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ABSTRACT

Both classical and learned image transformations such as the discrete wavelet
transforms (DWTs) and flow-based generative models provide semantically mean-
ingful representations of images. In this paper, we propose a general method
for robustness exploiting the expressiveness of image representations by targeting
substantially low-dimensional subspaces inside the L∞ box. Experiments with
DCT, DWTs and Glow produce adversarial examples that are significantly more
similar to the original than those found considering the full L∞ box. Further,
through adversarial training we show that robustness under the introduced con-
straints transfers better to robustness against a broad class of common image per-
turbations compared to the standard L∞ box, without a major sacrifice of natural
accuracy.

1 INTRODUCTION

The deployment of deep neural networks for image classification in critical decision-making pro-
cesses has raised concerns about their robustness. Despite often stellar test set accuracies, these
models have also shown to be brittle in various ways in which the human vision is not. For exam-
ple, a network can be fooled by suitably designed malicious perturbations that look non-suspicious
or even undetectable by a human. Further, networks are also not robust when faced by real-world
image corruptions such as images taken under different weather conditions.

Adversarial robustness. Given a neural network that makes accurate predictions on clean data, ad-
versarial attacks (Biggio et al., 2013; Szegedy et al., 2014; Papernot et al., 2016a) compute a suitable
choice of additive noise to produce erroneous predictions. For images, the noise is typically mea-
sured and bounded by an Lp norm. The seminal method of projected gradient descent (PGD) (Madry
et al., 2018) is a prominent example. Learning-based methods also have been used to build adver-
sarial attacks either by leaning an embedding space using neural networks (Huang & Zhang, 2020;
Baluja & Fischer, 2018), using latent space of generative adversarial networks (GAN) (Xiao et al.,
2018; Wang & Yu, 2019) or using flow-based models to attack in black-box settings (Dolatabadi
et al., 2020). Many approaches have been proposed to detect if an input is adversarial (Xu et al.,
2018; Ma et al., 2018; Feinman et al., 2017; Metzen et al., 2017) and defend against it (Gu & Rigazio,
2014; Papernot et al., 2016b; Liao et al., 2018; Xie et al., 2019; Zhou et al., 2021). However, most
of these defenses can again be broken by suitable adaptive attacks (Tramèr et al., 2020; Carlini &
Wagner, 2017).

More importantly, adversarial attacks (assuming they are fast enough) can be used for adversarial
training to increase robustness by first generating adversarial examples from clean training data, and
then either performing standard training on these (Madry et al., 2018) or combining them with clean
data to define a loss that, when minimized, better preserves the natural accuracy (Kannan et al.,
2018; Zhang et al., 2019) or other variants such as (Chen et al., 2021; Rebuffi et al., 2021; Jiang
et al., 2023). Further, adversarial training can be used to obtain provably robust models (Salman
et al., 2019; Müller et al., 2022). However, typically the price of adversarial training is a significant
drop of the classification accuracy on the unperturbed, clean data. On the other hand, provable
adversarial robustness can be provided through randomized smoothing (Salman et al., 2019; Carlini
et al., 2022), a sampling-based approach that scales to large models regardless of their complexity.

Corruption robustness. Arguably more important for practical applications, and a longstanding
goal in neural network design, is robustness against distribution shifts between training data and
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application data (Mintun et al., 2021; Pan & Yang, 2010; Farahani et al., 2020). One class of such
shifts, and the one considered in this paper, are image corruptions. Examples include digital effects
such as compression or weather conditions such as fog. Other forms of distribution shift are studied
by applying abstract changes in structure and style (Hendrycks et al., 2021) to images or by sampling
new versions of datasets (Recht et al., 2019).

Training networks to be robust against common image corruptions has become an active research
topic, especially after the introduction of dedicated benchmarks such as ImageNet-C (Hendrycks
& Dietterich, 2019). Approaches include again suitable data augmentation (Geirhos et al., 2018;
Erichson et al., 2022; Zhang et al., 2017; Hendrycks et al., 2019; Park et al., 2022; Yin et al., 2022;
Liang et al., 2023) in training or the use of transformed image representations. For example, training
techniques relying on the discrete cosine transform (DCT) are found effective to generalize to unseen
image distortions, for example, by extending the dropout technique to DCT coefficients as a form of
regularization (Hossain et al., 2019). Similarly, (Duan et al., 2021) defined constraints in the DCT
domain to generate adversarial examples that are less affected by JPEG compression than those
obtained by pixel-based attacks.

Interestingly, (Hendrycks & Dietterich, 2019; Ford et al., 2019; Xie et al., 2020; Kang et al., 2019;
Kireev et al., 2022) found that adversarial training using Lp norms (without any further constraints)
also yields good accuracy to several common perturbations such as blur and weather.

Our contribution. In this paper we offer progress in the quest for corruption robustness by present-
ing a powerful novel adversarial attack and associated adversarial training. We will demonstrate that
the latter can yield networks with both only a small drop in accuracy on unperturbed test data and
better robustness across common categories of corruptions. The key idea is to perform an adver-
sarial attack in a meaningful subspace of a transformed image representation (e.g., the details in a
wavelet-transformed image) while, at the same time, obeying the L∞ box in the image domain, i.e.,
staying close in pixels. In other words, our attacks operate exclusively in a meaningful subspace (as
defined by the chosen transform) of the L∞ box.

Doing so is not possible with prior attacks such as PGD since the needed projections are not avail-
able in closed form for such a complex perturbation space. Instead, we use the barrier method from
non-linear programming (Chachuat, 2007; Nocedal & Wright, 2006) to compute perturbations while
satisfying the constraints without the need for projections. Doing so makes our approach efficient
enough for attacks and to be integrated in adversarial training and for a wide class of image transfor-
mations including classical linear ones such as the discrete wavelet transform (DWT) or non-linear
learned transforms such as flow-based models. Specifically, we contribute:

• A novel white-box attack that efficiently computes adversarial perturbations in a predefined
transformed representation subspace while obeying the L∞ pixel constraint at the same
time.

• Instantiations of our approach for the two classical linear transforms DCT and DWT and
the nonlinear learned flow-based model Glow (Kingma & Dhariwal, 2018).

• An evaluation of our attacks against prior work on ImageNet and CIFAR-10. In particular,
given the same L∞ box, we show that adversarial images found by our approach present
significantly higher similarity to the originals, as verified by the learned perceptual image
patch similarity metric (LPIPS) (Zhang et al., 2018).

• We show that using our attacks for adversarial training can yield excellent robustness on
the image corruption benchmark CIFAR-10-C, up to on average 12.17% more accurate,
with only a small drop in natural accuracy, than those trained under the full L∞ box.

2 ADVERSARIAL ATTACK

In this section we explain our adversarial attack based on perturbing an image in a transformed
representation, while, at the same time, obeying the classical box constraint in the pixel domain.
The approach is depicted as cartoon for two-dimensional images in Fig. 1 and leverages the barrier
method (Chachuat, 2007; Nocedal & Wright, 2006) from non-linear programming for the occurring
optimization problem.
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Figure 1: High-level depiction (in two dimensions) of our approach for finding an adversarial ex-
ample of an image x using a chosen transform ϕ and split operator σ. (a) shows the considered
perturbations Sϕ(x), (b) the same in the ϕ-domain, (c) a possible perturbation z∗ in the ϕ-domain
by perturbing a but maintaining e, and (d) the result in the image domain.

2.1 PROBLEM STATEMENT

Let ϕ be an image transformation that maps a pixel image x ∈ Rn to a meaningful representation of
the same dimension z = ϕ(x). We assume that ϕ is bijective and (almost everywhere) differentiable.
We aim to perturb some coordinates of z while leaving others unperturbed. To do so we define the
split operator σ that divides z into two vectors: e ∈ Rp (called essential) collects the coordinates to
be maintained, and a ∈ Rq (called auxiliary) those to be perturbed. Thus, p+ q = n. Formally,

σ(z) = (e,a) (split), z = σ
−1
(e,a) = γ(e,a) (combine). (1)

For example, if ϕ is the DCT at the heart of JPEG compression, e could collect the lowest frequen-
cies that are most important for image recovery and a the remaining higher ones.

Let f be a classification model (e.g., a neural net) that correctly predicts the label c of the image x.
After transforming x to ϕ(x) = z and applying a chosen σ to obtain e and a, we aim to perturb a
to a∗ such that x∗ = ϕ−1

(
γ(e,a∗)

)
gets misclassified: f(x∗) = c∗ ̸= c (top row in Fig. 1). The set

of these perturbations yields a (not necessarily linear) subspace of dimension q in the image (pixel)
domain. In addition, we impose an L∞ constraint on these perturbations in the image domain.

In summary, the perturbation space we consider is given by the intersection

Sϕ(x) = ϕ
−1
(
γ(e,Rn)

)
∩ B(x, ϵ) (2)

and shown in yellow in Fig. 1a with the box depicted in green. A possible perturbation x∗ is shown
Fig. 1d. In the transformed ϕ-domain, ϕ(B(x, ϵ)) has some irregular shape (Fig. 1b), whereas the
perturbations of a constitute a linear subspace.

2.2 ATTACK DESCRIPTION

The only free parameter in our perturbation space is a∗. Thus, finding the corresponding adversarial
example x∗ = ϕ−1

(
γ(e,a∗)

)
amounts to solving a constrained optimization problem of the form

min
a∗∈A

L(a∗), (3)

where L is a function that promotes misclassification when minimized. Several examples have been
used in the literature (Carlini & Wagner, 2017). We use the negative cross entropy −H:

L(a∗) = −H(f(ϕ
−1
(γ(e,a∗))), c). (4)

The set A ⊂ Rq in (3) represents the allowed perturbation of a∗ depicted in Fig. 1b. Formally,

A = {a∗ ∈ Rq : γ(e,a∗) ∈ ϕ(B(x, ϵ))} = {a∗ ∈ Rq :
∥∥ϕ−1

(
γ(e,a∗)

)
− x

∥∥
∞ ≤ ϵ}. (5)
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Solving this problem by a projected gradient descent (PGD) scheme, analogous to (Madry et al.,
2018), would amount to iterating over two phases: updating a∗ in the direction that minimizes L to
promote misclassification and then projecting the updated a∗ back into A as illustrated in Fig. 2a.
Unfortunately, deriving this needed projection is practically unfeasible due to irregular shape of the
perturbation shape for q ≥ 2.1 Thus, we need a fundamentally different approach to solve (3).

2.3 THE BARRIER METHOD
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Figure 2: Comparison between one update step of
PGD vs. the barrier method.

To remove the need for projection, we propose
a method entirely different from the PGD ap-
proach from (Madry et al., 2018). It is based
on the so-called barrier method from nonlin-
ear programming (Chachuat, 2007; Nocedal &
Wright, 2006). In the context of adversarial
attacks, the barrier method was used before
by (Finlay et al., 2019) to enforce a decision
boundary constraint, which is fundamentally
different from the subspace constraint that we
are targeting.

To apply the barrier method, we first rewrite (3)
into an inequality to obtain the standard form
of nonlinear programming problems. This is
straightforward using the definition of A in (5):

min
a∗∈Rq

L(a∗) subject to g(a∗) ≤ 0, where g(a∗) =
∥∥ϕ−1

(
γ(e,a∗)

)
− x

∥∥
∞ − ϵ. (6)

Problem translation. The barrier method translates problem (6) into the form

min
a∗

θ(µ) s.t. µ ≥ 0, (7)

where θ(µ) = inf{L(a∗) + µb(a∗)) : g(a∗) < 0}. The barrier function b is intended to take
the value zero on A, and the value ∞ on its boundary. This guarantees that a∗ does not leave A,
and consequently the solution x∗ does not leave Sϕ(x) provided that the minimization problem
starts at an interior point. However, this discontinuity poses difficulties for gradient-based solvers.
Therefore, a more realistic construction of b would be non-negative and continuous inside A and
approach infinity as the boundary of A is approached. We adopt this choice: b(a∗) = − 1

g(a∗) .

As a result, if we minimize the function L(a∗) + µb(a∗) starting from a point in the interior of A,
the term b(a∗) approaches infinity as a∗ moves near the boundary preventing the violation of the
constraint g(a∗) ≤ 0.

The concrete algorithm. Usually, the minimization in (7) is performed by a second-order Newton
or quasi-Newton solver (Chachuat, 2007). However, we opt for a fast first-order update rule, which
we found more practical in our setting (after setting a0 to a):

at+1 = at − η · sign
(
∇aL(at) + µ∇ab(a

t)
)
. (8)

The idea of this update is that the gradient of the barrier function ∇ab(a
t) pushes back when at

approaches the boundary of A from the interior (see Fig. 2b for an illustration). Since this gradient
has very small values on points that are far from the boundary (as b is flat around the center of A), the
step size η should therefore be small enough to allow at+1 to progress slowly toward the boundary
where ∇ab(a

t) shows its effect, instead of causing a large leap that might drive at+1 out of A as in
PGD.

After T iterations, we report the modified image found in this subspace x∗ = ϕ−1(γ(e,aT )). Just as
in the original PGD attack, there is no optimality guarantee of this solution for an arbitrary classifier
f .

Dealing with the discontinuity of the L∞ norm. Computing the gradient of the barrier function b
in the iterative update (8) using the chain rule involves computing the gradient of g, i.e., the gradient

1Fig. 1b is misleading here since A has only one dimension: q = 1.
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of the L∞ norm ∇||.||∞. The latter is highly sparse as only one dimension is +1 or -1 (the one
with the maximum absolute value) and all the other dimensions are 0. As a result, using it during
optimization causes oscillation issues leaning to a poor convergence (see Sec.VI.C of (Carlini &
Wagner, 2017) for a numerical example).

In our work, we eliminate this issue by replacing g with another function g̃ : Rq → R2n that
equivalently characterizes the set A = {a∗ ∈ Rq : g̃(a∗) ≤ 0} and is defined as follows:

g̃(a∗)k =

{
ϕ−1(γ(e,a∗))k − xk − ϵ, for k ≤ n,

−ϕ−1(γ(e,a∗))k−n + xk−n − ϵ, otherwise.

Hence, the barrier function b is replaced by b̃(a∗) = −
∑2n

k=1
1

g̃(a∗)k
and then used in (8).

In the implementation, we also consider the natural range of pixels [0, 1]n. That is by enforcing the
inequalities xk ≥ 0 and xk ≤ 1 for all k = 1, .., n through the same procedure detailed above.

3 INSTANTIATION FOR DIFFERENT IMAGE REPRESENTATIONS

Our attack can be used with any image transformation ϕ that satisfies the conditions stated in Sec-
tion 2.1 and any choice of split operator σ. In this paper we consider three instantiations of ϕ: the
two classical linear DCT and DWT from the JPEG and JPEG2000 standards (Wallace, 1992; Adams,
2001), and a learned transform based on the flow-based model Glow.

DCT. As in JPEG, we apply the DCT on 8 × 8 blocks and first convert from RGB to the YCbCr
color space2. We determine the auxiliary a in the DCT domain by inspecting the JPEG quantization
tables; namely a collects the frequencies that are most severally reduced in the JPEG compression
step (entries with large values in the quantization table, refer to Appendix A). Those are 12 out of
64 luminance frequencies and 51 out of 64 chrominance frequencies for each block. The others are
assigned to the essential e. As a result, p ≈ 0.4n.

DWT. As for the DCT, and in JPEG2000, Similarly, we first perform a color conversion before
applying the two-dimensional wavelet to the entire image. As DWT we use the Cohen-Daubechies-
Feauveau (CDF) 9/7 lowpass and highpass filters 3. The result is a downscaled version of the image
that we consider the essential e of dimension p = n/4, plus horizontal, vertical, and diagonal details
that we assign to the auxiliary a.

Glow. Many deep learning techniques provide meaningful representation of images such as varia-
tional auto-encoders (VAEs) (Kingma & Welling, 2013). As a third instantiation for our attack, we
chose the flow-based model Glow (Kingma & Dhariwal, 2018) because it is bijective with an exact
formula for the inverse, unlike other flow-based models for which one can compute the inverse only
iteratively such as iResNets (Behrmann et al., 2018).

Glow is a normalizing flow (Papamakarios et al., 2021), a sequence of invertible mappings that
transform images x ∈ Rn drawn from a complex intractable probability distribution, that is accessed
through sampling, to latent vectors with the same dimension belonging to a Gaussian distribution
z ∈ Rn.

Even when Glow is trained only on images without labels, the latent space has been shown to be
useful for down-stream tasks (Kingma & Dhariwal, 2018; Peychev et al., 2022). Further, we are
particularly interested in the class-conditional variant of Glow (Kingma & Dhariwal, 2018), where
a classification loss is introduced to effectively predict the label of the input image using only one
quarter of components of the latent vector z. This can be viewed as a way to force these component
to contain the most essential features needed to identify objects within images. More details about
how we trained this model are provided in Section 4. The essential e collects the aforementioned
quarter of z with p = n/4, while the rest is the auxiliary a.

4 EXPERIMENTAL EVALUATION

2Y is the luminance component and Cb and Cr are the chrominance components of the blue and red differ-
ence

3as defined in https://ch.mathworks.com/help/wavelet/ref/dwtfilterbank.html
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Proposed attacks on the subspaces Sϕ Baseline attacks on the full box B
barrier-glow barrier-dwt barrier-dct barrier pgd apgd-ce apgd-dlr square

ϵ = 0.025
avg. L∞ 0.003089 0.0137 0.01138 0.02282 0.025 0.025 0.025 0.02447
avg. L2 0.02929 0.1752 0.117 0.7427 0.9015 1.134 1.012 1.346

avg. LPIPS 7.371e-06 1.62e-05 2.903e-06 0.0007075 0.0008824 0.001483 0.0009306 0.00866
success rate (%) 1.82 44.64 26.38 89.06 100 100 100 97.88

ϵ = 0.05
avg. L∞ 0.01043 0.03459 0.03118 0.04995 0.05 0.05 0.05 0.04999
avg. L2 0.09889 0.4258 0.327 1.465 1.504 2.07 1.994 2.738

avg. LPIPS 5.066e-05 7.237e-05 1.546e-05 0.002828 0.002967 0.006253 0.004671 0.03012
success rate (%) 4.09 77.35 50.55 99.86 100 100 100 99.98

ϵ = 0.1
avg. L∞ 0.0345 0.06623 0.06067 0.1 0.1 0.1 0.1 0.1
avg. L2 0.3329 0.759 0.6359 2.554 2.579 3.838 3.898 5.425

avg. LPIPS 0.0003574 0.000223 5.293e-05 0.01036 0.01055 0.02591 0.02164 0.07852
success rate (%) 9.41 97.5 81.54 100 100 100 100 100

ϵ = 0.15
avg. L∞ 0.06477 0.09185 0.08248 0.15 0.15 0.15 0.15 0.15
avg. L2 0.6381 1.01 0.8672 3.558 3.581 5.547 5.726 8.045

avg. LPIPS 0.001051 0.0004038 9.732e-05 0.02137 0.02159 0.05413 0.04825 0.1303
success rate (%) 15.53 99.82 93.95 100 100 100 100 100

ϵ = 0.2
avg. L∞ 0.09581 0.1141 0.1008 0.2 0.2 0.2 0.2 0.2
avg. L2 0.9616 1.224 1.066 4.53 4.552 7.171 7.616 10.58

avg. LPIPS 0.002097 0.0006111 0.0001472 0.03471 0.03506 0.0849 0.08265 0.1774
success rate (%) 21.95 99.98 97.94 100 100 100 100 100

Table 1: Evaluation of our three proposed attacks against five baseline attacks for various L∞ box
radii ϵ on the correctly classified images of CIFAR10 testset (9546 images) using T = 30 iterations.
We show the average L∞, L2, and LIPS distance of the obtained adversarial examples compared to
the original (lower is better). Further, we show the success rate of the attacks. An analysis of the
similarity-success rate trade-off is provided in Appendix. B

𝕊ϕ subspaces Full box 𝔹

Figure 3: A sample from Imaget-
Net under the same settings as
Fig. 4 (the Glow instantiation is
omitted due to the high training
cost on 256x256 images).

In this section, we first examine our adversarial at-
tack on naturally trained classification models, namely a
DenseNet121 (Huang et al., 2016) for CIFAR-10 and a vi-
sion transformer (ViT-B-16) (Dosovitskiy et al., 2020) for Ima-
geNet. Since our attacks operate within predefined L∞ boxes,
we compare them against state-of-the-art L∞-based attacks.
Then we leverage our attacks for adversarial training and eval-
uate the robustness of the obtained networks against common
image corruptions. All of our code and scripts to reproduce the
experiments will be made available under a GPLv2 license.

The three instantiations of our method from Section 3 are
called barrier-dct, barrier-dwt, and barrier-glow with associ-
ated perturbation spaces (see (2)) Sdct, Sdwt, and Sglow, respec-
tively. We also implemented an attack barrier in the pixel do-
main with standard box constraint based on the barrier method
as a sanity check for comparison to PGD. Following (Kingma
& Dhariwal, 2018), the class-conditional Glow architecture is
composed of 3 flow levels; the depth of each level is 32, trained
on CIFAR-10 for 1600 epochs with a batch size of 512.

4.1 COMPARISON OF ATTACKS

We compare our attacks against four baselines: standard PGD, the two variants of the automatic
projected gradient descent attack (APGD) (Croce & Hein, 2020), and the square attack (An-
driushchenko et al., 2020). We ran all the mentioned attacks on the correctly classified images
of CIFAR-10 testset (9546 images) and report averages in Table 1 for various choice of box bounds
ϵ, showing L∞ distance, L2 distance, attack success rates and distance using the LPIPS similar-
ity metric that relies on deep features learned in supervised/self-supervised/unsupervised regimes
proven effective in capturing similarity between images (Zhang et al., 2018).
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Further, we randomly selected images to show the found adversarial examples and the associated
difference to the original in Figs. 4 (CIFAR-10) and 3 (ImageNet). Finally, for ϵ = 0.1, Fig. 5 shows
the interplay between LPIPS distance, L∞ distance, and attack success rate.

Pixel-based attacks, 𝔹Proposed attacks, 𝕊ϕ

Figure 4: Two randomly selected images
from CIFAR-10 and adversarial examples
found by our proposed attacks compared to
prior attacks, all run with L∞ box radius
value of ϵ = 0.1. Each row of adversarial im-
ages is followed by a row of heatmaps repre-
senting the pixelwise difference w.r.t the cor-
responding clean image in the first column:
white = 0 and black = ϵ.

First, Fig. 4 visually shows that the adversarial im-
ages found by our attacks are significantly less vi-
sually impacted compared to those reported by the
pixel-based attacks, even when targeting relatively
large L∞ box radii. Table 1 confirms this higher vi-
sual similarity by a consistently lower values in both
LPIPS similarity distance and L2 distance across all
experiments. We also observe that attacks based on
Glow produce results that are adapted to the depicted
scenery. This is not the case for DCT and DWT
which modulate details. Fig. 3 shows the same be-
havior on image net where we consider in the in-
stantiation of our method for classical transforms
barrier-dct and barrier-dwt without the learning-
based instantiation barrier-glow due the high cost
of training this generative model on 256 by 256
images (even experiments of the paper proposing
Glow (Kingma & Dhariwal, 2018) down-scaled Im-
ageNet images to 32x32 or 64x64). We notice that
barrier-dct introduces block boundary artifacts. In
the L∞ metric we observe that our proposed attacks use the freedom provide by ϵ but, unlike all
benchmarks, typically do not find adversarial examples at the boundary of the box. This is also ex-
plained by the lower dimension of the perturbation subspace that we consider, and is not an intrinsic
consequence of using the barrier method, since, when applied in the image domain on the entire box
(our sanity check, first column of baseline attacks in Table 1), it operates similar to the PGD attack.

4.2 ADVERSARIAL TRAINING FOR PRACTICAL ROBUSTNESS

The high similarity and semantic nature (in the sense of the transform being used) of the adversarial
examples produced by our attacks motivates their use as proxies to achieve robustness against an-
other class of image perturbations that preserves visual similarity: common image corruptions. To
do so, we use our attacks for adversarial training (AT), a technique in which the neural network is
trained on adversarial examples aiming to increase robustness against this adversary.

Specifically, we adopt the AT technique TRADES (Zhang et al., 2019), which is a heuristic algo-
rithm based on multi-class calibrated loss theory that balances the trade-off between robustness and
accuracy. We train for robustness under four types of constraints: L∞ box B, and DCT subspace
Sdct, DWT subspace Sdwt and Glow subspace Sglow against their corresponding adversaries: the
standard pgd, barrier-dct, barrier-dwt, and barrier-glow, respectively. All ATs are granted the same
number of iterations T = 10 to fetch adversarial examples for each training epoch using a common
choice of ϵ = 0.05. The naturally trained vanilla model is the same as Sec. 4.1. All models are
trained without any additional data. All models are DensNet121 (Huang et al., 2016) which is a
multigrade architecture found to resist noise corruptions more effectively than ResNets (Hendrycks
& Dietterich, 2019).

We consider the CIFAR-10-C dataset (Hendrycks & Dietterich, 2019), a benchmark constructed by
applying common image corruptions to the CIFAR-10 test set. These corruptions are only used for
evaluation and not to augment the data during training. The results for all categories in CIFAR-
10-C are reported in Table 2. The first data column show the accuracy on the clean, unperturbed
images. The latter columns show the accuracy on corrupted images, considering 18 different types
of corruptions: different forms of blurring, digital, noise corruptions, and weather related ones.

First, networks trained under our subspace constraints achieve higher accuracy on corrupted images
compared to the model trained under the box constraint across all types of corruptions. They do so
while suffering only a minor reduction in natural accuracy compared to the vanilla network. The
performance of AT with our DWT subspace constraint Sdwt stand out in particular. On average, it is
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Table 2: Accuracies on different image corruption categories of networks adversarially trained under
different constraints.

Natural Blur Digital

Gauss Motion Defocus Zoom Contrast Elastic JPEG Pixel Saturate

Vanilla (no AT) 95.46 72.36 81.22 83.81 77.74 83.01 85.04 81.07 74.83 92.46
Full L∞ box B 81.23 75.36 73.77 77.12 76.30 45.47 75.54 79.30 79.23 77.75
Proposed subspace Sdct 94.84 76.36 79.06 85.01 80.81 78.45 86.06 88.02 77.13 92.23
Proposed subspace Sdwt 93.83 87.95 85.55 89.91 88.79 67.28 88.42 89.44 92.09 88.93
Proposed subspace Sglow 95.41 77.56 84.27 85.93 81.75 82.81 86.73 82.36 75.31 92.23

Natural Noise Weather

Gauss Impulse Speckle Shot Snow Fog Frost Bright Spatter

Vanilla (no AT) 95.46 48.50 60.21 65.09 61.09 84.33 89.15 81.55 94.00 87.99
Full L∞ box B 81.23 75.61 73.78 76.67 76.68 75.15 59.69 71.02 77.92 77.24
Proposed subspace Sdct 94.84 68.83 68.71 76.56 75.83 85.37 86.84 83.60 93.62 87.86
Proposed subspace Sdwt 93.83 81.83 73.98 84.93 85.24 88.89 80.34 88.79 92.05 89.78
Proposed subspace Sglow 95.41 43.77 57.32 60.33 56.15 85.50 90.81 82.44 93.99 87.28

7.31% more accurate than the vanilla model and 12.27% more accurate than the model trained under
the standard box constraint B. The sacrifice in natural accuracy is only about 1.5%. We note that
these results are in line with recent advances in machine learning interpretability where the wavelet
domain also provides better performance than the pixel-based methods (Kolek et al., 2022).

Finally, we note that AT with Sglow does not perform well on corruption, possibly since the features
learned by the flow-based model are semantically at a higher level, and thus not compatible with
the considered corruptions that are closer related to the DCT and DWT frequency representations.
However, AT with Sglow practically maintains the natural accuracy.

Limitations and discussion. For the experiment in Table 2 there are techniques that achieve bet-
ter corruption robustness. These are not based on adversarial attacks but on other data augmenta-
tion techniques (Geirhos et al., 2018; Erichson et al., 2022; Zhang et al., 2017; Hendrycks et al.,
2019; Park et al., 2022; Yin et al., 2022; Liang et al., 2023). They are specifically targeting this
benchmark (whereas our approach is oblivious to it) and usually train substantially larger networks
(e.g., WideResNet-28-4 used by NoisyMix (Erichson et al., 2022)) and require pre-training on larger
datasets.

Our goal was to expand the tool set of adversarial attacks and to also make progress on the link be-
tween adversarial robustness and corruption robustness as a followup to the findings of (Hendrycks
& Dietterich, 2019; Ford et al., 2019; Xie et al., 2020; Kang et al., 2019; Kireev et al., 2022). The
precise specification of our perturbation space makes porting of state-of-the-art certification tech-
niques (either approximation-based (Singh et al., 2019; Müller et al., 2022) or probabilistic (Cohen
et al., 2019; Carlini et al., 2022)) to operate under the proposed constraints possible. The generality
of our approach in the choice of transform ϕ and associated subspace to be perturbed invites further
exploration.

5 RELATED WORK

We cited a number of related work in the introduction and throughout the paper. Here we focus on
prior uses of transformed image representations. In particular, discrete linear transforms have been
used in machine learning for different purposes. For example, (Gueguen et al., 2018; dos Santos &
Almeida, 2021) proposed DCT-based architectures operating directly on the JPEG format to avoid
decompression before inference. Furthermore, (Kolek et al., 2022) have extended the rate-distortion
framework (MacDonald et al., 2019) to the wavelet domain to build a state-of-the-art explanation
method for DNN. The remainder of this section is focused on previous works related to robustness.

Discrete transforms for robustness. Most prior work using discrete transforms aimed at defending
against pixel-based adversarial attacks or improving the generalization of neural networks towards
common image corruptions. The work of (Dziugaite et al., 2016; Das et al., 2017; Guo et al.,
2018) aims to filter out noise from the adversarial examples by adjusting various quality factor
values during JPEG compression/decompression, which amounts to reducing the magnitude of the
DCT coefficients. Closely related, (Bafna et al., 2018) sought L0 robustness through projecting the
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largest DCT coefficients. These defenses have been shown to be breakable through adaptive attacks
(Shin & Song, 2017; Tramèr et al., 2020), specifically, by approximating the non-differentiable
rounding operator of the JPEG compression and running a gradient-based attack. Other fast and
iterative rounding schemes have been proposed in (Shi et al., 2021b). (Yin et al., 2019; Guo et al.,
2019) considers L2 perturbations that preserve norms due to orthogonality of the used transforms,
discrete Fourier transform (DFT) and DCT respectively. The work in (Duan et al., 2021) generates
adversarial examples by removing information in the DCT domain. The L∞ box used is on the
JPEG quantization matrix instead of the input image. Since the DCT coefficients of the clean image
are element-wise divided by this matrix before rounding, larger box radii allow their technique to
eliminate more frequencies from the image. In the same direction, (Hossain et al., 2019) preceded
the neural network by a DCT based layer that randomly crops some DCT coefficients during training.
This can be interpreted as an extension of the dropout technique aiming at its regularization effects.
(Yahya et al., 2020) propose a gradient-free method that obtains adversarial examples by mixing
the frequencies of a clean image with the frequencies of another auxiliary image that they call
watermark. In addition to DFT and DCT, they make use of two wavelets: Haar and Daubechies
3. (Sharma et al., 2019) applies masks to selectively perturb low and high frequencies. Much like
(Deng & Karam, 2020; Shi et al., 2021a), all these works do not provide any guarantee on the L∞

bounds in the pixel space, which is the primary contribution in our work. We can also target low
dimensional spaces which (Long et al., 2022) cannot. Yuan et al. (2022) proposes a DCT-based
attack and uses the fact that DCT is linear and orthogonal, where our method only needs invertible
and differentiable (e.g. Glow) since we do not need projections due to the barrier method. (Luo
et al., 2022; Wang et al., 2021; Laidlaw et al., 2021; Kireev et al., 2022) explicitly uses a similarity
distance in the optimization problem formulation in the pursuit of semantically similar adversarial
examples.

In contrast to all prior work we show how to perform attacks on a subspace of an image representa-
tion, linear or not, that also enforces the L∞ box in the image domain.

Learning-based methods for robustness. Flow-based generative models themselves are prone to
adversarial attacks that manipulate their likelihood scores (Pope et al., 2020). That is a different
focus from our work as we are used a flow-based generative model (in one of our 3 instances) to
define a meaningful subspace rather than a likelihood estimation. (Huang & Zhang, 2020; Baluja
& Fischer, 2018) trained NNs to produced perturbations under the L∞ and L2 constraints that can
operate in the black-box settings. Adversarial generative models (GANs) also have been trained to
generate adversarial examples in semi-whitebox and black-box settings. (Dolatabadi et al., 2020)
used a pre-trained flow-based model (RealNVP (Dinh et al., 2017)) to craft adversarial examples in
black-box settings under the L∞ constraint. They used an additive noise in the latent space where
they faced a similar projection problem as this work. They solve it by going back and forth to the
pixel space to project using the PGD formula. In contrast, we removed the projection by using
the barrier method in a way that is fast enough to be incorporated in adversarial training. More
importantly, we operate in a subspace within the box instead of the full box. We show that doing so
is effective in AT to produce networks robust to common image corruptions. Some works altered the
semantic features of images through conditional generative models (Joshi et al., 2019) or conditional
image editing(Qiu et al., 2020), but those are not bounded to a norm.

6 CONCLUSION

We have expanded the toolbox of adversarial attacks, and associated adversarial training, with a gen-
eral, and powerful novel method. The novelty is twofold. First, in the ability to attack semantically
(in a sense associated with the chosen transform) in a suitable transformed image representation
space while preserving proximity in the pixel space. Second, in using the barrier method needed to
enable such an attack when projections are not available. Thus our approach fuses two prior lines of
research that attack in either of these spaces. We emphasize that the transform used does not need
to be linear, only invertible, as we show by also considering a learned transform. The benefit of
our approach is best visible when used for adversarial training: in particular with the DWT a major
improvement in accuracy on a broad range of corruptions with only a small drop in natural accuracy.

The generality of our work in both chosen transform and chosen subspace should invite further
exploration. In particular, by leveraging decades of research on image representations for better
defining constraints under which adversarial robustness is studied.
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F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Sys-
tems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.
cc/paper/2019/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf.

Hao Yin, Dongyu Cao, and Ying Zhou. Randommix: An effective framework to protect user privacy
information on ethereum. In 2022 IEEE 22nd International Conference on Software Quality,
Reliability, and Security Companion (QRS-C), pp. 764–765, 2022. doi: 10.1109/QRS-C57518.
2022.00124.

Zheng Yuan, Jie Zhang, and Shiguang Shan. Adaptive image transformations for transfer-based
adversarial attack. In Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part V, pp. 1–17, Berlin, Heidelberg, 2022. Springer-Verlag.
ISBN 978-3-031-20064-9. doi: 10.1007/978-3-031-20065-6 1. URL https://doi.org/
10.1007/978-3-031-20065-6_1.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International conference
on machine learning, pp. 7472–7482. PMLR, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empiri-
cal risk minimization, 2017. URL https://arxiv.org/abs/1710.09412.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Dawei Zhou, Tongliang Liu, Bo Han, Nannan Wang, Chunlei Peng, and Xinbo Gao. Towards
defending against adversarial examples via attack-invariant features. In International Conference
on Machine Learning, pp. 12835–12845. PMLR, 2021.

15

https://proceedings.neurips.cc/paper/2019/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf
https://doi.org/10.1007/978-3-031-20065-6_1
https://doi.org/10.1007/978-3-031-20065-6_1
https://arxiv.org/abs/1710.09412


Under review as a conference paper at ICLR 2024

A SELECTING DCT COEFFICIENTS FOR THE SPLIT OPERATOR σ

These are the quantization tables used in JPEG for the luminance QY and the two chrominance
channels QC . We select the DCT coefficients corresponding to entries below 99 (in bold) to the
essential vector e while the rest is the auxiliary vector a.

QY =



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


(9)

QC =



17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99


(10)

B THE SIMILARITY-SUCCESS RATE TRADE-OFF

Adversarial examples exhibit high similarity. The trade-off for this higher similarity is a lower
success rate for very small ϵ, whereas the prior benchmarks almost always succeed as visualized in
Fig. 5. This is due to the fact that, despite being bounded by the same L∞, our methods operate
only on a q-dimensional subspace of the n-dimensional box, where q ≈ 0.6n for barrier-dct, and
q = 0.75n for barrier-dwt and barrier-glow.

0 0.05 0.1

Similarity distance [LPIPS]

0.00

0.02

0.04

0.06

0.08

0.10

L  [pixel]
attack
barrier_dct
barrier_dwt
barrier_glow
barrier
pgd
apgd-ce
apgd-dlr
square
success
9.41
81.54
97.5
100.0

Figure 5: Interplay of LPIPS distance, L∞ distance, and success rate (encoded by marker size) for
ϵ = 0.1 based on the numbers in Table 1.
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