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ABSTRACT

Planning with world models offers a powerful paradigm for robotic control. Con-
ventional approaches train a model to predict future frames conditioned on current
frames and actions, which can then be used for planning. However, the objective
of predicting future pixels is often at odds with the actual planning objective;
strong pixel reconstruction does not always correlate with good planning deci-
sions. We posit that instead of reconstructing future frames as pixels, world mod-
els only need to predict task-relevant semantic information about the future. To
do this, we pose world modeling as a visual question answering problem, about
semantic information in future frames. This perspective allows world modeling to
be approached with the same tools underlying vision language models. We show
how vision language models can be trained as “semantic world models” through
a supervised finetuning process on image-action-text data, enabling planning for
decision-making while inheriting many of the generalization and robustness prop-
erties from the pretrained vision-language models. We demonstrate how such a
semantic world model can be used for policy improvement on open-ended robotics
tasks, leading to significant generalization improvements over typical paradigms
of reconstruction-based action-conditional world modeling.

1 INTRODUCTION

Figure 1: Comparison between Vision-Language Models, Video World Models, and Semantic World
Models. While Vision-Language Models answer questions about static observations and Video
World Models predict future observations given actions, Semantic World Models take observations
and actions as input to directly answer questions about the future outcomes of those actions.

World models are a class of learning methods capable of absorbing large amounts of data to make
generative predictions about future outcomes in the world. These predictions can then be used to
inform decision-making via planning (Williams et al., 2016; Hafner et al., 2019; Rybkin et al., 2021;
Hansen et al., 2022), helping policies acquire generalizable and robust behaviors. The practical in-
stantiations of world models are diverse, ranging from smaller state-based dynamics models (Ai
et al., 2025) to large action-conditioned video prediction models (Ball et al., 2025). Across these in-
stantiations, pixel-level reconstruction of future observations is commonly used as a training recipe.
While these approaches are often successful at generating realistic images, as evident from high-
quality video generations, they can be challenging to use for planning. Despite the visual fidelity,
these predictions often miss (or misrepresent) key semantic details necessary for decision making,
e.g., the details of precise dexterous contact. While there have been suggestions for modeling “task-
relevant” latent representations (Zhang et al., 2021; Hansen et al., 2022; Zhu et al., 2023), these
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methods often impose additional assumptions on the availability of rewards (Hansen et al., 2024) or
known factors (Locatello et al., 2020), making them challenging to use in practice across a variety
of world modeling problems.

If pixels are not necessary for planning, what is actually needed to make decisions about acting
in the world? We posit that the ability to predict semantic information about future outcomes is
sufficient. Rather than forecasting raw visual frames, world models should capture task-relevant
information about objects and their interactions, e.g., “Did the arm get closer to the object?”, “Did
the red cube tip over?”, “Was the blue moon picked up?”. In this work, we frame such information
as a visual question-answering (VQA) problem about the future, leveraging the fact that any desired
outcome can be expressed as a set of yes/no questions1. That is, the problem of world modeling can
be redefined as a VQA problem about outcomes in the future.

There already exists a class of models with extensive tooling for VQA on static observations, i.e.,
vision-language models (VLMs). For world modeling, VLMs offer two key advantages: they pro-
vide a strong foundation for VQA through large-scale pretraining and broad generalization, and
they encode prior knowledge about which tasks and semantic features are relevant in a scene. These
strengths make frontier VLMs well suited to formulating task-relevant questions and producing reli-
able answers when given static observations. However, their lack of predictive capacity about future
outcomes limits their direct utility for decision-making.

This work introduces the paradigm of Semantic World Model (SWM) – a generalizable world model
that is represented as an action-conditional vision-language model that answers questions about the
semantic effects of actions in the future. Unlike traditional world models that predict future frames,
a Semantic World Model answers questions about the future given current observations (represented
as an image) and a sequence of actions. As shown in Fig. 1, the model takes as input the current
observations, a proposed action sequence, and a natural language query about the future. It then
generates an answer by understanding the consequences of taking the actions in the environment.
Since SWM is fundamentally a task-agnostic world model, it can be trained on general sequential
play and suboptimal data with minimal assumptions for data quality. The training data can be easily
obtained from any (expert or non-expert) data corpus in the format of current observations, actions,
questions (about the future), and expected answers.

The ability to reason about outcomes in the future with an SWM enables flexible open-world multi-
task planning in action space: given a task specification in natural language, we could leverage a
pre-trained frontier VLM (OpenAI, 2024; Beyer et al., 2024) to decompose the task specification
into a set of questions and expected answers in text form. Given this QA set, SWM can then be used
to plan actions that elicit the expected answers to these questions in the future with high likelihood.
While a plethora of techniques can be used for this planning, in this work we show compatibility with
both zero-order sampling-based methods (Rubinstein & Kroese, 2004; Williams et al., 2016) and
first-order gradient planning methods (Ruder, 2017; Rybkin et al., 2021) that perform optimization
with respect to the expected likelihood objective. We show that these planning methods can be made
computationally tractable, enabling significant test-time improvement over nominal action selection
methods. Moreover, we demonstrate the extensibility of such planning methods to multi-step long-
horizon problems.

We empirically evaluate SWM on a suite of multiple different tasks in two commonly used multi-
task simulation domains - Language Table (LangTable) (Lynch et al., 2022) and OGBench (Park
et al., 2025). We show that (1) SWM can accurately answer questions about future outcomes while
generalizing to novel scenes, and (2) SWM can be combined with standard sampling-based plan-
ning techniques and a gradient-based improvement technique to solve diverse robotics tasks with
considerable policy improvement through test-time optimization. Through SWM, we introduce a
new class of world models that leverage the rich pretraining knowledge from VLMs for grounded,
flexible, and scalable robotic control.

2 RELATED WORK

Vision-Language Models (VLMs) broadly encompass representation learning methods and mul-
timodal generative models trained on vision and language data. Representation learning methods

1other question-answer types may be applicable as well
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Figure 2: Overview of Semantic World Models. SWM is a VLM adapted to answer questions
about the future after executing the actions from the current state. By querying the model with
actions and question about the future, the model can evaluate the fitness of each action sequence
using the desired answers, and enable planning under the model.

jointly train a vision encoder and a text encoder by aligning their encoded representations. These
representations can then be utilized in various applications, such as classification, retrieval, and
control. CLIP (Radford et al., 2021) learns such representations from image-text data by utilizing
a contrastive loss, contrasting positive image-text pairs with negative pairs. SigLIP (Zhai et al.,
2023) replaces the contrastive loss with a pairwise sigmoid loss to facilitate scalable training. Multi-
modal generative models, commonly known as VLMs, enable a broad range of promptable behaviors
such as understanding, summarizing, and question answering (OpenAI, 2024; Gemini Team, 2023;
Deitke et al., 2024; Bai et al., 2023; Beyer et al., 2024; Touvron et al., 2023). A VLM takes in an
image and a language prompt as input and generates a natural language response. They are typically
trained with a next-token prediction objective. Recently, a family of vision-language-action models
(VLAs) has been introduced to bring the vision-language understanding capabilities of VLMs to
embodied decision-making (Brohan et al., 2023; Kim et al., 2025; Black et al., 2024). VLAs are
trained on annotated robot trajectories to generate actions conditioned on image observations and
language instructions. OpenVLA (Kim et al., 2025) directly predicts discrete action tokens, while
Pi-0 (Black et al., 2024) decodes actions via a diffusion action head. Unlike VLAs, an SWM takes
in observations, actions, and a natural language prompt as input, and generates a natural language
response about the future after taking the actions. In some sense, an SWM can be viewed as an
“inverted” VLA, where the actions become the input and the language becomes the output. We
hypothesize that using language as the output format can better retain the pretraining knowledge of
VLMs, since they were trained with next token prediction objectives.

World Models for Control are approximate models of the dynamics of the world, typically
trained to predict future observations conditioned on current observations and actions. The abil-
ity to forecast the future without interacting with the world can greatly facilitate decision-making
and control. A prominent line of work focuses on planning with world models. (Chua et al., 2018;
Hafner et al., 2019; Rybkin et al., 2021). PETS (Chua et al., 2018) learns a one-step dynamics model
and applies the cross-entropy method to plan for optimal actions for a given reward. PlaNet (Hafner
et al., 2019) learns a recurrent latent dynamics model with a reconstruction objective and applies
planning in the latent space. LatCo (Rybkin et al., 2021) leverages collocation-based planning to
enable long-horizon planning with latent dynamics models. Another line of work utilizes world
models as a simulator for reinforcement learning (Hafner et al., 2020; Zhang et al., 2021; Hansen
et al., 2022). Dreamer (Hafner et al., 2020) and TD-MPC (Hansen et al., 2022) use a latent dy-
namics model to generate rollouts for actor-critic policy optimization, achieving remarkable sample
efficiency. (Zhang et al., 2021) learns a latent representation predictive of dynamics and reward,
which can then be used as an invariant representation for RL policies. Recently, world models have
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been used together with imitation learning methods to facilitate out-of-distribution generalization
(Du et al., 2023; Zhu et al., 2025). UniPi (Du et al., 2023) uses a world model as a high-level plan-
ner to condition low-level policies. UWM (Zhu et al., 2025) trains a unified video-action diffusion
model, incorporating video data into pretraining to improve generalization. Unlike these explicit
world models, SWM understands the dynamics of the world by reasoning in language space, allow-
ing the model to bootstrap from the Internet-scale pretraining of VLMs. SWM can then be used
with planning techniques to derive versatile language-conditioned policies. Additional work also
explores abstractions closely connected to Semantic World Models. MEAD (GX-Chen et al., 2025)
defines an abstract MDP over items and attributes to simplify exploration and modeling. VLWM
(Chen et al., 2025) creates a VLM-based world model where, given a goal, it predicts both actions
and how the state of the world changes after the actions are executed. Prior work on predicate learn-
ing (Silver et al., 2025; Athalye et al., 2025) learn abstract or semantic predicates to decompose
long-horizon tasks into shorter subgoals, a direction that is complementary to SWM’s use of future
QA for planning.

3 METHOD

This section presents details of the data generation pipeline, the SWM architecture, and the training
methodology. It then touches on the sampling-based and gradient-based planning methods used for
policy extraction under SWM. Fig. 2 provides an overview of the model and planning procedure.

3.1 DATASET GENERATION

Figure 3: Example initial state in the SAQA
dataset with two action horizons and six
question-answer pairs.

To train a world model to answer questions about the
future, we generate a state-action-question-answer
(SAQA) dataset defined as

DSAQA = {(Si, ai:j , QSj , ASj ), . . . } where j = i+h

where Si represents the current state (RGB frame in
our case), h is the horizon, ai:j is a sequence of ac-
tions taken from state Si, and QSj , ASj is a ques-
tion answer tuple about the future state Sj which is
reached by taking actions ai:j from state Si. Fig. 3
illustrates a single state paired with multiple ques-
tions and answers in the dataset.

We generate the SAQA dataset from a dataset
of trajectories {T1, T2, . . . }, where each trajec-
tory is given by a sequence of state-action tuples
{(S0, a0), (S1, a1), . . . }. In our case, each state
comprises an image observation and privileged information, such as object positions, which we
use for programmatic question generation. For each state Si in the trajectory, we sample multiple
different action horizons h. As shown in Fig. 3, for each sampled horizon h, we use the oracle infor-
mation from future state Si+h to create a set of questions and answers, giving us the final dataset to
train our model. For each type of question generation, we include multiple phrasings in our training
dataset. Examples of the question types for training and the reward for each task are provided in
section A.3.2.

3.2 SEMANTIC WORLD MODELS

We proceed to design a model capable of answering questions about future events conditioned on
actions. A model with such capability is fundamentally a visual question-answering model with
action conditioning. Therefore, it is natural to bootstrap from large pretrained VLMs to transfer
their generalization capabilities to robotics tasks. We base our SWM architecture on an open-source
VLM, PaliGemma (Beyer et al., 2024). The model contains three core pretrained components: a
transformer-based autoregressive language model with a token embedding size dtok, a vision encoder
vϕ with a feature size dimg, and a projection matrix W ∈ Rdtok×dimg . The PaliGemma architecture is
based on the Gemma LLM (Gemma Team et al., 2024) and the SigCLIP vision encoder Vsc (Zhai
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et al., 2023). W is used to project from Zsc to ZLLM, where Zsc is the feature space of vϕ, and
ZLLM is the input token embedding space of the LLM. We use the 3B parameter checkpoint from
PaliGemma as our base model.

To adapt the base model to answer questions about a specific future as a result of the actions, the
model needs to be conditioned on these actions. To this end, we create a new projection matrix
P ∈ Rdtok×dact which projects a single action a ∈ Rdact into the latent space ZLLM similar to the
W projection matrix. Given a tuple (Si, ai:j , QSj

, ASj
) from the dataset DSAQA , we construct the

input sequence by concatenating the image embeddings, action embeddings, and question token
embeddings as concat

(
W⊤Vsc(Si), P

⊤ai, P
⊤ai+1, . . . , P

⊤aj , QSj

)
. The model is then fine-

tuned in an end-to-end manner to predict the target answer ASj
by optimizing the standard cross-

entropy loss
L = − log p(ASj

|Si, ai:j , QSj
).

This training procedure enables the model to capture the dynamics of the environment in language
space to answer questions about future states without explicitly generating pixel-level representa-
tions.

3.3 PLANNING WITH SEMANTIC WORLD MODELS

Planning with world models requires evaluating the value of action sequences. For each task, we can
define a set of questions (e.g., “is the gripper touching the block”) and desired answers (e.g., “yes”).
We can then derive a scalar score by combining the likelihood of the model generating the desired
answer for each question, weighted by some heuristic weights. Specifically, each task is defined as
a set of questions, answers, and weights T := {(Qi, A

∗
i ,Wi)}ki=1. Given an observation S and a

sequence of actions a1:n, we calculate its value under the task as:

V T (S, a1:n) =

k∑
i=0

Wi · pwm(A
∗
i |S, a1:n, Qi) (1)

We empirically find that rewarding the model for achieving the desired outcome earlier in the ac-
tion sequence leads to better performance. To do so, we break each full action sequence down to
sub-chunks of length c, and then query the model on action sequences with increasing numbers of
concatenated sub-chunks:

V T ,c(S, a1:n) =

k∑
i=0

n∑
j=c
j+=c

Wi · pwm(A
∗
i |S, a1:j , Qi) (2)

Setting c = 1 is equivalent to evaluating the model once for every single action in the sequence, and
setting c = k is equivalent to the vanilla formulation in Eqn. 2. With a well-defined value function,
we can apply various planning techniques to extract optimal actions using the model.

3.3.1 SAMPLING-BASED PLANNING

Sampling-based planning provides a straightforward approach to planning with the model. An ex-
ample is Model Predictive Path Integral (MPPI) control algorithm Williams et al. (2016), which
maintains a Gaussian distribution of action parameters and iteratively refines it by querying the
model. The action distribution is initialized as a(0) ∼ Unif(amin, amax). At each iteration, we sam-
ple a set of K control sequences {a(k)}Kk=1 from the current action distribution. The value of each
of these sampled trajectories Vk is computed using our SWM . The distribution for the next iteration
is at+1 ∼ N

(
µt, σ

2
t

)
where

µt =

K∑
k=1

exp
(
Vk

λ

)∑K
j=1 exp

(
Vj

λ

) a
(k)
t , σ2

t =

K∑
k=1

ωk

(
a
(k)
t − µt

)2

(3)

and λ is a temperature parameter controlling exploration. For our rollouts, we execute the mean
sequence of the last iteration.
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Figure 4: Examples of each evaluation task. The top frame represents the initialization, and the
bottom frame represents task completion.

3.3.2 GRADIENT-BASED PLANNING

For more complicated tasks, sampling-based planning methods typically require a large number of
samples and optimization iterations, which become increasingly hard to scale for a large model like
SWM . To reduce the number of samples and model forward passes, we propose to use a gradient-
based optimization procedure together with a base proposal policy. The gradient provides directed
information for optimizing the model, thus converging faster than sampling-based techniques. The
base proposal policy can effectively trim down the planning search space. Given a base policy πb

and a control sequence a ∼ πb(S), and our semantic world model pwm, we perform a gradient ascent
to optimize the following objective:

JT (a) = V T ,c(S, a) (4)

Where a is the control sequence we are optimizing over, T = {(Qi, A
∗
i ,Wi)}ki=1 is the list of

questions, desired answers, and weights, c is our reward subchunk size, and S is our state. To
improve the stability of our objective, we employed gradient norm clipping on the actions before
each gradient step. Fig. 11 shows a visualization of this optimization process. Appendix A.5.8
compares the of planning times for each method.

3.4 MULTISTEP TASKS

To solve long-horizon tasks, we can extend the aforementioned planning procedure to a multi-step
formulation. We leverage the capabilities of SWM to decide task progress and transition between
subgoals without requiring any additional components. Concretely, we define a series of sequential
subgoals g1, g2, . . . , gT , where each subgoal gt is associated with a question and a desired answer
corresponding to when the subgoal was completed. We sequentially execute each subgoal and verify
its completion using SWM. This is feasible at no additional cost because we include zero-horizon
examples in the training dataset. For example, in the block picking task, we used the following
sub-goals: [”Is the block grasped?”, ”Is the block stacked on top of the other block?”], with the
desired answers [”yes”, ”yes”] in order to accomplish a two-stage task. This method is used to
extend planning to multi-step LangTable tasks.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

We evaluate SWM in two simulation environments, LangTable (Lynch et al., 2022) and OGBench
(Park et al., 2025), capturing combinatorial generalization and dexterous manipulation. Fig. 4 shows
examples of tasks in each domain. We provide an overview of the experiment setup in this section
and defer the details to Sec. A.2

LangTable (Lynch et al., 2022) We evaluate our approach on reaching, separating blocks, and
pushing in the LangTable environment, using both sampling-based planning and gradient-based im-
provement over a base policy. We train SWM on a mixture of expert data collected with a scripted
policy and suboptimal data collected with a random policy. To evaluate in out-of-distribution con-
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ditions, we change the block color combinations during evaluation to test compositional general-
ization. For example, our training data only includes the red pentagon, and we evaluate on a green
pentagon and a novel purple pentagon.

OGBench (Park et al., 2025) We evaluate on cube reaching and a custom cube stacking task.
We train SWM on a mixture of optimal and suboptimal data, collected using the provided noisy
expert data and play data from OGBench, respectively. To measure generalization, we change the
background color during evaluation.

For both environments, we use a per-task Diffusion Policy (Chi et al., 2023) trained on 300 expert
trajectories for 100 epochs as the base policy. The expert trajectories were collected using the same
experts as in the offline dataset.

One important aspect of training was ensuring the dataset was balanced in both the number of each
possible question type and the answer distribution for each respective question. For example, for
each state in the LangTable environment, there are

(
8
2

)
possible questions about whether two blocks

are touching, but 8 questions about whether the end effector is touching a given block. Similarly,
most blocks are separated in the initial states of the LangTable environment, leading to far more ’yes’
answers than ’no’ answers. The imbalance is addressed during training by oversampling tuples such
that there is a balanced amount of question types and answer distributions.

4.2 BASELINES

We compare Semantic World Models to the following baselines. Details about each baseline and
hyperparameters are described in Sec. A.2

IDQL (Hansen-Estruch et al., 2023): IDQL is an offline RL baseline which uses IQL Kostrikov
et al. (2022) to reweight the a behavior diffusion policy. For each task, we take the offline dataset
used for our Semantic World Model and combine it with the per-task expert dataset used for the base
policy. This combined dataset is labeled with binary rewards and used to train our IDQL policy. The
architecture and hyperparameters of the diffusion policy used as the IDQL behavior policy are the
same as for the base policies, except with a horizon of 8.

Action Conditioned Video Diffusion (AVD): To compare against a pixel-based world model, we
train an action-conditioned k-step video diffusion model. We model its architecture after the back-
bone used in Unified World Models (Zhu et al., 2025). Using this video diffusion model, we predict
the future frame conditioned on the proposed action sequence and use the SWM model to perform
VQA on this predicted frame, which we use as a reward for MPPI planning. The initial trajectory
candidate samples are generated through our base diffusion policy.

4.3 RESULTS

Our evaluation aims to address the following questions: (1) Is SWM an effective world model
for decision making? (2) Does suboptimal data improve modeling performance? (3) Does SWM
preserve the generalization capabilities from the base VLM?

Task SWM

LT Reach Block 100%
LT Separate Blocks 100%

OG Reach Cube 97%

Table 1: Planning Results MPPI
planning success rates over 100
seeds on LangTable and OG bench.

Is SWM an effective world model for decision making?
To evaluate the planning capabilities of SWM, we start by ap-
plying a sampling-based planning method, MPPI, to a SWM
model on LangTable and OGBench tasks. As shown in tab. 1,
we are able to directly plan on top of our semantic world model
using sampling-based planning methods, achieving close to
perfect success rates on reaching and block separation tasks.
However, the computational cost of the sampling-based plan-
ning method with large models makes it infeasible to run MPPI
on more challenging tasks requiring a higher number of sam-
ples. Therefore, for more complicated tasks, we consider a
scenario in which a base policy generates a candidate trajectory that is refined using SWM and
gradient-based optimization (described in Sec. 3.3.2). As shown in Fig. 5, our method improves
substantially compared to baseline methods.

7
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Figure 5: Improvement results across LangTable and OGBench
LangTable OGBench

Dataset Type Expert Data Expert Data OOD Expert Data Expert Data OOD

Sub Optimal 85.98± 0.33 81.99± 1.46 90.83± 0.39 85.56± 1.10
Expert 91.27± 0.79 86.49± 0.39 96.53± 0.13 87.33± 2.13
Combined 92.92 ± 0.34 88.32 ± 2.10 96.86 ± 0.13 88.16 ± 1.54

Table 2: Future QA Performance. Performance of future QA on test time expert datasets in both
in-domain and out-of-domain block combinations. Reported standard deviation across 3 training
seeds.

Does suboptimal data improve modeling performance? One of the key aspects of a world
model is its ability to learn from suboptimal data. To measure the effects of suboptimal demon-
strations, we create a test set of future QA data collected from expert demonstrations in both in-
distribution and out-of-distribution environments. We then train models across three different seeds
and fix hyperparameters to convergance with either the suboptimal data, optimal data, or a 50/50
mixed dataset. As seen in tab. 2, mixing in the suboptimal data improves accuracy over training on
just expert data. SWM is also able to achieve moderate levels of performance by training only on
suboptimal data, demonstrating how effective suboptimal data can be for training our world model.

Does training preserve the generalization capabilities from the base VLM? To measure the
effects of VLM pretraining on generalization, we evaluate SWM on both compositional and scene
out-of-distribution environments, depicted in Fig. 8. Since the offline dataset was misaligned with
these evaluation tasks, we do not compare to the IDQL baseline.

To measure semantic compositional generalization, we introduce a new colored block and modify
the existing block color-shape pairs in the LangTable environment. tab. 4 shows an average of 20.0%
improvement over the base policies under these conditions. This performance indicates that SWM
is able to retain some of the pretraining knowledge, resulting in compositional generalization.

Task Base Policy Video Diffusion SWM (Ours)

MS1 6% ± 6.6 8% ± 7.5 50% ± 13.9
MS2 4% ± 5.4 2% ± 3.9 66% ± 13.1
MS3 4% ± 5.4 2% ± 3.9 54% ± 13.8
MS4 2% ± 3.9 4% ± 5.4 54% ± 13.8

Table 3: Multi-Step Results. SWM model improvement results on four different multi-step com-
positional tasks. The tasks are as follows: MS1 - red pentagon to blue moon, yellow pentagon to
red moon. MS2 - yellow star to blue cube, yellow pentagon to red moon. MS3 - yellow star to blue
cube, red pentagon to blue moon. MS4 - green cube to blue moon, yellow pentagon to red moon.
Reported success rates over n = 50 seeds with 95% confidence intervals (normal approximation).
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Task Base Policy AVD SWM (Ours)

Push Blue Star to Red Cube 54% ± 13.8 66% ± 13.1 86% ± 9.6
Push Yellow Moon to Purple Cube 54% ± 13.8 56% ± 13.8 78% ± 11.5
Stack Red to Green OOD Background 62% ± 13.5 28% ± 12.4 72% ± 12.4
Stack Blue to Yellow OOD Background 50% ± 13.9 50% ± 13.9 70% ± 12.7

Table 4: Out-of-Distribution Improvement Results. SWM model improvement results on tasks in
LangTable and OG-Bench on out-of-distribution scenes. Reported success rates over n = 50 seeds
with 95% confidence intervals (normal approximation). The highest mean per row is bold.

Is the red moon 
touching the blue 

cube?

Is the green cube 
touching the yellow 

pentagon?

Is the peg 
touching the blue 

cube?

Is the yellow star 
between the green cube 

and the blue moon?

Figure 6: Visualization of the attention map from language tokens to image patches in the 4th
transformer layer. The language tokens correctly attend to the task-relevant locations in the image
depending on the prompt.

To test robustness to background changes, we change OGBench’s background color to a novel com-
bination. SWM is again able to demonstrate a 20% boost in performance compared to the base
policy and is able to generalize to these conditions, while the AVD method is unable to.

Does the model’s internal representations attend to the task-relevant information? To under-
stand the learned representations of the model, we visualize the attention maps from the language
tokens to the image patches from an intermediate layer of the model. As shown in Fig. 6, the model
correctly attends to the task-relevant location in the image depending on the language prompt. For
example, when asked ”Is the red moon touching the blue cube?”, the attention score is higher on
the image patches corresponding to the objects. Although we never finetuned on questions with
more than two objects, we found the model to correctly attend to three objects when asked to. This
shows that the model inherits generalization from the pretrained VLM. In sec. A.5.6 we provide
more visualizations of individual layers as well as entire trajectories.

5 CONCLUSIONS
We present Semantic World Models, a novel world modeling approach that explicitly models fu-
ture outcomes through future QA without needing to reconstruct or use pixel-level information as a
training objective. We demonstrate that our approach can be used both with sampling-based plan-
ning methods and through the lens of policy improvement. We demonstrate considerable gains over
pixel-based world modeling and offline RL methods, suggesting SWM could be the basis of a new
framework for world modeling.

5.1 LIMITATIONS AND FUTURE WORK

While Semantic World Models demonstrate strong performance on multiple tasks, several limita-
tions remain. First, the high parameter count of the base VLM makes sample-based planning meth-
ods too computationally expensive to perform on a single GPU or at a reasonable control frequency.
The gradient-based planning method is significantly more efficient, but requires a base policy to
propose the initial trajectory. Second, we also require ground truth simulation information in order
to construct the SAQA dataset, which would be hard to get in real-world robotic environments.

This leads to some promising future directions to address these challenges. Instead of using
PaliGemma as the base VLM, there is recent work towards training smaller VLMs, such as FastVLM
or SmolVLM (Marafioti et al., 2025; Kumar et al., 2025). These smaller VLMs could enable
sampling-based planning to scale up to more challenging tasks, thereby eliminating the need for

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

a base policy. We also believe it is a promising direction to replace the oracle-generated QA pairs
with those directly derived from a base VLM model. This would enable scaling up both the diversity
of data and the ability to include real data in the training recipe of a Semantic World Model.

REPRODUCIBILITY

To promote reproducibility and facilitate building upon this work, we will release code and trained
model weights to enable independent reproduction of our results. All of our reported results were
obtained across multiple seeds, and we included multiple different goal configurations of each task
to ensure reproducibility of our findings.

GENERATIVE AI USAGE

LLM tools were used to refine the writing, and GitHub Copilot was used for code-writing assistance.
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A APPENDIX

A.1 MODEL ARCHITECTURE AND TRAINING DETAILS

Figure 7: Architecture of Semantic World Model

Fig. 7 shows the architecture of Semantic World Model. We use the Paligemma 3B checkpoint as our
base model. The only new component we introduce is a linear projection matrix that is dimension
act dim×2048where 2048 is the embed dimension of the Gemma model. We perform full weight
fine-tuning on all model parameters using a linear LR decay starting at 1e−5 for approximately
24, 000 gradient steps on LangTable and 64, 000 gradient steps for OGBench. We use an effective
batch size of 96. Each model is trained on a node comprising 4 AMD Instinct MI250X GPUs (each
equipped with 2 MI200 GPU accelerators), resulting in a total training time of approximately 24
hours.

A.2 BASELINES AND HYPERPARAMETERS

IDQL (Hansen-Estruch et al., 2023) is an offline RL method that applies implicit Q-learning to
reweight a behavior diffusion-based policy. We use the base diffusion policy architecture for SWM
as the policy for IDQL, except with an action horizon of 8 instead of 16. For the Q and Value
functions in IDQL, we only condition on the current observation.

For the AVD baseline, we train a latent action-conditioned transformer video diffusion model, based
on the architecture of Unified World Models (Zhu et al., 2025), without the action prediction head.
Due to the computational cost of running the AVD forward and then using the generated frame for
VQA, we are unable to run this baseline with a high number of samples. Since the MPPI initial
samples were initialized from the base policy, we perform 10 iterations of MPPI with 16 samples to
get our final action prediction. Each AVD run takes around 10 hours on a single GPU.

The hyperparameters used for the base diffusion model, the IDQL algorithm, and the AVD model
are detailed in tab. 15. The only difference across environments is the size of the input image. All
models are trained with the AdamW optimizer (Loshchilov & Hutter, 2019).
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Figure 8: Out-of-distribution configurations for the evaluation tasks

A.3 ENVIRONMENTS AND TASKS

A.3.1 ENVIRONMENT DETAILS

Fig. 4 shows an example of each type of task we used to evaluate SWM. In Fig. 8, we provide
examples of out-of-distribution configurations used to evaluate the generalization capabilities of
SWM. More details about each environment and task are discussed below.

LangTable The LangTable environment has a control frequency of 10 Hz. For each task, we termi-
nate each episode after 120 environment steps. Our observation space is a single 180×320 RGB
image of the table. The action space is xy delta poses, ranging from -.03 to .03. Our reach block
task is marked as a success if the peg made contact with the target block. The separate block task
is marked as a success if the L2 distance between the target block and the blocks to separate it from
is over .1 M. For pushing blocks together, the episode is marked as a success if the L2 distance
between the two target blocks is less than .075. The expert and noisy demonstrations used for our
offline dataset and expert diffusion dataset are collected on environment seeds 0-300, and we eval-
uate on seeds 6000-6050. For the SWM improvement, we use an action chunk of 8, a gradient
learning rate of 0.02, 10 planning iterations, and execute 4 out of the 16 predicted actions before
replanning. We use a gradient clipping of 1 before updating each action during planning.

OGBench We use the cube environment as the basis for our tasks. This environment has a control
frequency of 10Hz, and we terminate each episode after 200 steps. Our observation space is a single
224×244 RGB image. The action space is 5-dimensional, comprising of delta xyz and orientation,
and a gripper action. For the ReachCube task, we measure success as the gripper pads touching the
cube. For our cube stacking task, we initialize all block poses randomly and then define success
as the first cube being stacked on top of the second cube, with a gap between the top cube and
the robotic gripper. The expert and noisy demonstrations used for our offline dataset and expert
diffusion dataset are collected on environment seeds 0-300, and we evaluate on seeds 6000-6050.
For the SWM improvement, we use an action chunk of 8, a gradient learning rate of 0.2, 20 planning
iterations, and execute 4 out of the 16 predicted actions before replanning. We use gradient clipping
of 10 before updating each action during planning.

A.3.2 QUESTION-ANSWER DATASET CURATION

We precompute the future QA pairs for our offline dataset. For each state, we sample four different
action horizon lengths between 0 and 20, and generate a set of questions for each sampled horizon.
Tab. 5 shows the question types and an example of each question type on both the LangTable and
OGBench environments.

For each question type, we also use multiple variations in wording. For example, for block touching
questions, given two blocks {block1} and {block2}, we use:

• Is the {block1} touching the {block2}?
• Are the {block1} and {block2} blocks in contact with each other?
• Is there contact between the {block1} block and the {block2} block?
• Does the {block1} touch the {block2}?
• Is the {block1} block in physical contact with the {block2} block?
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• Are the {block1} and {block2} blocks touching each other?
• Is the {block1} and {block2} directly touching?
• Do the {block1} and {block2} blocks meet?

A.3.3 TASK SPECIFICATION

For each task, we use a fixed set of questions and answers to specify the goals. All of our tasks are
single-subgoal tasks except the stack cube task, which has two goals. In order to create a multi-step
task for LangTable, we use two subgoals of independent Block to Block tasks, and use the SWM to
pick the behavior policy and the subgoal to use. The questions, answers, and weights for all tasks
are shown in Tab. 5.

Table 5: QA pairs used for task rewards

Task Question Weight Desired Answer

Reaching LT Is the robotic peg touching the {target block}? 0.8 Yes
Is the robotic peg closer to the {target block}? 0.2 Yes

Reaching OG Is the robotic gripper touching the {target block}? 0.8 Yes
Is the robotic gripper closer to the {target block}? 0.2 Yes

Separate Blocks Is the robotic peg touching the {center block}? 0.6 Yes
Is the {avoid block} touching the {center block}? 0.4 No

Block to Block Is the {first block} touching the {second block}? 0.8 Yes
Are the {first block} and the {second block}
closer together?

0.2 Yes

Cube Stacking
Subgoal 1: Pick up the first cube
Is the robot grasping the {first block}? 1.0 Yes

Subgoal 2: Stack the blocks
Is the {first block} on top of the {second block}? 0.6 Yes
Is the robot grasping the {first block}? 0.4 Yes

A.4 FULL IMPROVEMENT RESULTS

We provide the full improvement results corresponding to Fig. 5 in the experiments section.

A.5 ABLATIONS

A.5.1 ABLATION ON QUESTION WEIGHTS

We ablate the inclusion of question weights across all of the in-distribution LangTable and OGBench
tasks. We found that removing weights decreased performance by an average of 2.4% in LangTable
and increased performance by 3.3% in ogbench. Full results are in Tab. 7.

A.5.2 ABLATION ON PLANNING WITHOUT BASE POLICY

To evaluate whether SWM can plan effectively without relying on a base policy, we conducted an
ablation study on three LangTable pushing tasks. In this setting, the initial action sequence was
sampled uniformly from the environment’s action space, removing any prior structure provided by
a base policy. Despite the lack of a warm start, SWM was able to successfully plan under these
randomly initialized trajectories, achieving success rates of 46%, 50%, and 58% on the tasks of
pushing the yellow pentagon to the red moon, pushing the red moon to the green star, and pushing
the yellow star to the blue cube. These results demonstrate that the gradients are reasonable even
from random initializations.
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Table 6: Improvement Results. SWM model improvement results on planning tasks in LangTable
and OG-Bench on in-distribution scenes. Reported success rates over n = 50 seeds with 95%
confidence intervals (normal approximation). The top tasks are LangTable and the bottom tasks are
OGBench.

Task Base Policy IDQL AVD SWM

Push Green Cube to Blue Moon 6% ± 6.6 8% ± 7.5 48% ± 13.8 78% ± 11.5
Push Red Moon to Green Star 18% ± 10.6 8% ± 7.5 44% ± 13.8 80% ± 11.1
Push Red Pentagon to Blue Moon 14% ± 9.6 12% ± 9.0 38% ± 13.5 80% ± 11.1
Push Yellow Pentagon to Red Moon 18% ± 10.6 8% ± 7.5 34% ± 13.1 86% ± 9.6
Push Yellow Star to Blue Cube 16% ± 10.2 10% ± 8.3 62% ± 13.5 84% ± 10.2

Stack Blue Cube on Yellow Cube 52% ± 13.8 8% ± 7.5 50% ± 13.9 82% ± 10.6
Stack Blue Cube on Green Cube 44% ± 13.8 16% ± 10.2 46% ± 13.8 84% ± 10.2
Stack Yellow Cube on Red Cube 40% ± 13.6 24% ± 11.8 44% ± 13.8 62% ± 13.5

A.5.3 ABLATION ON QUESTION PHRASINGS

To evaluate the robustness of SWM to different question phrasings, we conducted an ablation mea-
suring performance under both in-distribution and out-of-distribution question phrasings. For each
task, we evaluated SWM using two different phrasings seen during training and two novel OOD
phrasings not present in the SAQA dataset. As shown in Table 8, SWM maintains strong perfor-
mance across all phrasing variants, with only minor drops under OOD formulations. These results
demonstrate SWMs robustness to new question phrasings.

Table 7: Ablation on question weights. Success rates for SWM with weights vs. SWM without
weights on LangTable and OGBench tasks. Reported over n = 50 seeds with 95% confidence
intervals.

Task SWM (with weights) SWM (no weights)

Push Green Cube to Blue Moon 78% ± 11.5 72% ± 12.4
Push Red Moon to Green Star 80% ± 11.1 78% ± 11.4
Push Red Pentagon to Blue Moon 80% ± 11.1 82% ± 10.6
Push Yellow Pentagon to Red Moon 86% ± 9.6 88% ± 9.0
Push Yellow Star to Blue Cube 84% ± 10.2 76% ± 11.8

Stack Blue Cube on Yellow Cube 82% ± 10.6 82% ± 10.6
Stack Blue Cube on Green Cube 84% ± 10.2 78% ± 11.4
Stack Yellow Cube on Red Cube 62% ± 13.5 78% ± 11.4

Table 8: Ablation on Question Phrasing. Success rates of SWM under in-distribution (ID) and
out-of-distribution (OOD) task phrasings. Reported with 95% confidence intervals.

Task Base Policy ID 1 ID 2 OOD 1 OOD 2

Push Red Moon to Green Star 18% ± 10.6 72% 88% ± 9.0 84% ± 10.2 78% ± 11.5
Push Yellow Star to Blue Cube 16% ± 10.2 78% 86% ± 9.6 84% ± 10.2 72% ± 12.4
Push Yellow Pentagon to Red Moon 18% ± 10.6 88% 88% ± 9.0 86% ± 9.6 76% ± 11.8

A.5.4 AUTOMATIC QUESTION GENERATION

To validate the broader applicability of SWM beyond simulators with privileged state information,
we evaluate an automatic dataset generation pipeline using a VLM to provide supervision for ques-
tion answers. We evaluate the accuracy of Gemini Embodied Reasoning (Team, 2025) in providing
question-answer supervision on both LangTable and OGBench. In addition, we have measured the
accuracy on a small set of manually annotated question-answer pairs from the Droid datasets. Across
both settings, Gemini achieved strong accuracy compared to ground-truth answers, indicating that
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Table 9: Gemini-ER Accuracy on LangTable

Question Type Accuracy

block touching 0.93
peg to block 0.89
block closer 0.88

Average 0.90

Table 10: Gemini-ER Accuracy on OGBench

Question Type Accuracy

cube grasped 1.00
block ontop block 0.95
block touching block 0.97
block block closer 0.75

Average 0.92

Table 11: Gemini-ER Accuracy on DROID

Question Type Accuracy

claw hold 0.89
obj 0.91
obj relative 0.82

Average 0.87

Table 12: Success rate (%) on long-horizon LangTable tasks with and without LLM-derived task
decompositions over 50 seeds. MS1 - red pentagon to blue moon, yellow pentagon to red moon.
MS2 - yellow star to blue cube, yellow pentagon to red moon. MS3 - yellow star to blue cube, red
pentagon to blue moon. MS4 - green cube to blue moon, yellow pentagon to red moon.

Task Base Policy SWM+grad SWM+grad + LLM planning

MS1 2 50 62
MS2 4 66 42
MS3 4 54 52
MS4 6 54 44

Average 4 56 50

frontier VLMs show a path towards generating the SAQA dataset without relying on oracle infor-
mation in both sim and real. Detailed results are in Tab. 9, 10, and 11. For each question, we issued
multiple queries to the model, counted each response as a vote, and selected the answer with the
highest vote count.

A.5.5 AUTOMATIC TASK DECOMPOSITION

We evaluate the feasibility of using a VLM for automatic high-level decomposition. We find that
for long-horizon tasks, GPT 5.1 (OpenAI, 2024) is able to break the task into substasks and create
a set of questions and desired answers to plan with. We observe that GPT-generated questions were
also more varied in phrasing. When paired with SWM planning, these planning parameters perform
comparably to our oracle question-answer set planning results. Results are shown in Tab. 12 We
used structured JSON output with a full prompt text of ”You are a robotic agent planning to push
blocks around on a table. Break your task down into key information and brief, absolute and relative
questions. Question examples we’ve trained on: Is the red star touching the blue cube? Is the green
cube next to the peg? Is the red star in the center of the board? Is the peg above the red cube block?
Is the red star to the right of the blue cube? Did the red cube move left? Did the red star block move?
Did the robotic peg move downward? Are the red star and blue cube closer together? Is the robotic
peg closer to the red cube?”

A.5.6 VISUALIZATION OF ATTENTION MAPS

We provide additional visualizations of the attention map. In Fig. 9, we visualize the average
attention scores from language tokens to image tokens on a consecutive trajectory. We find that
different layers capture different semantic information. For example, layers 4 and 6 attend to the red
moon and the blue block, whereas later layers also attend to the peg, likely because of the need to
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Figure 9: Attention maps in different layers of SWM . Question: “Is the red moon touching the blue
block?”

Seed 0 

Seed 1 

Seed 2 

Seed 3 

Frame 0 Frame 16 Frame 32 Frame 48 Frame 64 Frame 72 

Figure 10: Attention maps for different trajectories. Question: “Is the red moon touching the blue
block?”

reason about the result of actions. In Fig. 10 we visualize the attention map in layer 4 on different
trajectories, showing that the layer consistently attends to the correct objects.
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Figure 11: Visualization of gradient-based planning on the LangTable - Red Pentagon to Blue Moon
task. The initially proposed action sequence is on the left, and updates to this action sequence go
progressively to the right, approaching the optimal trajectory over successive gradient steps.

A.5.7 VISUALIZATION OF GRADIENT-BASED PLANNING

We visualize the gradient-based planning procedure in Fig. 11. As planning iteration progresses,
the candidate action sequence gradually extends to pushing the red pentagon to the blue moon,
approaching the optimal trajectory over successive gradient steps.

A.5.8 PLANNING EFFICENCY

We measure the effective environment Hz of AVD, MPPI, and our gradient-based method in
LangTable. For our comparison, we fix the number of MPPI samples and number of MPPI planning
steps to what we use in our AVD baseline, which is eight iterations with 16 samples. For gradient-
based planning, we use the same parameters as those in the LangTable, specifically 10 iterations
on a single candidate trajectory. For all three methods, we use a reward sub-chunk size of 8 and
a horizon of 16. For the SWM gradient-based planning, we benchmarked the speed for a single
forward and backwards pass on one action chunk of size 16 with one question. The forward pass
for a single frame and action chunk takes on average 0.036 seconds, and the backward pass takes on
average 0.0262 seconds. All numbers above are on a NVIDIA A100 GPU using bf16 precision. It
is possible to run gradient-based improvement on a single RTX 4090.

Table 13: Planning speed comparison across different methods

Method Time per action chunk (Seconds)
AVD 676.41
MPPI 4.48
Gradient-based 1.56

Table 14: Question types and examples for LangTable and OGBench

Type Example
LangTable
Block touching Is the red star touching the blue cube?
Peg to block Is the green cube next to the peg?
Block board position Is the red star in the center of the board?
Peg block relative direction Is the peg above the red cube block?
Block to block relative direction Is the red star to the right of the blue cube?
Block move direction Did the red cube move left?
Block move Did the red star block move?
Peg move direction Did the robotic peg move downward?
Block to block closer Are the red star and blue cube closer together?
Peg to block closer Is the robotic peg closer to the red cube?

OGBench
Cube grasped Is the red cube grasped by the robot?
Gripper touching block Is the blue cube touching the robot gripper?

Continued on next page
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Table 15: Hyperparameters for IDQL, Diffusion, and AVD Model

Diffusion
Batch size 128
Epochs 100
Action horizon 16
Observation horizon 2
Diffusion iters 100
Eval diffusion iters 10
Traj end padding (steps) 12

IDQL
Gradient steps 250,000
Batch size 128
IQL τ 0.8
Test time samples 1000
Temperature 0.5
Discount (γ) 0.99
Critic hidden dim 256
Critic learning rate 0.0003
Num layers 3

AVD Model
Embed dim 768
Vision backbone ViT-B/32
Timestep embed dim 512
Latent patch shape [2,2,2]
Num Transformer Layers 12
Num heads 12
Train steps 1000
Inference steps 50
Total steps 100,000
Global batch size 288
Learning rate 1e-4
Weight decay 1e-6

Table 14 – continued from previous page
Type Example
Block touching block Is the green cube touching the yellow cube?
Block on top of block Is the red cube on top of the blue cube?
Gripper closer to block Is the gripper closer to the green cube?
Block closer to block Is the red cube closer to the blue cube?
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