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Background: Across medicine, prognostic models are used to estimate patient risk of certain future health
outcomes (e.g., cardiovascular or mortality risk). To develop (or train) prognostic models, historic patient-
level training data is needed containing both the predictive factors (i.e., features) and the relevant health
outcomes (i.e., labels). Sometimes, when the health outcomes are not recorded in structured data, these are
first extracted from textual notes using text mining techniques. Because there exist many studies utilizing text
mining to obtain outcome data for prognostic model development, our aim is to study the impact of the text
mining quality on downstream prognostic model performance.

Methods: We conducted a simulation study charting the relationship between text mining quality and
prognostic model performance using an illustrative case study about in-hospital mortality prediction in
intensive care unit patients. We repeatedly developed and evaluated a prognostic model for in-hospital
mortality, using outcome data extracted by multiple text mining models of varying quality.

Results: Interestingly, we found in our case study that a relatively low-quality text mining model (F1 score ~
0.50) could already be used to train a prognostic model with quite good discrimination (area under the receiver
operating characteristic curve of around 0.80). The calibration of the risks estimated by the prognostic model
seemed unreliable across the majority of settings, even when text mining models were of relatively high quality
(F1 ~ 0.80).

Discussion: Developing prognostic models on text-extracted outcomes using imperfect text mining models
seems promising. However, it is likely that prognostic models developed using this approach may not produce
well-calibrated risk estimates, and require recalibration in (possibly a smaller amount of) manually extracted
outcome data.
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1. Introduction increasing availability of electronic medical records, often representa-
tive of daily clinical practice populations, researchers have increasingly
started using text mining to extract relevant study variables from the

clinical notes in those records that were not recorded in structured

Prognostic prediction models (and risk scoring rules) have been
built and are used in all areas of medicine to estimate patient risk on
certain future health outcomes [1-6]. Two well-known models to assess
in-hospital mortality are the EuroSCORE [7,8], for patients undergoing
cardiac surgery, and the APACHE score system [9-12], to assess the risk
for intensive care unit patients at their admission. General guidelines
for diagnostic and prognostic prediction model development are clear
about the fact that developing high-quality prognostic models — which
are able to sufficiently discriminate between low and high-risk patients,
and provide well-calibrated predicted risks that correspond to observed

form initially [17-21]. This includes the extraction of data on patient’s
health outcomes from clinical notes, which are then subsequently used
downstream for prognostic model development (schematically shown
in the yellow pathway in Fig. 1). This use of text mining — to extract
outcome data for downstream prognostic model development — opens
up the use of large amounts of readily available medical record data to
develop prognostic models for outcomes that were not structurally col-

risks — requires having representative patient-level data about all im-
portant predictive factors for the outcome to be predicted, as well as
high-quality data about the predicted outcome itself [13-16]. With the
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lected. Using this approach, prognostic models have for example been
developed for the prediction of (text-mined) problematic opioid use af-
ter chronic opioid therapy [22], prediction of (text-mined) falls among
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elderly [23], and the prediction of (text-mined) parkinsonism side-
effects of antipsychotic polypharmacy prescribed in secondary mental
healthcare [24]. However, when using text mining to extract outcomes
for subsequent prognostic model development, potential mistakes by
the text mining model could impact the predictive performance of the
downstream prognostic models, possibly limiting their clinical utility.
While recent guidance on the use of natural language processing in
observational medical research recommends reporting the text mining
extraction performance (e.g., via precision, recall, and F1 score) [25],
to our best knowledge, there has been no methodological research
structurally investigating the relation between common text mining
performance measures and the quality of the downstream prognostic
models developed on text-mined outcome data.

Objective

The main objective of this study is to methodically investigate
and demonstrate how the performance of text mining models to ex-
tract health outcomes (assessed by calculating precision, recall, and
F1 score) relates to the performance of a downstream prognostic pre-
diction model (assessed via discrimination and calibration measures),
developed on the text-mined outcome data. For this, we used an
illustrative case study on the development of a prognostic model to
predict in-hospital mortality for intensive care unit (ICU) patients.

2. Methods
2.1. Study design

An overview of our study design is shown in Fig. 1. First, a prog-
nostic prediction model is developed using well-recorded structured
outcome data (the top blue pathway in the figure), acting as the refer-
ence prognostic model in our study. Then, we simulated the envisioned
target setting, in which the true outcome data are unavailable in struc-
tured form, and text mining is first needed to extract the outcomes, to
then be used for prognostic model development (the yellow part of the
figure). The text-mining based prognostic model development process
is repeated for different text mining models, with different levels of
extraction performance. Finally, the different prognostic models are
evaluated and compared in terms of their predictive performance in
new unseen patients, and related to the text mining quality during their
development. Further details about the study data, the prognostic mod-
eling, the text mining architecture, and how text mining performance
was varied are described in the following sections.

2.2. Data

We used data from MIMIC-III (v1.4) [26], a publicly available dei-
dentified database of medical record data from 53,423 ICU admissions
(of 38,597 uniqie patients) from the Beth Israel Deaconess Medical Cen-
ter in Boston, Massachusetts, USA between 2001 and 2012. It includes
vital signs, medications, laboratory measurements, observations and
notes charted by care providers, diagnostic codes, survival data, length
of stay, among other factors. In MIMIC-III, the in-hospital mortality
(the outcome) is 11.5%. For our methodological study, we split these
data into four non-overlapping subsets: one to develop the text mining
model (TM-train), one to evaluate the text mining model (TM-test), one
to develop the downstream prognostic model (PM-train), and one set
to evaluate the prognostic model (PM-test). To realistically simulate the
prognostic model development process (described in more detail in the
next paragraph) we carefully followed the pipeline by Harutyunyan
et al. [27], who developed a prognostic in-hospital mortality model
in the same setting, and publicly released the code to reproduce their
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Table 1
Table with predictive factors used in the reference prognostic model, following those
used by Harutyunyan et al. [27] (CC BY 4.0).

Predictive factor MIMIC-III table Modeled as
Capillary refill rate Chartevents Categorical
Diastolic blood pressure Chartevents Continuous
Fraction inspired oxygen Chartevents Continuous
Glascow coma scale eye opening Chartevents Categorical
Glascow coma scale motor response Chartevents Categorical
Glascow coma scale total Chartevents Categorical
Glascow coma scale verbal response Chartevents Categorical
Glucose Chartevents, labevents Continuous
Heart rate Chartevents Continuous
Height Chartevents Continuous
Mean blood pressure Chartevents Continuous
Oxygen saturation Chartevents, labevents Continuous
Respiratory rate Chartevents Continuous
Systolic blood pressure Chartevents Continuous
Temperature Chartevents Continuous
Weight Chartevents Continuous
pH Chartevents, labevents Continuous

results. Our eligibility criteria are identical to theirs,! except for two
aspects (needed for our study):

1. A pre-selection is made based on availability of clinical text
notes.

2. Two extra subsets were made for text mining development and
evaluation.

Important to note is that we use the same 85%-15% train-test split
as Harutyunyan et al. [27], resulting in the same PM-test set, facilitating
direct comparison with their reported performance (see Fig. 2).

2.3. Prognostic model development

The model’s predictive input factors (i.e., features or predictors) are
obtained within the first 48 h of admission, and are listed in Table 1.
For each factor, multiple variants are included: the first value, the
final value, the minimum, maximum, mean, standard deviation, and
skew for the first 10%, 25% and 50% as well as the last 10%, 25%
and 50% of time and the full time period. This results in a total of
17 x 7 x 6 = 714 predictive factors used as input for the prognostic
model. Following Harutyunyan et al. [27], all predictive factors are
normalized and missing values are replaced with their mean value in
the training set.

The outcome of our prognostic model is in-hospital mortality, which
is — in our methodological study - available for all patients, and is
defined as whether the patient died within the given hospitalization
or survived until discharge. These structured outcome data are used
to develop our reference prognostic model, while text-mined outcomes
are used to develop all text-mining-based prognostic models (as we
simulate the setting where this outcome is not available in structured
data).

The aforementioned predictive factors and outcome variable are
used to train a prognostic model to predict in-hospital mortality. Fol-
lowing Harutyunyan et al. [27], we used an L2/Ridge-penalized lo-
gistic regression model (with inverse penalization factor C=0.001, the
optimal value in their study). To assess whether our conclusions gen-
eralize to other prognostic modeling techniques, we additionally con-
ducted all our experiments also using a feed-forward neural network
(FFNN) instead of a logistic regression. The details and results on these
experiments can be found in Appendix A.

1 Focusing on first ICU stays of adult patients (due to the substantial
differences between adult and pediatric physiology), for whom their length
of stay exceeds 48 h (to ensure sufficient observations are available).
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Electronic health record data used for
prognostic model development
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Fig. 1. Diagram of how text mining has been used to extract outcome data from text to be used in prognostic model development.
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Fig. 2. Data flow diagram, following Harutyunyan et al. [27]. Any deviation from their data selection is indicated by dashed arrows (in blue). *The number indicated is the total

number of stays in the TM-train dataset. In our experiments, varying fractions of this

2.4. Text mining model development

The text mining models extract the mortality labels via document
level classification. The classification model is based on tf-idf? features
combined with a regularized logistic regression. Based on tf-idf we
selected the 2000 most important words (with the highest tf-idf) and
represent each document as a vector containing the tf-idf values for

2 Tf-idf; term frequency-inverse document frequency. The (automatic) tf-
idf heuristic is commonly used for text classification and identifies frequent
but discriminative words within a certain document collection by prioritizing
words that occur frequently in certain documents (term frequency), but occur
less frequently across documents (inverse of the document frequency).

number will be using for training. TM: text mining, PM: prognostic model.

these 2000 words. The logistic regression used L2-regularization, with C
= 1.7 Common text preprocessing steps, such as lemmatization, number
removal, lowercasing, stop word removal and punctuation removal
were performed to increase the performance of our tf-idf model.

2.5. Variation in text mining performance
We aimed to obtain text mining models with a wide variety in

extraction performance in order to see how their quality affects the

3 This is determined based on a grid search with parameters C € {0.001,
0.01, 0.1, 1, 10, 100, 1000} and {L1, L2}, using a small validation set (a subset
of training).
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Fig. 3. The precision, recall and F1 score: (a) for different split sizes with a fixed decision threshold of 0.5, (b) for different decision thresholds with an equal split size of 0.5.

downstream prognostic models. We used two methods to vary the
performance of the text mining model.

The first method to manipulate the performance of the text mining
model was by using a smaller amount of training data for its develop-
ment. Instead of using all samples from TM-train, to widely vary text
mining performance, we used training dataset proportions in the range
of 0.05 up to 0.95 with increments of 0.05 (in total 19).

The second method to change the performance of the text mining
model was by changing the threshold value for the predicted output
label probability to assign a positive outcome label. For binary classi-
fication settings this is usually set at 0.5 by default (i.e., assigning the
label which is given the highest probability by the model). Increasing
the decision threshold increases precision but reduces recall, while
reducing the decision threshold reduces precision but increases recall.
Changing the decision threshold also influences F1 score. With these
two adaptations, we generated a wide range of precision and recall
values for our text mining model. We used decision thresholds 0.1 up
to 0.9 in increments of 0.1 (in total 9).

Combining both methods resulted in 19x9 = 171 text mining models.

2.6. Evaluation

Following relevant guidance for the evaluation of clinical prognostic
prediction models [15], for each prognostic model, we calculated the
area under the ROC curve (AUROC), the calibration slope, and the cali-
bration intercept in PM-test. The AUROC measures discrimination: how
well the model differentiates between patients with and without the in-
hospital mortality outcome, but does not reflect how close the predicted
probabilities are to actually observed probabilities. This component
is captured by calibration measures [28]. The calibration slope (CS)
indicates whether the probabilities are well spread out or too extreme
(too close to 0 or 1): CS < 1 indicates the probabilities are too extreme,
whereas a CS > 1 indicates predicted probabilities are too conservative
(CS = 1 is the optimal value). The calibration intercept (Intercept)
measures whether the mean predicted probability is in line with the
observed outcome prevalence: Intercept > 0 indicates underestimation,
and Intercept < 0 indicates overestimation (Intercept=0 is the optimal
value).

To evaluate the text mining models, common evaluation measures
are calculated [29] in the TM-test data: precision (also called positive
predictive value), recall (also called sensitivity), and their harmonic
mean (i.e., F1 score).

3. Results
3.1. Text mining model adjustments and performance

In Fig. 3(a) we can see the effect of changing the training data split
size on the F1 score of the positive label. Increasing the training data

size increases the F1 score. The relation seems asymptotic. The first
20% of training data accounts for 60% of the increase in F1 score.
Fig. 3(b) shows the effect of a change in decision threshold on the
performance metrics of the positive label. Interestingly, the optimal
decision threshold seems to be below the default threshold of 0.5, at
around 0.3. The further the threshold from that point, the lower the F1
score. Increasing the threshold increases precision at the cost of a lower
recall, and decreasing the threshold means that the recall increases at
the cost of precision. An optimal F1 score emerges at the intersection
of precision and recall.

3.2. Text mining F1 score and prognostic model discrimination

In Fig. 4 we can see the effect of the F1 score of the text mining
model on the AUROC of the clinical prognostic model, with a line
indicating the models with a 0.5 decision threshold. A higher F1 score
of the text mining model leads to a higher AUROC of the prognostic
model. A relatively low F1 score of around 0.5 already yields an AUROC
above 0.8, which is generally considered good [30,31]. We can also
see that a high enough F1 score (in this case 0.8) can approximate the
AUROC of the model using the true labels. We obtain similar results for
the FFNN (Appendix A).

3.3. Text mining F1 score and prognostic model calibration

The same trend, where a higher F1 score of the text mining model
leads to a prognostic model that more closely resembles the reference
model, continues for the calibration metrics as seen in Fig. 5. In
contrast to discrimination, for both calibration slope and calibration
intercept there are multiple text mining models with higher F1 but
worse calibration scores compared to the reference model, indicating
that calibration is more sensitive to the quality of the text-extracted
outcomes. Similar results were found for the FFNN (Appendix A).

4. Discussion

In our study, we observed that a higher text mining F1 score was
associated with better prognostic prediction model discrimination and
calibration, closer to the reference model.

We found that model calibration was more sensitive to imperfectly
text-mined outcomes compared to model discrimination. This finding
is consistent with other studies investigating measurement error in pre-
dictors and outcomes for (prognostic) prediction models [32-34]. For
quite poor text mining models (F1 score ~ 0.50), requiring only about
40% of the text mining training data, the downstream prognostic model
obtained still quite good discrimination (AUROC ~ 0.80). In contrast,
even for good text mining models (F1 score =~ 0.80) the calibration
was not always in line with the reference model. This indicates that if
calibration is important, which it generally is for prognostic models [5,
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Fig. 5. The calibration slope of the prognostic models against (a) the F1 scores, and (b) the precision and recall (right) of the text mining model. And, similarly, the calibration
intercept of the prognostic models against (c) the F1 scores, and (d) the precision and recall (right) of the text mining model.

28,35,36], (a smaller amount of) manually labeled data might still
be needed to recalibrate a prognostic model developed on text-mined
outcomes [37]. To place this potential requirement in perspective, it is
important to consider that local evaluation and potential recalibration
is also recommended for prognostic models that are not specifically
developed using text-extracted outcomes [15,38]. So a potential need
for recalibration, and the collection of (a smaller amount of) high
quality outcome data may not per se impose extra work compared to
the ‘normal’ prognostic model deployment process.

There is no general consensus on what is a sufficient minimum qual-
ity (i.e., minimum F1 score) of a text mining tool to extract outcomes
sufficiently accurately to be used for prognostic model development.
A general threshold of having at least precision of 90% and recall
of 90% was used by van Laar et al. [39] for extraction of inclusion
criteria, predictors, and outcomes when performing survival analysis

(estimating Kaplan Meier curves). They found only small differences in
results compared to manual extraction of the study variables. Regarding
extraction of prognostic outcomes, this is in line with our study results
about model discrimination.

To fully appreciate the results of our study, a few points should
be considered. First of all, to further confirm the generalizability of
the identified relation between text mining performance and prognostic
model performance our findings should be confirmed in other data, and
for other outcomes. While we varied the prognostic modeling strategy
in our study (using logistic regression and neural networks), other
prognostic modeling techniques, choices in study design (e.g., missing
data or measurement error handling), and different text mining models
should be further explored. Another consideration is that in our study,
the data used to develop the text mining models and prognostic mod-
els were collected in a single institution (with likely similar patient
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characteristics). To expand our findings, it would be interesting to see
our analysis performed on a separate external data set from another
medical institution. This situation, where a text mining model is created
by an organization and adopted by another for usage to develop their
own prognostic model, would pave the way for broader text mining
usage in prognosis and is a valuable next step to consider. Finally, we
did not analyze whether the samples misclassified by the text mining
model were completely at random or systematic. If the outcomes are
systematically misclassified for a certain group of patients, it may
bias the performance of the prognostic model for certain groups of
patients, which may not be visible when inspecting overall performance
measures [40].

5. Conclusions

We concluded that — in our study - a relatively low quality text
mining model (F1 score ~ 0.50) could still be used to extract outcomes
to train a prognostic prediction model with good discrimination (AU-
ROC ~ 0.80, close to using ground truth outcomes). The prognostic
model’s discrimination ability could be increased by slightly decreasing
the decision threshold of the text mining model (below 0.5), resulting
in an increase in the number of outcome events, contributing to the
prognostic model’s discriminative ability. In the vast majority of the
experimental settings, the prognostic model’s calibration was off, even
for quite good text mining models (F1 score ~ 0.80). Two possible
ways to resolve this in practice are to (1) further improve the used
text mining models if possible, or (2) recalibrate the prognostic model
in a (possibly smaller manually annotated) dataset with high quality
outcome labels.

Future work should focus on using available manually labeled data
more efficiently, developing strategies to distribute labeled data ef-
fectively over text mining model development, and validating or re-
calibrating prognostic models. This would reduce the time-effort and
domain expertise required to manually label clinical data.

Summary table

What was already known on the topic:

» Text mining is increasingly being used to extract relevant health
outcomes from clinical notes in the development of prognostic
models.

+ Text mining systems rarely extract information without making
errors.

What this study added to our knowledge:

+ Even if text mining is of moderate quality, it can be used to extract
outcomes to develop prognostic models with good discriminative
ability.

» Even when text mining is of good quality, prognostic models de-
veloped on the text-extracted outcomes may still produce poorly
calibrated risks.
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Appendix A. Feed-forward neural network details and results

A.1. Model architecture

The feed-forward neural network (FFNN) experiments, we used
the same input and outcome data as for the logistic regression. After
minimal tuning of the network’s structure (splitting PM-train in a small
train-validation split, maximizing for AUC), we arrived at a single
densely connected layer with 16 units (from tuning grid {512, 256,
128, 16}), ReLU activation for the intermediate layer, and a logistic
(softmax) activation for the final layer, to obtain probabilistic outputs.
Dropout regularization was then added and set to 0.5. Finally, two
output nodes with softmax activation were used. The loss function was
binary cross-entropy.

A.2. FFNN results
See Figs. A.6-A.8.

Appendix B. Decision threshold results

B.1. Text mining decision thresholds and prediction model discrimination

Fig. B.9 shows how changing the decision threshold of the text
mining model changes the AUROC of the prediction model for an equal
split size of 0.5. Since we know from Fig. 3 that a decision threshold of
around 0.3 leads to a higher F1 score and a higher F1 score leads to a
higher AUROC, this figure is somewhat implied, but it is still interesting
to confirm that a decision threshold of 0.3 led to the model with the
highest AUROC for both FFNN and logistic regression.

B.2. Text mining decision thresholds and prediction model calibration

The influence of the text mining decision threshold, as seen in
Figs. B.10-B.12, seems quite uniform across the intercept and calibra-
tion in the large for both prediction models, but the slope increases
with a an increase of the decision threshold for the logistic regression
model, while for the FFNN model the opposite is true. This means
that the logistic regression model becomes more moderate (predicted
probabilities closer to the average) the fewer samples it has to learn
from, whereas the FFNN becomes more extreme (predicted probabil-
ities closer to 0 and 1). The logistic regression has the best slope of
around 1 (optimal is 1) at decision threshold 0.1, while the FFNN has
the best slope it can achieve at 0.2. The intercept increases for both
models as the decision threshold increases, and both models see an
intercept closest to optimal (0) for a decision threshold around 0.5 or
0.6. The calibration in the large also increases for both models as the
decision threshold shifts to the right, but the FFNN crosses the optimal
CITL (0) at a decision threshold of 0.3, the logistic regression model
only gets closer but never reaches it.
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