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Abstract

Gradient alignment has shown empirical success in federated domain generaliza-
tion, yet a theoretical foundation for this approach remains unexplored. To address
this gap, we provide a theoretical framework linking domain shift and gradient
alignment in this paper. We begin by modeling the similarity between domains
through the mutual information of their data. We then show that as the domain
shift between clients in a federated system increases, the covariance between their
respective gradients decreases. This link is initially established for federated su-
pervised learning and subsequently extended to federated unsupervised learning,
showing the consistency of our findings even in a self-supervised setup. Our work
can further aid the development of robust models by providing an understanding of
how gradient alignment affects learning dynamics and domain generalization.

1 Introduction

Federated learning [1, 2] has emerged as a promising framework for training machine learning models
across multiple decentralized clients while preserving data privacy. It allows clients to collaboratively
train a global model without the need to exchange their sensitive and local data. Each client trains
a local model using its data and a server aggregates these models at a certain frequency [3, 4, 5].
However, the inherent heterogeneity of data across different clients poses significant challenges, as
variations in data distributions can cause models to perform well on local training data but fail to
generalize to unseen target domains. Federated Domain Generalization (FDG) aims to address this
challenge by developing models that can generalize effectively to new, unseen data distributions not
represented during training [6, 7].

In recent years, various approaches have been proposed for FDG, such as learning domain-invariant
representations [8, 9] and identifying common features across multiple domains [10]. One promising
approach for addressing FDG is gradient alignment [11, 12, 13, 14, 15], which aims to align
the gradients of different clients during the training process to enhance the generalizability of the
aggregated model. Gradient alignment was first utilized in multi-task learning [16], where a technique
known as gradient surgery was proposed. This method projects a task’s gradients onto the orthogonal
plane of any other task’s gradient that exhibits a conflicting direction. Later, this technique was
used to improve generalization in centralized (non-federated) learning through gradient alignment
[17, 18, 19]. The study in [17] updates the weights if the signs of the gradient components are aligned
across all domains. Fish [18] maximizes the inner product between gradients from different domains,
while Fishr [19] leverages domain-level gradient variances.

Although the effectiveness of gradient alignment in federated domain generalization has been demon-
strated in practice [11, 12, 13, 14, 15], no theoretical basis has been proposed for how observing the
local gradients of different clients can infer information about the local data distributions without
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violating privacy constraints. To this end, in this paper, we propose a theoretical framework to
establish a link between domain shift and gradient alignment for the first time. We first model the
similarity between the domains using the mutual information between their data. Then, we demon-
strate that when the domain shift between two clients in a federated system increases, the covariance
between their respective gradients decreases. We prove this concept for a federated supervised domain
generalization setup. We then extend our framework to federated unsupervised domain generalization
and show that our findings hold even when the clients are trained using self-supervised learning loss.
Furthermore, since using cosine similarity as a criterion for discarding unaligned gradients has been
empirically shown to effectively enhance gradient alignment [20, 21], we theoretically analyze its
applicability within a federated learning setup. The contributions of this work can be summarized as
follows:

• For the first time, we provide a theoretical basis for using gradient alignment for federated
domain generalization.

• We demonstrate the applicability of this method not only for supervised setup but also for
self-supervised representation learning.

By providing a rigorous theoretical basis for using gradient alignment for domain generalization
without violating privacy constraints, this work is a step toward more robust federated learning
systems.

2 Approach

2.1 Problem formulation

To formalize federated domain generalization, assume K clients, Ci, in a federated setup, each with
its own unlabeled data Di = {x(n)i }Ni

n=1. Each dataset consists of Ni data points sampled from a
distinct data distribution p(xi), where xi is a vector of F features, i.e., xi = [x1

i , x
2
i , ...x

F
i ]

T . The
data distributions are assumed to be different among the clients with each distribution p(xi) sampled
from a family of distributions P . Privacy constraints prevent the transfer of data between clients or to
the server S. The objective is to learn generalized representations from xi that perform well across
unseen distributions p(xt) ∼ P , where p(xi) ̸= p(xt). This is formulated as minimizing the expected
loss over the unseen distributions:

min
θ

Ep(xt)∼P
[
Ep(xt) [L(θ; x)]

]
, (1)

where L is the unsupervised loss function, and θ is the set of global model parameters. Each client
contributes to this goal by computing a local objective function approximating the expected loss with
respect to its own data distribution:

min
θi

Ep(xi) [li(θi; x)] ≈ 1

Ni

Ni∑
n=1

l(θi; x(n)
i ), (2)

where θi indicates the local parameters of client Ci, and θ is the global aggregation of all local θi.

2.2 Gradient Alignment and Domain Shift

Under a federated learning framework, privacy constraints prevent clients and servers from accessing
each other’s data, including distribution information such as data means and variances. They
can, however, observe individual client gradients at the server level and the average aggregated
gradient across clients at the client level. We motivate our work on the fact that alignment of
gradients may infer characteristics of the client domain distributions, thus facilitating improved
model generalization. While empirically the utility of gradients has been demonstrated in the area of
domain generalization [17], no theoretical basis has been proposed for this approach under federated
constraints. Accordingly, we aim to establish a link between gradient alignment and domain shifts.
Our theoretical findings provide the basis for effective local parameter updates and global model
aggregation to address federated domain generalization. To this end, we analyze this link in two
different setups of Supervised and Unsupervised learning.
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2.2.1 Federated Supervised Domain Generalization

Assumption 1. Let each xfi be a random variable drawn from a Normal distribution p(xfi ) ∼ P [22].
Within a single domain, following [23, 24], features are assumed to be independent (Cov(xf1

i , xf2
i ) =

0). Across different domains, corresponding features of xfi and xfj are bivariate with a covariance
of σxf

i ,x
f
j
. In line with contemporary practices in deep learning, the features are normalized with

µ = 0 and σ2 = 1 [25, 26, 27]. We also assume that each client is a logistic regression classifier
trained in a supervised federated setup using cross-entropy loss. After each epoch, the local models
are aggregated in the server and sent back to all clients. The gradient gi of the model is assumed to
be differentiable.

Theorem 1 (Gradient Misalignment in Federated Supervised Learning Dependent upon Domain
Shift). Given Assumption 1, under the problem of Federated Supervised Domain Generalization, for
two distinct domains characterized by random variables xi and xj belonging to two different clients
Ci and Cj , an increase in domain shift across the clients results in a decrease in the covariance
Cov(gi, gj) of the corresponding gradients gi, gj across Ci and Cj’s respective local models.

Proof Sketch. The proof proceeds by first modeling the similarity between two domains Ci and Cj

using mutual information denoted I(xi; xj). We then introduce Lemma A1, demonstrating that the
mutual information can be expressed as a function of the covariance σxf

i ,x
f
j

between the features of
the two domains (Equation 3). As domain shift increases, σxf

i ,x
f
j

decreases, leading to a reduction
in mutual information. Next, Lemma A2 is introduced establishing that the covariance between
each dimension of gradients Cov(gi, gj) depends on the corresponding feature covariance σxf

i , x
f
j

through Equation 4. By introducing Claim A1, we show that the covariance of gradients is positively
and monotonically related to the covariance of the features under the federated supervised setup
where local models are logistic regression classifiers. Thus, as the feature covariance decreases due to
domain shift, the gradient covariance also decreases. This establishes the positive correlation between
mutual information and gradient covariance. The full proof of this theorem is presented in Appendix
A.1.

2.2.2 Federated Unsupervised Domain Generalization

We extend our theoretical analysis to federated unsupervised domain generalization setup under the
following assumptions, which differ slightly from those previously presented in Assumption 1:

Assumption 2. Based on Assumption 1, we extend our framework to an unsupervised learning
context. The assumptions regarding the differentiability of the gradients and data distribution remain
the same except the clients now do not have access to the labels. Regarding the model, we assume
each client is a one-layer encoder with the sigmoid activation function. Following [28], local training
is performed using contrastive loss where a random augmentation of a data sample is used as the
positive pair and all other samples are utilized as the negative pairs. The random augmentation is
performed with the same random Affine transformation (Axi +B) [29] broadcast to all clients.

Theorem 2 (Gradient Misalignment in Federated Unsupervised Learning Dependent upon Domain
Shift). The insights from Theorem 1 also apply to the federated unsupervised learning framework
described in Assumption 2, demonstrating that an increase in domain shift leads to a monotonic de-
crease in the covariance of the gradients of local models within the context of federated unsupervised
domain generalization.

Proof Sketch. The proof of Theorem 2 follows a similar structure to that of Theorem 1, with the
key difference being the transition to a federated unsupervised domain generalization setup using
self-supervised learning. The assumptions regarding the data distribution remain the same, so the
relationships between mutual information and feature covariance established in Theorem 1 continue
to hold. However, Claim A2 is introduced to extend the result to the self-supervised learning
setting, showing that for both positive and negative contrastive pairs, the gradient covariance remains
positively correlated with feature covariance. This leads to the same conclusion as in Theorem 1: as
domain shift increases, feature and gradient covariances decrease, establishing a positive correlation
between mutual information and gradient covariance. The full proof is provided in Appendix A.5.
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For a more detailed analysis of the relationship between the domain distributions and their corre-
sponding gradients, refer to Corollary A1, which is presented and proved in Appendix A.7.

2.3 Cosine Similarity for Gradient Alignment

More recently, several works employed the cosine similarity of the gradients as a proxy for the
generalizability of the models through different domains or tasks [30, 31, 32, 20, 33, 21, 34]. To this
end, we demonstrate that using cosine similarity as the criterion for discarding unaligned gradients
can indeed promote generalization through the following proposition.

Proposition 1. Given two sets of gradient vectors gi and gj , by removing the Kth vector in gj where
cos(gj,K , gest) < 0, the covariance of two sets increases.

Proof Sketch. The proposition is proved by first partitioning the gradient set gj into two parts: the
unaligned vector gj,K and the remaining aligned vectors. We then express the covariance between
the sets gi and gj as a sum of two terms: the covariance between gi and the aligned set, and
the contribution of the unaligned vector gj,K . By analyzing the second term, we show that the
contribution of gj,K introduces mostly negative values due to its opposite direction relative to the
mean vector of the two gradient sets, as captured by the cosine similarity. Therefore, removing gj,K ,
which is negatively aligned, increases the overall covariance between the sets. For more details on
this Proposition and its proof, see Appendix A.9.

3 Discussions
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Figure 1: Empirical verification of the
proposed framework.

Here we empirically verify our theoretical finding by train-
ing different models with the same architecture and initial-
ization on different domains of the PACS dataset [35]. We
then measure the covariance between the gradients of each
pair of these models and plot them against the amount of
domain shift between their training domains, as illustrated
in Figure 1. Each point in the plot is denoted by two letters
representing the corresponding pair of domains. We ob-
serve that, except for a single outlier, the trend follows our
prediction based on the insight introduced in Theorems 1
and 2. For more details on this experiment see Appendix
B.

Our framework introduces mutual information as an effec-
tive metric for quantifying domain similarities, setting a
foundation for future generalization techniques that can
leverage this measure for design and performance evalu-
ation. Furthermore, establishing a link between gradient
alignment and domain shift suggests a rigorous way of
retrieving domain shift information without violating privacy constraints which can be incorporated
in designing generlizable pipelines. Given the inherent heterogeneity of decentralized data, our
framework is broadly applicable to a wide range of federated learning problems, encompassing both
supervised and unsupervised training paradigms.

4 Conclusion

In this work, for the first time, we establish a link between gradient alignment and domain shift in
a federated setup, filling a gap in the theoretical basis for recent federated domain generalization
methods that rely on gradient alignment. In both supervised and unsupervised setups, we demonstrate
that an increase in domain shift across the client’s local data leads to a decrease in their respective
gradient alignment. These findings provide insights into the learning dynamics of federated systems,
which can be leveraged to develop models that facilitate better generalization across diverse and
decentralized datasets without violating the privacy constraints.
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A Proofs

A.1 Proof of Theorem 1

Proof. Motivated by previous works where the similarity between the representations of different
domains under domain shift is measured by Mutual Information [36, 37, 38], we use this concept for
modeling the similarity between different domains drawn from a family of distributions. To calculate
the mutual information we introduce the following Lemma.

Lemma A1. Given Assumption 1, the mutual information between two random variables xi and xj
can be calculated as:

I(xi; xj) = −1

2

F∑
f=1

log(1− σ2
xf
i ,x

f
j

). (3)

The full proof of this lemma is presented in Appendix A.2. Since σxf
i ,x

f
i
= σ2

xf
i

, given identical
and standardized domains we have σxf

i ,x
f
j
= 1. Therefore, we observe from Eq. (3) that as the

shift between the domain approaches zero, the Mutual Information approaches infinity. On the
other hand, as the two domains shift apart, σxf

i ,x
f
j

approaches zero, and consequently the Mutual

information monotonically decreases toward zero. Accordingly, I(xi; xj) and σxf
i ,x

f
i

are positively
and monotonically correlated. To establish the link between the covariance of the features and
the variance of the gradient and demonstrate their relationship, the following lemma and claim are
introduced.

Lemma A2. Given Assumption 1, the covariance between the differentiable function g with inputs xi
and xj can be estimated as:

Cov(gi, gj)mn ≈
F∑

f=1

σxf
i ,x

f
j

(
∂gi(m)

∂xf
i

∣∣∣∣
µf
i

)(
∂gj(n)

∂xf
j

∣∣∣∣
µf
j

)
, (4)

where σxf
i ,x

f
j

is the covariance between the f th feature of xi and xj and gi(m) is the mth dimension
of gi.

Claim A1. For all clients with a logistic regression classifier described in Assumption 2, for any i

and j, the sign of ( ∂gi
∂xf

i

∣∣∣∣
xf
i =µf

i

)(
∂gj
∂xf

j

∣∣∣∣
xf
j =µf

j

) is always positive.

The proof for this Lemma and Claim are provided in Appendix A.3 and A.4, respectively. From Eq.
(4) and Claim A1 it can be concluded Cov(gi, gj) and I(xi; xj) are positively and monotonically
correlated, which completes the proof.

A.2 Proof of Lemma A1

Proof. By definition, the Mutual Information between two random variables, xi and xj is

I(xi; xj) =
∫ ∫

p(xi, xj) log

(
p(xi, xj)
p(xi)p(xj)

)
dxidxj . (5)

Since the domains from which the corresponding random variables are drawn are sets of independent
features:

p(xi) =

F∏
f=1

p(xf
i ), p(xj) =

F∏
f=1

p(xf
j ). (6)

Moreover, since each pair of corresponding features (xf
i , x

f
j ) across domains forms a bivariate Normal

distribution, we can derive:

p(xi, xj) =
F∏

f=1

p(xf
i , x

f
j ). (7)
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By substituting Eqs. (6) and (7) into Eq. (5), using the multiplicative property of logarithms and the
definition of Mutual Information, we obtain:

I(xi; xj) =
F∑

f=1

∫ ∫
p(xf

i , x
f
j ) log

(
p(xf

i , x
f
j )

p(xf
i )p(x

f
j )

)
dxf

i dx
f
j =

F∑
f=1

I(xf
i ;x

f
j ). (8)

For bivariate Normal distributions xi and xj , Mutual Information can be measured by I(xi;xj) =

− 1
2 log(1− ρ2), where ρ =

σxi,xj

σxi
σxj

is the correlation coefficient [39]. Accordingly, Eq. (8) yields:

I(xi; xj) = −1

2

F∑
f=1

log(1− (
σxf

i ,x
f
j

σxf
i
σxf

j

)2). (9)

According to Assumption 1, we have σxf
i
= σxf

j
= 1. Hence, Eq. (9) yields:

I(xi; xj) = −1

2

F∑
f=1

log(1− σ2
xf
i ,x

f
j

), (10)

which completes the proof.

A.3 Proof of Lemma A2

Proof. The covariance of gi and gj , by definition, is:

Cov(gi, gj) = E[(gi − E[gi])(gj − E[gj ])T ]. (11)

First, we calculate E[gi]. Given g is differentiable, as per the Assumption 1, we can estimate it using
the first-degree Taylor expansion theorem around µ:

g(x) ≈ g(µ) + Jg(µ).(x− µ), (12)

where Jg(.) is the Jacobian matrix g. We can use this equation to estimate E[g] as follows:

E[g] = E [g(µ) + Jg(µ).(x− µ))] . (13)

Note that g(µ) is constant, therefore E[g(µ)] = g(µ). Moreover, since we assume that the distribution
of the features is normal, we can conclude:

E [Jg(µ).(x− µ))] = 0F . (14)

Since E[x− µ] = 0F for x ∼ N , E[g] = g(µ). By replacing gi and gj with their Taylor expansion
we derive:

Cov(gi, gj) = E
[
(Jgi(µi).(x− µi)) .

(
Jgj (µj).(x− µj))

)T ]
. (15)

Hence:
Cov(gi, gj) = Jgi(µi).E

[
(x− µi).(x− µj)

T
]
.Jgj (µj)

T . (16)

Given the covariance matrix Σ = E[(x− µi)(x− µj)], we derive:

Cov(gi, gj) =Jgi(µi).Σ.Jgj (µj)
T . (17)

As the features are assumed to be independent, Σ is a diagonal matrix, the general term of each entry
of Cov(gi, gj) can be derived as:

Cov(gi, gj)mn =

F∑
f=1

σxf
i ,x

f
j

(
∂gi(m)

∂xf
i

∣∣∣∣
µf
i

)(
∂gj(n)

∂xf
j

∣∣∣∣
µf
j

)
, (18)

where gi(m) and gj(n) represented the mth and the nth dimension of gi and gj , respectively.
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A.4 Proof of Claim A1

Proof. Following the assumptions, let’s describe the model’s loss by:

l(y, ŷ) = −y log(ŷ)− (1− y) log(1− ŷ), (19)

where y represents the label and ŷ signifies the model output defined as σ(Wx + b) = σ(x) =
1/(1 + e−Wx+b). The gradient of the loss with respect to W is therefore given by:

g =
∂L

∂w
= (ŷ − y)x, (20)

Subsequently, the derivative of g with respect to x at x = µ is expressed as:

∂g

∂x

∣∣∣∣
x=µ

= σ(Wµ+ b) + µ
∂σ(Wx+ b)

∂x

∣∣∣∣
x=µ

− y. (21)

Recalling the proof of theorem 1 and noting that data is standardized, we find µf
i = µf

j = 0. This
leads to

∂g

∂x

∣∣
x=µ

= σ(b)− y. (22)

Given that σ(x) = 1/(1 + e−x), its outcome always falls within the range (0, 1). Considering y as a
data label that can be either 1 or 0, it follows that when y = 1, σ(b)− y is invariably negative, and
when y = 0, σ(b)− y is invariably positive. Consequently, the sign of ∂g

∂x

∣∣
x=µ

is determined solely
by the value of y, ensuring sign(σ(bi)− y) = sign(σ(bj)− y). Thus,

sign(
∂gi

∂xf
i

∣∣
xf
i =µf

i

) = sign(
∂gj

∂xf
j

∣∣
xf
j =µf

j

). (23)

A.5 Proof of Theorem 2

Proof of Theorem 2. Since all the assumptions regarding the data distribution are the same, Eq. (5)
to Eq. (4) still hold. However, since the training paradigm has changed, we introduce the following
claim, which extends Claim A1 under the conditions of Assumption 2.

Claim A2. For all clients trained under the federated unsupervised domain generalization setup
using self-supervised learning described in Assumption 1, for two clients Ci and Cj , for both positive

and negative contrastive data pairs, the sign of ( ∂gi
∂xf

i

∣∣∣∣
xf
i =µf

i

)(
∂gj
∂xf

j

∣∣∣∣
xf
j =µf

j

) is always positive in all

dimensions. See proof in Appendix A.6.

From Eq. (4) and Claim A2 it can be concluded Cov(gi, gj) and I(xi; xj) are positively and
monotonically correlated, which completes the proof.

A.6 Proof of Claim A2

Proof. Following Assumption 1, the model is defined as ŷ = σ(Wx1 − Wx2) and the loss is
formulated as:

l(y, ŷ) = −y log(ŷ)− (1− y) log(1− ŷ), (24)
where y = 1 for positive pairs and y = 0 for the negative pairs. Consequently, the gradient of the
loss w.r.t. W is

g =

{
(σ(Wx1 −Wx2)− 1)(x1 − x2) if y = 1 (Positive pairs)
σ(Wx1 −Wx2)(x1 − x2) if y = 0 (Negative pairs) (25)

We first focus on the positive pairs. In the contrastive loss, an augmentation of the same sample is
usually used as the positive sample. Following Assumption 1, the augmented sample is formulated as
x2 = Ax1 +B. Hence, the gradient of the positive pair is derived as:

g+ = (σ(Wx1 −WAx1 −WB)− 1)(x1 −Ax1 −B). (26)
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Subsequently, the derivative of g+ with respect to x1 at x1 = µ1 is expressed as:

∂g+

∂x1

∣∣∣∣
x1=µ1

=σ(Wµ1 −WAµ−WB)(1− σ(Wµ1 −WAµ1 −WB))

(µ1 −Aµ−B) + σ(Wµ1 −WAµ1 −WB)(1−A). (27)

Recall Assumption 1 stating that the data is normalized, hence, µ1 = 0. Therefore:

∂g+

∂x1

∣∣∣∣
x1=µ1

= σ(−WB)(1− σ(−WB))(−B) + σ(−WB)(1−A). (28)

As a result, we can conclude that for all positive pairs, ∂g+

∂xi

∣∣∣∣
xi=µi

only depends on the augmentation

and the network weights. According to Assumption 1, the weights of clients are the same and equal
to the global model at each communication round. Moreover, since the same random augmentations
are broadcasted to all the clients, A and B will be the same at each step across all the local models.
Hence, for all xi, sign( ∂gi

∂xf
i

∣∣
xf
i =µf

i

) = sign( ∂gj

∂xf
j

∣∣
xf
j =µf

j

).

Considering the negative pairs, from Eq. (25), we have:

g− = σ(Wx1 −Wx2)(x1 − x2). (29)

The derivative of g− w.r.t. x1 at x1 = µ1 is derived as:

∂g−

∂x1

∣∣∣∣
x1=µ1

=σ(Wµ1 −Wx2)(1− σ(Wµ1 −Wx2))(µ1 −Ax2) (30)

+ σ(Wµ1 −Wx2)(1− x2). (31)

Based on the stated assumption µ1 = 0, therefore:

∂g−

∂x1

∣∣∣∣
x1=µ1

= σ(−Wx2)(1− σ(−Wx2))(−Ax2) + σ(−Wx2)(1− x2). (32)

The σ function is estimated using Taylor expansion around zero (since the data is normalized to
µ = 0), as:

σ(x) ≃ 1

2
+

∞∑
n=0

(−1)n(22n+1 − 1)B2n+2

(2n+ 2)!
x2n+1, (33)

where Bn are Bernoulli numbers. By replacing Eq. (33) in Eq. (32):

∂g−

∂x1

∣∣∣∣
x1=µ1

≃ (
1

2
+

∞∑
n=0

(−1)n+1(22n+1 − 1)B2n+2

(2n+ 2)!
(Wx2)

2n+1

)
×(

1

2
−

∞∑
n=0

(−1)n+1(22n+1 − 1)B2n+2

(2n+ 2)!
(Wx2)

2n+1

)
(−Ax2)

+

(
1

2
+

∞∑
n=0

(−1)n+1(22n+1 − 1)B2n+2

(2n+ 2)!
(Wx2)

2n+1

)
(1− x2).

(34)

Since the coeffiencts are only consist of n, Bn and W , we can simplify as:

∂g−

∂x1

∣∣∣∣
x1=µ1

≈
∞∑

n=0

ζ(W,n)xn
2 (35)

Since the gradient is a linear operation, the gradient of the sum equals the sum of gradients. According
to Assumption 2, we update the model with the loss of the entire dataset as the negative samples.
Hence:

∂g−

∂x1

∣∣∣∣
x1=µ1

=

N∑
i=2

∞∑
n=0

ζ(W,n)xn
i . (36)
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By substituting the sums, we derive:

∂g−

∂x1

∣∣∣∣
x1=µ1

=

∞∑
n=0

N∑
i=2

ζ(W,n)xn
i . (37)

Since the distribution of data is assumed to be normal, these sums can be estimated using the expected
value of E(

∑N
i=1 x

n
i ) = NE(xn). Since x belongs to a normal distribution with µ = 0 and σ = 1,

the sum can be estimated as:
N∑
i=1

xn ≃
{

(n− 1)!! n = 2k (Even powers)
0 n = 2k + 1 (Odd powers) (38)

By applying this estimate to Eq. ( 36), we derive:

∂g−

∂x1

∣∣∣∣
x1=µ1

=

∞∑
k=0

N∑
i=2

ζ(W,n)(n− 1)!! (39)

Consequently, we can conclude that for all negative pairs, the gradient derivative ∂g−

∂xi

∣∣∣∣
xi=µi

only depends on the network weights. Hence, due to the fact that both matrices are symmetric,
sign( ∂gi

∂xf
i

∣∣
xf
i =µf

i

) = sign( ∂gj

∂xf
j

∣∣
xf
j =µf

j

).

A.7 Corollary A1

Corollary A1. Given the assumptions stated (under either Assumption 1 or Assumption 2), for two
distinct domains characterized by random variables xi and xj from the distribution family P , as
I(xi, xj) decreases, then the variance of the difference of the corresponding gradients, Var(gi − gj),
increases.

This conclusion highlights our finding in Theorems 1 and 2 regarding the relationship between the
distribution of different domains and their corresponding gradients.

Proof. The variance of gi and gj is:

Var(gi − gj) = Var(gi) + Var(gj)− 2Cov(gi, gj). (40)

For deriving Var(gi) and Var(gj), we first introduce Lemma A3.

Lemma A3. Given the assumptions stated, the variance of a differentiable function g can be estimated
as:

Var(g) =
F∑

f=1

(σf )2(
∂g

∂xf

∣∣∣∣
xf=µf

)2, (41)

where xf is the f th feature of x, σf is its standard deviation, and µf is its mean. The full proof of
this lemma is presented in Appendix A.8.

By derive Var(gi) and Var(gj) using Lemma 2 and Cov(gi, gj) from Lemma 1, we derive:

Var(gi−gj) =

F∑
f=1

(σf
i )

2(
∂gi

∂xf
i

∣∣∣∣
xf
i =µf

i

)2+(σf
j )

2(
∂gj

∂xf
j

∣∣∣∣
xf
j =µf

j

)2−2σxf
i ,x

f
j
(
∂gi

∂xf
i

∣∣∣∣
xf
i =µf

i

)(
∂gj

∂xf
j

∣∣∣∣
xf
j =µf

j

).

(42)
If we assume two domains that have the same distribution but different covariances with gi denoted
by gj1 and gj2, then:

Var(gi − gj1)− Var(gi − gj2) =
F∑

f=1

αf (σ
f
ij1 − σf

ij2), (43)
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where αf = 2( ∂gi
∂xf

i

∣∣∣∣
xf
i =µf

i

)(
∂gj

∂xf
j

∣∣∣∣
xf
j =µf

j

) which is always positive (According to Claims A1 and

A2).

This conclusion highlights our finding in Theorems 1 and 2 regarding the relationship between the
distribution of different domains and their corresponding gradients.

A.8 Proof of Lemma A3

Proof. The variance of g, by definition, is:

Var(g) = E(g − Eg)2. (44)

From the proof of Lemma 2, we know that Eg = g(µ). By expanding g around µ we derive:

Var(g) = E


 F∑

f=1

(xf − µf )

(
∂g

∂xf

∣∣∣∣
xf=µf

)2
 . (45)

The squared term can be expanded as:

Var(g) = E[
F∑

f=1

F∑
e=1

(xf − µf )(xe − µe)

(
∂g

∂xf

∣∣∣∣
xf=µf

)(
∂g

∂xe

∣∣∣∣
xe=µe

)
]. (46)

As the features are assumed to be independent, when f ̸= e, E(xf − µf )(xe − µe) represents
Cov(xf , xe) and equals zero. Therefore:

Var(g) = E

 F∑
f=1

(xf − µf )2

(
∂g

∂xf

∣∣∣∣
xf=µf

)2
 . (47)

Since E(xf − µf )2 = (σf )2, we derive:

Var(g) =
F∑

f=1

(σf )2

(
∂g

∂xf

∣∣∣∣
xf=µf

)2

, (48)

which completes the proof for the variance of g.

A.9 Proof of Proposition 1

Assumption 3. Let gi and gj be two sets of gradients. gest is defined as the average of both sets.
We assume cos(gj,k, gest) > 0 for all k ̸= K, cos(gi,k, gest) > 0 for all k, and cos(gj,K , gest) < 0.
Without the loss of generality, we assume the last vector in the set is the unaligned vector.

Proof. We first define ĝj as:
gj = ĝj ∪ {gj,K}. (49)

Hence, the mean of gj can be derived as:

µgj =
1

K
((K − 1)µĝj + gj,K), µĝj =

1

K − 1

K−1∑
k=1

gj,K . (50)

Now we shift to the covariance of the two sets:

Cov(gi, gj) =
1

K − 1
(gi − µgi)(gj − µgi)

T . (51)

Substituting Cov(gi, ĝj) in Eq. 51, we derive:

Cov(gi, gj) =
K − 2

K − 1
Cov(gi, ĝj) +

1

K − 1
(gi − µgi)(gj,k − µgi)

T . (52)
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By substituting µgj in this equation we have:

Cov(gi, gj) =
K − 2

K − 1
Cov(gi, ĝj) +

1

K − 1
(gi − µgi)(gj,k − 1

K
((K − 1)µĝj + gj,K))T . (53)

Simplifying this equation we derive:

Cov(gi, gj) =
K − 2

K − 1
Cov(gi, ĝj) +

1

K
(gi − µgi)(gj,K − µĝj )

T . (54)

The term (gi − µgi)(gj,K − µĝj )
T is a matrix with mostly negative components because of the

following reasons. (gi − µgi) represents the deviations of gi vectors from their mean which points
around gest as cos(gi,k, gest) > 0 for all k. On the other hand, since cos(gj,K , gest) < 0, (gj,K −
µĝj )

T representing the deviation of gj,K from the mean vector is in the opposite direction of gest.
Hence, the dot product of two sets of vectors pointing in two opposite directions results in a negative
covariance matrix which completes the proof.

B Experiment Setup

We conduct our experiments using the PACS dataset [35], which comprises 9,991 images across
four domains: ‘Photo’, ‘Art-painting’, ‘Cartoon’, and ‘Sketch’ denoted by the initial letter of their
names. The images are divided into seven distinct classes. Following the methodology described
in [40], we employ ResNet-18 [41] as the encoder network architecture, which is trained from
scratch. SimCLR is utilized as the self-supervised learning technique to train this encoder due to its
effectiveness in domain generalization. Data augmentations are implemented as per the guidelines in
[28]. Specifically, a random patch of each image is selected and resized to 32 × 32. Two random
transformations—horizontal flipping and color distortion—are subsequently applied. We also use a
batch size of 128 and the optimization is performed using the Adam optimizer [42] with a learning
rate of 3× 10−3.
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