we can further
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increase the ratio to achieve a higher speedup. For example, a sparse ratio of 70% can achieve a FLOPs speedup of 1.63x
with a comparable perplexity to dense training. (3) The steps between two activation pattern monitoring cannot be too small,
which may lead to frequent switching and unstable training, e.g., 2000 steps. In the future, it is worth exploring the adaptive
calculation steps to avoid this issue.

E. Discussion on GLU Models

While our work focuses on ReLU-based FFNss, it is worth discussing the applicability of our method to Gated Linear Units
(GLU) (Shazeer, 2020) models, which are widely used in current LLMs (Touvron et al., 2023a). One potential approach
would be to modify our clustering algorithm to account for the gating mechanism in GLUSs. Instead of simply clustering
the activation weight matrix, we could jointly cluster the activation and gate weight matrices, treating them as a unified
representation of the feedforward unit’s behavior. This would allow our method to identify sparse modes that capture the
intrinsic computational patterns emergent from the interplay between activations and gates.

It is also worth noting that while GLUs introduce additional nonlinearities, they still maintain a level of sparsity in their
output representations due to the gating mechanism. As shown in Zhang et al. (2024), LLaMA with SwiGLU also exhibits
sparse activation phenomenon.
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