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ABSTRACT

Developing reinforcement learning agents that can generalise effectively to new
tasks is one of the main challenges in AI research. This paper introduces Frac-
ture Cluster Options (FraCOs), a multi-level hierarchical reinforcement learning
method designed to improve generalisation performance. FraCOs identifies pat-
terns in agent behaviour and forms temporally-extended actions (options) based
on the expected future usefulness of those patterns, enabling rapid adaptation to
new tasks. In tabular settings, FraCOs demonstrates effective transfer and im-
proves performance as the depth of the hierarchy increases. In several complex
procedurally-generated environments, FraCOs consistently outperforms state-of-
the-art deep reinforcement learning algorithms, achieving superior results in both
in-distribution and out-of-distribution scenarios.

1 INTRODUCTION

A fundamental goal of AI research is to develop agents that can leverage structured prior knowledge,
either provided or learned, to act competently in unfamiliar domains (Pateria et al., 2021). This is
common behaviour in animals. For example, many newborn mammals, such as foals, can walk
shortly after birth due to innate motor patterns; and human infants display instinctive stepping mo-
tions when supported (Adolph & Robinson, 2013; Dominici et al., 2011). These innate behaviours,
shaped by evolution, act as priors that guide goal-directed actions and enable rapid adaptation.

Humans are believed to organise behaviours into a hierarchy of temporally-extended actions, which
helps break complex tasks into simpler, manageable steps (Rosenbloom & Newell, 1986; Laird et al.,
1987; Brunskill & Li, 2014). For instance, decision making in humans often involves planning with
high-level actions such as “pick up glass” or “drive to college,” each of which comprises subtasks
such as “reach for glass” or “pull door handle.” These subtasks eventually decompose into basic
motor movements. Notably, parts of this hierarchy are shared between tasks; for instance, both “pick
up glass” and “pull door handle” involve similar gripping movements. Such shared temporally-
extended actions, often referred to as skills, are reusable behaviours that provide significant benefit
when applied across tasks. Specifically, skills enable rapid learning of new tasks beyond those
previously experienced by leveraging prior knowledge.

Inspired by this human capability, generating such hierarchical organisation in algorithms could
allow artificial agents to adapt quickly to new tasks (Heess et al., 2016). By decomposing complex
tasks into reusable, temporally-extended actions, agents can leverage shared behaviours across tasks,
enabling faster learning and better generalisation.

Despite advances made in representing, learning, and using behaviour hierarchies, generalising these
behaviours across diverse tasks remains a significant challenge for artificial agents (Cobbe et al.,
2019). Existing approaches struggle with effectively transferring skills to new environments, limit-
ing their ability to adapt to real-world scenarios (Pateria et al., 2021).

Here we introduce Fracture Cluster Options (FraCOs), a framework for defining, generating and
using multi-level hierarchical skills that are designed to maximise an estimate of their future use-
fulness. We present a rigorous empirical evaluation that shows that FraCOs substantially enhances
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out-of-distribution learning. It outperforms three state-of-the-art baselines—Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017), Option Critic with PPO (OC-PPO) (Klissarov et al., 2017)
and Phasic Policy Gradient (Cobbe et al., 2021)—in both in-distribution and out-of-distribution
learning across several environments from the Procgen benchmark (Cobbe et al., 2020).

2 BACKGROUND

Reinforcement learning aims to identify how agents should act in their environment to achieve
their objectives(Sutton & Barto, 2018). The state of the environment and the action choices of the
agent in a given state may be discrete, continuous, or multidimensional. Most reinforcement learning
problems are framed as a Markov Decision Process (MDP), defined as a tuple ⟨S,A, P,R, γ⟩, where
S is the set of possible states, A is the set of possible actions, P is the transition probability function
with P (s, a, s′) indicating the probability of transitioning from state s to state s′ after taking action
a, R is the reward function with R(s, a, s′) indicating the expected reward when transitioning from
state s to state s′ via action a, and γ ∈ [0, 1] is the discount factor. A policy π maps states to a
probability distribution over actions, guiding the agent’s behaviour.

At each time step t ≥ 0, the agent observes the current state st and chooses action at based on its
policy π(st). The environment then transitions into state st+1 and the agent receives reward rt+1. A
trajectory is the sequence of observations s0, a0, r1, s1, a2, r3, s3, ... that reflects the agent’s interacts
with its environment. The agent’s objective is to learn a policy that maximises some well defined
function of the reward it receives. In this paper, we aim to maximise the cumulative discounted
return, Gt =

∑∞
k=0 γ

krt+k+1.

We define an environment as the external system with which the agent interacts, characterized by
⟨S,A, P ⟩. A task in a given environment defines, in addition, a reward function R and discount
factor γ.

Hierarchical Reinforcement Learning (HRL) organises the decision making of reinforcement
learning agents into multiple levels of abstraction. A widely used approach is the options frame-
work (Sutton et al., 1999). An option z is tuple ⟨Iz, πz, βz⟩, where Iz is the option’s initiation set,
describing the set of states where the option can be initiated, πz is the option policy that governs
action selection while the option is active, and β : S → [0, 1] is the option’s termination condition,
expressing the probability of termination at a given state. Options provide a structured way to rep-
resent skills, which are temporally-abstract actions that are expected to provide benefit when reused
across tasks.

Generalisation in reinforcement learning refers to the ability of an agent to accumulate rewards
in environments, or parts of environments, that it has not been explicitly trained on. Generalisation
challenges can be categorised based on the relationship between training and testing distributions,
either falling within independent and identically distributed (IID) scenarios or extending to out-of-
distribution (OOD) contexts. Additionally, generalisation challenges can be classified by the features
of the environment that change, including the state space, observation space, dynamics, and rewards.
This classification leads to eight distinct generalisation challenges (Kirk et al., 2021).

In this work, we focus on generalisation performance in OOD tasks where the state space S and
reward function R vary, while the action space A and the underlying transition dynamics remain
constant. This setup reflects real-world scenarios where an agent, such as a robot, operates under
fixed physical principles but encounters diverse tasks.

3 RELATED WORK

Policy transfer methods, such as Finn et al. (2017), Grant et al. (2018), Frans et al. (2018), Cobbe
et al. (2021), and Mazoure et al. (2022), have shown some success in improving generalisation.
However, they often struggle in out-of-distribution (OOD) settings, as they typically rely on task-
specific adaptation. In contrast, skill transfer methods learn reusable sub-policies, such as options,
that can be flexibly composed, offering a more modular and adaptable framework for transfer learn-
ing. By decomposing complex tasks into smaller, reusable components, skill transfer preserves and
reuses prior knowledge in novel situations, potentially addressing challenges in OOD generalisation
(Konidaris & Barto, 2007; Barreto et al., 2019; Tessler et al., 2017; Mann & Choe, 2013). However,
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existing approaches are limited to learning a set of skills that choose directly among primitive ac-
tions, lacking the ability to operate in a truly hierarchical manner, being able to choose among both
primitive actions and other skills.

A small number of methods have been proposed in the literature for learning multi-level hierar-
chies (Riemer et al., 2018; Evans & Şimşek, 2023; Levy et al., 2019; Fox et al., 2017) but these
methods have not addressed skill transfer as a mechanism for accelerating task adaptation and gen-
eralisation. Additionally, some of these methods, for instance, those by Levy et al. (2019) and Evans
& Şimşek (2023), face difficulties in large, complex problems, for example, when using pixel-based
representations. Furthermore, state-based sub-goal methods, including Levy et al. (2019) and Evans
& Şimşek (2023), struggle to transfer learned sub-goals to different state spaces and fail to account
for variability in action sequences required to reach these sub-goals; for example, “booking a holi-
day” could involve “calling a travel agent” or “using the internet,” each demanding different skills.
In contrast, FraCOs avoids creating state-based sub-goals, providing a more flexible framework for
transfer across state spaces.

Our work is closely related to Discovery of Deep Options (DDO) by Fox et al. (2017). DDO employs
an expectation gradient method to construct a hierarchy top-down of options from expert demonstra-
tions. However, DDO does not optimise for generality and it remains unclear how the discovered
options perform in unseen tasks. Moreover, the reliance on demonstrations limits the development
of increasingly more complex abstractions. In comparison, FraCOs builds bottom-up, forming pro-
gressively more complex abstractions and selecting options based on their expected usefulness in
future tasks, directly addressing generalisation challenges.

Also related to our work is Hierarchical Option Critic (HOC) by Riemer et al. (2018). HOC gen-
eralises the option-critic framework introduced by Bacon et al. (2017) to a multi-level hierarchy.
HOC learns all options simultaneously during training. Both option-critic and HOC suffer from
option collapse, where either all options converge to the same behaviour or one particular option is
chosen consistently (Harutyunyan et al., 2019). Additionally, the added complexity of option-critic
methods can slow learning compared to non-hierarchical approaches such as PPO (Schulman et al.,
2017; Zhang & Whiteson, 2019). FraCOs addresses these limitations by naturally preventing option
collapse through its option selection process.

4 FRACTURE CLUSTER OPTIONS

We hypothesise that identifying reoccurring patterns in an agent’s behaviour across successfully
completed tasks will improve performance on future tasks that the agent has not yet experienced.
Correspondingly, we propose an approach to multi-level skill discovery that consists of three stages:
(1) identifying similar patterns in an agent’s behaviour across multiple tasks, (2) selecting the most
useful of these patterns—those considered to be the most likely to appear in trajectories of all pos-
sible tasks, and (3) using these identified patterns as a basis for generating options for future use. In
this section, we discuss each stage in turn.

4.1 IDENTIFYING PATTERNS IN AGENT BEHAVIOUR

Our objective is to identify and cluster the most useful patterns in agent behaviour that lead to
successful outcomes. To achieve this, we require a method for capturing and analysing patterns
produced during task execution. To this end, we introduce the concept of a fracture, defined as a
sequence of actions that start at a specific state. A fracture ϕ is a tuple (s, a1, a2, . . . , ak), where s
is the start state and a1, a2, ..., ak is a sequence of k actions that can be initiated at state s.

Given a set of trajectories T from tasks that an agent has experienced, we can generate a set of
candidate fractures. For a single trajectory τ ∈ T of length n, let F denote the set of all fractures
that can be derived from this trajectory:

F = {(st, at, at+1, . . . , at+b−1) | 0 ≤ t ≤ n− b}, (1)

where the parameter b controls the temporal length of the fracture. We can repeat this for all τ ∈ T
such that Φ = {F1,F2, . . . ,F|T |} is the complete set of fractures derived from all trajectories in T .
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Can fractures capture the underlying structure of the environment? We explore this question
in Four Rooms, a classic grid-based reinforcement learning environment, consisting of four rooms,
connected to each other with narrow doorways. The environment has a single goal state; the agent
receives a positive reward upon reaching this state, which terminates the episode. This environment
is depicted in the top left corner in Figure 1. Further details can be found in Appendix A.7. In all
of our grid-world implementations, the agent can observe only a 7×7 area centred on itself and a
scalar indicating the direction of the reward. This is similar to MiniGrid (Chevalier-Boisvert et al.,
2024), except that our observations are ego-centric.

Fracture Visualisations in 2D Latent Space

Figure 1: A two-dimensional representation of the
fractures (b = 2) derived from agents acting for
10,000 time-steps in Four Rooms.

We train tabular Q-learning agents in multi-
ple versions of the environment with different
goal states, generating trajectories for both the
trained agents and an agent selecting actions
randomly. We then create fractures following
Equation 1, with b = 2. To reveal the struc-
tural differences between the fractures derived
from the random agent and the trained agent,
we use UMAP (McInnes et al., 2018), a di-
mensionality reduction technique that projects
the high-dimensional fracture data into two di-
mensions. UMAP is particularly useful for
this task because it preserves local similarities
within the data. We show the resulting two-
dimensional visualisation in Figure 1. The fig-
ure reveals a near-uniform distribution for the
agent acting randomly, while the fractures from
trained agents form distinct clusters, reflecting
the underlying structures in successful trajecto-
ries. This observation is consistent across other
environments, as shown in Appendix A.7.4.

To identify clusters of fractures, we employ unsupervised clustering techniques. Specifically, we
use HDBSCAN (Campello et al., 2013) for all tabular methods in this work. Figure 2 shows four
clusters randomly selected for visualisation, after fractures with a chain length of b = 4 are grouped
into clusters using HDBSCAN. For each of the four clusters, the visualisation shows all fractures
within that cluster, demonstrating that, despite differences in starting states, action sequences, and
final states, the fractures within each cluster share similar semantic meanings.

Discovered Fracture Clusters

Figure 2: Four examples of discovered fracture clusters (b = 4) from agents trained in Four Rooms.
Each cluster is represented by a colour. In the four examples, the green circles represent possible
starting states, blue arrows indicate actions, the width of the arrows shows the frequency of the state-
action pair within the cluster, and the red circles indicate the final states of the fracture.
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4.2 SELECTING USEFUL FRACTURE CLUSTERS

Fracture clusters formed in Section 4.1 identify behaviours that are similar to each other; however,
the number of clusters identified can be very high, with some being highly task specific. Developing
all clusters into options may burden the agent with action choices that are not particularly useful. It
is therefore essential to identify the clusters that are most likely to be useful in future tasks.

Consider the hypothetical scenario in which we can observe all possible trajectories across all possi-
ble tasks. We will consider a trajectory to be successful if its cumulative return exceeds a predefined
threshold, similar to the criterion proposed by Chollet (2019)—Table 10 shows all minimum re-
turns used in our work. We use Xw to denote the set of all tasks with successful outcomes. In this
ideal setting, the set of all successful fractures, denoted by Φw, can be derived from the set of all
successful trajectories, denoted by Tw.

To sensibly select fracture clusters, we must evaluate their potential for reuse in future tasks. We
do this by defining the usefulness U of a fracture cluster ϕ̃ based on its likelihood of contributing to
success across tasks. Specifically, usefulness is determined by three factors, described below.

Appearance probability, Pa(ϕ̃). For a given fracture cluster ϕ̃, this is the probability that
a randomly selected successful trajectory τw ∈ Tw, from a randomly selected successful
task xw ∈ Xw, will contain at least one fracture ϕ ∈ ϕ̃.

Relative frequency, Pf (ϕ̃). For a given fracture cluster ϕ̃, this is the proportion of times
that some fracture ϕ ∈ ϕ̃ appears among all successful fractures Φw.

Entropy of usage, H(ϕ̃). For a given fracture cluster ϕ̃, this is the entropy of at least one
ϕ ∈ ϕ̃ appearing across all successful trajectories Tw.

The usefulness of a fracture cluster ϕ̃ is defined as the mean of these three factors:

Uϕ̃ =
1

3
[Pa(ϕ̃) + Pf (ϕ̃) +H(ϕ̃)] (2)

Appendix A.17 includes an ablation study that explores the impact of each term.

In an ideal scenario, we could observe all possible tasks and trajectories and directly calculate the
usefulness Uϕ̃ of each fracture cluster. This is generally not possible. Instead, we must rely on
available data, using the tasks and trajectories encountered during training. Let n index individual
tasks and N be the total number of experienced tasks. We form Φw from the N experienced tasks.

Estimating appearance probability. We approximate Pa(ϕ̃) by using a Bayesian approach, mod-
elling the probability that at least one fracture ϕ ∈ ϕ̃ appears in a successful trajectory as a binomial
likelihood with a Beta conjugate prior. The prior parameters α and β, both set to 1, reflect an unin-
formative prior. We define the appearance indicator ζn to be equal to 1 if any fracture ϕ ∈ ϕ̃ appears
in trajectory τn, and 0 otherwise.

Estimating relative frequency. We estimate Pf (ϕ̃) by counting the occurrences of ϕ ∈ ϕ̃ in Φw,
which we denote as count(ϕ̃,Φw), and dividing this count by the total number of fractures in Φw.

Estimating entropy. The entropy H(ϕ̃) is approximated using Shannon’s entropy formulation
(Shannon, 1948). Specifically, the term count(ϕ̃,τw)

|τw| represents the empirical probability of observing

some fracture ϕ ∈ ϕ̃ in a trajectory τw. This probability is used to compute the entropy. The nor-
malisation factor Nϕ̃ ensures that the entropy is scaled appropriately relative to the total number of
unique fracture clusters ϕ̃.

We derive the full approximation in Appendix A.2. The result is expressed as the expected usefulness
shown below:

E[Uϕ̃] =
1

3


∑N

n=1 ζn + α

N + α+ β︸ ︷︷ ︸
Appearance Probability

+
count(ϕ̃,Φw)

|Φw|︸ ︷︷ ︸
Relative Frequency

−
∑

τw∈Tw

count(ϕ̃, τw)
|τw|

logN
ϕ̃

(
count(ϕ̃, τw)

|τw|

)
︸ ︷︷ ︸

Estimated Entropy

 (3)
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Figure 3: The eight fracture clusters with the highest expected usefulness in Nine Rooms. Expected
usefulness decreases from left to right in the top row, then from left to right in the bottom row. Green
points represent possible starting states, blue arrows indicate actions, the width of the arrows shows
the frequency of the state-action pair within the cluster, and the red points indicate the final states of
the corresponding fracture.

Fracture clusters that yield the highest expected usefulness will be selected to be developed into op-
tions. To evaluate the effectiveness of Equation 3, we train an agent to reach 100 randomly selected
goal states in the Nine Rooms environment, shown in Figure 3. We then collect evaluation trajecto-
ries, form fractures with a chain length of b = 4, cluster the fractures, and compute their expected
usefulness. In Figure 3, we plot the eight fracture clusters with the highest expected usefulness. The
fracture cluster with the highest expected usefulness moves the agent from the starting state in all
sensible directions, without repetitions of movements. The majority of the other fracture clusters
transverse bottlenecks.

Forming multiple levels of the skill hierarchy. Once the most useful fracture clusters have been
identified, they can be converted into options, extending the agent’s action space; this is detailed
in Section 4.3. When learning a new task, the agent can now choose from both primitive actions
and these higher-level behaviours. To build additional levels of the hierarchy, the process of iden-
tifying and clustering fractures is repeated. In subsequent iterations, trajectories—and consequen-
tially, fractures—may consist of a mix of primitive actions and higher-level options. This iterative
approach naturally leads to the creation of a multi-level hierarchical structure, where each level
captures increasingly complex temporally-extended behaviours.

4.3 USING FRACTURE CLUSTERS

To leverage the most useful fracture clusters, we transform them into options we call Fracture Clus-
ter Options, or FraCOs. A FraCO z is characterised by an initiation set Iz , a termination condition
βz , and a policy πz .

Initiation set. The initiation set Iz defines the states in which the FraCO z can be initiated. To
construct Iz , we first consider all possible action sequences of length b (the chain length) denoted as
a = (a1, a2, . . . , ab), where ai ∈ A, i = 1, ..., b. We can now define the set of all possible fractures
in state s as follows:

Fs = {(s,a) | a ∈ Ab}, (4)

where Ab represents the set of all action sequences of length b.

For each fracture ϕ ∈ Fs, we can estimate the probability that it belongs to a FraCO z. The set of
fractures assigned to cluster z in state s can be defined as:

Gz,s = {ϕ ∈ Fs | P (ϕ ∈ z) > θ},
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where P (ϕ ∈ z) denotes the estimated probability that fracture ϕ belongs to cluster z, and θ is a
threshold parameter. The method for estimating P (ϕ ∈ z) can vary depending on the implementa-
tion. In our tabular implementation, we directly use the prediction function provided by HDBSCAN.
In our deep implementation, a neural network is trained to predict this probability. A FraCO z can
be initiated in state s if Gz,s is not empty:

Iz = {s ∈ S | Gz,s ̸= ∅} (5)

Algorithm 1: Option policy πz(Gz,s, Z, s)

Input: Gz,s, set of options Z, state s
Initialize: Select the fracture ϕz = (s,a) from
Gz,s with the highest probability P (ϕz ∈ z),
where a is a sequence of actions (a1, a2, . . . , ab)

for each action aj in a do
if aj is a primitive action then

Execute aj , resulting in new state s;
else

aj is another option z′;
Compute Gz′,s;
Recursively call πz′(Gz′,s, Z, s);

end
end

Policy. When FraCO z is initiated in state s,
it follows the policy πz , as described in Algo-
rithm 1. The policy selects the fracture ϕz =
(s,a) from Gz,s that has the highest probabil-
ity P (ϕz ∈ z) and then executes the sequence
of actions a = (a1, a2, . . . , ab). If one of the
selected actions is another FraCO z′, the agent
must compute Gz′,s and recursively call the
policy until the option terminates.

Termination condition. The FraCO z termi-
nates under two conditions: when all actions
in the selected fracture ϕz have been executed
or when the agent attempts to execute a nested
FraCO z′ but cannot find a matching fracture
(Gz′,s = ∅). The termination condition βz(s)
is therefore defined as follows:

βz(s) =


1 if all actions in ϕz have been executed
1 if the next action is z′ and Gz′,s = ∅
0 otherwise

(6)

Learning with FraCOs. FraCOs are fixed once created. The agent learns to choose between
primitive actions and available FraCOs using standard reinforcement learning algorithms (e.g., Q-
learning for tabular settings, PPO for deep learning implementations).

Example FraCO usage. An agent in state s considers all possible fractures in that state, Fs.
For each fracture ϕ ∈ Fs, the agent then estimates the probability P (ϕ ∈ zi) that the fracture
ϕ belongs to zi, for each FraCO zi ∈ Z. If a fracture has a probability above the threshold θ,
then zi becomes available as an option.

The agent’s policy π selects from among the set of available FraCOs and primitive actions.
Suppose it selects FraCO z1. The agent picks the fracture ϕz1 with the highest probability
P (ϕz1 ∈ z1) and executes its action sequence.

As the agent executes these actions, if one of these actions is another FraCO, say z2, then the
agent forms a new Fs′ for the new current state s′, estimates P (ϕ ∈ z2), and selects the most
probable fracture for z2, which is above the threshold θ. If the agent cannot find a fracture such
that P (ϕ ∈ z2) > θ, then the option terminates.

This process repeats until the termination condition βz1 = 1 is met, completing the execution
of FraCO z1.

5 EXPERIMENTAL RESULTS

We evaluate FraCOs in three different experiments. The first experiment focuses on OOD reward
generalisation tasks using a tabular FraCOs agent in the Four Rooms, Nine Rooms, and Ramesh
Maze (Ramesh et al., 2019) grid-world environments. The second experiment examines OOD
state generalisation tasks within a novel environment called MetaGrid, explained in detail in Ap-
pendix A.7. The final experiment evaluates a deep FraCOs agent, implemented with a three-level
hierarchy using PPO in the procgen suite of environments (Cobbe et al., 2020).
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Figure 4: Episodic returns with a tabular FraCOs agent trained in the Four Rooms, Nine Rooms,
and Ramesh Maze environments. Results show interquartile means of 10 independently seeded
experiments, with shaded areas indicating the standard error.

We compare FraCOs’ performance with CleanRL’s Procgen PPO and PPG implementations (Huang
et al., 2022) and Option Critic with PPO (OC-PPO) (Klissarov et al., 2017). Further details on
baseline implementations are provided in appendices A.11 and A.13.

In the grid-world environments, the agent receives a reward of +1 for reaching the goal and an
additional −0.001 at each time step; episodes have a maximum length of 500 time steps; the fracture
chain length is set at b = 2. In Procgen environments, we set b to 3. Further details on chain-length
selection are provided in Appendix A.8.

5.1 EXPERIMENT 1: TABULAR REWARD GENERALISATION

In this experiment, we evaluate FraCOs in the Four Rooms, Nine Rooms, and Ramesh Maze en-
vironments, using a fixed state space S while varying the reward function R. During the FraCOs
discovery phase, a tabular Q-learning agent is trained on 50 distinct tasks, each with a unique re-
ward location. After completing training for each task, the top 20 FraCOs are extracted from the
agent’s final trajectories, as described in Section 4, and incorporated into the action space. This pro-
cess is repeated iteratively, corresponding to each level of the hierarchy, with FraCOs being added
incrementally at each stage.

In the evaluation phase, we create four new agents, each with access to a progressively deeper
hierarchy of FraCOs. The agents are trained on 10 unseen test tasks—each with a unique reward
location—and evaluated periodically. As shown in Figure 4, results demonstrate that learning is
progressively accelerated on unseen tasks as the depth of the hierarchy increases.

5.2 EXPERIMENT 2: TABULAR STATE GENERALISATION

In this experiment, we evaluate FraCOs in a novel environment called MetaGrid, designed to test
state generalisation. MetaGrid is a navigational grid-world constructed from structured 7×7 building
blocks, which can be combined in various ways to create novel state spaces while preserving areas
of local structure. The agent observes the environment through a 7× 7 window, consistent with our
other grid-world environments. For more details on MetaGrid, refer to Appendix A.7.

During the FraCOs discovery phase, a tabular Q-learning agent is trained at each hierarchy level on
100 randomly generated 14× 14 MetaGrid tasks. A task in this experiment corresponds to a unique
state space S and reward location R. After training, 20 FraCOs are extracted from final trajectories
and incorporated into the action space.

In the evaluation phase, for each hierarchy level, a separate agent is created. These agents are then
trained in two settings: (1) previously unseen 14×14 domains and (2) larger 21×21 domains. Peri-
odic evaluation episodes are conducted during training to track performance. As shown in Figure 5,
these results also demonstrate that the rate of learning increases with deeper hierarchies.
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Figure 5: Episodic returns for tabular FraCOs in unseen MetaGrid domains of varying sizes. Results
are the interquartile means of 10 independently seeded experiments, with shaded areas indicating
the standard error.

5.3 EXPERIMENT 3: DEEP STATE AND REWARD GENERALISATION

In this experiment, we test FraCOs in OOD tasks from the Procgen benchmark (Cobbe et al., 2020),
which is a suite of procedurally generated arcade-style environments designed to assess generalisa-
tion across diverse tasks; further details are provided in Appendix A.7. We compare FraCOs with
three methods, Option Critic with PPO (OC-PPO) (Klissarov et al., 2017), PPO (Schulman et al.,
2017), and Phasic Policy Gradient (PPG) (Cobbe et al., 2021), across eight Procgen environments,
where each task has a unique unseen state space S and reward function R.

Figure 7: Mean min-max normalised
IQM returns with standard errors
across Procgen environments.

FraCOs modifications. To handle the challenges of apply-
ing traditional clustering to high-dimensional pixel data, we
simplify the approach by grouping fractures with the same
action sequences, regardless of state differences. Addition-
ally, a neural network is used to estimate initiation states
and policies, which reduces the computational burden of
performing a discrete search over the complex 64× 64× 3
state space and managing 15 possible actions during mil-
lions of training steps. These modifications do not change
the fundamental approach of FraCOs, only its implementa-
tion. Full details of these modifications are provided in Ap-
pendix A.10, with further information on the experiments,
baselines, and hyperparameters in Appendix A.11.

FraCOs and OC-PPO both learn options during a 20-million
time-step warm-up phase, with tasks drawn from the first
100 levels of each Procgen environment. FraCOs learns
two sets of 25 options, corresponding to different hierarchy levels, while OC-PPO learns a total
of 25 options. After the warm-up, the policy over options is reset, and training continues for an

Figure 6: A comparison of learning curves of a sample of three Procgen environments.
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Figure 8: Min-max normalised IQM returns with standard errors in individual Procgen environ-
ments.

additional 5 million time steps. During this phase, we periodically conduct evaluation episodes on
both IID and OOD tasks, with OOD tasks drawn from Procgen levels beyond 100.

We test two versions of FraCOs: one where the policy over options is completely reinitialised after
the warm-up phase, and another that transfers a Shared State Representation (SSR), referred to
as FraCOs-SSR. In the SSR, a shared convolutional layer encodes the state, followed by distinct
linear layers for the critic, policy over options, and option policies. These convolutional layers
are not reset after warm-up, enabling a shared feature representation across tasks. Since OC-PPO
inherently relies on a shared state representation to define its options and meta-policy, comparing it
with FraCOs-SSR offers a fair evaluation. Without this shared representation, OC-PPO struggles to
maintain stable and meaningful options across tasks. Despite this adjustment for fairness, we find
that FraCOs, even without SSR, consistently outperforms all baselines. For further implementation
details of FraCOs-SSR, refer to Appendix A.11.

Figure 7 provides the mean min-max normalised interquartile mean (IQM) across all Procgen envi-
ronments. Figure 8 provides the results in each environment. We also provide three sample learning
curves in Figure 6. Each experiment was repeated with eight seeds. On average, we observe that
FraCOs and FraCOs-SSR are able to improve both IID and OOD returns over all baselines.

6 DISCUSSION AND LIMITATIONS

We introduced Fracture Cluster Options (FraCOs) as a novel framework for multi-level hierarchical
reinforcement learning. In tabular settings, FraCOs demonstrated accelerated learning on unseen
tasks, with performance improving as the depth of the skill hierarchy increased. In deep reinforce-
ment learning experiments, FraCOs outperformed state-of-the-art algorithms OC-PPO, PPO, and
PPG on both in-distribution (IID) and out-of-distribution (OOD) tasks, showcasing its potential for
robust generalisation.

In its current form, FraCOs has a number of limitations. Clustering methods, such as HDBSCAN,
struggle to accurately predict cluster assignments for new data points as environments grow more
complex. Simplified techniques and neural networks were introduced here to address this difficulty
but further research into scalable clustering solutions is needed. Additionally, this work focused on
discrete action spaces; extending FraCOs to continuous action spaces remains as future work. De-
spite these limitations, FraCOs provides a strong foundation for advancing hierarchical reinforce-
ment learning and improving generalisation across tasks.
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A APPENDIX

A.1 GLOSSARY OF TERMS AND DERIVATIONS

Term/Symbol Definition/Derivation
MDP (Markov Deci-
sion Process)

A mathematical framework for modelling decision-making, defined by
the tuple ⟨S,A, P,R, γ⟩, where:

• S: Set of possible states.
• A: Set of possible actions.
• P : Transition probability function, P (s, a, s′).
• R: Reward function, R(s, a, s′).
• γ: Discount factor, γ ∈ [0, 1].

S Set of possible states in an MDP.
A Set of possible actions in an MDP.
P Transition probability function; P (s, a, s′) gives the probability of tran-

sitioning from state s to s′ after action a.
R Reward function; R(s, a, s′) is the reward received when transitioning

from s to s′ via action a.
γ Discount factor in an MDP, γ ∈ [0, 1], representing the importance of

future rewards.
st State of the agent at time step t.
at Action taken by the agent at time step t.
s′ Next state after taking action at from state st.
π(st) Policy of the agent, mapping state st to a probability distribution over

actions.
Gt Cumulative discounted return from time t, defined as Gt =∑∞

k=0 γ
krt+k+1.

Trajectory (τ ∈ T ) A sequence of states, actions, and rewards experienced by the agent: τ =
(s0, a0, r1, s1, a1, r2, . . . ).

Task A task is defined as a unique MDP.
Reward generalisa-
tion tasks

MDPs with R values outside of the training distribution, while S, A, and
P , remain within distribution.

State generalisation
tasks

MDPs with S and R values outside of the training distribution, while A,
and P , remain within distribution.

Option In HRL, a temporally extended action, defined by:
• I: Initiation set.
• πz: Intra-option policy.
• β(s): Termination condition.

I Initiation set of an option; the set of states where the option can be initi-
ated.

πz Intra-option policy; the policy followed while the option is active.
β(s) Termination condition of an option; gives the probability of terminating

the option in state s.
FraCOs (Fracture
Cluster Options)

The proposed method for defining, forming, and utilizing multi-level hi-
erarchical options based on expected future usefulness.

ϕ A fracture; a state paired with a sequence of actions:

ϕ = (st, at, at+1, . . . , at+b−1)

Continued on next page...
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Term/Symbol Definition/Derivation
b Chain length of a fracture; specifies the number of actions following the

state st.
F Set of fractures derived from a single trajectory:

F = {(st, at, at+1, . . . , at+b−1) | 0 ≤ t ≤ n− b}

Φ Complete set of fractures from all trajectories:

Φ = {F1, F2, . . . , F|T |}

ϕ̃ A fracture cluster; a group of fractures with similar behaviours.
Usefulness Metric
(U(ϕ̃))

A measure to evaluate fracture clusters based on their potential for reuse
in future tasks:

U(ϕ̃) =
1

3

(
P [ϕ̃ ∈ τw | xw] + P [ϕ̃ | Φw] +H(ϕ̃ | Xw)

)
Expected Usefulness
terms • ζn: Appearance indicator; ζn = 1 if any fracture ϕ ∈ ϕ̃ appears

in trajectory τn, else 0.
• α, β: Parameters of the Beta prior distribution, typically set to
1.

• N : Total number of experienced tasks.
• Φw: Set of all successful fractures.
• Tw: Set of successful trajectories.
• Nϕ̃: Normalization constant for entropy calculation.

Derivation of Ap-
pearance Probabil-
ity

Using Bayesian inference, the appearance probability is estimated as:

P [ϕ̃ ∈ τw | xw] =

∑N
n=1 ζn + α

N + α+ β
(7)

Where ζn are observations modeled as Bernoulli random variables with
a Beta prior.

Derivation of Rela-
tive Frequency

Calculated as:

P [ϕ̃ | Φw] =
count(ϕ̃,Φw)

|Φw|
(8)

Where count(ϕ̃,Φw) is the number of times fractures in ϕ̃ appear among
all successful fractures Φw.

Derivation of En-
tropy of Usage

The entropy of a fracture cluster’s usage is:

H(ϕ̃ | Xw) = −
∑

τw∈Tw

count(ϕ̃, τw)
|τw|

logNϕ̃

(
count(ϕ̃, τw)

|τw|

)
(9)

This measures the diversity of the fracture cluster’s usage across tasks.
α, β Parameters of the Beta distribution used in Bayesian estimation; set to

α = 1, β = 1 for an uninformative prior.
ζn Appearance indicator for task n; ζn = 1 if any fracture in ϕ̃ appears in

trajectory τn, else 0.
Z Set of all Fracture Cluster Options (FraCOs).
z A single FraCO; an option derived from a fracture cluster.

Continued on next page...
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Term/Symbol Definition/Derivation
Iz Initiation set of FraCO z; states where z can be initiated:

Iz = {s ∈ S | Gz,s ̸= ∅}

βz Termination condition of FraCO z; z terminates when all actions in the
selected fracture have been executed or when no matching fracture is
found:

β(s) =


1 if all actions in ϕz have been executed
1 if next action is z’ and Gz′,s = ∅
0 otherwise

πz Policy of FraCO z; defines the sequence of actions when the option is
active (see Algorithm 1 in the paper).

Gz,s Set of fractures assigned to cluster z in state s:

Gz,s = {ϕ ∈ Fs | P (ϕ ∈ z) > θ}

θ Threshold hyperparameter for cluster membership; determines if a frac-
ture belongs to a cluster based on probability.

N Total number of experienced tasks or samples.
T Set of all trajectories.
τ An individual trajectory from the set T .
τw A successful trajectory; meets a predefined success criterion.
Tw Set of successful trajectories.
Xw Set of tasks corresponding to successful trajectories.
A Action set of the environment; may include primitive actions and options.
Nc Number of cluster-options (options derived from fracture clusters).

A.2 DERIVATION OF THE USEFULNESS METRIC

In this appendix, we derive the usefulness (U ) metric for fracture clusters. This metric is used to
identify which fracture clusters have the greatest potential for reuse across different tasks. Useful-
ness is a function of the following three factors:

1. The probability that a fracture cluster appears in any given successful task:

P (A(ϕ̃) ∈ τw|xw)

2. The probability that a fracture cluster is selected from the set of successful fracture clusters:

P [A(ϕ̃)|Φw]

3. The entropy of the fracture cluster’s usage across all successful tasks:

H(A(ϕ̃) | Tw)

where A(ϕ̃) represents any ϕ ∈ ϕ̃. However, for sake of notation clarity, we drop the A for this
derivation.

Usefulness (U ) is then defined as the normalized sum of these three factors:

U =
1

3

(
P [ϕ̃ ∈ τs|xs] + P [ϕ̃|Φs] +H(ϕ̃ | Tw)

)
The objective is to select fracture clusters that maximize the usefulness, i.e.,

argmax
ϕ̃

U(ϕ̃)
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A.3 DERIVING P [ϕ̃ ∈ τw|xw] USING BAYESIAN INFERENCE

We want to model the probability that a fracture cluster ϕ̃ appears in any given successful task,
P [ϕ̃ ∈ τw|xw]. For each successful task xw from the set of successful tasks Xw, the presence of
fracture cluster ϕ̃ in the corresponding trajectory τw is represented by a binary random variable ζw,
where:

ζw =

{
1 if ϕ̃ ∈ τw (fracture cluster appears in the trajectory),
0 otherwise

The variable ζw is modeled as a Bernoulli random variable:

ζs ∼ Bernoulli(p)

where p is the probability that fracture cluster ϕ̃ appears in the trajectory τs of task xw.

Since we are uncertain about the true value of p, we place a Beta distribution prior on p:

p ∼ Beta(α, β)

where α and β are hyperparameters representing our prior belief about the likelihood of ϕ̃ appearing
in a trajectory.

Given a total of N tasks, the likelihood for each observation ζw is:

P (ζn|p) = pζn(1− p)1−ζn

where ζn is 1 if ϕ̃ appears in trajectory τw for task xn, and 0 otherwise.

Using Bayes’ theorem, the posterior distribution of p after observing data is:

P (p|ζ1, . . . , ζN ) ∝ P (ζ1, . . . , ζN |p)P (p)

Substituting the likelihood and the Beta prior, we get:

P (p|ζ1, . . . , ζN ) ∝
N∏

n=1

pζn(1− p)1−ζn · pα−1(1− p)β−1

This simplifies to:

P (p|ζ1, . . . , ζN ) ∝ p
∑N

n=1 ζn+α−1(1− p)N−
∑N

n=1 ζn+β−1

Thus, the posterior distribution for p follows a Beta distribution:

p|ζ1, . . . , ζN ∼ Beta(αN , βN )

where:

αN =

N∑
n=1

ζn + α, βN = N −
N∑

n=1

ζn + β

In our experiments, we set α = 1 and β = 1, representing an uninformative prior.

A.4 DERIVING P [ϕ̃|Φw]

The second component of the usefulness metric, P [ϕ̃|Φw], is the probability that fracture cluster ϕ̃ is
selected from the set of successful fracture clusters. This can be computed as the relative frequency
of ϕ̃ in the set Φw of successful clusters:

P [ϕ̃|Φw] =
count(ϕ̃,Φw)

|Φw|

where count(ϕ̃,Φw) is the number of times ϕ̃ appears in the set of successful clusters, and |Φw| is
the total number of successful clusters.
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A.5 DERIVING H(ϕ̃ | Tw)

The entropy term H(ϕ̃ | Tw) measures the unpredictability or diversity of the usage of fracture
cluster ϕ̃ across successful tasks. Entropy is defined as:

H(ϕ̃ | Tw) = −
∑

τw∈Tw

p[ϕ̃ | τw] · logNϕ̃
(p[ϕ̃ | τw])

where p[ϕ̃ | τw] is the proportion of times that fracture cluster ϕ̃ appears in trajectory τw:

p[ϕ̃ | τw] =
count(ϕ̃, τw)

|τw|

Here, |τw| represents the length of the trajectory τw, and Nϕ̃ is the total number of fracture clusters
considered. The choice of logarithm base, Nϕ̃, reflects the fact that we normalize entropy relative to
the number of fracture clusters.

A.6 EXPECTED USEFULNESS

Having derived the empirical estimations of the three components of usefulness we can now combine
these elements to calculate the expected usefulness of each fracture cluster. The expected usefulness
incorporates the posterior distribution from Bayesian inference for P [ϕ̃ ∈ τw|xs], as well as the
empirical counts for the other components.

Thus, the expected usefulness for each fracture cluster is calculated as:

E[U(ϕ̃)] =
1

3

(∑N
n=1 ζn + α

N + α+ β
+

count(ϕ̃,Φw)

|Φs|
−
∑

τw∈Tw

count(ϕ̃, τw)
|τw|

· logNϕ̃

(
count(ϕ̃, τw)

|τw|

))
where α and β are the parameters of the beta distribution, which we set to α = 1 and β = 1 in our
experiments.

By calculating this expected usefulness, we can rank the fracture clusters according to their potential
for reuse in future tasks. The ranking helps focus on fracture clusters that are more likely to appear
in successful outcomes and contribute to the agent’s performance across diverse scenarios.

A.7 ENVIRONMENTS

This section provides details on the environments used in our experiments, including standard grid-
world domains (Four Rooms, Grid, Ramesh Maze), MetaGrid, and the Procgen suite. Each environ-
ment has been designed to evaluate different aspects of the agent’s behaviour, such as navigation,
exploration, and task performance.

A.7.1 GRID-WORLD ENVIRONMENTS

We use three standard grid-world environments: Four Rooms, Grid, and Ramesh Maze. Figure 9
illustrates these environments.

In these grid-world environments, the action space is discrete, with four possible (primitive) actions:

A = {0, 1, 2, 3}

These actions correspond to moving Up, Down, Left, and Right, respectively. The agent’s observa-
tion space is a 7x7 grid centered on itself, meaning it only observes a portion of the environment
at any given time. This localized view allows the agent to learn how to navigate based on nearby
features. This design is similar to MiniGrid (Chevalier-Boisvert et al., 2024), but in our case, the
observations are ego-centric, always centered on the agent.

In tabular learning, the agent uses this 7x7 observation space to predict initiation states, though the
Q-function is still based on absolute coordinates. We do not employ state-transition graphs in any
of our experiments.
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(a) Four rooms (b) Grid (c) Ramesh maze

Figure 9: Examples of the Four Rooms (a), Grid (Nine Rooms) (b), and Ramesh Maze (c) environ-
ments. In each, black represents walls, blue represents the agent, yellow represents the goal, and
white represents empty space. The agent can move up, down, left, and right, receiving a reward
upon reaching the goal. The goal’s location in these figures is an example of one of many possible
positions. These versions of Four Rooms, Grid and Ramesh Maze are part of the MetaGrid suite and
thus have a 7x7 observation space centred on the agent.

Figure 10: a) - e) demonstrate the building blocks which MetaGrid domains can be created from. f)
and g) demonstrate two 21x21 configurations using these building blocks.

A.7.2 METAGRID ENVIRONMENT

The MetaGrid environment extends the standard grid-world setup by allowing for procedurally gen-
erated maps of varying sizes. MetaGrid introduces randomness in the layout of walls and goal
locations, ensuring that the agent encounters a diverse set of environments during training and eval-
uation. Figure 10 demonstrates the building blocks which all environments in MetaGrid are formed
from, and Figure 11 shows examples of MetaGrid environments in two different sizes: 14x14 and
21x21.

The action space in MetaGrid is identical to the one used in the standard grid worlds, with four
discrete actions: Up, Down, Left, and Right. Similarly, the agent observes a 7x7 grid centered
on itself, allowing it to make decisions based on local information. The procedural generation in
MetaGrid provides varied environments for the agent to adapt to, making it a more challenging and
dynamic environment compared to static grid worlds.
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(a) (b) (c) (d)

Figure 11: Examples of randomly generated MetaGrid environments. The blue square represents
the agent, yellow represents the reward, white represents empty space, and black represents walls.
Subfigures (a) and (b) show 14x14 grids, while (c) and (d) show 21x21 grids.

A.7.3 PROCGEN ENVIRONMENTS

Procgen is a suite of procedurally generated environments designed to test generalisation and per-
formance across diverse tasks such as navigation, exploration, combat, and puzzle-solving. Each
environment provides a different variation on every reset, preventing the agent from memorizing
specific layouts or solutions. Please see Cobbe et al. (2020) for the full details of these environ-
ments.

Action Space Procgen environments feature discrete actions like movement (up, down, left, right)
and interactions (e.g., jump, shoot). Depending on the task, the action space can range from 5 to 15
actions, covering basic navigation and task-specific interactions.

Observation Space Unlike grid-based environments, Procgen uses 64x64 RGB pixel observations,
providing rich visual input. The agent must interpret features such as walls, enemies, and obstacles
to navigate and interact effectively.

Rewards Rewards in Procgen are sparse, given for completing tasks like reaching goals or defeating
enemies. The agent must learn to explore efficiently and develop strategies for long-term success.

Optional Parameters To simplify learning and reduce computational cost, we activated the follow-
ing Procgen parameters:

• Distribution mode = “easy”: Provides easier levels.

• Use backgrounds = “False”: Backgrounds are black to avoid additional noise.

• Restrict themes = “True”: Limits visual variation to a single theme, such as consistent
wall styles in environments like CoinRun.

Overall, these environments—ranging from grid-world environments with discrete action spaces
and ego-centric observations to the more complex Procgen environments with pixel-based observa-
tions—offer a diverse set of challenges for our agents. The combination of procedurally generated
environments in MetaGrid and Procgen ensures that the agents are tested on both fixed and highly
variable environments, making them suitable for evaluating the robustness of the learning algorithms
used in our experiments.

A.7.4 UMAP VISUALISATIONS OF OTHER ENVIRONMENTS

The structure observed in the latent projections of clustered Fracos as seen in Section 4.1 is also
demonstrated in trained agents of other simple environments; Figure 12 visualises fracture structures
in Grid (Nine rooms), CartPole, and LunarLander. The Grid environment is shown in Figure 9,
CartPole and LunarLander are standard environments from the Farama Foundation Gymnasium
suite Towers et al. (2023).
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Figure 12: Two dimensional visualisations of the fractures formed for trained agents in CartPole,
Grid (Nine Rooms) and LunarLander .

A.8 FRACOS CHAIN LENGTHS AND DEPTH LIMITS

In our FraCOs method, the process of matching clusters involves conducting a discrete search over
potential action permutations. This process requires forming all possible permutations of actions
and passing them through the saved clusterer to determine which permutation is currently viable for
the meta-policy to choose. The complexity of this search is captured by the permutation formula:

BPNc
=

Nc!

(Nc −B)!

where B is the length of the action chain, and Nc is the total number of cluster-options. As a result,
the time complexity for performing this search grows factorially, O

(
Nc!

(Nc−B)!

)
, as more cluster-

options are introduced or when the chain length is increased. This rapidly becomes computationally
expensive as these numbers increase.

A.8.1 CHAIN LENGTH AND DEPTH IN TABULAR EXPERIMENTS

Due to this factorial growth, it is crucial to limit the number of cluster-options and the chain length in
experiments that involve discrete cluster search (Experiments 1, 2 and 3.1). For all experiments using
cluster search, we chose a chain length of 2 to keep the computational complexity manageable.
Additionally, we restricted the depth of the FraCOs hierarchy to 3 or 4 levels, depending on the
complexity of the environment.

This limitation on depth and chain length helps maintain a balance between the richness of the
learned options and the feasibility of performing the cluster search in a reasonable amount of time.
The factorial growth of the search process becomes prohibitive as more cluster-options or deeper
chains are introduced, making this constraint necessary for efficient execution of our experiments.

A.8.2 WHY THIS IS NOT A PROBLEM FOR NEURAL NETWORK CLUSTER PREDICTIONS

In contrast, when we extend the FraCOs initiation and action estimation to be used with neural
networks, the limitation of conducting computationally expensive permutation searches is alleviated.
Neural networks can learn initiation sets and make predictions in a continuous manner, bypassing
the need for discrete cluster searches. This removes the necessity of factorially growing search
complexity, allowing for more flexibility in chain lengths and depth.

However, the challenge in neural network experiments lies in the sheer number of timesteps required
for training and evaluation. For example, in our deep experiments (at a depth of two), training
involved many millions of timesteps across nine different environments, totaling 180 million steps
for pre-training, repeated for three seeds. Testing required an additional 120 million steps, also
repeated for three seeds. This was only for FraCOs. When we include experiments using OC
(Option Critic), PPO, and PPO25, the total number of timesteps across all experiments becomes
3.06 billion.

To manage these computational demands, we used a chain length of 3. This allowed us to con-
duct only two warm-up phases, while ensuring that options could still be executed for a reasonable
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duration (a maximum of nine steps, i.e., 3x3). This setup enabled us to complete the necessary
pre-training and testing without sacrificing the quality of the learned options while maintaining
computational feasibility.

A.9 FRACOS EXPERIMENT PARAMETERS FOR TABULAR METHODS

Tabular Q-Learning is a reinforcement learning algorithm where the agent learns the optimal action-
value function Q(s, a), which estimates the expected cumulative reward for taking action a in state
s and following the optimal policy thereafter. The agent interacts with the environment, updates the
Q-values for each state-action pair based on rewards, and converges to the optimal policy over time
Sutton & Barto (2018). We implement a vectorized Q learning method.

The key hyperparameters used in all Tabular Q-Learning experiments are listed in Table 2.

Table 2: Hyperparameters for Tabular Q-Learning Experiment

Hyperparameter Value Description
eps 0.1 Exploration rate for ϵ-greedy policy. Determines the

probability of taking a random action instead of the ac-
tion with the highest Q-value.

alpha 0.1 Learning rate for Q-value updates. Controls how much
the Q-value is updated in each iteration.

gamma 0.99 Discount factor for future rewards.
num steps 64 Number of steps per episode before environment reset.
max ep length 1000 Maximum timesteps allowed in an episode.
anneal lr True Whether to anneal the learning rate as training pro-

gresses.
batch size 64 Number of state-action-reward tuples processed in a

batch.
Number of Envs 64 Number of vectorized environments

In Tabular Q-Learning, the agent repeatedly updates its Q-values for each state-action pair, gradually
converging to the optimal policy. By balancing exploration and exploitation, adjusting the learning
rate, and prioritizing long-term rewards, the agent learns to optimize its decision-making in the given
environment.

FraCOs (Fracture Cluster Options) for Tabular Methods: For reproducibility, the key hyperpa-
rameters used in the clustering process and other implementation details are outlined below.

In all tabular experiments, we use HDBSCAN as the clustering method (Campello et al., 2013). The
clustering hyperparameters are:

Table 3: Clustering Hyperparameters for FraCOs

Hyperparameter Value
Chain length (b) 2
Minimum cluster size 15
Metric Euclidean
Minimum samples 1
Generate minimum spanning tree True

The following table lists the minimum success rewards required for each environment:

FraCOs-Specific Hyperparameters:

The generalisation strength represents the threshold a fracture cluster must pass to be considered
for initiation. The threshold is defined as 1− HDBSCAN.predict.strength > generalisation
strength.

The FraCOs bias factor determines how much initial Q-values should be scaled to encourage transfer,
similar to optimistic initial values. For FraCOs bias depth annealing, the bias depth increases with
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Table 4: Minimum Success Reward per Environment

Environment Minimum Success Reward
Four Rooms 0.97
Grid 0.60
Ramesh Maze 0.70
MetaGrid 14x14 0.95

Table 5: FraCOs Hyperparameters

Hyperparameter Value
Generalisation strength 0.01
FraCOs bias factor 100
FraCOs bias depth anneal True

deeper FraCOs. For example, with a bias factor of 100 and depth of 3, the first bias is scaled by the
cube root of 100, the second by the square root, and the final by 100.

A.10 FRACOS MODIFICATIONS FOR DEEP LEARNING

In our experiments with deep learning, particularly in environments with large state spaces such
as the 64x64x3-dimensional Procgen environments, we found that HDBSCAN failed to accurately
capture meaningful clusters or predict clusters effectively. Initially, we attempted to integrate a
Variational Autoencoder (VAE) to use its latent space representation in the fracture formation pro-
cess Kingma & Welling (2013). However, clustering methods still struggled to deliver satisfactory
results.

Consequently, we adopted a simpler clustering approach and shifted to using neural networks to
predict both the initiation states and the policy.

Simpler Clustering. To simplify the clustering process, we based clusters solely on sequences of
actions. For instance, with a chain length of three, any fracture formed by the action sequence “up”,
“up”, “right” was clustered together, independent of the state. While this approach overlooks some
intricacies captured by state-based fracture formations, it was necessary to handle the increased
complexity of environments like Procgen.

Cluster Selection. The cluster selection process remained unchanged. We continued to use the
usefulness metric, as defined in Equation 3, to select clusters.

Initiation Prediction. Instead of relying on clustering methods to predict initiation states, we trained
a neural network to predict the states corresponding to each fracture cluster. This process involved
two steps:

1. First, we trained a Generative Adversarial Network (GAN) to augment the states in each
fracture cluster (since neural networks typically require large datasets).

2. Using both the real and generated states, we trained a neural network as a classifier to
predict which fracture cluster a given state belonged to. One neural network was trained
to predict all initiations at each hierarchical level. This method significantly improved
efficiency, reducing the need for permutation-based discrete searches to a single forward
pass.

Policy Prediction. For policy prediction, we utilized a shortcut. Since all FraCOs are derived from
trajectories generated by a pre-trained agent, the policy of this trained agent already serves as an
approximation for the FraCO policy. We saved the agent’s policy at the end of trajectory generation
and used it as the policy for all FraCOs. This reuse of the agent’s policy minimized additional
computation without sacrificing accuracy.

Termination Condition. The termination condition for each FraCO was determined solely by the
chain length, maintaining a fixed execution limit per option.
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A.11 EXPERIMENT PARAMETERS FOR DEEP METHODS

All deep methods in our experiments were based on CleanRL’s implementation of PPO for the
Procgen environments, and we used the same hyperparameters from this implementation. This
ensured that the PPO baseline was hyperparameter-tuned, providing a strong and well-optimized
baseline for comparison. However, FraCOs and OC-PPO were not specifically hyperparameter-
tuned for these environments. Despite this, we consider it reasonable to assume that FraCOs and OC-
PPO would perform near their best, as they share similar PPO update mechanisms and underlying
structures with the baseline PPO.

While there exists an implementation of OC-PPO by Klissarov et al. (2017), we opted to implement
our own version to maintain consistency with CleanRL’s PPO implementation. This approach was
necessary to ensure that any observed differences in performance were due to algorithmic design
rather than implementation differences.

We chose OC-PPO over the standard Option Critic for two primary reasons. First, in our experiments
with the standard Option Critic, we observed that the options collapsed quickly, converging to the
same behaviour. By integrating the entropy bonus provided by the PPO update, we were able to
alleviate this collapse and maintain more diverse option behaviours. Second, PPO has demonstrated
significantly better performance than Advantage Actor Critic (A2C) (Mnih, 2016) in the Procgen
environments. Given that the original Option Critic framework is based on A2C, using it as a
baseline would have led to an unfair comparison, as A2C has been shown to be less effective in
these environments. Therefore, incorporating PPO in both FraCOs and OC-PPO allowed for a fairer
and more balanced comparison.

We outline the hyperparameters which we used in the implementation below. All code will be
provided from the authors github upon publication.

A.11.1 PPO

We use CleanRL’s Procgen implementation as our baseline Huang et al. (2022). The only adaption
we make is that we implement entropy annealing, we also have some wrappers which mean Procgen
can be used with the Gymnasium API. We have another wrapper which is used for handling multi-
level FraCOs in vectorized environments. These wrappers are also applied to the baseline PPO.

Hyperparameters Table 6 provide hyperparameters for PPO.

Parameter Value Explanation
easy 1 1 activates “easy” Procgen setting
gamma 0.999 The discount factor.
vf coef 0.5 Coefficient for the value function loss.
ent coef 0.01 Entropy coefficient.
norm adv true Whether to normalize advantages.
num envs 64 Number of parallel environments.
anneal lr true Whether to linearly anneal the learning rate.
clip coef 0.1 Clipping coefficient for the policy objective in PPO.
num steps 256 Number of decisions per environment per update.
anneal ent false Whether to anneal the entropy coefficient over time.
clip vloss true Whether to clip the value loss in PPO.
gae lambda 0.95 The lambda parameter for Generalized Advantage Estimation

(GAE).
proc start 1 Indicates the starting level for Procgen environments.
learning rate 0.0005 The learning rate for the PPO optimizer.
max grad norm 0.5 Maximum norm for gradient clipping.
update epochs 2 Number of epochs per update.
num minibatches 8 Number of minibatches.
max clusters per clusterer 25 The maximum number FraCOs per level.

Table 6: Selected parameters for the FraCOs implementation with PPO
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A.11.2 FRACOS

Neural Network architectures.

• Input: c× h× w (image observation).
• Convolutional Layer 1: 16 filters, kernel size 3×3, stride 1, padding 1, followed by ReLU

activation.
• Convolutional Layer 2: 32 filters, kernel size 3×3, stride 1, padding 1, followed by ReLU

activation.
• Convolutional Layer 3: 32 filters, kernel size 3×3, stride 1, padding 1, followed by ReLU

activation.
• Flatten Layer: Converts the output of the last convolutional layer into a 1D tensor.
• Fully Connected Layer: 256 units, followed by ReLU activation.
• Actor Head: A linear layer with 256 input units and total action dims output units,

initialized with a standard deviation of 0.01.
• Critic Head: A linear layer with 256 input units and 1 output unit (for the value function),

initialized with a standard deviation of 1.

The model consists of two heads:

• Actor Head: Outputs a probability distribution over the action space for the agent to select
actions.

• Critic Head: Outputs the value function, which estimates the expected return for the cur-
rent state.

The network uses ReLU activations after each convolutional and fully connected layer, and the actor
and critic heads share the same convolutional layers but have distinct fully connected output layers.
In the FraCOs-SSR implementation, the convolutional layers are not reset after the warm-up phase.

Shared State Representation (SSR) details.

In the above architecture, both the actor and critic heads share a common set of convolutional layers.
These shared layers process the raw image observations from the environment and extract useful
spatial features that are fed into both the actor and critic branches. The use of shared convolutional
layers allows the model to leverage the same learned feature representations for both policy and
value estimation, promoting efficiency and consistency in learning.

In the FraCOs-SSR implementation, the shared convolutional layers are trained during the initial
warm-up phase, but they are not reset afterward. This allows the network to retain its learned feature
representations across multiple tasks and reuse them for both policy and value estimation during
subsequent training phases. By freezing these convolutional layers after the warm-up phase, the
network preserves its ability to generalize, while the distinct fully connected layers in the actor and
critic heads continue to adapt to new tasks.

Hyperparameters

Table 7 provides the full list of FraCOs hyperparameters in experimentation.

25



Published as a conference paper at ICLR 2025

Parameter Value Explanation
easy 1 1 activates “easy” Procgen setting
gamma 0.999 The discount factor.
vf coef 0.5 Coefficient for the value function loss.
ent coef 0.01 Entropy coefficient.
norm adv true Whether to normalize advantages.
num envs 64 Number of parallel environments.
anneal lr true Whether to linearly anneal the learning rate.
clip coef 0.1 Clipping coefficient for the policy objective in PPO.
num steps 128 Number of decisions per environment per update.
anneal ent true Whether to anneal the entropy coefficient over time.
clip vloss true Whether to clip the value loss in PPO
gae lambda 0.95 The lambda parameter for Generalized Advantage Estimation

(GAE).
proc start 1 Indicates the starting level for Procgen environments.
learning rate 0.0005 The learning rate for the PPO optimizer.
max grad norm 0.5 Maximum norm for gradient clipping
update epochs 2 Number of epochs per update.
num minibatches 8 Number of minibatches
max clusters per clusterer 25 The maximum number FraCOs per level

Table 7: Selected parameters for the FraCOs implementation with PPO

A.11.3 OC-PPO

Architectures

• Input: c× h× w (image observation).

• Convolutional Layer 1: 32 filters, kernel size 3×3, stride 2, followed by ReLU activation.

• Convolutional Layer 2: 64 filters, kernel size 3×3, stride 2, followed by ReLU activation.

• Convolutional Layer 3: 64 filters, kernel size 3×3, stride 2, followed by ReLU activation.

• Flatten Layer: Converts the output of the last convolutional layer into a 1D tensor.

• Fully Connected Layer: 512 units, followed by ReLU activation.

The model consists of several heads:

• Option Selection Head: A linear layer with 512 input units and num options output units
(for selecting options), initialized with orthogonal weight initialization and a bias of 0.0.

• Intra-Option Action Head: A linear layer with 512 input units and num actions output
units (for selecting actions within an option), initialized with orthogonal weight initializa-
tion and a bias of 0.0.

• Critic Head: A linear layer with 512 input units and 1 output unit (for the value function),
initialized with orthogonal weight initialization and a standard deviation of 1.

• Termination Head: A linear layer with 512 input units and 1 output unit (for predicting
termination probabilities), followed by a sigmoid activation to output a probability between
0 and 1.

The architecture is designed to share a common state representation across different heads (option
selection, intra-option action selection, value estimation, and option termination). Each head uses
the shared state representation for their specific outputs:

• Option Selection Head: Outputs a probability distribution over available options.

• Intra-Option Action Head: Outputs a probability distribution over the primitive actions
available within the current option.
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• Critic Head: Outputs the value function, estimating the expected return for the current
state.

• Termination Head: Outputs a termination probability for each option, determining
whether the agent should terminate the option at the current state.

Hyperparameters. Table 8 provide the hyperparameters used in OC-PPO.

Parameter Value Explanation
easy 1 Activates the “easy” Procgen setting.
gamma 0.999 The discount factor for future rewards.
vf coef 0.5 Coefficient for the value function loss in PPO.
norm adv true Whether to normalize advantages before policy update.
num envs 32 Number of parallel environments for training.
anneal lr true Linearly anneals the learning rate throughout training.
clip coef 0.1 Clipping coefficient for the PPO policy objective.
num steps 256 Number of steps per environment before an update is performed.
anneal ent true Whether to anneal the entropy coefficient over time.
clip vloss false Whether to clip the value loss in PPO updates.
gae lambda 0.95 Lambda for Generalized Advantage Estimation (GAE).
proc start 1 Indicates the starting level for the Procgen environment.
num options 25 Number of options learned by the agent.
ent coef action 0.01 Coefficient for the entropy of the action policy.
ent coef option 0.01 Coefficient for the entropy of the option policy.
learning rate 0.0005 Learning rate for the PPO optimizer.
max grad norm 0.1 Maximum norm for gradient clipping.
update epochs 2 Number of epochs per PPO update.
num minibatches 4 Number of minibatches per PPO update.

Table 8: Selected hyperparameters for OC-PPO implementation

A.12 OC-PPO UPDATE MECHANISM

The Option-Critic with PPO (OC-PPO) extends the standard Proximal Policy Optimization (PPO)
algorithm by incorporating hierarchical options through the Option-Critic (OC) framework. The
following key components distinguish OC-PPO from the standalone PPO and OC implementations:

1. Separate Action and Option Policy Updates: In OC-PPO, two sets of policy updates are
performed: one for the action policy within an option and one for the option selection policy. Both
policies are optimized using the clipped PPO objective, but they operate at different levels of the
hierarchy:

• Action Policy: The action policy selects the primitive actions based on the current option.
For each option, the log-probabilities of actions are calculated, and the advantage function
is used to update the action policy.

• Option Policy: The option policy determines which option should be selected at each state.
This option selection is also updated using the PPO objective, with its own log-probabilities
and advantage terms.

Both the action and option policies are clipped to prevent overly large updates, following the stan-
dard PPO procedure:

Losspolicy = max

(
A(π) · πnew

πold
, A(π) · clip

(
πnew

πold
, 1− ϵ, 1 + ϵ

))
Here, πnew and πold represent the new and old policies for both actions and options, and A(π) is the
advantage function. This clipping is applied separately for both action and option updates, providing
stability in training.
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2. Shared State Representation for Action and Option Policies: The OC-PPO architecture shares
the state representation between the action and option policies but maintains distinct linear layers
for each policy. The state representation is learned via a shared convolutional network. This shared
representation ensures that both action and option policies are informed by the same state encoding,
allowing for consistent hierarchical decision-making.

• Action Policy Head: Receives the state representation and outputs the action logits for the
current option.

• Option Policy Head: Receives the state representation and outputs the option logits for
option selection.

3. Termination Loss for Options: A unique component of OC-PPO is the termination loss, which
encourages the agent to decide when to terminate an option and select a new one. The termina-
tion function outputs the probability that the current option should terminate. This probability is
combined with the advantage function to compute the termination loss:

Losstermination = E[termination probability · (return − value)]

The termination loss is minimized when the agent terminates the option appropriately, i.e., when the
return associated with continuing the current option is less than the estimated value of switching to
a new option. The termination probability is computed by a separate network head from the shared
state representation.

4. Hierarchical Advantage Calculation: OC-PPO calculates separate advantage terms for actions
and options:

• Action Advantage: Based on the immediate rewards from the environment while following
the current option’s policy.

• Option Advantage: Based on the value of switching to a new option versus continuing with
the current option.

Each advantage is normalized independently, and separate PPO updates are applied to both the action
and option policies based on their respective advantage functions.

5. Regularization via Entropy for Both Action and Option Policies: As in standard PPO, en-
tropy regularization is applied to encourage exploration. However, in OC-PPO, this regularization
is applied both at the action level (to encourage diverse action selection within an option) and at
the option level (to encourage exploration of different options). The overall loss function includes
separate entropy terms for actions and options:

Lossentropy = αaction ·H(πaction) + αoption ·H(πoption)

6. Clipping for Value Function: Like in PPO, OC-PPO also employs clipping for the value function
updates to prevent large changes in the value estimate between consecutive updates. This applies
to the shared value function, which evaluates the expected returns from both primitive actions and
options.

Lossvalue = 0.5 ·max
(
(Vnew −R)2, (Vold + clip(Vnew − Vold,−ϵ, ϵ))

2
)

A.13 HYPERPARAMETER SWEEPS

In this appendix we provide evidence of hyperparameter sweeps for both OC-PPO and HOC. We
use the hyperparameters found for OC-PPO in our final results for Procgen. We decided not to use
HOC after having difficulty with option collapse.

We conduct all hyperparameter sweeps for 2 million time-steps on a the Procgen environments of
Fruitbot, Starpilot and Bigfish. OC-PPO had 105 total experiments and HOC had 170.
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A.13.1 OC-PPO

In Figure 13 we visualise all experiments conducted over all seeds for learning rates [1e-3, 1e-4,
1e-5] and entropy coefficients of [1e-1, 1e-2, 1e-3]. In Table 9 we state the averaged results. We
decided on 0.01 for the learning rate and 0.001 for the entropy coefficient.
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Figure 13: Parallel coordinates plot demonstrating effects of hyperparameters. This is for OC-PPO

Learning Rate Entropy Coefficient Final Returns
0.00001 0.83

0.001 0.79
0.1 0.86

0.0001 3.2
0.001 5.67
0.01 1.92
0.1 0.83

0.001 12.67
0.001 15.83
0.01 12.22
0.1 11.75

Table 9: Results for different learning rates and entropy coefficients for OC-PPO.
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A.14 FULL PROCGEN RESULTS

Learning curves across all tested Procgen environments and shown in Figure 14

Figure 14: Learning curves for all methods on all Procgen environments

A.15 SUCCESS CRITERIA HYPERPARAMETERS

Table 10 states all success criteria used in our work.
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Environment Minimum Success Returns
Four Rooms 0.97
Nine Rooms 0.60
Ramesh Maze 0.70
MetaGrid 14x14 0.95
BigFish 5
Climber 7
CoinRun 7.5
Dodgeball 5
FruitBot 7.5
Leaper 7
Ninja 7.5
Plunder 10

Table 10: Minimum Success Returns for Various Environments

A.16 CLUSTERING ANALYSIS

We compared different clustering methods and hyperparameters to ensure we were using a sensible
combination. We desired our clustering method to have prediction functionality for new data and we
didn’t want to specify the number of clusters. The only sensible clustering method which remained
was HDBSCAN. Regardless we analysed others to ensure HDBSCAN was not significantly worse.

We first generated trajectories in the Nine Rooms environment, created embeddings using UMAP
and then conducted clustering with various methods and parameters. Figures 15 – 20 provide visual-
isations of the results. We decided on HDBSCAN with minimum size of 15 and Eucledian distance
metrics.
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Figure 15: HDBSCAN clustering comparison
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Figure 16: DBSCAN clustering comparison

Figure 17: Mean Shift clustering comparison
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Figure 18: Optics clustering comparison

Figure 19: Kmeans clustering comparison

Figure 20: GMM clustering comparison
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A.17 USEFULNESS WEIGHTING QUALITATIVE ANALYSIS

The usefulness equation assumes equal weighting of appearance probability, relative frequency, and estimated entropy. Here, we qualitatively demonstrate the
effects of altering these weights. We rewrite the equation below and, in Tables 11 and 12, conduct ablation studies and visualize the top eight selected Fracture
Clusters in the nine rooms environment. For this experiment, we set the success threshold to 0.97 and use a chain length of four.

The usefulness equation assumes equal weighting of appearance probability, relative frequency, and estimated entropy. Here, we qualitatively demonstrate the
effects of altering these weights. We rewrite the equation below and, in Tables 11 and 12, conduct ablation studies and visualize the top eight selected Fracture
Clusters in the nine rooms environment. For this experiment, we set the success threshold to 0.97 and use a chain length of four.

The tables demonstrate that each metric selects reasonable fracture clusters. Comparing the top and bottom eight fracture clusters of each metric, we intuitively
observe that the top-ranked clusters are more likely to be useful for future tasks. However, the rankings exhibit distinct differences depending on the ablations. For
instance, when A = 0, B = 1, C = 0, the ranking prioritizes the relative frequency of selecting a fracture cluster, regardless of whether the corresponding trajectory
was deemed successful. This is evident in the first-ranked fracture cluster for this configuration. With B = 1, the top-ranked cluster represents trajectories that
frequently move away from the initial state—a common occurrence. Conversely, with A = 1, the selected cluster traverses a bottleneck, reflecting the prioritization
of appearance in the successful trajectory. This outcome aligns with intuition since most failed trajectories also originate from the initial state, causing such clusters
to rank lower when A = 1.

The effects of the entropy term (C) are harder to interpret intuitively without a detailed understanding of the full training set.

While tuning A, B, and C in Equation 10 could offer benefits during the research phase, we adopted the equal-weight assumption. This approach simplifies the
model’s hyper-parameters and provides a baseline for future work. Adopting equal weights is not uncommon; for instance, Eysenbach et al. (2019) use equal
weighting in their skill discovery objective.

E[U(ϕ̃)] =
1

3

A

∑N
n=1 ζn + α

N + α+ β︸ ︷︷ ︸
(1) Appearance Probability

+B
count(ϕ̃,Φw)

|Φw|︸ ︷︷ ︸
(2) Relative Frequency

−C
∑

τw∈Tw

count(ϕ̃, τw)
|τw|

logN
ϕ̃

(
count(ϕ̃, τw)

|τw|

)
︸ ︷︷ ︸

(3) Estimated Entropy

 . (10)
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Table 11: Ranking of fracture clusters based on different weight configurations. Each cell contains an image visualisation of that fracture cluster.

Rank A=1, B=1, C=1 A=1, B=0, C=0 A=0, B=1, C=0 A=0, B=0, C=1

1

2
Continued on next page...

36



Published
as

a
conference

paperatIC
L

R
2025

Rank A=1, B=1, C=1 A=1, B=0, C=0 A=0, B=1, C=0 A=0, B=0, C=1

3

4
Continued on next page...
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Rank A=1, B=1, C=1 A=1, B=0, C=0 A=0, B=1, C=0 A=0, B=0, C=1

5

6
Continued on next page...
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Rank A=1, B=1, C=1 A=1, B=0, C=0 A=0, B=1, C=0 A=0, B=0, C=1

7

8
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Table 12: Ranking of fracture clusters based on different weight configurations. Each cell contains an image visualisation of that fracture cluster. Here negative
indicates worst rank. -1 is the lowest rank cluster for instance.

Rank A=1, B=1, C=1 A=1, B=0, C=0 A=0, B=1, C=0 A=0, B=0, C=1

-1

-2
Continued on next page...
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Rank A=1, B=1, C=1 A=1, B=0, C=0 A=0, B=1, C=0 A=0, B=0, C=1

-3

-4
Continued on next page...
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Rank A=1, B=1, C=1 A=1, B=0, C=0 A=0, B=1, C=0 A=0, B=0, C=1

-5

-6
Continued on next page...
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Rank A=1, B=1, C=1 A=1, B=0, C=0 A=0, B=1, C=0 A=0, B=0, C=1

-7

-8
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