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Abstract

Disease-associated genetic variants occur exten-
sively across the human genome, predominantly
in noncoding regions like promoters. While cru-
cial for understanding disease mechanisms, cur-
rent methods struggle to predict effects of in-
sertions and deletions (indels) that can disrupt
gene expression. We present LOL-EVE (Lan-
guage Of Life for Evolutionary Variant Effects), a
conditional autoregressive transformer trained on
13.6 million mammalian promoter sequences. By
leveraging evolutionary patterns and genetic con-
text, LOL-EVE enables zero-shot prediction of
indel effects in human promoters. We introduce
three new benchmarks for promoter indel predic-
tion: ultra rare variant prioritization, causal eQTL
identification, and transcription factor binding site
disruption analysis. LOL-EVE’s dominate perfor-
mance across these tasks suggests the potential
of region-specific genomic language models for
identifying causal non-coding variants in disease
studies.

1. Introduction
DNA, the molecular language of life, has evolved for over 4
billion years under constant evolutionary pressure. Evolu-
tion through natural selection represents countless experi-
ments continuously refining the genomic code to maximize
organismal fitness. A fundamental challenge in computa-
tional biology is learning the mapping from genomic state
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to organism state—genotype to phenotype. Utilizing evolu-
tionary sequences for unsupervised phenotype predictions is
valuable as it enables assessment of mutational impacts with-
out requiring prior knowledge of mechanisms or experimen-
tal validation. While there has been progress in predicting
how protein variants affect phenotype (Frazer et al., 2021;
Hopf et al., 2017; Orenbuch et al., 2023; Su et al., 2024;
Notin et al., 2022; 2023), methods for predicting variant
effects in non-coding regions remain underdeveloped.

Current approaches to variant effect prediction (VEP) in
non-coding regions focus primarily on single nucleotide
variants (SNVs) due to their ease of detection in whole-
genome sequencing (Mullaney et al., 2010; Jiang et al.,
2015). However, insertions and deletions (indels) represent
an important but understudied source of genetic variation (Li
et al., 2023). Individual SNVs typically have relatively low
probability of large organismal effects, especially in non-
coding regions, due to biological redundancy and smaller
effect sizes (Kircher et al., 2014; Short et al., 2018; Zhu
et al., 2017). Yet substantial heritability exists in promoter
regions, suggesting that larger variants beyond SNVs likely
drive these effects (Gazal et al., 2017; Finucane et al., 2015).

Furthermore, many methods have relied on expression or
chromatin accessibility, which can be highly informative in
specific biological contexts (Smedley et al., 2016), yet is
often difficult and sometimes impossible to gather. As such,
models that generalize to unseen variants and make accu-
rate predictions in a zero-shot capacity, without requiring
additional experimental data, provide tremendous value.

We hypothesize that expanding the scope of VEP to include
indels, particularly in promoter regions, will lead to the
discovery of variants with larger phenotypic effects (Zheng
et al., 2024; Chiang et al., 2017). This approach will poten-
tially identify overlooked sources of genetic variation with
significant phenotypic impacts, contributing to a deeper un-
derstanding of rare and undiagnosed diseases.

2. Benchmarks
• We construct and open source, PromoterZoo, a dataset

of 13.6 million promoter sequences comprising al-
most 20 thousand 1kb promoter region sequences from
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Figure 1: LOL-EVE overview A. Data preprocessing: Promoter sequences extracted from evolutionary sequences across
mammals, grouped into clades and tokenized with control codes. B. Pre-training: Next-token prediction conditioned on
sequence context and control codes. C. Inference & Benchmarks: Variant prioritization, eQTLs, and TFBS disruption tasks.

447 species across mammalian evolution identified in
the Zoonomia project (Christmas et al., 2023) (§ A.1);

• We develop LOL-EVE, a 235 million parameter con-
ditional generative model of promoter evolution for
predicting variant effects (§ A);

• We introduce three benchmarks designed for zero-
shot indel variant effect prediction in promoter regions,
encompassing ultra rare indel detection, causal variant
prioritization and TF binding site disruption (§ 2).

3. LOL-EVE
LOL-EVE learns a generative model over full promoter
nucleotide sequences, conditioning its predictions on the
promoter’s most proximal gene, species, and clade (Fig-
ure 1). We implement this using a decoder-only transformer
following the CTRL framework (Keskar et al., 2019), which
allows the model to capture both broad evolutionary patterns
and species-specific variations in regulatory elements.

Unlike LMs that use k-mer tokenization schemes (Dalla-
Torre et al., 2023; Zhou et al., 2024), LOL-EVE tokenizes
promoter sequences at base pair resolution. This design
choice enables accurate handling of insertions and deletions
without causing tokenization shifts in the remainder of the
sequence—a critical capability for indel VEP.

To encode evolutionary context, we use three types of con-
ditioning: (1) the most proximal gene g is encoded using
mean-pooled ESM2 embeddings (Lin et al., 2023) projected
to the embedding dimension, (2) species s and (3) clade c
are encoded using learned embeddings. This allows LOL-

EVE to model the autoregressive conditional distribution

p(x|c, s, g) = 1

L

L∑
i=1

log p(xi|x<i, c, s,ESM(g)) (1)

We developed an adaptive local position embedding that
treats control codes and genomic sequences differently, us-
ing absolute positions for control tokens and relative posi-
tions that reset at sequence start for genomic content. To
prevent overfitting, we apply control tag dropout and strand-
aware length dropout during training (see Appendix A.2).

At inference, we score variants with the log-likelihood ratio

score = log
p(xvar|c, s, g)
p(xwt|c, s, g)

, (2)

which captures how likely the variant sequence is compared
to wildtype given evolutionary patterns learned during pre-
training. Training data, detailed hyperparameters, and addi-
tional implementation details are provided in Appendix A.

Given the lack of established benchmarks for promoter indel
VEP, we developed a benchmark collection. To ensure rigor-
ous comparisons, we maintain methodological consistency
across all models, using standardized scoring approaches
and identical evaluation pipelines without task-specific train-
ing. Details on scoring methodologies and potential data
leakage in supervised models are provided in Appendix C.1.

3.1. Ultra Rare Variant Prioritization

Rationale Ultra rare variants (MAF < 0.0001) (Wang
et al., 2021) are more likely to be functionally important
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or disease-causing compared to common variants (MAF >
0.001). Models that effectively identify deleterious variants
should assign their most extreme predictions to variants in
these ultra rare frequency ranges.

Task We evaluate how strongly models prioritize ultra rare
variants (MAF < 0.00001) versus common variants (MAF
> 0.001) by comparing their scores at each percentile cutoff.
Specifically, for each percentile we take the ratio

scorep,ultra

scorep,common
, (3)

(> 1 means stronger ultra-rare signal), and we report the
mean of these ratios stratified by indel-length category
(Small ≤ 2 bp, Medium 3–10 bp, Large 11–100 bp).

Data GnomAD V4.0 variants are used (Chen et al., 2024).

3.2. Causal eQTL Prioritization

Rationale An expression quantitative trait locus (eQTL)
is a variant associated with a change in gene expression.
Fine-mapping methods such as SuSiE (Wang et al., 2020)
assign each indel a posterior inclusion probability (PIP)
reflecting its likelihood of being causal. We focus on cis-
eQTLs—indels within promoter regions whose eGene is
proximal.

Task Given two sets of promoter indels—putatively causal
(PIP > 0.99) and background (PIP < 0.01)—models
should assign larger absolute effect scores to the causal
group. We assess discrimination by AUROC and AUPRC
normalized by the causal-variant fraction.

Data We retrieved fine-mapped cis-eQTL indels from the
eQTL Catalogue (Kerimov et al., 2021), filtered to promot-
ers whose eGene matches the variant’s nearest gene. Ap-
plying PIP thresholds of 0.99 and 0.01. For the cumulative-
slippage analysis (see Section C.6), we compute running-
mean AUROC and normalized AUPRC at slippage cutoffs
of 25 bp, 50 bp, 100 bp, 200 bp, and >200 bp (Table A5).

3.3. TFBS Disruption

Rationale Transcription factors (TFs) are essential regula-
tors of gene expression, binding to specific DNA sequences
in promoter regions to control transcriptional activity. Dis-
ruptions to TF binding sites (TFBS) can impact gene reg-
ulation, with the severity depending on the evolutionary
constraint and expression characteristics of the target gene.
We hypothesize that variants disrupting TFBS should be
most deleterious in genes that are both evolutionarily con-
strained and consistently expressed across tissues, as these
genes are typically intolerant to regulatory perturbations
(Wolf et al., 2023).

Task We evaluate whether models correctly predict that
TFBS disruptions are more deleterious in genes with high

evolutionary constraint and low expression variability com-
pared to genes with low constraint and high variability. Per-
formance is measured as delta accuracy across transcription
factors using balanced sampling with the following setup:

Let H be the set of high-constraint/low-variability genes
and L the set of low-constraint/high-variability genes (see
Sec. C.5). For each transcription factor t = 1, . . . , T , let
Scoret(G) be the model’s mean disruption score across
genes in set G. We define

∆Acc :=
1

T

T∑
t=1

1
(
Scoret(H) < Scoret(L)

)
− 0.5, (4)

where 1(·) is the indicator function. A positive ∆Acc
means the model assigns lower disruption scores to the
high-constraint set H more often than expected by chance.

Data Genes are categorized using mammalian evolution-
ary rates (OrthoDB) and expression variability (GTEx CV).
TFBS disruptions are identified using JASPAR CORE TFs
and position-specific scoring matrices. Complete methodol-
ogy and data processing details are in Appendix C.5.

4. Results
We benchmark LOL-EVE against a diverse set of unsuper-
vised DNA Language Models described in B, supervised pre-
dictors (CADD (Kircher et al., 2014) and Enformer (Avsec
et al., 2021)), and conservation metrics (PhyloP). CADD
integrates diverse genomic annotations to predict delete-
riousness, while Enformer is trained to predict functional
genomic signals. For LMs that make multiple checkpoints
available, we focus our discussion on the best performing
checkpoint in each experiment, with remaining checkpoints
evaluated in section C.7. Scoring detail for each model can
be found in B as well.

4.1. Ultra Rare Variant Prioritization

LOL-EVE delivers superior performance overall, achieving
the highest enrichment for medium indels (2.150± 0.051)
and ranking a close second for both small (1.482 ± 0.032)
and large (1.956 ± 0.118) categories. GPN-Promoter,
a masked-language transformer trained on promoter se-
quences, excels on small indels (2.297± 0.051) where its
local-context objective is most effective. CADD again leads
for large indels (2.055± 0.039), but this likely reflects data
leakage from its use of allele-frequency annotations rather
than true zero-shot generalization (Table A3). Generic LMs
like NT-2.5b-multi and Caduceus-ph achieve only moderate
ratios (≈ 1.02–1.26), while DNABERT-2 and speciesLM
remain near baseline.
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Table 1: Mean-ratio and standard error for all models across indel length categories and percentiles (1%,2.5%,5%,10%).Best
checkpoints are medium-450k (HyenaDNA), ph-131k (Caduceus), and 2.5B-1000G (NT). See all models in Table A4.
Variants/Genes per threshold are shown in in Table A5.

Small (1-2bp) Medium (3–10bp) Large (11–100bp)

Model Mean Ratio Std. Error Mean Ratio Std. Error Mean Ratio Std. Error

CADD 1.863 0.145 1.675 0.035 2.055 0.039
GPN-Promoter 2.297 0.051 1.912 0.031 1.456 0.072
Evo2 0.822 0.041 0.757 0.014 1.043 0.039
speciesLM 1.220 0.017 0.993 0.078 1.124 0.051
DNABERT-2 1.069 0.012 0.974 0.017 1.050 0.004
Caduceus-ph 1.028 0.045 1.116 0.074 1.253 0.172
NT-2.5b-multi 1.022 0.014 1.053 0.014 1.261 0.026
HyenaDNA-tiny 1.323 0.028 1.400 0.015 1.361 0.014

LOL-EVE (ours) 1.482 0.032 2.150 0.051 1.956 0.118

0.45

0.50

0.55

0.60

0.65

0.70

RO
C 

AU
C

25 50 100 200
Slippage Threshold

1.0

1.5

2.0

2.5

3.0

NA
UP

RC

LOL-EVE
CADD
PhyloP
Dist TSS

HyenaDNA
NT-2.5B
DNABERT-2
Caduceus

Evo-2
GPN-Prom.
Enformer

Figure 2: Cumulative causal-eQTL prioritization perfor-
mance across slippage thresholds (log scale). Top: run-
ning mean ROC AUC; Bottom: running mean normalized
AUPRC (AUPRC / baseline). Full models in A4

4.2. Causal eQTL Prioritization

Figure 2 shows cumulative ROC AUC and normalized
AUPRC for causal versus background cis-eQTL indels as
we include variants within increasing slippage cutoffs (C.6).
LOL-EVE leads at every threshold—peaking near 0.73 ROC
AUC and 3.1 × baseline AUPRC at 25 bp—and sustains

the strongest separation even at large distances. CADD and
Enformer follow closely, while generic LMs (e.g., NT-2.5B,
DNABERT-2) achieve more modest gains. Importantly,
LOL-EVE also generalizes to SNPs (Table A7), performing
on par with the MLM model GPN-Promoter.

4.3. TFBS Disruption
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Figure 3: Mean delta-accuracy in TFBS disruption
(±SE) for high-constraint/low-variability versus low-
constraint/high-variability genes. Full results in A5, with
gene counts per threshold in A6.

Figure 3 shows that LOL-EVE most accurately distinguishes
TFBS disruptions in high-constraint, consistently expressed
genes from those in low-constraint, variably expressed
genes. For the greatest proportion of transcription factors,
LOL-EVE correctly assigns lower disruption scores to the
high-constraint set, reflecting their greater sensitivity to
binding-site loss. This aligns with the expectation that vari-
ably expressed genes tolerate TFBS disruptions more readily
than consistently expressed ones. By better capturing these
differential sensitivities, LOL-EVE demonstrates superior
predictive power for promoter variant impact.
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5. Conclusion
Across three zero-shot benchmarks, ultra-rare indel enrich-
ment, causal eQTL prioritization, and TFBS disruption,
LOL-EVE consistently outperforms other unsupervised and
conservation-based methods, demonstrating its ability to
predict promoter indel effects without task-specific training.
By modeling mammalian promoter evolution and local se-
quence context, LOL-EVE captures regulatory constraints
that supervised predictors may overlook. In contrast, CADD
and Enformer, while powerful, depend on population fre-
quencies or cell-type–specific data that can introduce circu-
larity or limit generalization to promoter indels. That said,
LOL-EVE does not uniformly dominate every scenario—its
gains are smaller on some variant classes and it can be out-
performed by supervised methods when abundant labeled
data are available—underscoring opportunities for future
hybrid approaches. As the first model specifically designed
for promoter indels, LOL-EVE may prove especially useful
for variant prioritization in disease studies.

6. Impact Statement
This paper introduces LOL-EVE, a genomic language model
designed for the prediction of promoter indel effects. By
enabling more accurate identification of non-coding vari-
ants linked to gene regulation and disease, LOL-EVE has
the potential to contribute to improvements in genetic re-
search, variant interpretation, and clinical genomics. While
the model’s insights may aid in diagnosing rare and undiag-
nosed diseases, its predictions should be used in conjunction
with experimental validation to avoid misinterpretation of
genetic risk factors. Ethical considerations include the re-
sponsible use of genomic AI models to prevent potential
biases or misapplications in clinical decision-making. As
with any AI-driven approach, care must be taken to ensure
equitable benefits across populations and to prevent misuse
in genetic profiling. Nonetheless, this work primarily seeks
to enhance computational methods for studying genome evo-
lution and variant effects, with no foreseeable direct societal
harm.
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Kircher, M. CADD v1.7: using protein language models,
regulatory CNNs and other nucleotide-level scores to
improve genome-wide variant predictions. Nucleic Acids
Res., 52(D1):D1143–D1154, January 2024.

Short, P. J., McRae, J. F., Gallone, G., Sifrim, A., Won, H.,
Geschwind, D. H., Wright, C. F., Firth, H. V., FitzPatrick,
D. R., Barrett, J. C., et al. De novo mutations in regulatory
elements in neurodevelopmental disorders. Nature, 555
(7698):611–616, 2018.

Smedley, D., Schubach, M., Jacobsen, J. O., Köhler, S.,
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Appendix

A. Model details
A.1. Training Data Construction

Promoters and other regulatory regions generally evolve faster than protein-coding sequences, as regulatory changes can
often be more easily tolerated than changes to protein structure and function (Wittkopp & Kalay, 2011). To capture these
evolutionarily relevant regulatory signals, particularly those that have evolved recently, we focused on training data from
mammals. We curated a promoter dataset across 447 diverse species from the Zoonomia project (Christmas et al., 2023;
Kuderna et al., 2023).

Transcription Start Site (TSS) annotations, which are often used to infer promoter regions, are not readily available for most
species in our dataset due to several factors. Many of the 447 species lack comprehensive genome annotations, particularly
for regulatory regions like promoters. Even in well-annotated species, TSS and promoter definitions can vary significantly
across different databases and research groups. To address this, we employed a comparative genomics approach to identify
putative promoter regions, leveraging sequence similarity to the first exon of 19,254 protein-coding genes from the NCBI
RefSeq human genome annotation (assembly GRCh38.p14, annotation release 109). This strategy allowed us to consistently
infer promoter regions across species by aligning known human exonic regions to homologous exons in other species, then
extracting sequences upstream of the start of the first exon (which we define as the putative TSS). It’s important to note that
no genome has “promoter annotations” as such; rather, we use these inferred TSS positions and their upstream sequences
as proxies for promoter regions. Importantly, in the human annotations we utilized, the 5’UTR often overlaps with the
annotations for exon 1, which influences our definition of putative promoter regions across species.

Using the HAL toolkit (Hickey et al., 2013), we performed a liftover of these exon coordinates to each species in the
Zoonomia project. For each species, exons were retained if their length was at least 50% of the length of the corresponding
human exon. This threshold ensured that conserved regions were captured while excluding regions where the alignment is
unreliable.

To define promoter regions, we extracted the 1,000 base pairs upstream of each exon start, accounting for the strand
orientation of the gene. If the upstream region overlapped with the neighboring gene body, we shortened the promoter region
to avoid misclassifying coding regions or intergenic space as promoters. This conservative approach minimized the risk
of including non-promoter sequences but may exclude more distal regulatory elements, a potential caveat of the 1,000 bp
window approach. Additionally, in cases where promoter regions from neighboring genes were within 100 base pairs of
each other, we merged the coordinates. This merging process ensured that promoter regions were not artificially fragmented
due to closely spaced genes.

Including reverse complements, this resulted in a dataset of 13.6 million sequences. We employed a chromosome-wise
split for development, with chromosome 19 used for validation. Promoters from non-human species were assigned to the
respective set based on the chromosome of the human gene used for liftover, thereby ensuring that all instances of a gene are
placed in the same partition and no gene information leakage between the training and validation set.

A.1.1. TRAINING DATA VALIDATION

To gain further insight into the validity of the upstream 1,000 bp approach, we scored all extracted sequences using the
Sei promoter score (Chen et al., 2022), which is trained on functional genomics data from humans. Despite Sei being
human-based, we found that the promoter scores generalize well across species, showing strong conservation of regulatory
elements in many mammalian species. Notably, promoters from species closely related to humans, such as other primates,
tend to have higher Sei scores, indicating similar promoter activity, while more distant species still retain significant
functional signal, suggesting that core regulatory sequences are preserved across mammals (A1). Further we assessed how
the Sei score distributions for 3 groups: Human (CoDing Sequence) CDS regions, Human promoters, and our training
data compare in (A2). Our training data promoter distribution aligns more closely with the raw Human promoters than the
Human CDS regions.
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Figure A1: Average Promoter Sei scores plotted against the number of promoter sequences gathered for model training
from the comparative genomics analysis conducted with the HAL suite. Clade types are specified by color and the red dot
represents Homo sapiens. The maximum number of sequences per species is 19,254. Point sizes reflect the number of
sequences.

Figure A2: Average Promoter Sei scores were plotted for Human CDS regions, Human promoter regions, and all of the
promoter data used gathered for training.

A.2. Training Strategies and Augmentation

To prevent overfitting and improve model generalization, we apply several data augmentation strategies during training:
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A.2.1. CONTROL TAG DROPOUT

We apply control tag dropout to encourage the model to learn representations that are robust to the presence of control tags
and mitigate sequence memorization:

L(D) = −
|D|∑
k=1

log pθ(x
k
i | xk

<i, c
k, sk, gk,

mk ⊙ [ck, sk, gk]) (5)

where mk ∼ Bernoulli(p)

A.2.2. STRAND-AWARE LENGTH DROPOUT

To account for the inherent directionality of DNA sequences, we implement a strand-aware length dropout mechanism.
For sequences on the forward strand (d = 1), tokens are shifted leftward after dropping out l tokens from the right end,
maintaining causal attention over the remaining sequence. For reverse strand sequences (d = -1), tokens are simply dropped
from the right end without shifting, preserving the natural 5’ to 3’ processing order. In both cases, dropped tokens are
replaced with padding tokens that are ignored in self-attention layers, and the maximum dropout length is capped at 90% of
the sequence length to ensure sufficient context is retained for prediction.

L(D) = −
|D|∑
k=1

log pθ(x
k
i | xk

<i, c
k, sk, gk, dk) (6)

where lk ∼ Uniform(0, 0.9|xk|)
and dk ∈ {−1, 1} indicates strand direction

A.2.3. ADAPTIVE LOCAL POSITION EMBEDDING

To better capture the distinct roles of control codes and genomic sequences, we developed an adaptive local position
embedding scheme defined as:

pi =

{
pctrl
i if i ∈ [0, 3] (control tokens)

pseq
i−jSOS

if i ≥ jSOS (sequence tokens)

where pctrl
i ∈ Rd are absolute position embeddings for control tokens and pseq

i−jSOS
∈ Rd are relative position embeddings that

reset at the sequence start token position jSOS. This adaptive approach allows the model to maintain structural understanding
of control codes while enabling biologically meaningful positional representations for genomic sequences.
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A.2.4. HYPERPARAMETERS

Table A1: The hyperparameters of the LOL-EVE model.

Hyperparameter Value

Dimension 768
Layers 12
Heads 12
Feedforward dimension 8192
Learning rate 1e−5

Batch size 32
Steps 150,00

B. Baseline details
Methods for modeling genomic sequences can be broadly classified as alignment-free or alignment-based for functional
constraints, activity predictors, and meta-predictors.

Alignment-free methods A growing number of unsupervised language models (LMs) for eukaryotic genomic DNA
have been proposed, including DNABERT (Ji et al., 2021; Zhou et al., 2024), Nucleotide Transformer (Dalla-Torre et al.,
2023), HyenaDNA (Nguyen et al., 2023), and Caduceus (Schiff et al., 2024). While they have some differences in their
architectures, training objectives, and training data, these models are all fully unsupervised and trained only on genome-wide
data (Benegas et al., 2025c). While LMs have shown utility in some downstream prediction tasks, their performance in
variant effect prediction varies. Independent benchmarks have revealed that models trained on genome-wide data learn
different aspects of the genome to varying extents, sometimes focusing on splice site patterns and other times on regulatory
elements, in ways that are difficult to anticipate (Marin et al., 2024; Li et al., 2024).

An alternative approach involves specialized LMs trained on local genomic regions, such as plant promoters or fungal 5’ and
3’ regions (Levy et al., 2022; Gankin et al., 2023). These models reliably capture regulatory motifs and learn embeddings
useful for downstream tasks. Recently, Vilov & Heinig (2024) proposed and evaluated several 3’UTR-specific language
models for the human genome. Their study showed that these region-specific models often outperformed genome-wide
models and even conservation-based approaches like PhyloP (Pollard et al., 2010) on various tasks, including variant effect
prediction.

Alignment-based methods Multiple sequence alignments (MSAs) offer a powerful approach to understanding natural
sequence variation, enabling the identification of potentially non-neutral mutations with likely functional consequences.
PhyloP is an MSA-based statistical method that assigns a conservation score to each position in a sequence and compares
observed substitutions to those expected under a neutral evolution model. GPN-MSA (Benegas et al., 2025a), a more recent
development, combines whole-genome alignments with a genomic LM approach. Trained to reconstruct masked nucleotides
given an MSA as input, GPN-MSA has shown improvement in SNV effect prediction compared to PhyloP. However, a major
limitation of alignment-based approaches is their treatment of positions individually, which doesn’t naturally generalize to
indel variants.

Activity Predictors & Meta Predictors An alternative approach to unsupervised modeling of sequences involves training
supervised models on measurements of sequence activity. These models often use data from high-throughput functional
genomics experiments that measure various aspects of genomic function, such as expression initiation or epigenetic
modifications. Models like Enformer (Avsec et al., 2021) have demonstrated an understanding of factors contributing to
gene expression in different cell types. However, recent studies by Sasse et al. (Sasse et al., 2023) and Huang et al. (Huang
et al., 2023) have shown that the performance of sequence-to-activity models such as DeepSEA (Zhou et al., 2018), Basenji2
(Kelley et al., 2018), and Enformer (Avsec et al., 2021) in explaining expression variation between individuals due to
cis-regulatory genetic variants remains limited. Another widely used method, CADD (Combined Annotation Dependent
Depletion), integrates numerous genomic annotations into a single deleteriousness score(Schubach et al., 2024). However,
(Grimm et al., 2015) and (Livesey & Marsh, 2024) have demonstrated, comparative evaluations of meta predictors like
CADD are complicated by circularity issues in their training and testing datasets leading to data leakage. As such, their
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performance is likely inflated due to circularity. These findings underscore the need for zero shot methods to overcome these
limitations and enhance our understanding of genetic variant effects in humans.

B.1. Autoregressive models

Autoregressive LMs assign scores to sequences s using their log likelihood

p(s) =
1

n

n∑
i=1

log p(si|s<i). (7)

HyenaDNA HyenaDNA uses base pair tokenization. For computing the cross entropy, we subset the logits and labels to
the dimensions of actual nucleotides x ∈ {A,G,C, T,N} and exclude special tokens. We ignore the final EOS position
when taking the mean over the sequence.

Evo1 Evo1 from (Nguyen et al., 2024) For computing the cross entropy, we subset the logits and labels to the dimensions
of actual nucleotides x ∈ {A,G,C, T,N} and exclude special tokens. We do not apply any masking.

Evo2 Evo2 from (Brixi et al., 2025) 7b version. For computing the cross entropy, we subset the logits and labels to the
dimensions of actual nucleotides x ∈ {A,G,C, T,N} and exclude special tokens. We do not apply any masking.

B.2. Masked language models

For computational efficiency, we evaluate bidirectional masked LMs using their pseudo log likelihood,

p(s) =
1

n

n∑
i=1

log p(si|s). (8)

Caduceus Caduceus uses base pair tokenization. For computing the cross entropy, we subset the logits and labels to the
dimensions of actual nucleotides x ∈ {A,G,C, T,N} and exclude special tokens. We do not apply any masking.

Nucleotide Transformer Nucleotide Transformer uses 6-mer tokenization. For computing the cross entropy, we subset
the logits and labels to the dimensions of the 6-mer and five trailing single-base tokens and exclude special tokens. We do
not apply any masking.

DNABERT-2 DNABERT-2 uses byte pair tokenization. For computing the cross entropy, we subset the logits and labels
to the dimensions of the BPE tokens and the [UNK] token which represents N . Remaining special tokens are excluded. We
do not apply any masking.

BEND - GPN The original GPN model (Benegas et al., 2023) was only trained on Brassicales species and is not applicable
to the human genome. We instead evaluate a human GPN-based model (”Dilated ResNet”) that is included in the BEND
benchmark (Marin et al., 2024). For computing the cross entropy, we subset the logits and labels to the dimensions of actual
nucleotides x ∈ {A,G,C, T,N}. We do not apply any masking.

Promoter-GPN The original Promoter-GPN model from (Benegas et al., 2025b) For computing the cross entropy, we
subset the logits and labels to the dimensions of actual nucleotides x ∈ {A,G,C, T,N}. We do not apply any masking.

Species-LM Species-LM from (Karollus et al., 2024) metazoa version. For computing the cross entropy, we subset the
logits and labels to the dimensions of actual nucleotides x ∈ {A,G,C, T,N} and exclude special tokens. We do not apply
any masking.

B.3. Alignment-based approaches

PhyloP As they are based on an MSA, PhyloP scores are not naturally amenable to indel variants, as a change in sequence
length by insertion or deletion cannot be modeled by column-wise scores. We follow gnomAD’s approach to computing
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PhyloP scores: For any indel, the PhyloP score of the position in the reference genome at which the indel occurs is used
for the indel as a whole. Note that this inherently does not consider the actual sequence consequence of the indel - it only
reflects the conservation of the position at which the indel occurs.

B.4. Activity predictors

Enformer We run Enformer following the official notebook1. For each variant, we compute the mean difference over the
sequence between the wild type and variant sequence using all human output tracks. We report the max channel to capture
the largest change between the wildtype and the variant sequence.

Smax(s) = max
c∈C

(
1

L

L∑
i=1

[pc(s
alt
i )− pc(s

ref
i )]

)
(9)

where:

C is the set of all human output tracks in Enformer L is the length of the output sequence pc(·) is the Enformer prediction
for track c sref

i and salt
i are the reference and alternate sequences at position i

Our Enformer evaluation computes the mean difference between wild-type and variant sequences across all human output
tracks, taking the maximum as the final score. This methodology captures the maximum regulatory impact across all
potential regulatory mechanisms and cell types, which is particularly important for promoter indels that may affect multiple
regulatory processes simultaneously and manifest differently across diverse cellular contexts. This approach provides
a more holistic assessment than the GTEx-focused SLDP regression used in the original Enformer paper, analogous to
organism-scale models that consider effects across all tissue types rather than focusing on single expression outputs.

B.5. Meta Predictors

CADD Combined Annotation Dependent Depletion (CADD)(Kircher et al., 2014) provides a deleteriousness score across
the whole genome by integrating genomic annotations and functional information, including in-silico predictions from other
models. It is one of the first models to provide predictions for all single-nucleotide variants and short indels and is therefore
frequently used by the community, particularly the clinical community. Of particular relevance for this work, CADD trains
on population data (gnomAD frequencies), expression data (ENCODE RNAseq and epigenetic markers), transcription factor
binding site annotations (ChIP transcription factor binding sites), and clinical annotations (indirectly, through training on
PolyPhen2, which was itself directly trained on ClinVar labels). More information about exact features trained on can be
found here: CADD features.

1https://github.com/google-deepmind/deepmind-research/blob/master/enformer/
enformer-usage.ipynb
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C. Extended Benchmark Details
C.1. Benchmark Implementation Details

C.1.1. SCORING METHODOLOGIES

To ensure fair comparisons across all models, we implement standardized scoring approaches detailed below. All models
are evaluated without task-specific training or fine-tuning, though some supervised models may have been exposed to
task-relevant data during their original training.

C.1.2. DATA LEAKAGE ASSESSMENT

While most models operate in a true zero-shot capacity, some supervised models in our evaluation have been previously
exposed to task-relevant data during their training. Table A3 shows potential data leakage that occurs in supervised models
for each benchmark. CADD was not used for the TFBS benchmarks due to lack of coverage.

Table A2: Training Data Leakage for Benchmark Tasks

Model Ultra Rare Variant Causal eQTL TFBS Disruption

LOL-EVE - - -
CADD Population frequencies, ClinVar ENCODE, RNA-seq N/A
Enformer - RNA-seq ChIP-seq, RNA-seq
DNABERT-2 - - -
NT - - -
HyenaDNA - - -
PhyloP - - -

C.2. Ultra Rare Variant Prioritization Details

For each length category:

1. Length bins & weights. Partition indel lengths into 10 logarithmically spaced bins and compute the empirical bin
weights wi.

2. Percentiles. For each bin i and percentile p ∈ {1, 2.5, 5, 10}%, compute

τ
(U)
i,p = the pth percentile of scores for {j : MAFj < 10−5, ℓj ∈ bin i},

τ
(C)
i,p = the pth percentile of scores for {j : MAFj ≥ 10−3, ℓj ∈ bin i}.

3. Safe ratio.

ri,p = max
(
1,

τ
(U)
i,p

τ
(C)
i,p

)
.

4. Weighted mean per percentile.

Rp =

10∑
i=1

wi ri,p .

5. Aggregate. Report

R̄ =
1

P

∑
p

Rp with SE =

√
Var(Rp)

P
,

where P = 4 is the number of percentiles.
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C.3. Causal eQTL Prioritization Details

C.4. Running-Mean Metric Computation

For each slippage cutoff s, we restrict to all indels with distance ≤ s. Within that subset we compute

ROCs = AUROC
(
{|êj |}

)
, nAUPRCs =

AUPRC({|êj |})
baseline AUPRC

,

where êj is the model’s effect-score for variant j. Plotting ROCs and nAUPRCs against s (log-spaced) yields the cumulative
performance curves in Fig. 2.

C.5. TFBS Disruption Detailed Methodology

C.5.1. GENE STRATIFICATION

We classified genes into two extreme groups using (1) evolutionary constraint—amino-acid substitution rates inferred
from OrthoDB mammalian orthologs—and (2) expression variability—CV of GTEx median-TPM across tissues. “High-
constraint/low-variability” genes occupy the bottom percentile in both metrics; “low-constraint/high-variability” genes
occupy the top percentile. We tested robustness at 20–40% cutoffs.

C.5.2. TFBS DISRUPTION SCORING

We sourced human TF motifs from JASPAR CORE (Fornes et al., 2020) and retained TFs with median TPM > 1 in
≥ 30 GTEx tissues. Promoter sequences were scanned with PSSMs (threshold > 0.8) to identify binding sites; in silico
deletions were generated, and a site was deemed “disrupted” if its post-deletion PSSM score fell below 0.8.

C.5.3. BALANCED COMPARISON & STATISTICS

For each TF, we (a) randomly sampled equal numbers of genes from each category, (b) computed disruption scores for their
TFBSs, and (c) assessed separation via point-biserial correlation. P values were FDR-corrected across TFs. Finally, we
report “delta accuracy” as the fraction of TFs for which high-constraint/low-variability genes scored lower (more deleterious)
minus 50% baseline.

C.6. Slippage Calculation Methodology

C.6.1. RATIONALE

DNA slippage events during replication can lead to insertions and deletions, particularly in regions with repetitive sequences
or secondary structures. Understanding the relationship between model predictions and slippage propensity provides insight
into whether models are learning biologically relevant mutational mechanisms versus purely statistical patterns.

C.6.2. SLIPPAGE SCORE CALCULATION

We implement a computational approach to estimate slippage propensity for each indel variant based on local sequence
context and repetitive elements.

Repeat Detection Algorithm For each variant, we extract a 20 base pair window centered on the variant position and
analyze it for repetitive elements using the following approach:

1. Homopolymer Run Detection: We identify consecutive runs of identical nucleotides with a minimum length of 3
bases. Each homopolymer run contributes to the slippage score with a weight proportional to the square of its length.

2. Short Tandem Repeat Detection: We systematically search for dinucleotide, trinucleotide, and tetranucleotide repeats
by:

• Scanning the sequence with sliding windows of size 2, 3, and 4 nucleotides
• Counting consecutive occurrences of each repeat unit
• Requiring a minimum of 3 repeat units for classification as a tandem repeat
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3. Variant-Repeat Matching: For each detected repeat, we check whether:

• The deleted sequence (for deletions) matches or contains the repeat unit
• The inserted sequence (for insertions) matches or contains the repeat unit
• The variant position falls within the boundaries of a repeat region

Slippage Score Computation The final slippage score combines contributions from all detected repeats:

Slippage Score =
∑

homopolymers

L2 +
∑
STRs

(C × U)1.5 ×W

where:

• L = length of homopolymer run

• C = count of repeat units in short tandem repeat (STR)

• U = length of repeat unit

• W = weight factor: 0.8 for dinucleotides, 0.6 for trinucleotides, 0.5 for tetranucleotides

This scoring scheme gives higher weights to homopolymer runs and progressively lower weights to longer repeat units,
reflecting the relative propensity for slippage in different repeat contexts.

Implementation Details

• Window size: 20 base pairs centered on variant position

• Minimum repeat threshold: 3 consecutive units

• Repeat unit sizes analyzed: 1-4 nucleotides

• Variants are classified as slippage-prone if they occur within or match any detected repeat region

This methodology allows us to quantitatively assess whether model predictions correlate with known mechanisms of indel
formation, helping to distinguish between models that learn genuine biological constraints versus those that primarily
capture mutational biases.

C.7. Extended Results
Table A3: Training Data Leakage for Benchmark Tasks

Model Ultra Rare Variant Causal eQTL TFBS Disruption

LOL-EVE - - -
CADD Population frequencies, ClinVar ENCODE, RNA-seq N/A
Enformer - RNA-seq ChIP-seq, RNA-seq
DNABERT-2 - - -
NT - - -
HyenaDNA - - -
PhyloP - - -
GPN-Promoter - - -
Caduceus - - -
speciesLM - - -
Evo1/2 - - -

C.7.1. ULTRA RARE VARIANT PRIORITIZATION
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Small (1-2bp) Medium (3–10bp) Large (11–100bp)

Model Mean Ratio Std. Error Mean Ratio Std. Error Mean Ratio Std. Error

CADD 1.863 0.145 1.675 0.035 2.055 0.039
LOL-EVE 1.482 0.032 2.150 0.051 1.956 0.118
GPN-Promoter 2.297 0.051 1.912 0.031 1.456 0.072
HyenaDNA-tiny 1.323 0.028 1.400 0.015 1.361 0.014
HyenaDNA-small 1.283 0.016 1.361 0.012 1.214 0.024
HyenaDNA-medium-160k 1.373 0.011 1.431 0.025 1.214 0.029
HyenaDNA-medium-450k 1.335 0.025 1.369 0.031 1.222 0.026
HyenaDNA-large 1.345 0.018 1.352 0.022 1.173 0.025
GPN 1.198 0.020 1.283 0.078 1.281 0.058
NT-v2-500m 1.131 0.024 1.180 0.028 1.272 0.035
NT-500m 1.059 0.021 1.147 0.005 1.170 0.026
NT-2.5b-multi 1.022 0.014 1.053 0.014 1.261 0.026
NT-2.5b-1000g 1.013 0.017 1.093 0.031 1.206 0.033
Caduceus-ps 0.943 0.018 1.062 0.046 1.258 0.119
Caduceus-ph 1.028 0.045 1.116 0.074 1.253 0.172
DNABERT-2 1.069 0.012 0.974 0.017 1.050 0.004
PhyloP 1.067 0.037 1.044 0.012 1.203 0.025
speciesLM 1.220 0.017 0.993 0.078 1.124 0.051
Evo1 1.262 0.033 1.380 0.114 1.071 0.040
Evo2 0.822 0.041 0.757 0.014 1.043 0.039
Enformer 1.000 0.000 1.000 0.000 1.000 0.000
GC Content 1.005 0.001 1.036 0.011 0.893 0.013
Distance TSS 1.000 0.000 0.897 0.004 0.793 0.118

Table A4: Mean-ratio and standard error for all models across indel length categories and percentiles

Ultra-rare Var Common Var Ultra-rare Gene Common Gene

Percentile Small Medium Large Small Medium Large Small Medium Large Small Medium Large

1.0% 13.0 7.2 4.0 3.0 3.0 2.0 11.8 6.7 3.4 2.8 2.8 1.6
2.5% 31.1 16.0 9.0 8.0 6.0 3.0 28.1 14.8 7.9 7.2 5.3 2.2
5.0% 61.0 32.0 17.2 15.0 11.0 6.0 54.2 29.4 14.0 13.2 9.4 4.0
10.0% 121.0 63.0 34.0 29.0 21.0 11.0 105.2 57.0 27.9 24.9 17.7 6.1

Table A5: Average counts per model of variants (Var) and genes (Gene), stratified by rarity (ultra-rare vs common),
percentile, and indel size. No model reported zero counts in any of these splits.

C.7.2. CAUSAL EQTL PRIORITIZATION
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Figure A3: The slippage score assigned to different repeat types.

Slippage Threshold

PIP Threshold 10 20 30 40 50 75 100 150 200 300 400 500 inf

Background Variant Counts

0.001 9 20 22 24 25 29 31 35 37 42 45 47 56
0.01 315 506 654 774 856 1081 1252 1563 1796 2254 2616 2932 4320
0.05 827 1306 1681 1951 2158 2681 3055 3705 4173 5083 5777 6375 8794

Causal Variant Counts

0.001 9 20 22 24 25 29 31 35 37 42 45 47 56
0.01 315 506 654 774 856 1081 1252 1563 1796 2254 2616 2932 4320
0.05 827 1306 1681 1951 2158 2681 3055 3705 4173 5083 5777 6375 8794

Background Gene Counts

0.001 9 19 21 23 24 28 30 34 36 41 44 46 55
0.01 298 472 601 701 768 948 1074 1299 1460 1779 2015 2211 3019
0.05 766 1189 1501 1712 1862 2245 2515 2966 3281 3882 4333 4719 6075

Causal Gene Counts

0.001 9 19 21 23 24 28 30 34 36 41 44 46 55
0.01 298 472 601 701 768 948 1074 1299 1460 1779 2015 2211 3019
0.05 766 1189 1501 1712 1862 2245 2515 2966 3281 3882 4333 4719 6075

Table A6: Full breakdown of gene and variant counts per pip threshold and slippage threshold.

C.7.3. TFBS DISRUPTION
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Figure A4: Cumulative causal-eQTL performance curves (running-mean AUROC and normalized AUPRC) as a function of
slippage cutoff (log scale).

Table A7: SNP prioritization: AUPRC, normalized AUPRC, and ROC AUC for each model.

Model AUPRC NAUPRC ROC AUC

CADD 0.110 1.920 0.600
Enformer 0.101 1.754 0.593
PhyloP 0.077 1.334 0.549
LOL-EVE 0.069 1.196 0.517
GPN-Promoter 0.062 1.078 0.515
NT-v2-50m-multi 0.062 1.072 0.518
NT-v2-250m-multi 0.061 1.057 0.521
DNABERT-2 0.059 1.035 0.512
NT-v2-500m-multi 0.059 1.031 0.514
NT-2.5b-multi 0.059 1.021 0.508
SpeciesLM 0.055 0.950 0.499
evo2-7b 0.054 0.948 0.487
HyenaDNA-medium-450k 0.054 0.944 0.500
Caduceus-ps 0.054 0.936 0.492
Caduceus-ph 0.053 0.923 0.488
HyenaDNA-large-1m 0.053 0.917 0.487
HyenaDNA-medium-160k 0.052 0.909 0.484
HyenaDNA-small-32k 0.052 0.900 0.480
HyenaDNA-tiny-1k 0.052 0.900 0.481
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Figure A5: All models show for TFBS task.

Figure A6: Cumulative gains of Genes per percentile threshold.
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