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Abstract
One crucial factor behind the success of deep learning lies in the implicit bias induced by noise
inherent in gradient-based training algorithms. Motivated by empirical observations that training
with noisy labels improves model generalization, we delve into the underlying mechanisms behind
stochastic gradient descent (SGD) with label noise. Focusing on a two-layer over-parameterized
linear network, we analyze the learning dynamics of label noise SGD, unveiling a two-phase learning
behavior. In Phase I, the magnitudes of model weights progressively diminish, and the model escapes
the lazy regime; enters the rich regime. In Phase II, the alignment between model weights and the
ground-truth interpolator increases, and the model eventually converges. Our analysis highlights the
critical role of label noise in driving the transition from the lazy to the rich regime and minimally
explains its empirical success. Extensive experiments, conducted under both synthetic and real-world
setups, strongly support our theory.

1. Introduction

One central factor behind the success of modern deep learning stems from the implicit bias induced
by inherent stochastic noise in gradient-based training algorithms. While clean training data is ideal,
recent studies [9, 14, 32] revealed that injecting label noise, or label smoothing during training
can paradoxically improve the generalization of neural networks. This phenomenon challenges
conventional wisdom and raises a fundamental question:

How does label noise confer benefits in over-parameterized models?

Existing Label Noise SGD Theories. Existing theoretical works have tried to understand the
mechanisms behind stochastic gradient descent (SGD) with noisy labels. Blanc et al. [5], Damian
et al. [9], Li et al. [23] showed that label noise implicitly regularizes the sharpness of the minimizers.
HaoChen et al. [14], Vivien et al. [34] proved that training with label noise helps recover the sparse
ground-truth interpolator in a diagonal linear network setup. Takakura and Suzuki [33] analyzed the
implicit regularization of label noise from a kernel perspective. In addition to implicit regularization,
Huh and Rebeschini [15] derived a generalization bound for label noise SGD. However, few attempts
to study the learning dynamics of label noise SGD in a more realistic setting.

Our contributions. In this work, we rigorously characterize the learning dynamics of a two-layer
linear network where both layers are trainable by label noise SGD on a regression task. In particular,
we identify two phases:
• Phase I. The magnitudes of neuron weights progressively diminish, and the model escapes from

the lazy regime [8]; enters the rich regime [13].
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• Phase II. The neurons increasingly align ground-truth interpolator, and the model becomes sparser.
Our analysis highlights the effect of label noise SGD in shifting dynamics from lazy to rich regime,
serving as a minimalist example to explain its intriguing properties.

Notably, the combination of over-parameterization and the intricate coupling between the first
and second layers makes the theoretical analysis of label noise SGD far more challenging than for
simpler linear models. To the best of our knowledge, our work presents the first detailed theoretical
investigation of label noise SGD in networks with two or more trainable layers.

In summary, our work unveils a richer set of implicit biases of label noise SGD. We theoretically
analyze the dynamics of SGD with label noise and carefully characterize how it transitions from lazy
to rich regime. Our results offer valuable insights into the mechanisms behind the noise inherent in
stochastic learning algorithms.

2. Preliminaries

Basic Notation and Setup. Denote [k] = {1, 2, . . . , k}. Let D = {(xi, yi)}ni=1 be the training set,
where xi ∈ Rd is the input and yi ∈ R is the label/target of the i-th data point. Let f : D × Rp → R
be the model function and let f(xi;θ) be the model output on the i-th data point, where θ ∈ Rp are
the model parameters. The loss of the model at the i-th sample (xi, yi) is denoted as ℓ(f(xi;θ), yi),
simplified to ℓi(θ). The loss over the training set is then given by LD(θ) =

1
n

∑n
i=1 ℓi(θ). Note that

we consider classification tasks in our empirical observations, where yi ∈ [c] and c are the number of
classes. We also use AccD(θ) to denote the classification accuracy of f(θ) on the dataset D.

Label Noise SGD. For simplicity, our theoretical analysis in Section 3 considers the Label Noise
SGD in a regression task. Specifically, label noise SGD can be adapted to regression by introducing
the noise variance σ2. In this context, the noisy label ỹi is generated:

ỹi = yi + ϵ,where ϵ ∼ {−σ, σ}. (1)

Assuming the squared loss, the training loss at the i-th data is given by:

ℓ̂i(θ(t)) =
1

2
|f(θ(t);xi)− yi − ϵ|2 . (2)

This setup has been widely adopted in recent theoretical advances on label noise SGD [9, 12, 14, 23,
34].

3. Theoretical Analysis: The Learning Dynamics of Label Noise SGD

This section presents a theoretical analysis of the learning dynamics in a two-layer linear network,
characterizing the phase transition from lazy to rich training regimes under label noise SGD.

3.1. Setup and Overview: A Two-Layer Linear Network

Problem Setup. We consider a regression task where each data pair (xi, yi) ∈ D maps input
xi ∈ Rd to its corresponding target yi ∈ R. We solve this task using a two-layer linear network
of the form ŷi = a⊤Wxi, where W ∈ Rm×d and a ∈ Rm. Here, m represents the number of
hidden neurons, and we denote the i-th neuron of W as wi. The network’s parameters θ = a⊤W
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are optimized using label noise SGD with a squared loss function (see Equation (2)). The update rule
is written as:

θ(t+ 1) = θ(t)− η∇θ ℓ̂ξt(θ(t)), (3)

ℓ̂ξt(θ(t)) =
1

2
|f(θ(t);xξt)− yξt − ϵt|2 , (4)

where ξt ∈ [n] represents the index of a randomly sampled training sample at iteration t, and the
noise ϵt ∼ {−σ, σ} is controlled by the variance σ2.

We consider label noise SGD starting from the following initializations: for i ∈ [m] and j ∈ [d],

wi,j(0)
i.i.d.∼ 1√

d
N (0, I) and ai(0)

i.i.d.∼ 1√
m
N (0, I). This initialization scheme is commonly referred

to as the NTK initialization [16]. Allen-Zhu et al. [2] showed training over-parameterized models
initialized as Section 3.1 with SGD stays in the lazy regime.

Without loss of generality, we assume each input xi is drawn from N (0, Id×d), and that there
exists at least one interpolating parameter θ⋆ that perfectly fits the training set, i.e., L(θ⋆) = 01.

Main Conditions. Before proceeding to our main results, we first state our main conditions.

Condition 3.1. Suppose there exists a sufficiently large constant 2 C such that the following holds:

1. (A1) Model width. The width of the network m satisfies m = C · Ω
(
max

(
(ln

1

η
)6, 1√

η

))
.

2. (A2) Learning rate. The learning rate satisfies η ≤ 1
C96 .

3. (A3) Dataset size. The training set size satisfies n ≥ 1
η2

.

4. (A4) Sparse interpolator. The ground-truth interpolator satisfies ∥θ⋆∥ ≤ m−1/4.

5. (A5) Input magnitude. The maximum norm of the input samples satisfies maxi ∥xi∥ ≤ Cdata.

6. (A6) Dimension of sample. The dimension of a single sample d satisfies d ≥ 9(ln 2)·K4

2c , where K
and c are defined in Lemma B.5.

3.2. Phase I: Progressively Diminishing; From the Lazy to the Rich Regime

Inspired by Allen-Zhu et al. [2], Du et al. [10, 11], we first introduce the definition of the lazy regime.

Definition 3.1 (The lazy regime). ∀i ∈ [m], it holds that ∥wi(t)−wi(0)∥ ≤ 1√
m

.

Definition 3.1 depicts a minimal variation of model weights from its initialization at time t. Based
on Definition 3.1, we establish the following theorem.

Theorem 3.2 (Escaping the lazy regime). Suppose Condition 3.1 (A1-2, 4-6) holds and consider the
update rule in Equation (3). With probability at least 1−O( 1

m), all the neurons wi (i ∈ [m]) escape

from the lazy regime at time T1 =
384

√
logm

σ2η2
√
m

.

1. LD(θ⋆) = 1
n

∑n
i=1 ℓi(θ

⋆) = 1
n

∑n
i=1

1
2
|f(θ⋆;xi), yi|2

2. C ≥ max(e−
(σCdata)2

3 , ( (1−3/(4
√

π))·2
√
d

1/2−3/(4
√
π)

√
π)8, eC2

data), where Cdata is a constant defined in Condition 3.1A(5)
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Figure 1: Two-phase dynamics of label noise SGD under synthetic setup. We replicate the
synthetic problem setup from Section 3.1. (a) Loss curves. Training LDtrain(θ(t))
and test loss LDtest(θ(t)) vs. training iteration t. (b) Learning dynamics on aver-
age. The averaged neuron norm Avgi∈[m](∥wi(t)∥2) and the averaged neuron alignment
Avgi∈[m](⟨wi(t),θ

⋆⟩) vs. training iteration t. (c) Learning dynamics of i-th neuron.
The alignment of i-th neuron ⟨wi(t),θ

⋆⟩ vs. its weight norm ∥wi(t)∥2, with darker points
indicating larger iteration t. (Bottom) Complete view of dynamics of each neuron. This
plot is similar to (c); however, instead of focusing on a single neuron, we plot the status of
each neuron at different iterations t.

Insights from Theorem 3.2. Theorem 3.2 indicates that in Phase I, label noise SGD facilitates the
transition from the lazy to the rich regime. Indeed, such transition is induced by the progressively
diminishing of the first-layer weights W . Specifically, for each neuron wi(i ∈ [m]) at time T , we
can easily derive that,

∥wi(T )∥2 = ∥wi(0)∥2 + η2
T−1∑
j=0

∆Wi(j)− ai(0)
2 + ai(T )

2,

∆Wi(j) = −∇ℓ̂ξj (θ(j))
2((x⊤

ξj
·wi(j))

2 − ai(j)
2 · ∥xξj∥

2).

Since a(0) is initialized small, the term ∇ℓ̂ξj (θ(j))
2(x⊤

ξj
·wi(j))

2 dominates the evolution of the
weight norm. Notably, by Equation (3), we have

∇ℓ̂ξj (θ(j))
2(x⊤

ξj
·wi(j))

2 = (ai(j + 1)− ai(j))
2.

Consequently, the evolution of the first-layer weight norm is primarily determined by the oscillations
of the neurons in the second layer. Intuitively, label noise accelerates the oscillations in the second
layer, thereby contributing to the progressive diminishing of the first-layer weights.
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3.3. Phase II: Feature Alignment and Convergence

When all the neurons satisfy ∥wi∥, |ai| ≤
√
η, we say that Phase II begins. This situation is analogous

to small initialization [13, 36]. During this phase, the neurons in the first layer rapidly align with
the ground-truth interpolator θ⋆. Notice that we consider gradient descent in Phase II for simplicity.
This simplification maintains mathematical tractability without affecting our conclusion in Phase II.
The following lemmas formalize our results in Phase II.

Lemma 3.3 (Alignment). Suppose Condition 3.1 (A1-3, 5-6) holds and consider gradient descent
for updates. Assume that phase II begins at time t1, then at time t2 = t1 + T2, T2 =

1
∥θ⋆∥ · ln(

1
η ), for

any neuron wi it holds

|⟨θ⋆,wi(t2)⟩| ≥ 1−
∣∣∣∣O(ln

1

η
· √η)

∣∣∣∣ . (5)

Lemma 3.4 (Convergence). Suppose Condition 3.1 (A1-3, 5-6) holds and consider gradient descent
for updates. Assume all the neurons are perfectly aligned at step t2. Let t3 = t2 +

1
∥θ⋆∥2 · ln(1/η)

η .

Using gradient descent, we have ∥θ(t3) − θ⋆∥ ≤ |O(η · ln 1
η )|. Furthermore, for any neuron

∥wi(t3)∥ ≥ √
η (i ∈ [m]), we have

|⟨w(t3),θ
∗⟩| ≥ 1−

∣∣∣∣O(η · ln 1

η
)

∣∣∣∣ . (6)

Insights from Lemmas 3.3 and 3.4. Lemma 3.3 indicates that the directions of each neuron rapidly
align to a common direction, that of the ground-truth interpolator θ⋆. This alignment process is
critical in Phase II, where the optimization shifts from the progressive diminishing phase in Phase I
to a more stable and efficient convergence towards the global minimum. Once perfect alignment is
achieved, Lemma 3.4 guarantees that after T3 = O(− ln η

η ) steps, θ(t) converges to the solution θ⋆.

3.4. Experiments: Synthetic and Real-World Setups

The Two-phase picture under synthetic setups. The synthetic experiments precisely replicate the
problem setup in Section 3.1. In Figure 1 (b), the averaged neuron norm 1

m

∑m
i=1 ∥wi(t)∥ initially

drops as t increases, suggesting the progressive diminishing phenomenon in Phase I. Afterwards, the
averaged neuron alignment 1

m

∑m
i=1⟨wi(t),θ

⋆⟩ rapidly increases, implying the convergence to the
global solution in Phase II. Additionally, in Figure 1 (b) and (bottom), we visualize the dynamics of
each neuron in the training process, where a clear two-phase pattern is observed.

The transition from the lazy to rich regime under real-world setups. The real-world experiments
are presented for WideResNets [37] trained on a small subset of CIFAR-10. Specifically, we compare
the loss curves of models trained with and without label noise. We also train a linearized model
without label noise as a baseline. In Figure 2 (a) and(b), the model trained without label noise
behaves similarly to its linearized counterparts, indicating the lazy regime; whereas the model trained
with label noise follows a distinctly different training trajectory, suggesting the rich regime.

4. Conclusion and Outlook

We have presented an in-depth study on the implicit regularization effect of label noise SGD from
empirical observations to theoretical analysis. Notably, our theory demonstrates the surprising effect
of label noise on the oscillation of the second layer, which induces the progressively diminishing
phenomenon, ultimately leading to the transition from the lazy to the rich regime.
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Appendix A. Related Work

Lazy Regime. Numerous theoretical studies investigated the learning dynamics of highly over-
parameterized neural networks in the lazy (or kernel) regime [2, 10, 11, 16, 38]. In this regime, the
model behaves as its linearized model around initialization throughout training, making it equivalent
to a deterministic kernel, specifically the neural tangent kernel (NTK) [16]. The lazy regime typically
occurs in over-parameterized models with relatively large initialization [8]. While global exponential
convergence can be established in this setting, the lazy dynamics fail to explain the generalization
advantage of neural networks over kernel methods—a fundamental question in understanding the
success of deep learning.

Rich Regime. In contrast to the lazy regime, where learning dynamics remain linear, the rich
regime3, also known as feature learning regime, exhibits complex nonlinear dynamics [7, 29],
including the initial alignment phenomenon [25, 28] and saddle-to-saddle dynamics [1, 17, 31].
Some studies have demonstrated that the initialization scale governs the emergence of the rich regime
in (S)GD, which typically occurs at small initialization scales [13, 36]. In this regime, it is shown
that small initialization induces simplicity biases, leading to sparse or low-rank features [6, 22, 26,
28, 30, 35]. Subsequent work further revealed that the relative scale of initializations [3, 19] and their
effective rank [24] can similarly induce feature learning. Beyond initializations, factors like weight
decay [18, 20, 27] and large learning rates [4, 21] have also been shown to drive the rich regimes.

Label Noise SGD Theories. Many existing theoretical works have analyzed label noise SGD from
the perspective of implicit regularization. Blanc et al. [5], Damian et al. [9], Li et al. [23] showed
that label noise implicitly regularizes the sharpness of the minimizers. HaoChen et al. [14], Vivien
et al. [34] proved that training with label noise helps recover the sparse ground-truth interpolator in
a diagonal linear network setup. Takakura and Suzuki [33] analyzed the implicit regularization of
label noise from a kernel perspective. In addition to implicit regularization, Huh and Rebeschini [15]
derived a generalization bound for label noise SGD.

In comparison. We theoretically analyze the learning dynamics of label noise SGD in an over-
parameterized two-layer linear network, highlighting the transition from lazy to rich regime. Analyz-
ing the two-layer linear network with label noise SGD requires careful treatment of the update rule
of both layers, which exhibits highly non-convex dynamics and introduce complex coupling effect
between first- layer and second- layer parameters, thus posing significant challenges to theoretical
analysis. Extensive experiments in both synthetic and real-world setups firmly support our theoretical
analysis.

Appendix B. Preliminaries

B.1. Additional notations

Complementary Event. Let A be an event. We use A to denote the complementary event of A. We
have Pr[A] + Pr[A] = 1.

3. This term broadly refers to learning behaviors that deviate from the lazy regime.

9
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Definition B.1. (sub-exponential) A random variable X with mean µ = E[X] is sub-exponential if
there are non-negative parameters (ν, b) such that

E[eλ(X−µ)] ≤ e
ν2λ2

2 for all |λ| < 1

b
.

We denote X ∈ SE(ν, b).

B.2. Preliminary lemmas

Lemma B.2. Let X =
∑n

i=1X
2
i where Xi ∼ N(0, 1) and i.i.d. Then X ∈ SE(2

√
n, 4).

Corollary B.3. Let Z =
∑n

i=1Xi · Yi where Xi, Yi ∼ N(0, 1) and i.i.d. Then X ∈ SE(2
√
n, 4).

Proof of Corollary B.3. For every i ∈ [n]. we have

E[eλX
2
i −1] =

1√
2π

·
∫ +∞

−∞
e−λ(x

2−1)·e−x2/2
dx

=
e−λ√
1− 2λ

And we have

E[eλXiYi ] =

∫ +∞

−∞

∫ +∞

−∞
eλxy · 1

2π
e−

x2

2 e−
y2

2 dx dy

=

∫ +∞

−∞

∫ +∞

−∞

1

2π
e−

(x−λy)2

2 e−
(1−λ2)y2

2 dx dy

=
1√

1− λ2

∫ +∞

−∞

∫ +∞

−∞

1

2π
e−

x2

2 e−
y2

2 dx dy

=
1√

1− λ2
≤ E[eλX

2−1]

So we have

E[eλZ ] = E[eλ
∑n

i=1Xi·Yi ] = E[
n∏
i=1

eλXi·Yi ]

Since Xi · Yi are independent, we have

E[
n∏
i=1

eλXi·Yi ] =

n∏
i=1

E[eλXi·Yi ]

≤
n∏
i=1

E[eλX
2
i −1] = E[eλX ]

By lemma B.2, we have X =
∑n

i=1X
2
i ∈ SE(2

√
n, 4). Therefore, we retain Z =

∑n
i=1Xi ·

Yi ∈ SE(2
√
n, 4). □.

10
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Lemma B.4. (Sub-exponential tail bound) Suppose that X is sub-exponential with parameters
(ν, b). Then

Pr[X ≥ µ+ t] ≤ exp(− t2

2ν2
) if 0 ≤ t ≤ ν2

b
(7)

Lemma B.5. (Concentration of the norm) Let X = (X1, . . . , Xn) ∈ Rn be a random vector with
independent, sub-gaussian coordinates Xi that satisfy EX2

i = 1. Then

Pr
{∣∣∥X∥ −

√
n ≥ t

∣∣} ≤ 2 exp

(
− ct2

K4

)
for all t ≥ 0 (8)

where K = maxi ∥Xi∥ψ2 and c is an absolute constant.

Lemma B.6. (Chernoff’s inequality) Let Xi be independent Bernoulli random variables with
parameters pi. Consider their sum SN =

∑N
i=1Xi and denote its mean by µ = E[SN ]. Then, for

any t > µ, we have

P{SN ≤ t} ≤ e−µ
(eµ

t

)t
. (9)

Appendix C. Phase I: Progressively Diminishing and Escaping the Lazy Regime

C.1. Step 1: Bounding ai

Let ∇ℓ̂ξt(θ(t)) = f(θ(t);xξt)− yξt − ϵt.
Using label noise SGD, for any i ∈ [m], the gradient at time step t is

∂ℓ̂ξt(θ(t))

∂w⊤
i (t)

= ai(t)(f(θ(t);xξt)− yξt − ϵt) · x⊤
ξt (10)

∂ℓ̂ξt(θ(t))

∂ai(t)
= (f(θ(t);xξt)− yξt − ϵt) · x⊤

ξt ·wi(t) (11)

Then we retain

W (t+ 1) = W (t)− η · a(t) · (f(θ(t);xξt)− yξt − ϵt) · x⊤
ξt (12)

a(t+ 1) = a(t)− η · (f(θ(t);xξt)− yξt − ϵt) ·W (t) · xξt (13)

The following Lemma C.1 provides a bound of the initialization of ∥wi∥ at step 0.

Lemma C.1. Let event B0 = {∥wi(0)∥ ≤ 1/4 ·m1/12 for all i ∈ [m]}. Suppose Condition 3.1 (A1)
holds. Under NTK initialization as in Section 3.1, we have Pr[B0] ≥ 1−O( 1

m).

Proof. Notice that wi(0) ∼
1√
d
N(0, I), Let Z =

√
d·wi(0) and Z ∼ N(0, I). By Lemma B.5,

we have

11
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Pr[
∣∣∣∥Z∥ −

√
d
∣∣∣ ≥ 1

8
·m1/12] ≤ 2 exp(−c ·m1/6

64K4
w

) (14)

where Kw and c both are positive constant.
Thus

Pr[|∥wi(0)∥ − 1| ≥ m1/12

8
√
d
] ≤ 2 exp(−c ·m1/6

64K4
w

) (15)

Since 1 ≪ m and d ≥ 1, we have

Pr[∥wi(0)∥ ≥ 1

4
·m1/12] ≤ 2 exp(−c ·m1/6

64K4
w

) (16)

Using union bound, we have

Pr[B0] ≤ m · 2 exp(−c ·m1/6

64K4
w

) (17)

Thus

Pr[B0] ≥ 1−m · 2 exp(−c ·m1/6

64K4
w

) ≥ 1− 1

m
(18)

The last inequality holds under Condition 3.1(A1). □

Lemma C.2. Suppose Condition 3.1 (A1-2,4-6) holds and consider the update rule in Equation (3).
Given the model is still in the lazy regime within T0 = O( logm

η2·m1/2 ), with probability at least 1−O( 1
m),

we have the following two propositions hold:
(i). (Bound of Loss) For every t ≤ T0,

∣∣∣∇ℓ̂ξ0(θ(0))
∣∣∣ = O(m1/4).

(ii). (Bound of ai) For every t ≤ T0, ai(t) ≤ m−1/4.

Proof. We prove by induction.
When step t = 0, we first prove the (i) holds. When t = 0, for any i ∈ [m], let wi(0) =

1√
d
(Xi1, Xi2, · · · , Xid) , Xij ∼ N(0, 1) and a(0) = 1√

m
(Y1, Y2, · · · , Ym), Yi ∼ N(0, 1). Let

Zj =
∑m

i=1Xij · Yi where j ∈ [d].
For all i ∈ [m], j ∈ [d], Xij , Yi are independent, so we have

E[Zj ] = E[
m∑
i=1

XijYi] =

m∑
i=1

E[XijYi] =
m∑
i=1

E[Xij ]E[Yi] = 0 (19)

and

Var[Zj ] = Var[

m∑
i=1

XijYi] =

m∑
i=1

Var[XijYi] =

m∑
i=1

Var[Xij ] Var[Yi] = m (20)

12
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By Corollary B.3, we have for any j ∈ [d], Zj =
∑m

i=1Xij · Yi ∈ SE[2
√
m, 4]. By Lemma B.4,

let t =
√
(8 logm)/m and we retain

Pr

(∣∣∣∣∣Zj =
m∑
i=1

Xij · Yi

∣∣∣∣∣ ≥√8 logm ·
√
m

)
≤ 2 exp

(
−(

√
8 logm ·

√
m)2

2 · (2
√
m)2

)
=

2

m

Using union bound, with probability at most 2d
m , there exists j ∈ [d] such that |

∑m
i=1Xij · Yi| ≥√

8 logm ·
√
m

So with probability 1− 2d
m ,∣∣∣∣∣

m∑
i=1

Xij · Yi

∣∣∣∣∣ ≤√8 logm ·
√
m for all j ∈ [d] (21)

Then we have

∥θ(0)− θ∗∥ ≤ ∥θ(0)∥+ ∥θ∗∥

= ∥
m∑
i=1

ai(0)wi(0)
⊤∥+ ∥θ∗∥

=
1√
d
· 1√

m

√√√√ d∑
j=1

(
m∑
i=1

XijYi)2 + ∥θ∗∥

≤ 1√
d
· 1√

m

√
8 · d ·m · logm+m−1/4 (by Inequality (21) and Condition 3.1(A4))

≤ 3
√
logm

So we have ∣∣∣∇ℓ̂ξ0(θ(0))
∣∣∣ = |a(0)W (0)xξ0 − yξ0 − ϵ0|

≤ |a(0)W (0)xξ0 − yξ0 |+ |ϵ0|

≤ ∥(θ(0)− θ∗)∥ · ∥xξ0∥+ σ

≤ 3
√

logm · Cdata + σ

Therefore, with probability at least 1 − 2
m , we have

∣∣∣∇ℓ̂ξ0(θ(0))
∣∣∣ = O(m1/4), so (i) holds when

t = 0.
Then we prove (ii) holds at step 0.
Let event Ct = {|ai(t1)| ≤ m−1/4 for all t1 ≤ t and for all i ∈ [m]}. Since ai(0) ∼ 1√

m
N(0, 1),

we have

Pr[|ai(0)| ≥ m−1/8] ≤ 2 exp(−c ·m3/4

4K4
a

) (22)

13
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by Lemma B.5, where Ka and c are both positive constant.
Using union bound, we have

Pr[C0] ≤ m · 2 exp(−c ·m3/4

4K4
a

) · (1− 3d

m
) (23)

Thus

Pr[C0] = 1− Pr[C0] ≥ 1−m · 2 exp(−c ·m3/4

4K4
a

) · (1− 3d

m
)

≥ (1− 1

m
) · (1− 3d

m
)

≥ (1− 4d

m
)

Since d is a constant, we have Pr[C0] ≥ 1−O( 1
m) , which implies (ii) holds when t = 0.

Assuming the lemma holds at step t, we proceed to step t+ 1 where we first establish property
(ii) by constructing a super-martingale, and subsequently demonstrate that property (i) also holds.

By definition of online label noise SGD algorithm, xξt , ϵt are independent with θ(t) , wi(t)
and has memorylessness property. Let F0 = σ(wi(0), ai(0) for i ∈ [m]). For t ≥ 1, let Ft =
σ(F0, ϵ

(t),x(t)). Here ϵ(t) denotes the set {ϵ0, ϵ1, . . . , ϵt−1} and x(t) denotes the set {xξ0 ,xξ1 , . . . ,xξt−1}.
Obviously, we have F0 ⊂ F1 ⊂ · · · ⊂ Ft. Notice that E[xξt · x⊤

ξt
|Ft] = I and E[ϵt|Ft] = 0.

Additionally, in the lazy regime, for any i ∈ [d] at step t, every neuron holds ∥wi(t)−wi(0)∥ ≤ 1√
m

.
So we have

E[|ai(t+ 1)| |Ft] = |ai(t)− η · E[(θ(t)− θ⋆) ·wi(t)|Ft]|

=
∣∣∣ai(t)− η · E[(a(t)⊤W (t)− θ⋆) ·wi(t)|Ft]

∣∣∣
=

∣∣∣∣∣∣ai(t)− η · E[(
m∑
j=1

aj(t)wj(t)
⊤ − θ⋆) ·wi(t)|Ft]

∣∣∣∣∣∣
=

∣∣∣∣∣∣ai(t)− η · (
m∑
j=1

aj(t)E[wj(0)
⊤ ·wi(0)]) + η · θ⋆wi(0) + o(η/

√
m)

∣∣∣∣∣∣
=
∣∣(1− η) · ai(t) + η · θ⋆wi(0) + o(η/

√
m)
∣∣

Let Yi(t) =
∣∣∣ai(t)− θ∗wi(0)− o( 1√

m
)
∣∣∣. Since

E[
∣∣∣∣ai(t+ 1)− θ∗wi(0)− o(

1√
m
)

∣∣∣∣ |Ft] = ∣∣∣∣(1− η) · (ai(t)− θ⋆wi(0)− o(
1√
m
))

∣∣∣∣ (24)

We have
E[Yi(t+ 1)|Ft] = (1− η) · Yi(t) ≤ Yi(t) (25)

14
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Therefore, Yi(0), Yi(1), . . . , Yi(t) are super-martingale.
By Lemma C.1, with probability at least 1− O( 1

m), ∥wi(0)∥ ≤ m1/12 for all i ∈ [m]. Condi-
tioned on ∥wi(0)∥ ≤ m1/12 and we have

|Yi(t+ 1)− Yi(t)| =
∣∣∣∣|ai(t+ 1)− θ∗ ·wi(0)− o(

1√
m
)| − |ai(t)− θ∗ ·wi(0)− o(

1√
m
)|
∣∣∣∣

≤ |ai(t+ 1)− ai(t)|+ o(
1√
m
) (triangle inequality)

= |η · (∇ℓ̂ξt(θ(t))) · x⊤
ξt ·wi(t)|+ o(

1√
m
)

≤ η · |∇ℓ̂ξt(θ(t))| · ∥xξt∥ · ∥wi(t)∥+ o(
1√
m
)

≤ η · |∇ℓ̂ξt(θ(t))| · ∥xξt∥ · (∥wi(0)∥+
1√
m
) + o(

1√
m
) (in the lazy regime)

≤ 2η · |∇ℓ̂ξt(θ(t))| · Cdata ·m1/12

With one-side Azuma’s inequality, for any λ > 0, we have

Pr[Yi(t+ 1)− Yi(0) > λ] ≤ exp(− λ2

(t+ 1) · 4η2 · (Cdata · |∇ℓ̂ξt(θ(t))| ·m1/12)2
) (26)

Thus

Pr[|ai(t+1)| ≥ 2·|θ∗·wi(0)|+|ai(0)|+λ] ≤ exp(− λ2

(t+ 1) · 4η2 · |∇ℓ̂ξt(θ(t))| · (Cdata ·m1/12)2
)

(27)
By Condition 3.1(A4), ∥θ∗∥ ≤ 1

m1/3 . Then we have |θ∗ · wi(0)| ≤ 1
4m1/4 . Notice that

Pr[|ai(0)| ≥ m−1/4] ≤ 2 exp(− c·m1/4

4K4
a
). Let λ = 1

2m1/4 , so with probability at least (1 −

2 exp(− c·m1/4

4K4
a
)) · (1− 3d

m ), we have

2 · |θ∗ · wi(0)|+ |wi(0)|+ λ] ≤ 1

2m1/4
+

1

4m1/4
+

1

4m1/4
≤ 1

m1/4

by Condition 3.1(A1).
So we retain

Pr[|ai(t+ 1)| ≥ m−1/4] ≤ exp(− m1/6

(t+ 1) · 8η2 · (Cdata · |∇ℓ̂ξt(θ(t))|)2
) · (1− 3d

m
) (28)

15



ON THE LEARNING DYNAMICS OF TWO-LAYER LINEAR NETWORKSWITH LABEL NOISE SGD

By induction hypothesis, we have |∇ℓ̂ξt(θ(t))| = O(m1/4). Using union bound and by Condi-
tion 3.1(A2), we have

Pr[Ct] ≤
t−1∑
j=0

exp(− m1/12

j · 8η2 · (Cdata ·O(m1/4))2
) · (1− 3d

m
)

≤ t · exp(− m1/12

t · 8η2 · (Cdata ·O(m1/4))2
) · (1− 3d

m
)

≤ T0 · exp(−
√
η−1/12

T0 · 8η2 · (Cdata ·O(m1/4))2
) · (1− 3d

m
)

≤ T0 · exp(−
√
η−1/12

T0 · 8η2 · (Cdata ·O(m1/4))2
) · (1− 3d

m
)

= O(
− ln η

η2
) · exp(−

√
η−1/12

O(ln 1
η ) · C

2
data

·O(1)) · (1− 3d

m
)

≤ O(η) · (1− 3d

m
) = O(

1

m
)

The last inequality is due to Condition 3.1(A2). Therefore, we have Pr[Ct] ≥ 1 − O( 1
m), which

implies (ii) holds.
Then we prove (i) holds. By Definition 3.1, we have ∥wi(t+ 1)−wi(t)∥ ≤ m−1/2. Therefore,

with the bound of ai(t) holds, we retain

∥θ(t+ 1)∥ ≤ ∥a(t)⊤ ·W (t)∥ ≤ ∥a(0)⊤ ·W (0)∥+m−1/2 ·m−1/4 ·m = ∥θ(0)∥+m1/4 (29)

Therefore, ∣∣∣∇ℓ̂ξt(θ(t+ 1))
∣∣∣ = ∣∣a(t+ 1)W (t+ 1)xξt+1 − yξt+1 − ϵt+1

∣∣
≤
∣∣a(t+ 1)W (t+ 1)xξt+1 − yξt+1

∣∣+ |ϵt+1|

≤ ∥(θ(t+ 1)− θ∗)∥ · ∥xξt+1∥+ σ

≤ 2(∥θ(0)∥+m1/4) · Cdata + σ

= O(m1/4)

which implies (i) also holds at step t+ 1. So it follows by induction that the lemma holds. □

C.2. Step 2: Estimating ∆Wi

Let ∇ℓ̂ξt(θ(t)) = f(θ(t);xξt)− yξt − ϵt, by equ (10) and equ (11), we have

wi(t+ 1) = wi(t)− η · ai(t) · ∇ℓ̂ξt(θ(t)) · xξt (30)

ai(t+ 1) = ai(t)− η · ∇ℓ̂ξt(θ(t)) · x⊤
ξt ·wi(t) (31)

According to equ (30), after taking the norm on both sides and then square them, we have:

16
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∥wi(t+ 1)∥2 = ∥wi(t)∥2 − 2η · ai(t)∇ℓ̂ξt(θ(t))x
⊤
ξtwi(t) + ∥η · ai(t)∇ℓ̂ξt(θ(t))xξt∥2 (32)

According to equ (31), we have

η · ∇ℓ̂ξt(θ(t)) · x⊤
ξt ·wi(t) = ai(t)− ai(t+ 1) (33)

Substitute equ (33) into the equ (32) and we retain:

∥wi(t+ 1)∥2 = ∥wi(t)∥2 − 2 · (ai(t)− ai(t+ 1)) · ai(t) + ∥η · ai(t)∇ℓ̂ξt(θ(t))xξt∥2 (34)

For any time T ∈ N+, summing up from 0 to T and we have:

∥wi(T )∥2 = ∥wi(0)∥2−2 ·
T−1∑
j=0

(ai(j)−ai(j+1)) ·ai(j)+
T−1∑
j=0

∥η ·ai(j) ·∇ℓ̂ξj (θ(j)) ·xξj∥
2 (35)

Notice that

2 ·
T−1∑
j=0

(ai(j)− ai(j + 1)) · ai(j) =
T−1∑
j=0

(ai(j)
2 − 2 · ai(j)ai(j + 1) + ai(j + 1)2) + ai(0)

2 − ai(T )
2

(36)

=
T−1∑
j=0

(ai(j)− ai(j))
2 + ai(0)

2 − ai(T )
2 (37)

Thus we have

∥wi(T )∥2 = ∥wi(0)∥2 −
T−1∑
j=0

(ai(j)− ai(j + 1))2 − ai(0)
2 + ai(T )

2 +
T−1∑
j=0

∥η ·wi(j) · ∇ℓ̂ξj (θ(j)) · xξj∥
2

= ∥wi(0)∥2 −
T−1∑
j=0

(∥ai(j)− ai(j + 1)∥2 − ∥wi(j)−wi(j + 1)∥2)− ai(0)
2 + ai(T )

2

= ∥wi(0)∥2 −
T−1∑
j=0

η2 · ∇ℓ̂ξj (θ(j))
2{(x⊤

ξj
·wi(j))

2 − ai(j)
2 · ∥xξj∥

2} − ai(0)
2 + ai(T )

2

Let ∆Wi(j) = −∇ℓ̂ξj (θ(j))
2 · {(x⊤

ξj
·wi(j))

2 − ai(j)
2 · ∥xξj∥2}. Since ai(j) is small with

high probability, ∆Wi(j) almost dominates the change of ∥wi∥2 at every step. We have

∥wi(T )∥2 = ∥wi(0)∥2 + η2 ·
T−1∑
j=0

∆Wi(j)− ai(0)
2 + ai(T )

2 (38)

Lemma C.3 (Progressively diminishing at each step). Suppose Condition 3.1 (A1-2,4-6) holds and
consider the update rule in Equation (3). Given the model is still under the lazy regime at step T ,
then with probability at least 1−O( 1

m), for all the iterative steps j ≤ T1 and for every i ∈ [m]:
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1. ∆Wi(j) ≤ 0 with probability at least 1− ρ

m1/8
.

2. ∆Wi(j) ≤ −(
σ

4
)2 with probability at least

1

4
.

3. ∆Wi(j) > 0 with probability at most
ρ

m1/8
.

4. ∆Wi(j) ≤ O(1).

where ρ =
2
√
d√
π

is a constant.

Proof.
By Lemma C.2 (ii), with probability at least 1 − O( 1

m), for all i ∈ [m] and all step t ≤ T1,
|ai(t)| ≤ 1

m1/4 , i.e. the event Cj happens. All the "Pr" in this lemma conditioned on Cj .
For each j < T , we have

∆Wi(j) > 0 ⇐⇒ (x⊤
ξj
·wi(j))

2 < ai(j)
2 · ∥xξj∥

2 ⇐⇒ (
x⊤
ξj

∥xξj∥
·wi(j))

2 < ai(j)
2

i.e. ∣∣∣x⊤ ·wi(j)| < |ai(j)
∣∣∣ (39)

where x =
xξj

∥xξj
∥ follows a uniform distribution on the n-dimensional unit sphere.

Let x1 denotes the element in the first dimension of x. By symmetry, we have

Pr[
∣∣∣x⊤ ·wi(j)| < |ai(j)

∣∣∣] = Pr[− ∥ai(j)∥
∥wi(j)∥

< x1 <
∥ai(j)∥
∥wi(j)∥

] (40)

The density of x1 is f(x1) =
Γ( d

2 )√
π Γ( d−1

2 )

(
1− x21

) d−3
2 , where Γ denotes the gamma function.

Then we have

Pr[− ∥ai(j)∥
∥wi(j)∥

< x1 <
∥ai(j)∥
∥wi(j)∥

] =

∫ ∥ai(j)∥
∥wi(j)∥

x1=− ∥ai(j)∥
∥wi(j)∥

f(x1)dx1

=

∫ ∥ai(j)∥
∥wi(j)∥

x1=− ∥ai(j)∥
∥wi(j)∥

Γ
(
d
2

)
√
π Γ
(
d−1
2

) (1− x21
) d−3

2 dx1

≤
∫ ∥ai(j)∥

∥wi(j)∥

x1=− ∥ai(j)∥
∥wi(j)∥

Γ
(
d
2

)
√
π Γ
(
d−1
2

)dx1
= 2 · ∥ai(j)∥

∥wi(j)∥
·

Γ
(
d
2

)
√
π Γ
(
d−1
2

)
≤ 2

√
d√
π

· ∥aj(j)∥
∥wi(j)∥

≤ ρ

m1/8
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The second-to-last inequality is because
Γ( d

2 )
Γ( d−1

2 )
≤

√
d. So we retain ∆Wi(j) ≤ 0 with

probability at least 1− ρ
m1/8 and ∆Wi(j) > 0 with probability at most ρ

m1/8 .
By Lemma C.2 (i) , ∇ℓ̂ξj (θ(j)) ≤ O(m1/4). So with Condition 3.1A(5), ∥xξj∥ ≤ Cdata we

have

∆Wi(j) = −∇ℓ̂ξj (θ(j))
2 · (x⊤

ξj
·wi(j))

2 +∇ℓ̂ξj (θ(j))
2 · (ai(j)2 · ∥xξj∥

2)

≤ ∇ℓ̂ξj (θ(j))
2 · (ai(j)2 · ∥xξj∥

2)

≤
O(m1/4)2 · C2

data

m1/2
= O(1)

Finally, we prove Pr[∆Wi(j) ≤ −(
σ

4
)2] ≥ 1

4
. We have

Pr[∆Wi(j) ≤ −(
σ

4
)2] = Pr[∇ℓ̂ξj (θ(j))

2{(x⊤
ξj
·wi(j))

2 − ai(j)
2 · ∥xξj∥2} ≥ (

σ

4
)2]

= Pr[∇ℓ̂ξj (θ(j))
2{(x⊤

ξj
·wi(j))

2 − ai(j)
2 · ∥xξj∥2} ≥ (

σ

4
)2| xξj s.t. |

x⊤
ξj

∥xξj∥
·wi(j)| < |ai(j)|] · Pr[|x⊤

ξj
·wi(j)| < |ai(j)|]

+ Pr[∇ℓ̂ξj (θ(j))
2{(x⊤

ξj
·wi(j))

2 − ai(j)
2 · ∥xξj∥2 ≥ (

σ

4
)2| xξj s.t. |

x⊤
ξj

∥xξj∥
·wi(j)| ≥ |ai(j)|] · Pr[|x⊤

ξj
·wi(j)| ≥ |ai(j)|]

≥ Pr[∇ℓ̂ξj (θ(j))
2{(x⊤

ξj
·wi(j))

2 − ai(j)
2 · ∥xξj∥2} ≥ (

σ

4
)2| xξj s.t. |

x⊤
ξj

∥xξj∥
·wi(j)| ≥ |ai(j)|] · Pr[|x⊤

ξj
·wi(j)| ≥ |ai(j)|]

≥ (1-
ρ

m1/8
) · Pr[∇ℓ̂ξj (θ(j))

2{(x⊤
ξj
·wi(j))

2 − ai(j)
2 · ∥xξj∥

2} ≥ (
σ

4
)2| xξj s.t. |

x⊤
ξj

∥xξj∥
·wi(j)| ≥ |ai(j)|]

Since ∇ℓ̂ξj (θ(j))
2 = ((θ(j) − θ∗)xξj − ϵj)

2 and ϵj is chosen uniformly,the probability that
(θ(j)− θ∗)xξj and ϵj have the same sign is at least 1

2 . If the two elements have the same sign, then
∇ℓ̂ξj (θ(j))

2 ≥ σ2. So we have

Pr[∇ℓ̂ξj (θ(j))
2{(x⊤

ξj
·wi(j))

2 − ai(j)
2 · ∥xξj∥

2} ≥ (
σ

4
)2| xξj s.t. |

x⊤
ξj

∥xξj∥
·wi(j)| ≥ |ai(j)|]

≥ 1

2
· Pr[{(x⊤

ξj
·wi(j))

2 − ai(j)
2 · ∥xξj∥

2} ≥ (
1

4
)2| xξj s.t. |

x⊤
ξj

∥xξj∥
·wi(j)| ≥ |ai(j)|]

≥ 1

2
· Pr[{(x⊤

ξj
·wi(j))

2 − 1

m1/4
· ∥xξj∥

2} ≥ (
1

4
)2| xξj s.t. |

x⊤
ξj

∥xξj∥
·wi(j)| ≥ |ai(j)|] (ai(j)2 ≤ m1/4)

=
1

2
· Pr[

∣∣∣∣∣ x⊤
ξj

∥xξj∥
·wi(j)

∣∣∣∣∣ ≥
√
(

1

4 · ∥xξj∥
)2 +

1

m1/4
| xξj s.t. |

x⊤
ξj

∥xξj∥
·wi(j)| ≥ |ai(j)|]

=
1

2
· Pr[

∣∣∣∣∣ x⊤
ξj

∥xξj∥
·wi(j)

∣∣∣∣∣ ≥
√
(

1

4 · ∥xξj∥
)2 +

1

m1/4
] (|ai(j)| ≤

1

m1/8
≤
√

1

∥xξj∥2
+

1

m1/4
)

≥ 1

2
· Pr[

∣∣∣∣∣ x⊤
ξj

∥xξj∥
·wi(j)

∣∣∣∣∣ ≥
√
(

1

4 · ∥xξj∥
)2 · 3

2
]
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By Condition 3.1A(6), we have

Pr[
∣∣∣∥xi∥ − √

d
∣∣∣ ≥ √

d

3
] ≤ 2 exp(−4 · c · d

9K4
) ≤ 1

2
(41)

which implies Pr[∥xξj∥ ≥ 2
3
√
d
] ≥ 2

3 . So we have

Pr[

∣∣∣∣∣ x⊤
ξj

∥xξj∥
·wi(j)

∣∣∣∣∣ ≥
√

(
1

4 · ∥xξj∥
)2 · 3

2
] ≥ Pr[

∣∣∣∣∣ x⊤
ξj

∥xξj∥
·wi(j)

∣∣∣∣∣ ≥ 3

2
√
d
· 1

4 · ∥xξj∥
]

= 1− Pr[

∣∣∣∣∣ x⊤
ξj

∥xξj∥
·wi(j)

∣∣∣∣∣ ≤ 3

8
√
d
]

≥ 1− ρ · 3

8
√
d

= 1− 2
√
d√
π

· 3

8
√
d
= 1− 3

4
√
π

By Condition 3.1(A1), m ≥ ((1− 3

4
√
π
) · ρ/(1

2
− 3

4
√
π
))8. Therefore, we have

Pr[∆Wi(j) ≤ −(
σ

4
)2] ≥ (1− ρ

m1/8
) · 1

2
· (1− 3

4
√
π
)

=
1

4
+

1

2
· ((1

2
− 3

4
√
π
)− (1− 3

4
√
π
) · ρ

m1/8
)

≥ 1

4

which completes the proof. □

Theorem C.4 (Escaping the lazy regime). Suppose Condition 3.1 (A1-2,4-6) holds and consider the
update rule in Equation (3). With probability at least 1−O( 1

m), all the neurons wi (i ∈ [m]) escape

from the lazy regime at time T1 =
384

√
logm

σ2η2
√
m

.

Proof. Let event Ct = {|ai(t1)| ≤ m−1/4 for all t1 ≤ t and for all i ∈ [m]}. By Lemma C.2 (ii),
with probability at least 1−O( 1

m), the event CT1 happens. We assume CT1 happens and all the "Pr"
in this theorem conditioned on Cj .

In the following, we will provide a proof by contradiction. Assume with probability at least
O( 1

m), there exists some neurons wi (i ∈ [m]) s.t. ∥wi(t) −wi(0)∥ ≤ 1√
m

holds for all T1 steps.
By Lemma B.5, we have

Pr
{∣∣∣∥wi(0)∥ −

√
2 logm ≥ t

∣∣∣} ≤ 2 exp

(
−c · logm

k4

)
= O(

1

m
) (42)

where k and c is an absolute constant.
Using union bound, with probability at least 1 − O( 1

m), for these neurons stuck in the lazy
regime, ∥wi(0)∥ ≤

√
2 logm.
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We view ∆Wi(j) as a random variable. We use Ω to denote the whole sample space. Let event

Ωi = {ω ∈ Ω |∆Wi(j)(ω) ≤ −(
σ

4
)2}

For any ω ∈ Ω, by Lemma C.3, we have Pr[Ωi] ≥ 1
4 . Since the event CT1 happens and wi stays

in the lazy regime, the estimation of the lower bound of ∆Wi(j) only depends on the randomness of
xξj . Thus, there exists a subset of Ωi we denote Θi such that

Θi = {ω ∈ Ωi|∆Wi(ω) ≤ −(σ/4)2, ∥wi(j)−wi(0)∥ ≤ 1√
m
, |ai(j)| ≤ 1/m1/8}

and Pr[Θi] =
1
4 . For Θi (i ∈ [T1 − 1]), the random randomness only depends on xξt . Therefore,

Θ0,Θ1, · · · ,ΘT1−1 are mutual independent events.
Then we define indicator random variable X0, X1, · · · , XT1−1 as follow: for every ω ∈ Ω, for

any j ∈ [T1 − 1],

Xj(ω) =

{
1 if ω ∈ Θi.
0 otherwise.

So we have X0, X1, · · · , XT1−1 are independent and Pr[Xj(ω) = 1] = 1
4 . And we have

E[
T1−1∑
j=0

Xj ] =

T1−1∑
j=0

E[Xj ] =
T1

4
(43)

Then we have

Pr[η2 ·
T1−1∑
j=0

∆Wi(j) ≤
−2

√
2 logm√
m

]

= Pr[η2 · (
T1−1∑
j=0

∆Wi(j) · I[∆Wi(j) > 0] +

T1−1∑
j=0

∆Wi(j) · I[∆Wi(j) ≤ 0]) ≤ −2
√
2 logm√
m

]

≥ Pr[η2 · (
T1−1∑
j=0

∆Wi(j) ·O(
1

m1/8
) +

T1−1∑
j=0

∆Wi(j) · I[∆Wi(j) ≤ −(
σ

4
)2]) ≤ −2

√
2 logm√
m

]

≥ Pr[η2 · T1 ·O(1) ·O(
1

m1/8
)− η2 · (σ

4
)2
T−1∑
j=0

Xj ≤
−2

√
2 logm√
m

]

= Pr[−η2 · (σ
4
)2 ·

T1−1∑
j=0

Xj ≤
−2

√
2 logm√
m

− o(
1√
m
)] (T1 · η2 = O(

1√
m
))

≥ Pr[−η2 · (σ
4
)2 ·

T1−1∑
j=0

Xj ≤ −3
√
logm√
m

]

= Pr[

T1−1∑
j=0

Xi ≥
48
√
logm

σ2η2
√
m

] = Pr[

T1−1∑
j=0

Xi ≥
T1

8
]

≥ 1− exp(−T1

4
) · (e · T1/4

T1/8
)T1/8 = 1− (

2

e
)T1/8
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The last inequality is by Lemma B.6.
Since T1 =

1
η2·

√
m

≫ m and ai(T )2 ≤ 1√
m

, with probability at least (1−O( 1
m))·(1−(2e )

T1/8) =

1−O( 1
m), we have

∥wi(T )∥2 − ∥wi(0)∥2 = η2 ·
T−1∑
j=0

∆Wi(j)− ai(0)
2 + ai(T )

2

≤ η2 ·
T−1∑
j=0

∆Wi(j) +
1√
m

≤ −2

√
2 logm√

m
+

1√
m

≤ −2
√
logm√
m

Thus

∥wi(T )∥ − ∥wi(0)∥ ≤ −2
√
logm√
m

· 1

∥wi(T )∥+ ∥wi(0)∥

≤ −2
√
logm√
m

· 1
1√
m

+
√
2 logm

< −2
√
logm√
m

· 1

2
√
logm

= − 1√
m

Which is a contradiction to the definition of lazy regime! Therefore, we complete the proof. □

Appendix D. Phase II: Feature Learning and Convergence

D.1. Rotation to alignment

We use gradient descent in phase II. For every neuron wi and ai (i ∈ [m]) at step t:

∂L(θ(t))
∂wi(t)⊤

= ai(t) ·
1

n

m∑
j=1

(a(t)⊤W (t)xj − yj) · x⊤
j (44)

∂L(θ(t))
∂ai(t)

=
1

n

m∑
j=1

(a(t)⊤W (t)xj − yj) · x⊤
j ·wi(t)

⊤ (45)

The update rule of gradient descent is

wi(t+ 1) = wi(t)− η · ai(t) ·
1

n

m∑
j=1

(a(t)⊤W (t)xj − yj)xj (46)

ai(t+ 1) = ai(t)− η · 1
n

m∑
j=1

(a(t)⊤W (t)xj − yj)x
⊤
j ·wi(t) (47)

By law of large numbers, we have

1

n

n∑
j=1

xj · x⊤
j = E[xj · x⊤

j ] +O(
1√
n
) = I +O(

1√
n
) (48)
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Then we have

wi(t+ 1) = wi(t)− η · ai(t) ·
1

n

m∑
j=1

xj · x⊤
j · (θ(t)− θ∗) (49)

= wi(t)− η · ai(t) · (θ(t)− θ∗) +O(
η√
n
) (50)

And

ai(t+ 1) = ai(t)− η · (θ(t)− θ∗)
1

n

m∑
j=1

xj · x⊤
j ·wi(t)

= ai(t)− η · (θ(t)− θ∗) ·wi(t) +O(
η√
n
)

Since ai(t), ∥wi(t)∥ ≤ n0.5 when phase II begins, we have

wi(t+ 1) = wi(t)− η · ai(t) · (θ(t)− θ∗) +O(
η√
n
)

= wi(t) + η · (ai(t) · θ∗) +O(η1.5)

Similarly, we have:

ai(t+ 1) = ai(t) + η · θ∗ ·wi(t) +O(η1.5)

Combine both we have:[
wi(t+ 1)

ai(t+ 1)

]
= (I + ηM) ·

[
wi(t)

ai(t)

]
+O(η1.5) (51)

where M =

[
0 θ∗⊤

θ∗ 0

]
. The top eigenvalue of M is λ1 = ∥θ∗∥ and the lowest eigenvalue of M

is λn+1 = −∥θ∗∥. All the other eigenvalues of M are equal to 0. Since M is symmetry matrix,
there exists orthogonal matrix QM such that

M = Q⊤
M · diag(∥θ∗∥, 0, . . . ,−∥θ∗∥) ·QM (52)

Lemma D.1 (Alignment). Suppose Condition 3.1 (A1-3, 5-6) holds and consider gradient descent
for updates. Assume that phase II begins at time t1, then at time t2 = t1 + T2, T2 =

1
∥θ⋆∥ · ln(

1
η ), for

any neuron wi it holds

|⟨θ⋆,wi(t2)⟩| ≥ 1−
∣∣∣∣O(ln

1

η
· √η)

∣∣∣∣ (53)
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Proof. By equ (51), we have[
wi(t1 + T2)

ai(t1 + T2)

]
= (I + η ·M)T2 ·

[
wi(t1)

ai(t1)

]
+O(T2 · η1.5)

=

T2∑
k=0

(
T2

k

)
(ηM)k ·

[
wi(t1)

ai(t1)

]
+O(T2 · η1.5)

= (I + T2ηM +
T2(T2 − 1)

2
(ηM)2 + · · ·+ (ηM)T ) ·

[
wi(t1)

ai(t1)

]
+O(T2 · η1.5)

= (

T2∑
i=0

(T2ηM)i

i!
+O(T2 · η2)) ·

[
wi(t1)

ai(t1)

]
+O(T2 · η1.5)

= (exp(T2η ·M) +O(
(T2η ·M)T+1

(T + 1)!
)) ·

[
wi(t1)

ai(t1)

]
+O(T2 · η1.5) (taylor expansion)

=
e ·M
∥θ∗∥

[
wi(t1)

ai(t1)

]
+O(T2 · η1.5) (η− ln η ≪ (− ln η)− ln η)

So we have

wi(t1 + T2) =
e · ai(t1)
∥θ∗∥2

· θ∗⊤ +O(ln
1

η
· η1.5) (54)

Then we have,

|⟨θ∗,wi(t2)⟩| =
∣∣∣∣⟨θ∗,

e · ai(t1)
∥θ∗∥2

· θ∗⊤ +O(ln
1

η
· η1.5)⟩

∣∣∣∣
=

∣∣∣∣∥θ∗∥ · e · ai(t1) + θ∗ ·O(ln
1

η
· η1.5)

∣∣∣∣
∥θ∗∥ · ∥wi(t2)∥

=

∣∣∣∣e · ai(t1) + θ∗

∥θ∗∥
·O(ln

1

η
· η1.5)

∣∣∣∣∥∥∥∥e · ai(t1)∥θ∗∥
· θ∗⊤ +O(ln

1

η
· η1.5)

∥∥∥∥
≥

e · ai(t1)−
∣∣∣∣O(ln

1

η
· η1.5)

∣∣∣∣
e · ai(t1) +

∣∣∣∣O(ln
1

η
· η1.5))

∣∣∣∣ (triangle inequality)

= 1−

∣∣∣O(ln 1
η · η

1.5)
∣∣∣

e · ai(t1) +
∣∣∣O(ln 1

η · η1.5)
∣∣∣ ≥ 1−

∣∣∣∣O(ln
1

η
· √η)

∣∣∣∣
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Therefore, we complete the proof. □

D.2. Convergence to sparse solution

We assume that all the neurons are perfect aligned, i.e. for every neuron wi (i ∈ [m]) at step t, there
exists coefficient γi(t) such that wi(t) = γi(t) · θ∗.

Lemma D.2 (Convergence). Suppose Condition 3.1 (A1-3, 5-6) holds and consider gradient descent
for updates. Assume all the neurons are perfectly aligned at step t2. Let t3 = t2 +

1
∥θ⋆∥2 · ln(1/η)

η .

Using gradient descent, we have ∥θ(t3) − θ⋆∥ ≤ |O(η · ln 1
η )|. Furthermore, for any neuron

∥wi(t3)∥ ≥ √
η (i ∈ [m]), we have

|⟨w(t3),θ
∗⟩| ≥ 1−

∣∣∣∣O(η · ln 1

η
)

∣∣∣∣ (55)

By equ (46), when t = t2, we have

wi(t+ 1) = wi(t)− η · ai(t) ·
1

n

m∑
j=1

(a(t)⊤W (t)xj − yj)xj (56)

= γi(t) · θ∗ − η · ai(t) · (
1

n

m∑
j=1

xj · x⊤
j ) · (

m∑
k=1

ak(t) · γk(t) · θ∗ − θ∗) (57)

=

{
γi(t)− η · ai(t) · (

m∑
k=1

ak(t) · γk(t)− 1)

}
· θ∗ +O(

η√
n
) (58)

The last equation is due to
1

n

∑m
j=1 xj · x⊤

j = I +O( 1√
n
) = I +O(η2) by large number law and

Condition 3.1(A3). Notice that

θ(t) = a(t)⊤ ·W (t) =

m∑
i=1

ai(t) ·wi(t) = (

m∑
i=1

ai(t) · γi(t)) · θ∗ (59)

Then we have

θ(t+ 1) = θ(t)− η · a(t)⊤a(t) · 1
n

n∑
i=1

(a(t)⊤W (t)xi − yi) · x⊤
i

− η · 1
n

n∑
i=1

(a⊤(t)W (t)xi − yi) · x⊤
i W (t)⊤W (t) +O(η2)

= θ(t)− η ·
m∑
i=1

ai(t)
2 · (

m∑
j=1

ai(t) · γi(t)− 1) · θ∗ − η · (
m∑
j=1

ai(t) · γi(t)− 1) · ∥θ∗∥2 · θ∗ +O(η2)

= θ(t)− η · (
m∑
j=1

ai(t) · γi(t)− 1) · (
m∑
i=1

ai(t)
2 + ∥θ∗∥2) · θ∗ +O(η2)
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We consider the change of θ(t)− θ∗. Subtracting θ∗ on both side and we retain

θ(t+ 1)− θ∗ = θ(t)− θ∗ − η · (
m∑
j=1

ai(t) · γi(t)− 1) · (
m∑
i=1

ai(t)
2 + ∥θ∗∥2) · θ∗ +O(η2) (60)

= (

m∑
k=1

ak(t) · γk(t)− 1) · (1− η · (
m∑
i=1

ai(t)
2 + ∥θ∗∥2)) · θ∗ +O(η2) (61)

= (θ(t)− θ∗) · (1− η · (
m∑
i=1

ai(t)
2 + ∥θ∗∥2)) +O(η2) (62)

In the beginning, |ak(t2)|, ∥wk(t2)∥ ≤ √
η, so γi(t2) ≤

√
η

∥θ∗∥ and we have∣∣∣∣∣
m∑
k=1

ak(t2) · γk(t2)

∣∣∣∣∣ ≤ m · η

∥θ∗∥
(63)

by equ (62), for any t2 ≤ t ≤ t3 it holds

∥θ(t+ 1)− θ∗∥ = ∥θ(t)− θ∗∥ ·

∣∣∣∣∣(1− η · (
m∑
i=1

ai(t)
2 + ∥θ∗∥2))

∣∣∣∣∣+O(η2) (64)

≤ ∥θ(t)− θ∗∥ · (1− η · ∥θ∗∥2) +O(η2) (65)

Let T = − ln η
∥θ∗∥2·η , we retain

∥θ(t3)− θ∗∥ ≤ ∥θ(t2)− θ∗∥ · (1− η · ∥θ∗∥2)T +O(T · η2) (66)

Since (1− x)T ≤ exp(−x · T ), we have

∥θ(t3)− θ∗∥ ≤ ∥θ(t2)− θ∗∥ · (1− η · ∥θ∗∥2)T +O(T · η2)

≤ ∥θ(t2)− θ∗∥ · exp(−η · ∥θ∗∥2 · T ) +O(η · ln 1

η
)

= ∥θ(t2)− θ∗∥ · η +O(η · ln 1

η
)

=

∣∣∣∣O(η · ln 1

η
)

∣∣∣∣
So we reatin ∣∣∣∣∣1−

m∑
k=1

ak(t3) · γk(t3)

∣∣∣∣∣ ≤
∣∣∣∣O(η · ln 1

η
)

∣∣∣∣ (67)
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Since the summation of wi(i) approach to θ∗, which shows that there exists some neurons with "big"
norm. For any neuron ∥wi(t3)∥ ≥ √

η, we have γi(t3) ≥
√
η

∥θ∗∥ . For these neuron, we retain

|⟨w(t3),θ
∗⟩| =

∣∣∣∣∣⟨(
m∑
k=1

ak(t3) · γk(t3)) · θ∗ +O(T · η2),θ∗⟩

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
(
∑m

k=1 ak(t3) · γk(t3)) · ∥θ∗∥2 +O(η · ln 1

η
)

γi(t3) · ∥θ∗∥2 +O(η · ln 1
η )

∣∣∣∣∣∣∣∣
≥

∣∣γi(t3) · ∥θ∗∥2
∣∣− ∣∣∣∣O(η · ln 1

η
)

∣∣∣∣
|γi(t3) · ∥θ∗∥2|+

∣∣∣O(η · ln 1
η )
∣∣∣ (by triangle inequality and equ (67) )

= 1−
∣∣∣∣O(η · ln 1

η
)

∣∣∣∣
Therefore, we complete the proof. □
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Appendix E. Additional Experiment Result
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‖
‖

𝑾
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𝐹
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Norm of the First Layer Weights

(a) (b) (c)

Figure 2: Label noise SGD induces the rich regime. (a, b). Training LDtrain(θ(t)) and test
loss LDtest(θ(t)) vs. training epochs t. Label noise SGD induces the progressively
diminishing phenomenon. (c). The first-layer weight norm ∥W (t)∥F vs. training epochs
t. We use GD to train the models with NTK parameterization [16], both with and without
label noise. We also train a linearized model with GD as baseline. Results are presented
for WideResNets trained on a small subset of CIFAR-10.
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