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Abstract

Condition monitoring is one of the most prominent industrial use cases for machine
learning today. As condition monitoring applications are commonly developed
using static training datasets, their long-term performance is vulnerable to concept
drift in the form of time-dependent changes in environmental and operating condi-
tions as well as data quality problems or sensor drift. When the data distribution
changes, machine learning models can fail catastrophically. We show that two-
sample tests of homogeneity, which form the basis of most of the available concept
drift detection strategies, fail in this domain, as the live data is highly correlated and
does not follow the assumption of being independent and identically distributed
(i.i.d.) that is often made in academia. We propose a novel drift detection approach
called Localized Reference Drift Detection (LRDD) to address this challenge by
refining the reference set for the two-sample tests. We demonstrate the performance
of the proposed approach in a preliminary evaluation on a tool condition monitoring
case study.

1 Introduction

In modern manufacturing, condition monitoring plays an increasing role in ensuring equipment
availability, reducing defects, and optimizing production efficiency. Within this domain, machine
learning (ML) has contributed significantly to recent technological developments [13, 5]. ML models
can analyze sensor data and accurately predict the condition or wear state of equipment and tools,
thereby reducing the need for manual inspections and the likelihood of unplanned downtimes. As
ML applications transcend from academic research to real-world usage, questions regarding their
continuous reliability and robustness arise. Production-grade models need to be able to handle
uncertainties such as degrading equipment or data quality problems from streaming failures or
faulty sensors [7]. The training dataset of an ML model is restricted to a certain state of the
manufacturing process in time. After model deployment though, the manufacturing environment
will likely encounter changes such as aging sensors, data quality deviations or changes in the factory
layout and machine placement that are not captured in the training dataset, a scenario referred to
as concept drift or distribution shift. In the context of this publication, we define concept drift as
Ptrain(x, y) ̸= Ponline,t(x, y), where Ptrain and Ponline,t denote the joint distributions of input
data x and target data y during training and deployed usage of the model at time t, respectively.
Concept drift can lead to reduced performance during the operation of an ML model in contrast to the
performance that was evaluated on a static test dataset during development, up to the point where the
ML model fails catastrophically. It is therefore important to detect when drift occurs and raise alarms
accordingly to guarantee a continuously reliable model [2, 6]. In case of a detected drift, the root
cause needs to be identified and the ML model potentially retrained using more recent data. As this
issue is relevant throughout almost all application domains of ML, various methods for drift detection
have been proposed in the literature. On a high level, drift detection methods commonly require a
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Figure 1: Left: Visualization of the LRDD mechanism with synthetic data and an in-distribution
deployment data example as well as a drifted deployment data example. Conventional two-sample
tests that compare the deployment window distribution to the complete training distribution would
wrongly indicate drift in both cases. Comparison with the localized reference distribution shows
homogeneity for the in-distribution example, but correctly indicates drift for the drifted example.
Right: 2D-PCA plot of the features in the PHM 2010 dataset for all three wear classes.

reference/training dataset as well as a set of deployment/online samples. These sets can be formed,
among other options, simply by the input features, model-dependent transformations of the features
or model error rates if labels are available [9]. The sets are typically compared using a two-sample
hypothesis test for a chosen measure of distributional equality which alerts the user to drifts at a
given significance level α [2]. However, this is done under the assumption of the samples in both
sets are independent and identically distributed (i.i.d.). In a typical tool condition monitoring (TCM)
application, this assumption does not hold as the data points that are collected over time are highly
correlated. Thus, if only a certain window in time is used to assess concept drift, we hypothesize
that conventional drift detection methods will yield a high number of false positive detections as they
compare deployment time windows that only contain a certain subset of tool conditions with the full
reference dataset, containing all conditions. This systemic issue is recognized in a recent publication
by Cobb et al. [2], that proposes Context-Aware Drift Detection. In their approach, the authors extend
a multivariate two-sample testing approach that uses Maximum Mean Discrepancy (MMD) [4] by
a context variable. This context variable can be, among others, the classifier prediction or the time
of day, and is consequently used to weigh the reference set and increase the relevance of data that
corresponds to a context that is close to the current deployment context.

We hypothesize, that even if the classifier prediction class is used as context, the intra-class variance
will still yield false positives in the TCM use case. We thus propose a simple and computationally
cheap alternative, that we call Localized Reference Drift Detection (LRDD). By choosing an adaptive
local reference set to the current deployment data through nearest neighbor search, we aim to make
false alarms for concept drift less likely without the need to explicitly define a context variable. To
summarize, the contributions of this paper are: (1) A simple, yet effective solution to concept drift
detection in practical scenarios that do not follow the i.i.d. assumption and (2) a preliminary case
study of the proposed approach with an industrial tool condition monitoring dataset.

2 Methodology

The LRDD algorithm pseudocode is given in Algorithm 1 and visualized in Figure 1 (left). It consists
of the following procedure: At training time of the ML model, a nearest neighbor model is fitted
to the test split Dref of the available dataset. Now, during the operation of the ML model at time
t, a data window Dt = {x, ŷ} that contains the n most recent input data points x as well as the
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Algorithm 1 Localized Reference Drift Detection (LRDD)

Require: Dref, Dt, k, α,Nperm
Ensure: Drift detection result

1: Initialize k-NN with Dref to get NN; Initialize INN = ∅
2: for (xi, ŷi) in Dt do
3: Get k nearest neighbors of xi in Dref with same label as ŷi; Update INN

4: Extract Dlocal from Dref using unique indices in INN ; Compute MMD2 between Dt and Dlocal
5: Compute p-value using MMD2 and Nperm permutations
6: if p < α then return Drift detected
7: elsereturn No drift detected

corresponding model predictions ŷ up until time t is used to detect concept drift. Therefore, the
k-nearest neighbors of the data points in Dt are queried from the nearest neighbor model, only
considering data points in Dref that have class labels y that correspond to the ML models estimates ŷ.
Following this step duplicates in the resulting k-neighbor data points are removed. The resulting set
of unique k-neighbors forms the localized reference set Dlocal, which can be compared against Dt to
check for concept drift. This approach allows a refined comparison of the current data distribution
with a sub-distribution of the reference set that is closest in feature space, therefore considering
the correlation between the data points in Dt and preventing false positive detections when Dt is
not i.i.d. and does not contain samples from all classes or feature regions in Dref . In case of drift,
we expect the samples in Dlocal to be far away in feature space from the samples in Dt which can
be detected through two-sample testing. The two-sample test can be performed with any existing
method for checking distributional equality such as permutation testing with MMD or a combination
of univariate Kolmogorov Smirnov-tests for all feature dimensions [9].If the chosen two-sample
test yields a p-value that is below the chosen significance level α, concept drift is indicated which
means that the current ML model may be unreliable for the incoming data. For the drift detection
in LRDD, we resort to the kernel-based MMD method for multivariate two-sample testing [4] that
is part of other drift detectors as well [2, 9]. The MMD is defined as a distance measure between
two distributions P and Q based on the mean embeddings µp and µq in a reproducing kernel Hilbert
space F : MMD(F, P,Q) = ∥µp − µq∥2F . A p-value for testing distributional equality between p
and q is obtained via permutation testing. While this method is popular in literature, other two-sample
tests can be used in combination with our methodology as well.

3 Case Study

For the case study, we utilize a tool condition monitoring dataset that was released in the scope of the
2010 Prognostics and Health Management (PHM) challenge [10] and was used in a number of recent
TCM publications [11, 14]. The dataset contains the data of seven measured sensor signals as time
series recorded at 50 KHz during a CNC milling process: cutting forces [N] (X, Y, Z), accelerations
[g] (X, Y, Z) and the root mean square of the signal [V] of an acoustic emission sensor (AE). The
datasets contains six sets that correspond to the cutters used in the experiments. Each of the six
sets contains 315 cuts. For three of the sets (c1, c4, c6), labels exist for each cut in the form of
flank wear measurements of the individual flutes that were done using a microscope. We thus only
consider c1, c4 and c6 in our experiments. The cuts were made at a spindle speed of 10400 rpm with
a feed rate of 1555 mm

min . Following [14], we extract 8 features from all of the signals individually,
including both statistical and spectral indicators. For the condition monitoring case study, we generate
three classification labels from the maximum flute flank wear VBmax of the individual cuts: (1)
Unworn for VBmax <= 70, (2) Slight wear for 130 >= VBmax > 70 and (3) Heavy wear for
VBmax > 130. The class limits were chosen to build subsets of approximately equal size. We split
the three cutter-specific sub-datasets into a training dataset (2 cutters) and a test dataset (1 cutter) and
train a random forest classification model on the extracted and standardized features. A 2-dimensional
PCA plot of the extracted features for one of the cutter sub-datasets (c1) is visualized in Figure 1
(right). The evaluation results of the condition monitoring performance are stated in Table 1.

For evaluating the drift detection performance on this dataset, we split the testing data used for
classifier evaluation, into two equally-sized subsets for all three permutations, cf. Table 1. One
forms the reference dataset Dref , while the other one serves as the simulated deployment data. We
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Table 1: Accuracy of the condition monitor-
ing application.

Training Set Testing Set Accuracy
c1, c4 c6 0.8
c4, c6 c1 0.87
c1, c6 c4 0.84

Table 2: Drift detection results for LRDD and
selected baselines.

Precision Recall F1
MMDDrift 0.54 1.00 0.70
KSDrift 0.58 1.00 0.73
ContextMMDDrift 0.70 1.00 0.82
LRDD 0.97 1.00 0.98

randomly sample 100 intervals of size n = 30 from the deployment data as the current data windows
Dt. To simulate unseen process conditions, we randomly exclude one of the three classes from the
reference dataset. This class is then treated as drifted as it is not included in the training dataset of
the classifier. If the samples in the deployment window Dt fall into this drifted process state, the
detectors should indicate drift, while no drift should be detected for the undrifted other two classes as
they are present in the reference dataset. The ratio of drifted vs. undrifted samples is set to 50%.

We compare the performance of the proposed LRDD approach with three common baseline drift
detectors: MMDDrift: Kernel-based maximum mean discrepancy using permutation testing [4, 9].
KSDrift: Two-sample testing using univariate Kolmogorov-Smirnov tests on all feature dimensions
with additional Bonferroni-correction [1]. ContextMMDDrift: Similar to MMDDrift but with
additional context variable [2] as briefly explained in the introduction. We utilize the classifier class
predictions as the context variable. For the baseline drift detectors we use the implementations in the
alibi-detect [12] python package with pytorch backend. We use α = 0.05 and Nperm = 100 in all
experiments. For LRDD we set k = 5.

Drift detection results are reported in Table 2. Notably, all utilize detectors have a recall of 100%,
indicating that all drifts are reliably detected. The main improvement through the proposed methodol-
ogy lies in the increased precision, which is significantly higher than that of all baseline detectors.
This confirms two hypotheses: First, conventional drift detectors that compare the full reference
dataset with deployment data that is non-i.i.d. will yield a high number of false positives. Second, the
proposed methodology for selecting a localized reference set enables highly accurate drift detection
even if the deployment samples have a high correlation through the sample acquisition time. In the
scope of the TCM case study, the results show that LRDD can be used to indicate the reliability of
the condition monitoring model over its usage time to operators. In case of a detected drift, operators
should perform a root cause analysis to investigate potential data quality problems and decide whether
the model should be retrained with more recent data.

4 Conclusion

In this paper we proposed a novel method for concept drift detection tailored to applications like
condition monitoring, where the i.i.d. assumption for deployment data cannot be made. By focusing
on more localized comparisons, the proposed LRDD method aims to strike a balance between
sensitivity and specificity. We demonstrated the effectiveness of the proposed method in a preliminary
tool condition monitoring case study, highlighting its value for industrial applications. As the size
of the utilized dataset is limited, a larger-scale evaluation on suitable datasets is required. For this
purpose, a new dataset containing explicitly drifted data is currently generated at a testing machine
in a laboratory setup. Furthermore, the influence of the number of neighbors k, the size of the
deployment data window Dt as well as finding a suitable α for a given dataset are open issues for
systematic investigation. In addition, the impact of using deep feature representations of neural
networks for the two-sample tests instead of the unprocessed input data should be investigated, as
this has shown to be effective in general out-of-distribution detection tasks [8, 3].
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