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Abstract

Evaluating the performance of LLMs in multi-001
turn human-agent interactions presents sig-002
nificant challenges, particularly due to the003
complexity and variability of user behavior.004
In this paper, we introduce HammerBench,005
a novel benchmark framework for assessing006
LLMs’ function-calling capabilities in real-007
world, multi-turn dialogues. HammerBench008
simulates diverse mobile assistant use cases,009
incorporating imperfect instructions, dynamic010
question-answer trajectories, intent and argu-011
ment shifts, and the indirect use of external in-012
formation through pronouns. To construct this013
benchmark, we curate a comprehensive dataset014
derived from popular mobile app functionalities015
and anonymized user logs, complemented by016
a cost-effective data generation pipeline lever-017
aging open-source models. HammerBench is018
further augmented with fine-grained interaction019
snapshots and metrics, enabling detailed evalu-020
ation of function-calling performance across in-021
dividual conversational turns. We demonstrate022
the effectiveness of HammerBench by evaluat-023
ing several leading LLMs and uncovering key024
performance trends. Our experiments reveal025
that different types of parameter name errors026
are a significant source of failure across differ-027
ent interaction scenarios, highlighting critical028
areas for further improvement in LLM robust-029
ness for mobile assistant applications.030

1 Introduction031

The mobile assistant built on large language models032

(LLMs), where users interact with agents to pro-033

vide indispensable context for accurate API calling034

(Lin et al., 2024), often needs to handle multiple035

rounds of user interaction to complete complex036

task requests from users (Yan et al., 2024). For037

instance, tasks like ticket purchasing typically de-038

mand multiple interactions to gather and provide039

complete context and information for accurate deci-040

sions. Such multi-turn interactions pose challenges041

for LLM-based agents in understanding user in- 042

tent and making correct function calls due to the 043

uncertainty of user intent and behavior. 044

To help detect the defects of LLM agents in per- 045

sonal assistant scenarios, many automated dataset 046

evaluation methods driven by LLMs have been de- 047

veloped by the community including multi-turn 048

dialogue (Ou et al., 2023; Bai et al., 2024) and func- 049

tion call evaluation(Yan et al., 2024; Wang et al., 050

2024). These function call benchmarks are typi- 051

cally built based on virtual environments to support 052

quantifiable automated evaluation. However, in 053

complex multi-turn interactions, conversations and 054

function calls are often closely intertwined (Wang 055

et al., 2023a), and current benchmarks struggle to 056

evaluate this complex relationship. And we still 057

lack a fine-grained benchmark built in real-world 058

scenarios data to identify the practical application 059

flaws of the agent. 060

Based on the analysis of logs from anonymized 061

real users, we found that in the real-world scenario, 062

users may frequently change their intent during 063

interactions, requiring the agent to accurately rec- 064

ognize these changes for successful task comple- 065

tion. Current benchmarks are unable to capture this 066

process dynamic and lack the granularity needed 067

to detect process defects or subtle issues in task 068

execution. Additionally, in different scenarios, the 069

references to external information and the differ- 070

ences in the information provided by users vary 071

greatly, so the evaluation needs to cover a broader 072

range of scenarios to help detect these differences. 073

Therefore, We argue that a comprehensive evalu- 074

ation of mobile personal assistant agent has three 075

key principles: 076

Authenticity of test data for capturing capabili- 077

ties in satisfying the needs of real users. 078

Diversity of scenarios for capturing more situa- 079

tions that users may encounter in daily use. 080

Granularity of evaluation for capturing poten- 081

tial process defects. 082
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Benchmark Construction
Method

Single-turn Multi-turn External
Individual

InformationPerfect Imperfect Irrelevant Intent Shifts Diverse Q&A
Trajectories

Argument
Shifts

API-Bank Human ✘ ✘ ✘ ✘ ✘ ✘ ✘
BFCL LLM+Human ✔ ✘ ✔ ✔ ✘ ✘ ✔

NoisyToolBench Human ✘ ✔ ✔ ✔ ✘ ✘ ✘
ToolSandBox Human ✔ ✘ ✔ ✔ ✘ ✘ ✘

HammerBench (Ours) LLM+Human ✔ ✔ ✔ ✔ ✔ ✔ ✔

Table 1: Comparison between existing benchmarks and ours. Table 2 provides detailed descriptions for each column.

In this paper, we introduces HammerBench,083

a fine-grained, multi-turn function-calling bench-084

mark. To better reflect real-world user experi-085

ences, we curated the dataset based on popular086

mobile app functionalities from major app stores087

and queries derived from anonymized user logs.088

We expanded the dataset with open-source models,089

creating a cost-effective data generation pipeline.090

Table 1 shows HammerBench’s superior diversity091

and coverage across various interaction scenarios.092

HammerBench supports a wider range of com-093

plexities in both single-turn and multi-turn dia-094

logues, addressing key aspects often overlooked in095

previous benchmarks, such as handling imperfect096

responses, supporting diverse Q&A trajectories,097

and dealing with indirect references or vague de-098

scriptions. HammerBench further introduces fine-099

grained metrics to evaluate function-calling perfor-100

mance across individual conversational snapshots.101

These included metrics such as Function Name Ac-102

curacy, Parameter Name Hallucination and Missing103

Rate, Progress Rate and Success Rate, offering a104

detailed assessment of the model’s ability to han-105

dle function calls and track progress throughout106

multi-turn interactions.107

To validate the effectiveness of HammerBench,108

we benchmark 10 LLMs with HammerBench109

and analyze their performance. Our experiments110

demonstrate that HammerBench can perform more111

fine-grained evaluations in richer scenarios to as-112

sess the agent’s performance in a broader range113

of real-world tasks. Specifically, HammerBench114

reveals significant challenges in multi-turn inter-115

actions, particularly in tracking argument shifts116

and handling external information, which affect117

the accuracy and consistency of function-calling118

performance across models. Furthermore, Ham-119

merBench’s fine-grained metrics, such as Progress120

Rate and Parameter Hallucination Rate, effectively121

highlight specific model issues, like hallucinations122

and parameter name errors, providing deeper in-123

sights into model performance across different con-124

texts. These results demonstrate that Hammer- 125

Bench can provide a comprehensive and in-depth 126

evaluation for LLM agents in mobile assistant sce- 127

narios and offer valuable insights for optimizing 128

robust function-calling LLMs. 129

2 Related Works 130

2.1 Dialogue System Evaluation 131

Evaluating dialogue systems is challenging due 132

to the open-ended nature of human conversation, 133

making traditional rule-based evaluations difficult. 134

Early approaches, such as topic-based evaluations 135

(Guo et al., 2017), used topic classifiers to as- 136

sess dialogue quality by evaluating sub-topics in- 137

dividually. With the rise of large language mod- 138

els (LLMs), newer methods leverage these models 139

as evaluators. For example, (Zheng et al., 2023) 140

discussed the advantages of using large models 141

for dialogue assessment. Recent frameworks like 142

MT-Bench (Bai et al., 2024) and MT-Eval (Kwan 143

et al., 2024) apply GPT-based models to evaluate 144

multi-turn dialogues by decomposing them into 145

sub-tasks. MT-Bench evaluates dimensions such 146

as Context Memory, Anaphora Resolution, and 147

Reasoning, while MT-Eval focuses on Recollec- 148

tion, Expansion, Refinement, and Follow-up. How- 149

ever, in function-calling scenarios, evaluating dia- 150

logue dynamics—rather than just the function call 151

itself—adds a layer of complexity, requiring a nu- 152

anced approach to assessment. 153

2.2 Function Calling Benchmark 154

Function-calling benchmarks can be broadly cat- 155

egorized into single-turn and multi-turn evalua- 156

tions. Single-turn benchmarks like ToolAlpaca 157

(Tang et al., 2023), ToolLLM (Qin et al., 2023), and 158

NexusRaven (team, 2023) use automatic data gener- 159

ation based on LLM world knowledge. In contrast, 160

benchmarks such as ToolBench (Xu et al., 2023) 161

and RestGPT (Song et al., 2023) rely on manually 162

labeled data to ensure quality. Some benchmarks, 163

including BFCL-V1 and SealTool (Wu et al., 2024), 164
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Evaluation Type Data Type Abbr. Description

Single-turn

Single-turn perfect instruction Perfect The user query that clearly gives all required parameter values.
Single-turn imperfect instruction Imperfect The user query that only gives few required parameter values.
Single-turn with pronouns External There are anaphoric pronouns that refer to external individual information in the user query.
Single-turn irrelevant Irrelevant There is no tool in the candidate tools list that can solve the user query.

Diverse
question-answer

trajectories

Single-question-single-answer sQsA The agent asks and the user answers with parameter values one by one.
Multi-question-multi-answer mQmA The agent asks for multiple parameter values, the user also answers the corresponding value.
Multi-question-single-answer mQsA The agent asks for multiple parameter values, but the user only answers one value.
Single-question-multi-answer sQmA The agent only asks for one parameter value, but the user answers multiple values.

Intent shifts User intent has changed IS
The agent should output some special tags to terminate the ongoing session when a user
expresses a new intent unrelated to the current slot filling process, allowing for the
subsequent handling of the new intent.

Argument shifts Slots overriding SO The user repeatedly modifies the value of the same slot before tool execution.
Multiple slot values mSv The user repeatedly modifies the value of the same slot after tool execution.

External
individual

information
Answering with pronouns External The user does not answers directly, but gives the external individual information pronoun.

Table 2: Descriptions of test data in HammerBench at different granularities.

use the self-instruct method (Wang et al., 2023b) to165

generate data, while BFCL-V2 refines datasets by166

cleaning online user logs. Despite these advance-167

ments, single-turn benchmarks struggle to capture168

the diversity of real-world user interactions and fail169

to fully assess function-calling capabilities.170

Multi-turn function-calling benchmarks, such as171

API-Bank (Li et al., 2023) and NoisyToolBench172

(Wang et al., 2024), are manually curated, ensuring173

high-quality dialogue data. MINT (Wang et al.,174

2023a) focuses on interactive tools and external175

tools in question answering, while BFCL-V3 and176

ToolSandBox (Yan et al., 2024; Lu et al., 2024)177

offer comprehensive multi-turn evaluations. How-178

ever, gaps remain in these benchmarks, especially179

regarding argument shifts.180

In the broader landscape of agent evaluations,181

multi-turn frameworks like AgentBoard (Ma et al.,182

2024) and Agent as Judge (Zhuge et al., 2024)183

provide general evaluation systems for agent capa-184

bilities. However, these systems do not specifically185

target the challenges of multi-turn function-calling186

scenarios. To address the limitations of existing187

benchmarks, we propose a more targeted evalua-188

tion system that focuses on the fine-grained aspects189

of multi-turn function calling, including argument190

shifts and external information handling.191

3 Principles of HammerBench192

Based on the analysis of anonymized user logs and193

existing benchmarks, we identify three key princi-194

ples for designing an ideal benchmark: authenticity,195

diversity, and granularity. Below, we discuss how196

HammerBench incorporates these principles.197

Authenticity of test data: Queries should re-198

flect real user behavior. However, user logs often199

exhibit a long-tail distribution, where rare but im-200

pactful scenarios may be underrepresented. To 201

ensure comprehensive evaluation, we supplement 202

the dataset with additional instances from these 203

rare scenarios. Moreover, traditional API designs 204

prioritize developer-centric parameters, which may 205

not be intuitive for end users. HammerBench pri- 206

oritizes user-friendly tools, abstracting API com- 207

plexities to maintain operational integrity while 208

providing a seamless experience. The benchmark 209

dataset is curated from real Apps’ functionalities 210

and anonymized user logs, capturing a wide range 211

of common and rare user intents. 212

Diversity of scenarios: A diverse range of 213

tools, queries, and user behaviors is essential for 214

assessing LLM agents’ function-calling abilities. 215

HammerBench tests agents across multiple do- 216

mains through a diverse range of tools, from ticket 217

buying to daily schedules. It also includes vari- 218

ous query types, from simple requests to complex 219

tasks, and captures diverse user behaviors, such as 220

detailed vs. vague queries and single-turn vs. multi- 221

turn interactions. This diversity enables the bench- 222

mark to evaluate how well the agent adapts to dif- 223

ferent contexts and user expectations. In short, our 224

benchmark encompasses four categories in multi- 225

turn interactive tasks: 1) Imperfect instructions 226

(e.g., unclear or vague queries), 2) Varied question- 227

answer trajectories (e.g., differing conversational 228

paths), 3) Intent and argument shifts (e.g., changing 229

goals or inputs), and 4) External individual infor- 230

mation (e.g., implicit user context or background). 231

Granularity of evaluation: Granularity refers 232

to the level of detail in the evaluation metrics used 233

to assess system performance. HammerBench 234

adopts fine-grained metrics to evaluate both indi- 235

vidual function-calling tasks and multi-turn inter- 236

actions. Key metrics include Function Name Accu- 237
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Toolset construction

Popular 
Apps

Categories

Tools

Parameters

Tool description

Select few
parameters

Perfect 
instruction 
generation

Imperfect 
instruction 
generation

Slot filling 
trajectories 

Format Check LLM Check Human Check

Diverse Q&A 
trajectories

Single-turn dataset
Intent shifts Argument 

shifts

Fine-grained dataset

Intent / 
Argument 

shifting 

Data generation pipline

External individual information

Query-label 
pairs

 Recognize pairs
with entities

Specified 
entities

 Simulate 
information

Rewrite 
query

External knowledge generation

Basic and fine-grained dataset 

Check 
module

Tool Descriptions

Generated 
tools&instances

Figure 1: HammerBench construction pipeline: toolset collection, data generation, external knowledge generation,
and validation. Blocks with GPT icons indicate the use of LLMs, while orange blocks represent verification modules,
and green blocks denote various data types corresponding to each phase.

racy, Parameter Name Hallucination and Missing238

Rate, and Argument Accuracy. These metrics en-239

able a detailed assessment of specific performance240

aspects, such as correct function invocation and241

handling of incomplete information. In addition,242

HammerBench tracks the Progress Rate, which243

measures how well the model progresses toward244

task completion, and the Success Rate, which eval-245

uates the final outcome. This granular approach246

allows us to identify subtle deficiencies in model247

behavior, such as mismanagement of dependencies248

or errors in reasoning, providing valuable insights249

for further optimization.250

4 HammerBench251

In this section, we describe the methodology and252

workflow for constructing the datasets used in Ham-253

merBench. To provide a more concise overview,254

the overall structure of test data generated for Ham-255

merBench is summarized in Table 2, with detailed256

statistics and analysis in Appendix A.257

4.1 Test Data Construction258

HammerBench’s dataset construction follows a259

four-stage systematic process: toolset collection,260

API generation, validation, and manual refinement,261

as shown in Figure 1.262

Tool Collection and API Generation: The263

toolset is based on functionalities from popular264

mobile apps sourced from major manufacturers’265

app stores. We categorize these apps into 60 func-266

tional groups, for which we create prompts (see267

Appendix E.1) to generate APIs using LLMs. This268

process involves creating function names, descrip-269

tions, parameters, and return values, with human270

oversight to ensure simplicity, user-friendliness, 271

and minimal redundancy. 272

Validation and Refinement: Generated APIs 273

undergo manual review for quality, resulting in 274

1,063 final selections. The review process priori- 275

tizes completeness (covering typical usage scenar- 276

ios) and rationality (clarity and simplicity without 277

losing functionality). Function-calling instances 278

are generated using the self-instruct method (Wang 279

et al., 2023b), producing three types of instructions: 280

(1) complete function calls, (2) incomplete calls 281

(missing key parameters), and (3) irrelevant calls 282

(triggering rejection). This ensures both practical- 283

ity and usability for effective evaluation. 284

4.1.1 Multi-Turn Interactions with Imperfect 285

Instructions 286

As 76% of queries in user logs contain fewer than 287

10 tokens, we designed a workflow to generate 288

datasets that reflect typical query lengths. First, 289

we use LLMs to identify the most commonly used 290

parameters in daily applications, with the prompt 291

for parameter selection provided in Appendix E.3. 292

LLMs then generate queries including these pa- 293

rameters (see Appendix E.2). If parameters are 294

missing or extraneous, the model regenerates the 295

query until it aligns with the preset list. 296

This process produces imperfect instances that 297

pass basic format verification, but hallucinations 298

remain a concern. To mitigate this, we introduce 299

a semantic validation step (Li et al., 2024), check- 300

ing if the function call generated by the LLM is 301

consistent across zero-shot and one-shot in-context 302

settings. Consistency is evaluated with two metrics: 303

1) Rouge-L, using a predefined threshold, and 2) se- 304
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Diverse Q&A 

trajectories

Argument shifts

External individual information

Multi-turn basic dataset

Do you still have tickets for the train?

Where is your departure station?

My departure station is Grand Central Station.

Where is your arrival station?

My arrival station is Boston South Station.

When do you take the train?

The date of the trip is April 10th.

Please provide the type of seat you would like to inquire about

I would like to inquire about second class seats.

{"name":"queryTrainTicket", "arguments":{"departure_station": 

"Grand Central Station","destination_station": "Boston South 

Station","ride_date": "April 10th","seat_type": "Second class"}}

When do you take the train?

I’m sorry, the destination is Boston South Station.

It is Washington Union Station. I’m sorry, 

the destination is Boston South Station.

case1

case2

When do you take the train?

user0:

user1:

user2:

user3:

user4:

agent1:

agent2:

agent3:

agent4:

case3 I also want to see the destination of Hoboken 

Terminal.

Hey friend, do you have time to go out and play 

together? Around April 10th, we can go anywhere. 

Let's discuss and take a look, mainly because we're 

a bit tired of work and want to go out for some fresh 

air. What do you think?

The time mentioned in the FaceBook.

Randomly 

merge Q&A 

trajectories

Intent shifts

Session terminated

Oh no, I need to add alarm.

I also want to see the destination of Hoboken Terminal.

{"name":"queryTrainTicket", "arguments":{"departure_station": 

"Grand Central Station","destination_station": " Hoboken Terminal 

","ride_date": "April 10th","seat_type": "Second class"}}

Figure 2: Examples of four types of test cases in HammerBench: 1) Diverse Q&A trajectories generated by merging
user-agent interactions; 2) Intent shifts: agent terminates the session when users change their intent; 3) Argument
shifts: three cases of changing slot values during interactions; 4) External individual information: users use pronouns
instead of exact details, common in real-world interactions.

mantic alignment, by re-assessing the function call305

with the LLM. Instructions that are consistent in306

zero-shot settings are deemed more reliable, reduc-307

ing hallucination risk. Instances that pass valida-308

tion are further refined through manual inspection309

and sampling review. This results in 3,240 imper-310

fect instances, forming the basis for the multi-turn311

function-calling scenarios discussed in the follow-312

ing sections, as exampled in Figure 2.313

4.1.2 Diverse Question-Answer Trajectories314

Building on the imperfect instructions from the315

previous section, we extend these to multi-turn316

function-calling dialogues with interactive slot-317

filling. To assess the model’s ability to handle di-318

verse conversational flows, we design four types of319

question-answer trajectories:320

Single-Question-Single-Answer: The model321

queries a single argument, and the user provides a322

corresponding value. This tests the model’s ability323

to accurately elicit a piece of information.324

Multi-Question-Multi-Answer: The model325

asks multiple questions, and the user answers each.326

This evaluates the model’s ability to process multi-327

ple inputs within a conversation.328

Single-Question-Multi-Answer: The model329

asks one question, and the user gives multiple re-330

sponses. This challenges the model to interpret331

multiple answers for a single argument.332

Multi-Question-Single-Answer: The model333

asks multiple questions, but the user only answers334

one. This scenario tests the model’s ability to335

handle incomplete information and adapt to un-336

expected behavior. 337

We generate these trajectories by first creating 338

single-question-single-answer instances using the 339

prompts in Appendix E.7, which undergo semantic 340

and manual review (Section 4.1.1). The remaining 341

trajectories are formed by randomly combining 342

questions and answers from this dataset, resulting 343

in 2,310 distinct instances for evaluation. 344

4.1.3 Intent and Argument Shifts 345

In real-world interactions, users often shift their 346

intentions or modify slot values unexpectedly. For 347

example, users may abandon a complex request or 348

switch goals mid-conversation. This section evalu- 349

ates whether the model can recognize intent shifts 350

and respond accordingly, such as by issuing a rejec- 351

tion signal to terminate the conversation. To create 352

the dataset for intent shifts, we begin with Single- 353

Question-Single-Answer instances. We then ran- 354

domly replace a user input with a function call for 355

a different API, simulating a sudden intent change, 356

resulting in 1,098 intent shift instances. 357

Additionally, we consider two types of argument 358

shifts: slot overriding and API repurposing. 359

Slot Overriding: Users may provide different 360

values for the same parameter, with only the most 361

recent one being relevant. We generate these in- 362

stances by modifying dialogues to include turns 363

where users explicitly override previous arguments, 364

resulting in 1,462 instances. 365

API Repurposing: Users may update certain 366

parameters of a previous function call while keep- 367

ing others unchanged. To model this, we add a user 368
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Model Overall (Acc.)

Single-turn (Acc.) Multi-turn (Acc.)

Perfect Imperfect External Irrelevant Diverse
Q&A

Argument
shifts External Intent

shifts

GPT-4o (Prompt) 71.39% 78.69% 78.77% 56.16% 69.52% 73.80% 68.34% 69.64% 76.22%
Claude3.5-sonnet (Prompt) 70.28% 79.86% 79.38% 55.83% 68.16% 74.85% 73.62% 71.83% 58.74%

Qwen2.5-72B-Instruct (Prompt) 71.50% 80.86% 68.64% 67.40% 73.09% 65.93% 65.22% 61.12% 89.79%
Qwen2.5-7B-Instruct (Prompt) 58.80% 75.75% 58.08% 58.89% 41.00% 57.57% 53.21% 53.87% 72.04%
Llama-3.1-70B-Instruct (Prompt) 61.58% 75.99% 69.47% 59.57% 12.49% 73.13% 69.67% 69.29% 63.02%
Llama-3.1-8B-Instruct (Prompt) 49.09% 73.01% 51.08% 57.61% 8.13% 53.51% 48.61% 50.14% 50.63%
Ministral-8B-Instruct (Prompt) 37.42% 78.02% 32.19% 57.70% 3.86% 39.15% 38.68% 35.00% 14.75%

Hammer2.1-7b (FC) 65.79% 68.85% 59.29% 50.21% 89.74% 59.10% 55.73% 48.73% 94.71%
xLAM-7b-fc-r (FC) 50.79% 73.48% 48.82% 48.85% 50.02% 52.30% 46.20% 48.30% 38.34%
ToolACE-8B (FC) 50.52% 78.82% 51.94% 56.93% 26.58% 49.35% 48.35% 49.15% 42.98%

Table 3: HammerBench leaderboard (Single-Turn and Multi-Turn), where the best performances are highlighted.

input turn after a function call, introducing new369

values for some parameters while retaining others,370

yielding 1,066 instances.371

4.1.4 References to External Individual Data372

In AI assistant interactions, users often refer to373

external data indirectly using pronouns, instead of374

explicitly stating specific values. To evaluate the375

model’s anaphora resolution ability, we propose376

a method to generate datasets with references to377

external data. These references can come from378

any function call instance, with data retrieved from379

various external sources.380

We select nine common information entities381

(e.g., names, company names, product IDs, license382

plates, etc.) and use LLMs to identify argument383

values corresponding to these entities. Instances384

containing such references are retained for further385

processing. One identified argument is then re-386

placed by a pronoun referring to the external entity,387

and a new instance is generated by rephrasing the388

original text to include the pronoun. All instances389

are validated semantically and manually to ensure390

accuracy. This process results in 1,175 single-turn391

and 487 multi-turn instances involving external ref-392

erences.393

4.2 Function Calling Snapshots394

In complex interactions, models must assess395

whether the historical context provides enough in-396

formation to fulfill user intent and identify missing397

details for API parameters. When information is398

incomplete, agents should generate follow-up ques-399

tions to request the missing inputs. A common400

approach is the Learning to Ask paradigm, where401

models are fine-tuned to generate questions at each402

turn and then make a function call once all parame-403

ters are gathered.404

We suggest an alternative, the Function Call-405

ing Snapshots, where models generate a formatted 406

function call, or Snapshot, at each turn, regardless 407

of context completeness. This call is then com- 408

pared to the function definition using rule-based 409

logic to identify missing information, enabling the 410

generation of relevant follow-up questions. By de- 411

coupling the identification of missing data from 412

question generation, this approach allows for more 413

focused information recognition and detailed anal- 414

ysis, such as detecting Missing Parameters or Hal- 415

lucination. 416

We evaluated this mechanism through a com- 417

parative experiment by fine-tuning Qwen2.5-7B 418

on both paradigms and testing on 100 out-of- 419

distribution (OOD) conversations with human eval- 420

uation. As shown in Table 4, the Function Calling 421

Snapshots approach outperformed Learning to Ask 422

by 16% in task success rate, demonstrating its su- 423

perior effectiveness. 424

Training Paradigm SR

Learning to Ask 68%
Function Calling Snapshots 84%

Table 4: Comparison between Learning to Ask and
Function Calling Snapshots paradigms.

4.3 Fine-Grained Evaluation Metrics 425

We use several key metrics to assess function- 426

calling performance: 427

Accuracy (Acc.): a traditional metric, the accu- 428

racy when function and parameter names are all 429

correctly predicted. 430

Function Name Accuracy (Func. Acc.): the ac- 431

curacy of predicted function names, without taking 432

the parameters into account. 433

Function-Irrelevant Accuracy (Irrelevant): 434

the proportion of samples where irrelevant func- 435

tions are correctly excluded. 436
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Model
Diverse Q&A (PR) Argument shifts (PR) External (PR)

IS (Acc.)
sQsA mQmA mQsA sQmA w/o SO w/ SO w/o mSv w/ mSv w/o External w/ External

GPT-4o (Prompt) 66.03% 73.22% 68.52% 70.79% 67.90% 68.65% 68.47% 56.45% 74.36% 66.34% 76.22%
Claude3.5-sonnet (Prompt) 70.64% 73.74% 68.93% 72.62% 71.71% 72.54% 71.99% 63.94% 76.60% 68.62% 58.74%

Qwen2.5-72B-Instruct (Prompt) 56.28% 64.75% 56.93% 64.19% 61.11% 60.25% 63.15% 57.35% 65.94% 59.58% 89.79%
Llama-3.1-70B-Instruct (Prompt) 64.72% 67.42% 61.63% 68.00% 65.34% 62.01% 65.70% 58.64% 72.55% 63.47% 63.02%
Qwen2.5-7B-Instruct (Prompt) 48.90% 53.06% 43.62% 53.04% 50.66% 45.78% 51.71% 41.75% 58.13% 50.04% 72.04%

Llama-3.1-8B-Instruct (Prompt) 38.43% 51.15% 38.42% 50.35% 41.54% 37.99% 42.76% 34.97% 47.80% 43.56% 50.63%
Ministral-8B-Instruct-2410 (Prompt) 26.78% 28.59% 19.02% 28.37% 27.76% 26.21% 28.17% 22.00% 31.34% 25.06% 14.75%

Hammer2.1-7b (FC) 52.37% 57.57% 41.50% 57.18% 53.87% 49.83% 54.76% 43.87% 60.62% 46.32% 94.71%
xLAM-7b-fc-r (FC) 39.28% 40.74% 30.36% 41.08% 39.01% 34.44% 39.14% 29.09% 49.07% 39.76% 38.34%
ToolACE-8B (FC) 42.55% 46.39% 25.87% 46.10% 44.08% 40.07% 44.81% 35.07% 51.12% 43.61% 42.98%

Table 5: Ablation results: The evaluation (PR) on HammerBench for different multi-turn data types, while “w/o”
refers to subsets of sQsA datasets with the same user queries with “w/”. The IS represents the success rate of LLM
terminating correctly when encountering intent shifts. This table is a snippet from Table 9.

Parameter Hallucination and Missing Rate437

(PHR/PMR): PHR tracks incorrect parameter438

names, while PMR tracks missing parameters.439

These measure the accuracy and completeness of440

parameter predictions.441

Progress Rate (PR): the proportion of correct442

function calls up to the turns of error, defined as443

PR = k
n , where k is the number of correct turns444

and n is the total number of turns.445

Success Rate (SR): the overall accuracy of func-446

tion calls across all turns in a conversation, with447

higher values indicating better final performance.448

These metrics—Acc., Func. Acc., PHR, PMR,449

SR, and PR—provide a comprehensive framework450

for evaluating function calls in both individual and451

multi-turn dialogues.452

5 Experiment453

In this section, we demonstrate the superiority454

of HammerBench through a series of experi-455

ments with 10 commonly used or function-calling-456

specific LLMs. We provide detailed analyses of457

the experimental results, followed by in-depth dis-458

cussions and valuable insights that could be used459

to guide subsequent model optimization.460

5.1 Experimental Setups461

To validate the effectiveness of HammerBench,462

we benchmark the following baseline mod-463

els: GPT-4o (Hurst et al., 2024), Claude3.5-464

sonnet(Anthropic, 2024), Llama-3.1-70B-Instruct465

(Dubey et al., 2024), Qwen2.5-72B-Instruct (Qwen466

Team, 2024), Llama-3.1-8B-Instruct, Qwen2.5-7B-467

Instruct, Ministral-8B-Instruct (AI, 2024), xLAM-468

7b-fc-r (Liu et al., 2024b) and ToolACE-8B (Liu469

et al., 2024a). For all models, we impose a strict470

requirement on the output format in the prompt,471

as detailed in Appendix D. All open-source mod-472

els are deployed on 4 A100 80G GPUs, with a473

temperature setting of 0.0 and bfloat16 precision.474

5.2 Results Analysis of Evaluation Types 475

Table 3 shows the overall result of HammerBench 476

in different evaluation types including single-turn 477

and multi-turn. Models like Qwen2.5-72B-Instruct 478

(Prompt), GPT-4o (Prompt), and Claude3.5-sonnet 479

(Prompt) are among the top performers, with a 480

strong ability to handle both single-turn and multi- 481

turn interactions, while models like Hammer2.1- 482

7b (FC) and Ministral-8B-Instruct (Prompt) show 483

more specialized strengths or weaknesses depend- 484

ing on the task type. Specifically, with the help of 485

diverse scenarios, the following key insights pri- 486

marily emerge regarding Intent Shifts, Argument 487

Shifts, and External Individual Information. 488

Intent Shifts. In the scenario of intent shifts, 489

we assess the LLM’s ability to recognize chang- 490

ing user intentions. As shown in Table 3, LLMs 491

with stronger single-turn irrelevance detection ca- 492

pabilities tend to perform better in handling intent 493

shifts. 494

Argument Shifts. As seen in experiments from 495

Table 5, a major challenge in multi-turn interactions 496

occurs when users modify the same slot multiple 497

times before or after function execution. This tests 498

the model’s ability to track and update slot values. 499

LLMs often struggle to handle such shifts, like 500

when a user changes a date from June 1st to July 501

8th but the model retains the old value. This issue 502

is particularly evident in scenarios with similar pa- 503

rameters, such as updating train orders. The Slot 504

Overriding task effectively detects this flaw, reveal- 505

ing that many open-source LLMs are slow to adapt 506

to changes, while GPT-4o shows stronger perfor- 507

mance in tracking dynamic slot updates. Another 508

challenge arises when users modify a slot after a 509

tool has been executed, leading to issues with main- 510

taining consistency across multiple values. Even 511

GPT-4o, though less affected, sometimes fails to 512

track all updated parameters. This is likely due to 513
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Model Func. Acc.
First snapshot Last snapshot

PHR PMR Other Error Rate PHR PMR Other Error Rate

GPT-4o (Prompt) 88.80% 8.51% 3.38% 2.87% 6.56% 8.82% 8.41%
Claude3.5-sonnet (Prompt) 90.16% 8.59% 2.42% 1.52% 6.97% 7.98% 4.75%

Qwen2.5-72B-Instruct (Prompt) 85.43% 12.79% 1.28% 1.81% 10.98% 5.97% 4.05%
Llama-3.1-70B-Instruct (Prompt) 91.62% 19.09% 2.19% 1.99% 11.13% 2.09% 5.86%
Qwen2.5-7B-Instruct (Prompt) 82.88% 24.73% 2.86% 1.32% 14.62% 5.82% 5.49%
Llama-3.1-8B-Instruct (Prompt) 89.25% 36.84% 1.63% 1.22% 15.20% 22.14% 4.18%

Ministral-8B-Instruct-2410 (Prompt) 74.59% 52.50% 2.93% 0.98% 18.07% 6.96% 5.37%
Hammer2.1-7b (FC) 83.06% 19.08% 3.73% 1.21% 13.27% 9.43% 4.82%
xLAM-7b-fc-r (FC) 88.80% 47.18% 3.38% 1.03% 18.05% 8.72% 4.10%
ToolACE-8B (FC) 81.79% 29.62% 3.90% 1.22% 25.50% 4.90% 4.45%

Table 6: Evaluations on the first and last snapshots in the sQsA dataset. First snapshot: the first turn of the
conversation, Last snapshot: the last turn of the conversation. Other Error Rate: parameter values error rate.

the model perceiving the tool call as “complete”514

after execution, which causes it to disregard prior515

input. The Multiple Slot Values task highlights this516

issue, where slot values are inconsistently managed517

across turns. This task underscores the difficulty518

models face in maintaining parameter consistency519

over extended interactions. Appendix C.4 shows520

examples of these challenges.521

External Information. User queries contain-522

ing external individual information often introduce523

noise, affecting slot-filling accuracy. The Exter-524

nal Information task effectively detects this issue,525

showing how LLMs struggle with indirect refer-526

ences like pronouns or contextual information, lead-527

ing to lower accuracy as shown in Table 5 and Ap-528

pendix C.3. This task reveals the vulnerability of529

LLMs to external factors like personalized data or530

context, significantly disrupting function-calling531

accuracy. It highlights the importance of models532

being able to separate core inputs from external533

noise, making it a critical metric for real-world534

performance. Further results are available in Ap-535

pendix F.536

5.3 Results Analysis of Evaluation Metrics537

In addition to the results from diverse scenarios,538

the fine-grained metric design of HammerBench539

allows for a more detailed identification of specific540

issues in models within particular contexts. We541

will analyze the effectiveness of the metrics from542

different scenarios. Some interesting insights are543

revealed with the metrics defined in HammerBench,544

with more details in Appendix F.545

Progress Rate. In diverse Q&A dataset Table 5,546

interactions often lead open-source LLMs to hal-547

lucinate additional parameters, particularly when548

addressing multi-question-single-answer (mQsA)549

scenarios, which results in parameter mispredic-550

tions, as elaborated in Appendix C.2. Progress551

Rate (PR) can help gauge model resilience effec- 552

tively. For instance, GPT-4o demonstrates minimal 553

degradation in PR, suggesting its robustness against 554

hallucination issues. 555

PHR/PMR. Based on the results presented in 556

Table 6, the PHR in the initial snapshot, where 557

the context is incomplete, is significantly higher 558

compared to the final snapshot, where the context is 559

complete. This indicates that an incomplete context 560

leads to a higher frequency of hallucinations in 561

parameters, which remains a persistent bottleneck 562

for many open-source LLMs. 563

6 Conclusion 564

This paper presents HammerBench, a fine-grained 565

evaluation benchmark for multi-turn function call- 566

ing tasks, assessing imperfect instructions, diverse 567

question-answer trajectories, intent and argument 568

shifts, and user queries with external individual in- 569

formation. These components reflect real-world 570

user scenarios. We decompose multi-turn slot- 571

filling interactions into a series of function-calling 572

snapshots, allowing evaluation of each conversa- 573

tional turn. Additionally, we introduce random 574

merging of dialogue trajectories to assess question- 575

answer trajectory variability. A method for gen- 576

erating data with external individual information 577

is also released, enabling evaluation of a model’s 578

ability to resolve pronouns and anaphora. 579

Our experimental results highlight the chal- 580

lenges LLMs face in handling argument shifts and 581

external information, e.g. tracking dynamic slot up- 582

dates. Additionally, metrics such as Progress Rate 583

and PHR/PMR reveal critical areas of improve- 584

ment, notably in model resilience against hallucina- 585

tions and handling evolving user intents, underscor- 586

ing the need for further advancements to enhance 587

LLM robustness in real-world applications. 588
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Limitations589

Although HammerBench can assess certain multi-590

turn real-world scenarios and facilitates the eval-591

uation of multi-turn interactions in more complex592

contexts by incorporating multi-dimensional data593

generation methods, its evaluations are confined to594

fixed, pre-generated datasets. This limitation inher-595

ently restricts the benchmark’s capacity to fully cap-596

ture the diverse range of behaviors and capabilities597

that a large language model (LLM) might exhibit598

in a dynamic, real-world setting. When compared599

to the approach of using LLMs to generate real-600

time, dynamic trajectories during the evaluation601

process(Lu et al., 2024), the scope of trajectories602

covered by HammerBench is less comprehensive,603

and it does not assess the model’s ability to self-604

explore.605

The datasets used in HammerBench are automat-606

ically generated by synthesizing real-world scenar-607

ios, which inevitably introduces some discrepan-608

cies when compared to actual user queries. While609

this benchmark does support the evaluation of610

multi-turn interactions in more complex scenarios611

by incorporating data generation techniques from612

various dimensions, exhaustively capturing all pos-613

sible user queries remains infeasible. The reliance614

on fixed evaluation trajectories, while making the615

evaluation process more convenient and control-616

lable, limits HammerBench to only a partial step617

towards automated evaluations that more closely618

mirror real user interactions.619
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A Analysis of Benchmark Dataset 761

The overall structure of the datasets generated for HammerBench is summarized in Table 2. The dataset 762

comprises four single-turn datasets, each with four distinct types, and eight multi-turn datasets, categorized 763

into three types. 764

Statistics Perfect Imperfect External

# of categories 60 60 55
# of tools 1063 894 463

# of queries 2116 3240 1175

Table 7: Statistics of single-turn datasets.

Statistics: Our HammerBench dataset includes 60 functional categories, 1,063 tools, and a total of 765

6,531 queries, distributed across three types, as shown in Table 7. Figure 3(a) illustrates the correlation 766

between the number of tools and the number of parameters defined in the toolset. For the parts of 767

multi-turn test data, there are 1098 sQsA conversations generated from single-turn imperfect instructions, 768

spanning 59 categories and 494 APIs. If we define the number of turns as the total number of questions 769

asked by the agent, there are approximately 404 conversations with turns greater than 1. Figure 3(b) 770

presents the distribution of conversations according to the number of turns. Because conversations can 771

only be merged with more than one turn, there are 404 conversations in mQmA, mQsA, and sQmA. And 772

the distribution of multi-turn dataset types is depicted in Figure 3(c). 773

Quality: The dataset quality is rigorously ensured through the LLM validation module. Initially, data 774

that fails the LLM check is manually corrected on a case-by-case basis. Data that passes the LLM’s 775

double-check are subject to a random sample review, with 100 instances selected for human recheck. 776

Our quality assurance procedures have shown that the data availability rate exceeds 95%. Given that 777

our fine-grained multi-turn dataset is constructed from single-question-single-answer multi-turn data, the 778

quality of the underlying single-turn instances is of paramount importance. Consequently, we conducted a 779

manual review of 1,098 multi-turn instances to ensure their compliance with the logical flow of everyday 780

conversations. 781

(a) Distribution of #parameter (b) Distribution of conversation turns (c) Distribution of data types

Figure 3: Statistics: a)The number of tools corresponding to different parameter counts in our toolset; b)The
number of conversations corresponding to different turn counts in sQsA; c)Various number of multi-turn data cases
constructed based on the Imperfect and External in Table 7.
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B Examples782

B.1 Single-turn783

normal user query
User: Please help me send the traffic violation record of PDX-1234 in Portland yesterday to Manager784

Zhang by email.785

Agent: {"name":"shareViolationDetail", "arguments":{"city": "Portland", "media": "email", "name":786

"Manager Zhang", "plate_number": "PDX-1234", "time":"yesterday"}}787

missing arguments user query
User: Share the traffic violation information in Portland.788

Agent: {"name":"shareViolationDetail", "arguments":{"city": "Portland", "media": "", "name": "",789

"plate_number": "", "time":""}}790

user query with external individual information
User: I found the license plate number mentioned in my notepad and would like to share the traffic791

violation information I encountered in Portland yesterday with Manager Zhang via email. Is that okay?792

EK: At 3pm today, I saw a car with license plate number PDX-1234 in the parking lot. The owner793

seemed to have forgotten to turn off the lights, and the lights were on until the evening. I am worried794

about violating traffic rules. If you know the owner, please remind him.795

Agent: {"name":"shareViolationDetail", "arguments":{"city": "Portland", "media": "email", "name":796

"Manager Zhang", "plate_number": "PDX-1234", "time":"yesterday"}}797

B.2 Multi Turn798

conversation with external individual information
User: Share the violation information.799

Agent: Which city did the violation occur in?800

User: The violation occurred in Portland.801

Agent: Please provide a way to share.802

User: Share the link via email.803

Agent: Please provide the recipients of the shared content.804

User: The recipient was Manager Zhang.805

Agent: Please provide the license plate number.806

User: The license plate number mentioned in the notebook807

EK: At 3pm today, I saw a car with license plate number PDX-1234 in the parking lot. The owner808

seemed to have forgotten to turn off the lights, and the lights were on until the evening. I am worried809

about violating traffic rules. If you know the owner, please remind him.810

Agent: When is the order opening time?811

User: It was yesterday.812

Agent: {"name":"shareViolationDetail", "arguments":{"city": "Portland", "media": "email", "name":813

"Manager Zhang", "plate_number": "PDX-1234", "time":"yesterday"}}814
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C Examples of Model Output Errors 815

C.1 Imperfect instruction 816

Parameter hallucination
User: Help me find a mail. 817

Agent: {"name":"searchMail", "arguments":{"keyword": "mail", "max_results": "10"}} 818

The user does not provide any parameter information, but the parameter slots are filled in by LLMs. 819

C.2 Diverse Q&A trajectories 820

Parameter hallucination
User: See how much airline points I have. 821

Agent: What’s your rider’s name Provide the rider’s ID number. 822

User: The passenger’s name is Bob. 823

Agent: {"name":"getFlightAirlinePoints", "arguments":{"name": "Bob", "passenger_id": 824

"123456789"}} 825

Due to aske ID number, although the user does not answer, LLMs also mistakenly fills in this parameter 826

slot. 827

C.3 External Individual Information 828

Redundant Information
User: Share my taxi ride. 829

Agent: What time is the order 830

User: The time mentioned in the Facebook message sent to me by Xiao Ming<EK>:Yesterday evening 831

at 8pm, we had a virtual meeting to discuss next week’s work schedule. Everyone put forward a lot of 832

good suggestions and felt that the meeting was efficient. Hopefully our team can continue to maintain 833

this positive attitude! 834

Agent: {"name":"shareTaxiOrder", "arguments":{"time": "yesterday evening at 8pm", "media": "Face- 835

book"}} 836

The user only mentions that the time is in the Facebook, but does not mention that the media is 837

Facebook. 838

C.4 Argument shifts 839

slot overriding
User: Is there any way to change the train ticket standby order I applied for previously? 840

Agent: What number of trips did you book 841

User: The number I booked is G123. I’m sorry, Booked trips is D789. 842

Agent: {"name":"updateTrainWaitlistOrder", "arguments":{"train_number": "D789", "after_number": 843

"G123"}} 844

The user provides two values for the same slot, but LLMs fail to recognize. 845
multiple slot values

User: Find me a way. How do I get there? 846

Agent: Please provide your departure location name or address If using your current location please 847

confirm directly 848

User: People’s Square 849

Agent: Please provide your destination name or address 850

User: Shanghai Hongqiao International Airport 851

Agent: {"name":"vehicleNavigationRoute", "arguments":{"departure": "People’s Square", "destina- 852

tion": "Shanghai Hongqiao International Airport"}} 853

User: I also want to see that Name or address of the destination is Bondi Beach 854

Agent: {"name":"vehicleNavigationRoute", "arguments":{"destination": "Bondi Beach"}} 855

When another destination is given again, the original departure parameter is lost. 856
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D Prompts of Function Calling857

format prompt
You have access to the following functions.858

<tools>859

To call a function, please respond with JSON for a function call.Respond in the format “‘json{"name":860

function name, "parameters": dictionary of argument name and its value}.“‘861

Attention! For time parameters, please fill in the format as described in the user request, and do not862

automatically convert the format! For example:863

user: Set an alarm for 8 a.m. tomorrow864

assistant: {"name":"UtilityTools.AlarmClock.addAlarm", "arguments":{"time":"8 a.m. tomorrow"}}865

866

## Note! Please do not hallucinate parameters. If some parameters are not mentioned in the867

user request, please directly output an empty string ” For example:868

user:Check my traffic violation record to see what happened.869

assistant:“‘json{"name": "Navigation.TrafficViolations.viewViolationDetail", "argu-870

ments":{"plate_number": "","city": "","time": ""}}“‘.871

Never ask to the user for missing parameters!Output tool call!872

## If all the above tools are not suitable, you must output: Sorry, no tool is suitable for your request.873

874

Let’s start!875

E Prompts of Dataset Construction876

E.1 Tool Generation877

Generating Tools
# System878

You are a tool builder! Your task is to generate realistic and versatile toolkits that will be used by879

Large Language Models (LLMs) to enhance their ability to solve real-world tasks. You must generate880

toolkits that are useful, cohesive, complete, and diverse. You should focus on generating toolkits that881

are commonly used by average users.882

### Core requirements883

1. Realism requirement: Ensure that the generated toolkit has a realistic design and can be seamlessly884

integrated with LLMs for practical real-world applications. Specifically, the toolkit should either have885

a tangible prototype that has been deployed in the real world, such as those developed using existing886

APIs (such as Weibo or NetEase Mail), or demonstrate strong potential for future development and887

accessibility through APIs (such as industrial automation toolkits).888

2. Diversity requirement: Ensure that the generated toolkit is diverse, meeting a wide range of domains,889

types, functions, and use cases.890

3. Compatibility requirement: Ensure that the generated toolkit is compatible with the textual interfaces891

of LLMs. In particular, LLMs can only interact with the toolkit through textual and programmatic892

APIs. Therefore, the tool API should mainly accept and return text as input and output. Therefore,893

the toolkit’s API should mainly accept and return text as input and output. In cases where the input894

or output involves alternative types such as files, images, videos, or audio, these should be interfaced895

through data paths or URLs, rather than raw data.896

4. Cohesion requirement: Ensure that the generated toolkit is a cohesive collection of related tools897

designed to facilitate the completion of a specific core target task. It should contain a variety of tool898

APIs that serve different purposes within the scope of the intended functionality. For example, the899

NetEase Mailbox toolkit may include tools for sending, searching, reading, and deleting emails.900

5. Completeness requirement: Ensure that the toolkit is functionally complete and self-contained. Each901

toolkit should contain comprehensive tool APIs that are sufficient to complete its core target tasks902

without relying on any external tools or resources. In particular, if a toolkit involves operating data903

resources (such as tasks in the Trello toolkit), the tool APIs should generally support relevant CRUD904
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(create, read, update, delete) operations on these resources, or similar operations. In addition, these tool 905

APIs should generally operate using unique identifiers of the data source. You should not assume that 906

such unique identifiers will be provided by the user. Instead, there should be a tool API (e.g., a search 907

tool API) in the toolkit for retrieving unique identifiers. A typical design of a complete toolkit is as 908

follows: 909

- A search tool for retrieving unique identifiers (and possibly primary content) of data resources, such as 910

by keyword search. 911

- A read tool that takes a unique identifier as a parameter and returns the detailed data resource. 912

- An update tool that takes a unique identifier and the updated data resource as parameters and updates 913

the data resource, returning the unique identifier of the updated data resource. 914

- A delete tool that takes a unique identifier as a parameter and deletes the data resource, returning the 915

success status of the deletion. 916

- A create tool that takes a data resource as a parameter and creates a new data resource, returning the 917

unique identifier of the created data resource. 918

### Additional Requests 919

1. Unique target user requirement: Ensure that the toolkit is designed for a specific target user group 920

and that all tools will be used by the same target user group. The designated user group can vary - 921

individual users, enterprise users, developers, etc. For example, in the case of an e-commerce toolkit, 922

all tools should target either individual users or enterprise users, but not both. 923

2. Compactness requirement: Ensure that the toolkit API is compact, meaning that if tools have similar 924

interfaces and functionality, they should be unified into one tool. For example, tools for searching for 925

different types of items should be unified into one tool API with a parameter for specifying the type of 926

items to search for. 927

3. Search limit requirement: For toolkits that involve searching the tool API to retrieve data resources, 928

ensure that there is a parameter for specifying the maximum number of results returned by the search 929

tool API. This parameter can be optional, and the default value is specified in the tool description. 930

4. Avoid unnecessary authentication requirements: In most cases, toolkits are designed for personal use 931

by a single user, and it is reasonable to assume that the user has completed authentication before using 932

the toolkit. In this case, ensure that all tools do not require login, authentication, or personal ID. For 933

example, all tools in a personal banking toolkit should not require a login or a ‘user_id‘ parameter for 934

the tool. This also means that "unauthorized evaluation" should not be considered a potential risk for 935

the toolkit. 936

5. Avoid unnecessary ID requirements: Ensure that the tool does not introduce unnecessary unique 937

identifiers. Unique identifiers are only necessary when multiple data resource instances of the same type 938

need to be distinguished and operated on by the unique identifier. For example, for an online shopping 939

toolkit, an ‘order_id‘ needs to be introduced because there are usually multiple orders in a user account, 940

and it is necessary for operations on orders such as retrieval, read or cancel. However, unique identifiers 941

are unnecessary when the data source is singular, eliminating the need for distinction. For example, 942

for an online shopping toolkit, a ‘cart_id‘ for a user’s shopping cart or a ‘profile_id‘ for the user’s own 943

profile are redundant because a user account usually contains only one of each. 944

6. Stored data access requirements: For cases where some tools in the toolkit require specific user 945

details such as address or payment method, and it is reasonable to assume that the user has previously 946

provided this information to the toolkit, there must be a tool API that can access the stored data. For 947

example, in a toolkit for food delivery or e-commerce, there should be a tool API for accessing a user’s 948

saved addresses and payment methods. 949

7. Operation Status Indication Requirement: For tool APIs that involve operations such as creating, 950

updating, or deleting data resources, it is critical to include the operation status (e.g., a Boolean value of 951

"success") as part of the return value. Other return values should also align with the operation status. 952

For example, if a tool returns a unique identifier for a created data resource, it should return null or an 953

empty string if the operation failed. 954

8. File/Media Management Requirement: Toolkits that involve file or media resources (such as the 955
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Twitter toolkit that requires media attachments) need to carefully distinguish between local and remote956

file management. Remote files located on a remote server should be identified and managed by their957

remote file path or unique identifier. Whereas local files located on the user’s system should be identified958

and managed by local file paths. Different tools may require remote or local files as input parameters or959

return values, depending on the specific use case. For example, for the Twitter toolkit, a tool for posting960

a tweet should require the local path of the media file to be posted, while a tool for retrieving tweets961

should return the remote file identifier of the media file in the tweet. Additionally, there should be a tool962

for downloading remote media files to the local system.963

### Output Format964

Toolkit specifications should be in a valid JSON list separated by “‘json‘ and “‘. Each item in the list965

should contain the following fields:
‘tool‘: The name of the tool, which should be in "CamelCase" format.
‘name‘: The Chinese name of the tool, which should express the function of the tool as concisely as966

possible.
‘description‘: The summary of the tool, which should be a clear and concise description of the purpose967

and function of the tool without any ambiguity. It must be in Chinese.
‘parameters‘: The parameter list of the tool, each parameter should contain the fields including ‘name‘,968

‘type‘ and ‘description‘, ‘required‘ (whether the parameter is required). ‘description‘ must be in969

Chinese.
‘returns‘: The return list of the tool, each return should contain ‘name‘, ‘type‘ and ‘description‘.970

971

Please note:972

1. For tool ‘parameters‘ and ‘returns‘, ‘name‘ should not contain spaces and should be in "snake_case"973

format.974

2. For tool ‘parameters‘ and ‘returns‘, ‘type‘ should be a valid JSON type, i.e. one of ["string",975

"integer", "number", "boolean", "array", "object", "null"].976

3. For tool ‘parameters‘ and ‘returns‘, ‘description‘ should be a clear and concise description of the977

parameter or return, without any ambiguity. If the parameter or return is subject to some specific format978

or value constraints, these constraints should be explicitly specified in ‘description‘.979

4. If a tool ‘parameters‘ or ‘returns‘ is an object, the exact fields of the object should be explicitly980

specified in ‘description‘.981

### Format example982

You should output the toolkit as a JSON object, strictly following the structure shown in the following983

example tool spec:
*WARNING! ** You need to check your JSON format carefully!!! Output the detailed toolkit spec as:984

“‘json985

<Output toolkit spec follows [format description]>986

“‘987

Try to generate tools that users might use in their daily lives.988

Do not output the same string repeatedly!!!989

Make sure to meet the above format requirements, especially do not lose "parameters"990

Question: You need to generate tools for the following toolkits related to map navigation: Reference991

message: Turn on navigation sound, turn off navigation sound, change navigation sound, query real-time992

bus, view my footprints, find charging piles, add common addresses, view common addresses, delete993

common addresses, add favorite places, view favorite places, delete favorite places, add favorite routes,994

view favorite routes, delete common routes995

E.2 Query Generation996

Generating Single-turn Queries
You are now a mobile phone user. Your task is to fill in the corresponding parameters according to the997

actual scenario based on the provided description and parameters, and then generate a user request998
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based on the filled parameters. 999

1000

Please make sure that the generated user requests are different from each other. You can feel 1001

free to use different sentence styles, such as instructions or requests, and change the degree of detail as 1002

needed. 1003

Related requirements: 1004

1. Use as few questions and polite tones as possible; 1005

2. Natural questions similar to human conversations need to be more humane and colloquial, and in line 1006

with people’s daily life 1007

3. The parameters in the generated user request should be as reasonable as possible. For example, if it 1008

involves image parameters, the user request needs to have representative information like test.jpg 1009

4. Fill in parameters carefully, output the corresponding JSON format and wrap it with “‘json...“‘ 1010

5. Information such as test.jpg contained in parameters also needs to be included in the user request!! 1011

6. All parameters must be filled in all given parameters!! Do not miss any one! 1012

7. The user request needs to be wrapped with <user0>...<user1>. Your task is to generate natural and 1013

colloquial user requests, make sure to clearly mention the tool name {name_for_human} in the request, 1014

and avoid using stiff or direct imperative tones. For example, do not generate requests like ’Dianping, 1015

show me my group purchases’, but use more humane and daily conversation expressions, such as ’Help 1016

me see the group purchases on Dianping’. Please generate a user request that meets the specifications 1017

according to this requirement. 1018

8. You can generate parameters first, and then generate user requests based on the generated parameters. 1019

9. The text descriptions in parameters must be in Chinese! 1020

10. For time parameters, please use Chinese text! And the expressions before and after must be 1021

consistent! 1022

11. When no parameter definition is given, please generate a statement that does not contain any 1023

parameters! Output Format: 1024

1. Parameters: “‘json parameter dictionary“‘. <user0>[user request]<user1> 1025

2. Parameters: “‘json parameter dictionary“‘. <user0>[user request]<user1> 1026

. . . Here are two examples for your reference: 1027

description: Modify alarm time, ring mode, weekday settings, custom settings 1028

parameters:
1029

1030

Must include parameters: 1031

Output: 1032

1. Parameters:“‘json{}“‘. <user0>I want to modify the alarm time<user1> 1033

1034

description: Modify the alarm time, ring mode, weekday settings, custom settings 1035

parameters:[{"name": "clock_time","type": "string","description": "Alarm 1036

time","required": false},{"name": "target_time","type": "string","description": 1037

"Modified target time","required": true}] 1038

Must include parameters: clock_time, target_time Output: 1039

1. Parameters:“‘json{"clock_time": "8 o’clock","target_time": "15 o’clock"}“‘. <user0>Change 1040

the alarm at 8 o’clock to 15 o’clock in the afternoon<user1> The description of the tool and the 1041

corresponding parameters are as follows: 1042

description:{description} 1043

parameters:{parameters} 1044

Must include parameters:{param_list} Please refer to the example and generate {num} [user 1045

requests] and [parameter dictionaries] that conform to the output format according to the above 1046

requirements and tool conditions. 1047
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E.3 Parameters Selection1048

Selecting parameters
Please select the specified number of parameters that best suit your daily habits based on the tool1049

description and corresponding parameter definitions. ## Selection Principles:1050

1. Simulate daily user usage scenarios and give priority to parameters that are more commonly used in1051

daily life ## Output Format:1052

1. Output your thoughts first, then output the parameter name you selected, and wrap it with “‘...“‘1053

2. Use commas to separate parameter names ## For examples:1054

Tool description: Create a new alarm1055

Parameter definition:1056

["name": "clock_time_name","type": "string","description": "Alarm name, empty by1057

default","required": false,"name": "clock_time","type": "string","description":1058

"Alarm time","required": true,"name": "kwargs","type": "array","description":1059

"Ring mode, weekday settings, custom settings","required": false]1060

Output 2 parameters: clock_time, clock_time_name1061

1062

Start now! Tool description: {tool_desc}1063

Parameter definition: {parameters}1064

Output {num} parameters:1065

E.4 LLM Check Prompt1066

LLM Check Prompt
## System1067

You are an expert who can accurately judge the information matching relationship between texts, and1068

you have a keen insight into the information matching between two structured texts.1069

## Task Description1070

1. Given a query, model_output and the label of the corresponding tool call, your task is to determine1071

whether the model_output and label both express the same semantic meaning and are derived from the1072

information found in the query. output your judgment True/False1073

1074

2. If model_output and label have different number of parameters, such as {’A’:1,’B’:2} and1075

{’A’:1}, output False1076

3. model_output and label do not have to be exactly the same. As long as they express the same1077

meaning and can solve query needs, only True is output.1078

4. If model_output is the same as label, or only a slight difference between them in terms of singular1079

and plural, output True! such as {} and {}, {"departure": "office"} and {"departure": "Offices"}, you1080

need output True1081

## Output Format1082

1. Following Task Description, Only output True/False, Never answer more text! For examples:1083

1. Different characters but same semantics, output True:1084

query: Add a note of the address of Starbucks Zhongguancun store on the map, and write "frequently1085

visited writing place"1086

label: {"address": "Starbucks Zhongguancun store", "remake": "often come to write"}1087

model_output: {"address": "Starbucks Zhongguancun store", "remake": "frequently visited writing1088

place"}1089

Output: True1090

2. model_output contains parameters that are not in label, output False:1091

query: How many times have you ridden this year?1092

label: {}1093

model_output: {"time": "this year"}1094

answer: False1095

3. The model_output is missing the parameters of label, output False:1096
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query: I want to know which five-star hotels are there in Nanshan District, Shenzhen 1097

label: {"destination": "Nanshan District, Shenzhen", "checkin_date":"", "checkout_date":"", 1098

"price_range":"", "kwargs":"five-star hotel"} 1099

model_output: {"destination": "Nanshan District, Shenzhen", "checkin_date":"", "checkout_date":"", 1100

"kwargs":"five-star hotel"} 1101

answer: False 1102

4. Time hallucination occurs, output False: 1103

query: Make an appointment to test drive Xiaomi su7 at 10 am this Saturday 1104

label: {"test_drive_time": "This Saturday at 10 am", "name":"", "phone":"", "kwargs":""} 1105

model_output: {"test_drive_time": "2023-04-20 10:00", "name":"", "phone":"", "kwargs":""} answer: 1106

False 1107

5. The time format is different, but it expresses the same time, output True: 1108

query: Make an appointment to test drive Xiaomi su7 at 10 am this Saturday 1109

label: {"test_drive_time": "This Saturday at 10 am", "name":"", "phone":"", "kwargs":""} 1110

model_output: {"test_drive_time": "This Saturday at 10:00", "name":"", "phone":"", "kwargs":""} 1111

answer: True 1112

6. All are empty characters, output True: 1113

query: Open TikTok 1114

label: {} 1115

model_output: {} 1116

answer: True 1117

Start now! 1118

1119

query: {query} 1120

label: {label} 1121

model_output: {model_output} 1122

answer: 1123

E.5 Irrelevant tools selection 1124

Irrelevant tools selection
Given a query and the corresponding tool description and parameter definition, please judge whether 1125

the tool can complete the query. 1126

## Output Format: 1127

Only outputs boolean strings: True/False 1128

1129

Start now! 1130

query:{query} 1131

tool:{tool} 1132

answer: 1133

E.6 Generation with external individual information 1134

classify entity
Please determine whether a parameter is in the entity category 1135

## Output Format: 1136

Please select which entity it belongs to. The selected entity category is enclosed in “‘...“‘ 1137

entity:{entities} 1138

Parameter name and description:{param_desc} 1139

Output: 1140

pronoun generation
Please rewrite the following content into a sentence in the form of adjective + noun that is more in line 1141

with daily habits and has more specific information. 1142

1143
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For example:1144

Input: The time mentioned in the message received from SMS1145

Requirement: Cannot contain specific time1146

Output: The time mentioned in the text message sent to me by Tom1147

1148

Start now! Output only the rewritten 1 sentence!1149

1150

Input: {entity} mentioned in the message received from {Tool_} Requirement: Cannot con-1151

tain specific {entity} Output:1152

external individual information simulation
Please simulate a message in {app} as required1153

1154

## Related requirements1155

The content must involve entity;1156

The content should be as detailed as possible, and no referential content such as that or this should1157

appear. The message should contain a clear {entity}: {param_value} The content must not contain the1158

following: {param_forbid} ## Output format1159

Only output simulated messages, do not ask or output other content!1160

1161

Simulated message:1162

rewrite query
Please generate the corresponding user query according to the label and the corresponding tool function1163

description1164

## Related requirements1165

1. Try to be consistent with the language of daily conversation interaction, smooth and concise1166

## Output format:1167

Only output the query, do not include other information1168

1169

Tool description: {desc}1170

label: {label}1171

query:1172

E.7 Multi-turn Prompt1173

Question prompt
You are a function call agent, currently processing the {description} function call task, but the1174

parameters {miss_args_desc} are missing. Please ask the user for the missing parameter values1175

1176

1177

**Requirements**1178

- Do not include the existing parameters: {args_desc}1179

- Be brief and concise, do not add additional explanations1180

- Ask only about the missing parameters1181

- Ask multiple missing parameters together, do not use special symbols to separate, such as colons,1182

newlines, etc.1183

- Just ask questions, do not tell the user how to answer1184
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F Extra Experiment Details 1185

Our experiments are all conducted in the HammerBench datasets generated by open-source LLMs. When 1186

generating these data, we only summarized the behaviors and scenarios based on anonymous user logs, 1187

without involving any privacy information of users. And HammerBench’s evaluations strictly follow the 1188

license of the corresponding LLMs. Qwen2.5-72B-Instruct, Qwen2.5-7B-Instruct(Qwen Team, 2024) and 1189

ToolACE-8B(Liu et al., 2024a) are Apache-2.0 LICENSE; xLAM-7b-fc-r(Liu et al., 2024b) is CC-by- 1190

NC-4.0 LICENSE; Llama-3.1-70B-Instruct(Dubey et al., 2024) and Llama-3.1-8B-Instruct are llama3.1 1191

LICENSE; Ministral-8B-Instruct(AI, 2024) is mrl LICENSE. They all allow developers to use their 1192

technology for non-commercial purposes and to support research work. And GPT-4o(Hurst et al., 2024) 1193

and Claude3.5-sonnet(Anthropic, 2024) are also widely used in research. Without using LLM judge, it 1194

takes approximately 90 minutes for the 7B LLMs to inference all single turn(6500+ samples) and multi 1195

turn data(6400+ samples) using a single A1OO 80G GPU. As for GPT-4o, one evaluation approximately 1196

cost 75 dollars. 1197

The experiment result of single-turn dataset is shown in Table 8. As for single-turn dataset with missing 1198

arguments (Imperfect), PHR is much larger than other single-turn dataset. It reveals that user query with 1199

missing arguments can easily lead to parameter hallucinations. In these cases, LLMs tend to fill in missing 1200

arguments based on their internal model of the world rather than the actual user input, as detailed in 1201

Appendix C.1. Since snapshots are often imperfect, these inaccuracies significantly impact multi-turn 1202

success rates, further highlighting the challenges posed by incomplete or unclear user input. As a result, 1203

the overall effectiveness of function-calling tasks is diminished when the instructions provided to the 1204

model are less than ideal. And the single-turn dataset with external individual information has the lower 1205

end-to-end Acc. . 1206

We also evaluate function-calling snapshots across three types for detailed investigation. (1) every turn 1207

throughout the conversation in Table 12, (2) the turn when the user changes slot values in Table 13, and 1208

(3) the first and last turn of the conversation in Table 6. Some additional observations are as follows. 1209

Fluctuations in Conversation Success Rate Across Diverse Q&A Trajectories: As shown in 1210

Table 12, different conversation trajectories introduce varying degrees of disturbance to the overall success 1211

rate of function calling. Consistent with expectations, we find that the progress rate tends to be higher 1212

when slot values are provided more rapidly within the conversation (e.g. mQmA and sQmA, where users 1213

provide multiple slot values at once and thus answer models’ questions faster.), highlighting the impact of 1214

the timing and flow of user input on function-calling accuracy. 1215

Generalization and Handling of Argument Shifts and External information: As shown in Table 13, 1216

open-source LLMs are generally slow to detect and adjust to slot overriding. Only GPT-4o and Claude3.5- 1217

sonnet, with its more robust generalization abilities, is able to perform this task more effectively. As for 1218

external individual information, external noise increases Parameter Mismatch Rate (PMR) and causes the 1219

model to miss crucial arguments, hindering its ability to fill slots correctly. 1220

Imperfect Instructions and Parameter Name Hallucinations: As illustrated in Table 6, the PHR 1221

in the first snapshot is significantly higher than in the last snapshot for all LLMs, with the PHR being 1222

positively correlated with the rate of parameter name hallucinations. Furthermore, when all parameter 1223

names are predicted correctly, the end-to-end function call is typically accurate as well, i.e. Other Error 1224

Rate≈ 0%, emphasizing the importance of precise initial instruction. We can see similar observations 1225

from Table 8. 1226
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Data type Model Func. Acc. PHR PMR Acc. Irrelevant

Perfect

GPT-4o (Prompt) 89.74% 0.16% 10.63% 78.69% 64.38%
Claude3.5-sonnet (Prompt) 89.89% 0.26% 7.72% 79.86% 69.35%

Qwen2.5-72B-Instruct (Prompt) 90.50% 1.98% 3.92% 80.86% 74.59%
Llama-3.1-70B-Instruct (Prompt) 91.87% 6.64% 4.27% 75.99% 14.19%
Qwen2.5-7B-Instruct (Prompt) 89.41% 5.50% 3.96% 75.75% 37.36%
Llama-3.1-8B-Instruct (Prompt) 87.75% 5.22% 3.39% 73.01% 9.93%

Ministral-8B-Instruct-2410 (Prompt) 88.32% 0.43% 4.23% 78.02% 1.14%
Hammer2.1-7b (FC) 80.29% 1.06% 7.95% 68.85% 89.35%
xLAM-7b-fc-r (FC) 83.17% 0.34% 5.00% 73.48% 49.76%
ToolACE-8B (FC) 91.44% 0.78% 4.96% 78.82% 22.98%

Imperfect

GPT-4o (Prompt) 88.86% 7.61% 4.48% 78.77% 71.17%
Claude3.5-sonnet (Prompt) 88.94% 8.15% 2.49% 79.38% 67.90%

Qwen2.5-72B-Instruct (Prompt) 84.59% 16.27% 1.68% 68.64% 78.97%
Llama-3.1-70B-Instruct (Prompt) 91.20% 20.87% 1.90% 69.47% 19.04%
Qwen2.5-7B-Instruct (Prompt) 82.09% 26.72% 2.52% 58.08% 49.04%
Llama-3.1-8B-Instruct (Prompt) 89.35% 40.72% 1.80% 51.08% 8.50%

Ministral-8B-Instruct-2410 (Prompt) 75.03% 54.17% 2.59% 32.19% 6.09%
Hammer2.1-7b (FC) 81.88% 24.38% 3.02% 59.29% 89.23%
xLAM-7b-fc-r (FC) 86.45% 41.05% 2.61% 48.82% 54.51%
ToolACE-8B (FC) 82.53% 33.58% 3.96% 51.94% 29.37%

External

GPT-4o (Prompt) 87.91% 2.81% 29.11% 56.16% 73.02%
Claude3.5-sonnet (Prompt) 82.13% 2.49% 25.27% 55.83% 67.23%

Qwen2.5-72B-Instruct (Prompt) 93.10% 5.58% 12.52% 67.40% 65.70%
Llama-3.1-70B-Instruct (Prompt) 93.70% 5.72% 14.35% 59.57% 4.26%
Qwen2.5-7B-Instruct (Prompt) 88.51% 9.90% 8.94% 58.89% 36.59%
Llama-3.1-8B-Instruct (Prompt) 89.87% 9.94% 8.52% 57.61% 5.96%

Ministral-8B-Instruct-2410 (Prompt) 90.12% 11.89% 6.70% 57.70% 4.34%
Hammer2.1-7b (FC) 77.87% 7.65% 13.44% 50.21% 90.63%
xLAM-7b-fc-r (FC) 86.89% 10.08% 15.08% 48.85% 45.78%
ToolACE-8B (FC) 92.25% 11.71% 10.70% 56.93% 27.40%

Overall

GPT-4o (Prompt) 88.83% 3.52% 14.74% 71.21% 69.52%
Claude3.5-sonnet (Prompt) 86.99% 3.63% 11.82% 71.69% 68.16%

Qwen2.5-72B-Instruct (Prompt) 89.40% 7.94% 6.04% 72.30% 73.09%
Llama-3.1-70B-Instruct (Prompt) 92.25% 11.07% 6.84% 68.34% 12.49%
Qwen2.5-7B-Instruct (Prompt) 86.67% 14.04% 5.14% 64.24% 41.00%
Llama-3.1-8B-Instruct (Prompt) 88.99% 18.63% 4.57% 60.57% 8.13%

Ministral-8B-Instruct-2410 (Prompt) 84.49% 22.16% 4.51% 55.97% 3.86%
Hammer2.1-7b (FC) 80.01% 11.03% 8.13% 59.45% 89.74%
xLAM-7b-fc-r (FC) 85.50% 17.16% 7.56% 57.05% 50.02%
ToolACE-8B (FC) 88.74% 15.35% 6.54% 62.56% 26.58%

Table 8: Experiment result for single-turn dataset.
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Data type Model Func. Acc. PHR PMR Acc. PR SR

sQsA

GPT-4o (Prompt) 89.85% 9.31% 5.11% 72.52% 66.03% 54.95%
Claude3.5-sonnet (Prompt) 91.08% 9.02% 4.28% 76.62% 70.64% 62.37%

Qwen2.5-72B-Instruct (Prompt) 82.17% 12.29% 6.35% 64.59% 56.28% 44.55%
Llama-3.1-70B-Instruct (Prompt) 91.83% 12.86% 1.71% 75.05% 64.72% 55.19%
Qwen2.5-7B-Instruct (Prompt) 82.67% 19.50% 5.23% 60.08% 48.90% 37.62%
Llama-3.1-8B-Instruct (Prompt) 90.59% 22.87% 19.18% 51.53% 38.43% 18.56%

Ministral-8B-Instruct-2410 (Prompt) 71.28% 33.17% 4.81% 43.19% 26.78% 20.29%
Hammer2.1-7b (FC) 81.68% 15.71% 6.13% 62.26% 52.37% 41.08%
xLAM-7b-fc-r (FC) 91.33% 29.19% 6.81% 58.03% 39.28% 32.17%
ToolACE-8B (FC) 80.69% 28.11% 3.11% 54.54% 42.55% 26.98%

mQmA

GPT-4o (Prompt) 90.84% 7.12% 5.60% 75.63% 73.22% 64.35%
Claude3.5-sonnet (Prompt) 90.84% 7.93% 4.43% 75.52% 73.74% 65.59%

Qwen2.5-72B-Instruct (Prompt) 81.93% 10.58% 2.71% 67.82% 64.75% 57.67%
Llama-3.1-70B-Instruct (Prompt) 91.58% 12.22% 2.54% 73.20% 67.42% 59.40%
Qwen2.5-7B-Instruct (Prompt) 82.42% 20.64% 5.29% 58.12% 53.06% 44.55%
Llama-3.1-8B-Instruct (Prompt) 90.59% 23.65% 10.83% 57.70% 51.15% 40.59%

Ministral-8B-Instruct-2410 (Prompt) 71.28% 35.34% 6.48% 40.29% 28.59% 21.28%
Hammer2.1-7b (FC) 82.17% 14.87% 8.67% 60.86% 57.57% 46.53%
xLAM-7b-fc-r (FC) 91.33% 33.79% 7.64% 52.53% 40.74% 34.40%
ToolACE-8B (FC) 80.44% 27.54% 4.96% 52.63% 46.39% 33.41%

mQsA

GPT-4o (Prompt) 90.34% 9.17% 7.88% 73.00% 68.52% 59.15%
Claude3.5-sonnet (Prompt) 90.59% 9.15% 6.42% 73.34% 68.93% 59.65%

Qwen2.5-72B-Instruct (Prompt) 81.93% 13.74% 5.11% 63.90% 56.93% 47.27%
Llama-3.1-70B-Instruct (Prompt) 91.33% 15.07% 3.68% 70.74% 61.63% 52.47%
Qwen2.5-7B-Instruct (Prompt) 82.17% 25.62% 6.76% 54.40% 43.62% 32.42%
Llama-3.1-8B-Instruct (Prompt) 90.59% 27.01% 19.78% 48.59% 38.42% 19.05%

Ministral-8B-Instruct-2410 (Prompt) 71.28% 45.38% 7.79% 32.94% 19.02% 8.91%
Hammer2.1-7b (FC) 81.68% 26.24% 11.26% 52.63% 41.50% 25.24%
xLAM-7b-fc-r (FC) 91.33% 40.49% 10.62% 46.00% 30.36% 19.80%
ToolACE-8B (FC) 80.44% 47.84% 7.76% 38.55% 25.87% 8.42%

sQmA

GPT-4o (Prompt) 91.83% 8.22% 7.18% 74.05% 70.79% 59.90%
Claude3.5-sonnet (Prompt) 91.33% 7.77% 6.84% 73.94% 72.62% 62.12%

Qwen2.5-72B-Instruct (Prompt) 82.42% 11.42% 2.82% 67.40% 64.19% 56.68%
Llama-3.1-70B-Instruct (Prompt) 91.83% 11.85% 3.68% 73.52% 68.00% 60.39%
Qwen2.5-7B-Instruct (Prompt) 82.17% 20.46% 5.18% 57.70% 53.04% 44.55%
Llama-3.1-8B-Instruct (Prompt) 90.59% 24.35% 11.18% 56.22% 50.35% 39.10%

Ministral-8B-Instruct-2410 (Prompt) 71.28% 36.08% 6.19% 40.18% 28.37% 21.03%
Hammer2.1-7b (FC) 81.93% 14.13% 8.95% 60.65% 57.18% 46.28%
xLAM-7b-fc-r (FC) 91.33% 33.79% 7.75% 52.63% 41.08% 34.65%
ToolACE-8B (FC) 80.69% 27.60% 6.51% 51.68% 46.10% 32.42%

w/ SO

GPT-4o (Prompt) 90.37% 8.52% 4.90% 72.98% 68.65% 57.93%
Claude3.5-sonnet (Prompt) 90.44% 8.83% 3.58% 76.49% 72.54% 65.01%

Qwen2.5-72B-Instruct (Prompt) 85.08% 13.62% 5.08% 65.40% 60.25% 50.17%
Llama-3.1-70B-Instruct (Prompt) 91.47% 16.17% 1.56% 70.25% 62.01% 52.09%
Qwen2.5-7B-Instruct (Prompt) 82.88% 23.21% 3.92% 54.21% 45.78% 33.05%
Llama-3.1-8B-Instruct (Prompt) 90.10% 27.30% 14.56% 48.84% 37.99% 22.54%

Ministral-8B-Instruct-2410 (Prompt) 74.22% 37.75% 3.60% 40.29% 26.21% 19.93%
Hammer2.1-7b (FC) 82.95% 19.92% 5.03% 57.85% 49.83% 36.83%
xLAM-7b-fc-r (FC) 89.89% 34.70% 6.51% 48.37% 34.44% 24.94%
ToolACE-8B (FC) 81.51% 32.96% 3.05% 50.25% 40.07% 26.87%

w/ mSv

GPT-4o (Prompt) 90.68% 7.84% 6.45% 61.98% 56.45% 18.53%
Claude3.5-sonnet (Prompt) 90.02% 8.02% 5.36% 69.68% 63.94% 42.89%

Qwen2.5-72B-Instruct (Prompt) 86.17% 12.23% 5.66% 64.98% 57.35% 42.05%
Llama-3.1-70B-Instruct (Prompt) 91.62% 14.44% 5.21% 68.87% 58.64% 41.39%
Qwen2.5-7B-Instruct (Prompt) 83.06% 21.07% 4.85% 51.85% 41.75% 18.15%
Llama-3.1-8B-Instruct (Prompt) 89.84% 25.19% 13.85% 48.30% 34.97% 15.80%

Ministral-8B-Instruct-2410 (Prompt) 75.25% 33.64% 4.41% 36.47% 22.00% 7.53%
Hammer2.1-7b (FC) 83.25% 17.78% 10.81% 52.81% 43.87% 17.49%
xLAM-7b-fc-r (FC) 89.18% 26.90% 15.51% 43.23% 29.09% 4.80%
ToolACE-8B (FC) 81.93% 29.82% 3.82% 45.74% 35.07% 11.57%

w/ External

GPT-4o (Prompt) 90.81% 5.52% 13.36% 69.64% 66.34% 49.18%
Claude3.5-sonnet (Prompt) 90.40% 6.22% 9.18% 71.83% 68.62% 54.28%

Qwen2.5-72B-Instruct (Prompt) 84.48% 12.36% 8.98% 61.12% 59.58% 45.91%
Llama-3.1-70B-Instruct (Prompt) 92.04% 12.54% 3.77% 69.29% 63.47% 49.79%
Qwen2.5-7B-Instruct (Prompt) 81.22% 19.73% 6.35% 53.87% 50.04% 34.89%
Llama-3.1-8B-Instruct (Prompt) 89.79% 22.70% 14.95% 50.14% 43.56% 25.51%

Ministral-8B-Instruct-2410 (Prompt) 73.67% 33.52% 9.88% 35.00% 25.06% 14.08%
Hammer2.1-7b (FC) 82.85% 15.74% 17.72% 48.73% 46.32% 25.30%
xLAM-7b-fc-r (FC) 88.77% 26.38% 13.66% 48.30% 39.76% 25.91%
ToolACE-8B (FC) 83.87% 28.83% 5.45% 49.15% 43.61% 26.93%

Overall

GPT-4o (Prompt) 90.67 7.96 7.21 71.40 67.14 52.00
Claude3.5-sonnet (Prompt) 90.67 8.13 5.73 73.92 70.15 58.84

Qwen2.5-72B-Instruct (Prompt) 83.45 12.32 5.24 65.03 59.90 49.19
Llama-3.1-70B-Instruct (Prompt) 91.67 13.59 3.16 71.56 63.70 52.96
Qwen2.5-7B-Instruct (Prompt) 82.37 21.46 5.37 55.75 48.03 35.03
Llama-3.1-8B-Instruct (Prompt) 90.30 24.72 14.90 51.62 42.12 25.88
Ministral-8B-Instruct (Prompt) 72.61 36.41 6.17 38.34 25.15 16.15

Hammer2.1-7b (FC) 82.36 17.77 9.80 56.54 49.81 34.11
xLAM-7b-fc-r (FC) 90.45 32.18 9.79 49.87 36.39 25.24
ToolACE-8B (FC) 81.37 31.81 4.95 48.93 39.95 23.80

Table 9: Overall evaluation on HammerBench for different metrics of different data types.
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Data type Model Func. Acc. PHR PMR Acc. PR SR

w/o SO

GPT-4o (Prompt) 89.14% 8.65% 5.68% 72.35% 67.90% 58.76%
Claude3.5-sonnet (Prompt) 90.51% 8.69% 4.94% 76.03% 71.71% 64.39%

Qwen2.5-72B-Instruct (Prompt) 84.94% 12.70% 5.52% 66.73% 61.11% 51.82%
Llama-3.1-70B-Instruct (Prompt) 91.75% 14.34% 1.97% 73.88% 65.34% 58.41%
Qwen2.5-7B-Instruct (Prompt) 82.88% 20.27% 5.17% 59.71% 50.66% 42.06%

Llama-3.1-8B-Instruct (Prompt) 90.03% 25.08% 15.26% 52.66% 41.54% 27.69%
Ministral-8B-Instruct-2410 (Prompt) 74.22% 35.01% 5.10% 42.90% 27.76% 22.74%

Hammer2.1-7b (FC) 82.68% 16.92% 6.58% 61.83% 53.87% 44.46%
xLAM-7b-fc-r (FC) 89.69% 30.83% 6.55% 55.64% 39.01% 33.26%
ToolACE-8B (FC) 81.58% 28.32% 3.88% 54.23% 44.08% 32.71%

w/ SO

GPT-4o (Prompt) 90.37% 8.52% 4.90% 72.98% 68.65% 57.93%
Claude3.5-sonnet (Prompt) 90.44% 8.83% 3.58% 76.49% 72.54% 65.01%

Qwen2.5-72B-Instruct (Prompt) 85.08% 13.62% 5.08% 65.40% 60.25% 50.17%
Llama-3.1-70B-Instruct (Prompt) 91.47% 16.17% 1.56% 70.25% 62.01% 52.09%
Qwen2.5-7B-Instruct (Prompt) 82.88% 23.21% 3.92% 54.21% 45.78% 33.05%

Llama-3.1-8B-Instruct (Prompt) 90.10% 27.30% 14.56% 48.84% 37.99% 22.54%
Ministral-8B-Instruct-2410 (Prompt) 74.22% 37.75% 3.60% 40.29% 26.21% 19.93%

Hammer2.1-7b (FC) 82.95% 19.92% 5.03% 57.85% 49.83% 36.83%
xLAM-7b-fc-r (FC) 89.89% 34.70% 6.51% 48.37% 34.44% 24.94%
ToolACE-8B (FC) 81.51% 32.96% 3.05% 50.25% 40.07% 26.87%

w/o mSv

GPT-4o (Prompt) 88.80% 8.37% 5.98% 72.28% 68.47% 60.11%
Claude3.5-sonnet (Prompt) 90.21% 8.59% 5.32% 75.71% 71.99% 65.09%

Qwen2.5-72B-Instruct (Prompt) 85.88% 12.73% 5.07% 67.83% 63.15% 54.84%
Llama-3.1-70B-Instruct (Prompt) 91.62% 14.85% 2.05% 73.50% 65.70% 59.83%
Qwen2.5-7B-Instruct (Prompt) 83.16% 20.26% 5.23% 60.02% 51.71% 44.02%

Llama-3.1-8B-Instruct (Prompt) 89.65% 25.98% 13.73% 52.98% 42.76% 31.23%
Ministral-8B-Instruct-2410 (Prompt) 75.25% 35.55% 5.29% 42.89% 28.17% 23.61%

Hammer2.1-7b (FC) 83.16% 17.25% 6.79% 61.90% 54.76% 46.00%
xLAM-7b-fc-r (FC) 89.08% 31.37% 6.41% 54.93% 39.14% 33.96%
ToolACE-8B (FC) 81.93% 28.45% 4.23% 54.24% 44.81% 34.90%

w/ mSv

GPT-4o (Prompt) 90.68% 7.84% 6.45% 61.98% 56.45% 18.53%
Claude3.5-sonnet (Prompt) 90.02% 8.02% 5.36% 69.68% 63.94% 42.89%

Qwen2.5-72B-Instruct (Prompt) 86.17% 12.23% 5.66% 64.98% 57.35% 42.05%
Llama-3.1-70B-Instruct (Prompt) 91.62% 14.44% 5.21% 68.87% 58.64% 41.39%
Qwen2.5-7B-Instruct (Prompt) 83.06% 21.07% 4.85% 51.85% 41.75% 18.15%

Llama-3.1-8B-Instruct (Prompt) 89.84% 25.19% 13.85% 48.30% 34.97% 15.80%
Ministral-8B-Instruct-2410 (Prompt) 75.25% 33.64% 4.41% 36.47% 22.00% 7.53%

Hammer2.1-7b (FC) 83.25% 17.78% 10.81% 52.81% 43.87% 17.49%
xLAM-7b-fc-r (FC) 89.18% 26.90% 15.51% 43.23% 29.09% 4.80%
ToolACE-8B (FC) 81.93% 29.82% 3.82% 45.74% 35.07% 11.57%

w/o External

GPT-4o (Prompt) 89.38% 5.22% 3.64% 77.95% 74.36% 67.34%
Claude3.5-sonnet (Prompt) 90.20% 4.44% 4.36% 80.35% 76.60% 70.40%

Qwen2.5-72B-Instruct (Prompt) 85.10% 8.98% 5.29% 69.92% 65.94% 57.55%
Llama-3.1-70B-Instruct (Prompt) 92.44% 9.76% 1.30% 79.57% 72.55% 66.93%
Qwen2.5-7B-Instruct (Prompt) 81.42% 13.10% 3.91% 64.92% 58.13% 49.99%

Llama-3.1-8B-Instruct (Prompt) 89.79% 17.30% 16.13% 58.52% 47.80% 32.65%
Ministral-8B-Instruct-2410 (Prompt) 73.67% 28.87% 3.39% 47.60% 31.34% 26.73%

Hammer2.1-7b (FC) 82.65% 12.33% 4.06% 66.19% 60.62% 52.85%
xLAM-7b-fc-r (FC) 88.77% 22.59% 5.69% 63.09% 49.07% 43.46%
ToolACE-8B (FC) 83.87% 23.38% 2.68% 60.84% 51.12% 39.99%

w/ External

GPT-4o (Prompt) 90.81% 5.52% 13.36% 69.64% 66.34% 49.18%
Claude3.5-sonnet (Prompt) 90.40% 6.22% 9.18% 71.83% 68.62% 54.28%

Qwen2.5-72B-Instruct (Prompt) 84.48% 12.36% 8.98% 61.12% 59.58% 45.91%
Llama-3.1-70B-Instruct (Prompt) 92.04% 12.54% 3.77% 69.29% 63.47% 49.79%
Qwen2.5-7B-Instruct (Prompt) 81.22% 19.73% 6.35% 53.87% 50.04% 34.89%

Llama-3.1-8B-Instruct (Prompt) 89.79% 22.70% 14.95% 50.14% 43.56% 25.51%
Ministral-8B-Instruct-2410 (Prompt) 73.67% 33.52% 9.88% 35.00% 25.06% 14.08%

Hammer2.1-7b (FC) 82.85% 15.74% 17.72% 48.73% 46.32% 25.30%
xLAM-7b-fc-r (FC) 88.77% 26.38% 13.66% 48.30% 39.76% 25.91%
ToolACE-8B (FC) 83.87% 28.83% 5.45% 49.15% 43.61% 26.93%

Table 10: Ablation on HammerBench.
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Model Overall
Diverse Q&A Argument shifts

External Intent
shiftssQsA mQmA mQsA sQmA SO mSv

GPT-4o (Prompt) 72.00 72.52 75.63 73.00 74.05 72.98 61.98 69.64 76.22
Claude3.5-sonnet (Prompt) 72.02 76.62 75.52 73.34 73.94 76.49 69.68 71.83 58.74

Qwen2.5-72B-Instruct (Prompt) 68.12 64.59 67.82 63.90 67.40 65.40 64.98 61.12 89.79
Llama-3.1-70B-Instruct (Prompt) 70.49 75.05 73.20 70.74 73.52 70.25 68.87 69.29 63.02

Qwen2.5-7B-Instruct (Prompt) 57.78 60.08 58.12 54.40 57.70 54.21 51.85 53.87 72.04
Llama-3.1-8B-Instruct (Prompt) 51.49 51.53 57.70 48.59 56.22 48.84 48.30 50.14 50.63
Ministral-8B-Instruct (Prompt) 35.39 43.19 40.29 32.94 40.18 40.29 36.47 35.00 14.75

Hammer2.1-7b (FC) 61.31 62.26 60.86 52.63 60.65 57.85 52.81 48.73 94.71
xLAM-7b-fc-r (FC) 48.43 58.03 52.53 46.00 52.63 48.37 43.23 48.30 38.34
ToolACE-8B (FC) 48.19 54.54 52.63 38.55 51.68 50.25 45.74 49.15 42.98

Table 11: The evaluation (Acc.%) on HammerBench for different multi-turn data types. It is a snippet from Table 9.

Model
w/o (PR) | w/ (△ PR)

IS
Diverse Q&A Argument shifts External

mQmA mQsA sQmA SO mSv

GPT-4o (Prompt) 66.03% | +7.189% 66.03% | +2.487% 66.03% | +4.763% 67.90% | +0.745% 68.47% | -12.01% 74.36% | -8.023% 76.22%
Claude3.5-sonnet (Prompt) 70.64% | +3.101% 70.64% | -1.712% 70.64% | +1.977% 71.71% | +0.831% 71.99% | -8.048% 76.60% | -7.976% 58.74%

Qwen2.5-72B-Instruct (Prompt) 56.28% | +8.470% 56.28% | +0.652% 56.28% | +7.913% 61.11% | -0.862% 63.15% | -5.797% 65.94% | -6.352% 89.79%
Llama-3.1-70B-Instruct (Prompt) 64.72% | +2.704% 64.72% | -3.093% 64.72% | +3.282% 65.34% | -3.333% 65.70% | -7.057% 72.55% | -9.076% 63.02%
Qwen2.5-7B-Instruct (Prompt) 48.90% | +4.159% 48.90% | -5.280% 48.90% | +4.138% 50.66% | -4.878% 51.71% | -9.961% 58.13% | -8.093% 72.04%
Llama-3.1-8B-Instruct (Prompt) 38.43% | +12.72% 38.43% | -0.012% 38.43% | +11.92% 41.54% | -3.546% 42.76% | -7.786% 47.80% | -4.244% 50.63%

Ministral-8B-Instruct-2410 (Prompt) 26.78% | +1.805% 26.78% | -7.762% 26.78% | +1.589% 27.76% | -1.554% 28.17% | -6.172% 31.34% | -6.280% 14.75%
Hammer2.1-7b (FC) 52.37% | +5.194% 52.37% | -10.87% 52.37% | +4.806% 53.87% | -4.035% 54.76% | -10.89% 60.62% | -14.30% 94.71%
xLAM-7b-fc-r (FC) 39.28% | +1.457% 39.28% | -8.921% 39.28% | +1.793% 39.01% | -4.568% 39.14% | -10.05% 49.07% | -9.311% 38.34%
ToolACE-8B (FC) 42.55% | +3.843% 42.55% | -16.68% 42.55% | +3.554% 44.08% | -4.010% 44.81% | -9.745% 51.12% | -7.510% 42.98%

Table 12: Multi-turn fine-grained evaluation across different data types for all snapshots. Each cell consists of two
items: the absolute value of the baseline sQsA dataset and the change (△) in the metric after encountering the
corresponding situations. So that we can more clearly observe the impacts of these situations.

Model
w/o | w/ (△)

SO External

PHR PMR PR PHR PMR PR

GPT-4o (Prompt) 7.555% | +0.501% 8.251% | -2.508% 68.86% | -0.996% 5.492% | +0.477% 5.492% | +18.76% 75.06% | -18.91%
Claude3.5-sonnet (Prompt) 7.594% | +0.801% 6.845% | -3.348% 74.43% | -0.034% 4.690% | +2.987% 7.129% | +7.851% 75.54% | -15.61%

Qwen2.5-72B-Instruct (Prompt) 11.88% | +2.471% 6.804% | -1.116% 66.32% | -4.742% 9.716% | +6.643% 8.097% | +6.217% 66.83% | -13.97%
Llama-3.1-70B-Instruct (Prompt) 11.76% | +4.239% 2.023% | -0.858% 74.63% | -8.213% 8.302% | +5.055% 1.291% | +2.419% 78.94% | -15.71%
Qwen2.5-7B-Instruct (Prompt) 16.83% | +7.338% 6.052% | -2.569% 60.75% | -14.70% 13.71% | +12.29% 4.219% | +3.391% 62.89% | -19.35%
Llama-3.1-8B-Instruct (Prompt) 16.57% | +6.999% 23.39% | -5.054% 51.68% | -9.725% 12.28% | +9.829% 23.81% | -6.427% 54.69% | -10.10%

Ministral-8B-Instruct-2410 (Prompt) 21.67% | +7.864% 6.454% | -3.440% 50.72% | -9.175% 17.56% | +9.367% 4.683% | +14.28% 53.16% | -23.74%
Hammer2.1-7b (FC) 14.13% | +7.616% 8.469% | -3.306% 61.58% | -11.20% 11.52% | +4.699% 5.555% | +29.96% 64.72% | -31.59%
xLAM-7b-fc-r (FC) 19.47% | +10.16% 8.571% | +0.313% 62.33% | -19.62% 14.25% | +7.414% 6.653% | +14.06% 66.73% | -23.74%
ToolACE-8B (FC) 27.29% | +10.78% 4.461% | -2.101% 53.67% | -12.50% 23.38% | +11.29% 3.225% | +5.040% 58.06% | -19.42%

Table 13: Evaluations for snapshots at the moment of slot overriding (SO) and answering with pronouns (External).
Each cell in the table includes two items: the baseline absolute metrics under the sQsA dataset, and the changes (△)
in metrics after considering SO/External.
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