

000 001 002 003 004 005 REFORM: REFLECTIVE AUTOFORMALIZATION WITH 006 PROSPECTIVE BOUNDED SEQUENCE OPTIMIZATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Autoformalization, which translates natural language mathematics into machine-verifiable formal statements, is critical for using formal mathematical reasoning to solve math problems stated in natural language. While Large Language Models can generate syntactically correct formal statements, they often fail to preserve the original problem’s semantic intent. This limitation arises from the LLM approaches’ treating autoformalization as a simplistic translation task which lacks mechanisms for self-reflection and iterative refinement that human experts naturally employ. To address these issues, we propose ReForm, a Reflective Autoformalization method that tightly integrates semantic consistency evaluation into the autoformalization process. This enables the model to iteratively generate formal statements, assess its semantic fidelity, and self-correct identified errors through progressive refinement. To effectively train this reflective model, we introduce Prospective Bounded Sequence Optimization (PBSO), which employs different rewards at different sequence positions to ensure that the model develops both accurate autoformalization and correct semantic validations, preventing superficial critiques that would undermine the purpose of reflection. Extensive experiments across four autoformalization benchmarks demonstrate that ReForm achieves an average improvement of 22.6 percentage points over the strongest baselines. To further ensure evaluation reliability, we introduce ConsistencyCheck, a benchmark of 859 expert-annotated items that not only validates LLMs as judges but also reveals that autoformalization is inherently difficult: even human experts produce semantic errors in up to 38.5% of cases.

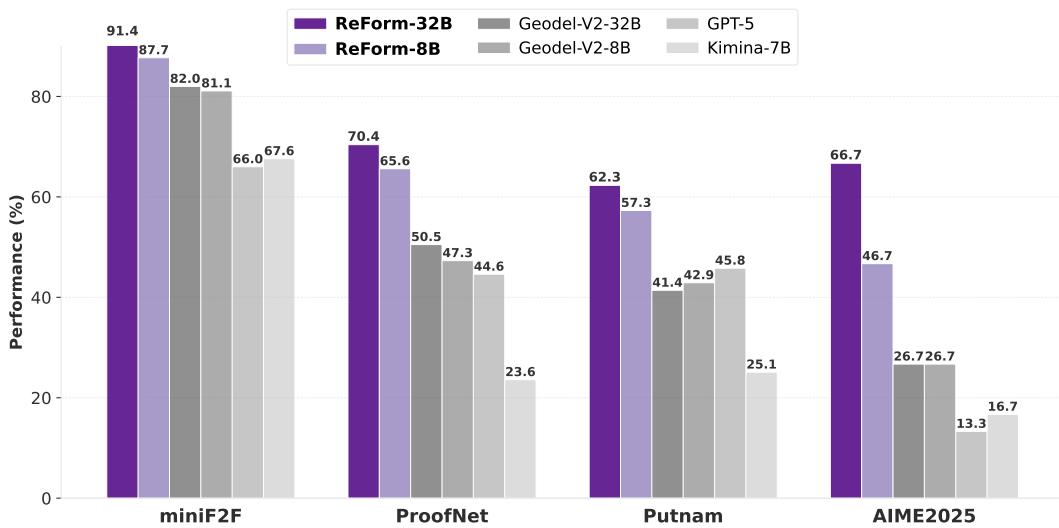


Figure 1: Autoformalization performance of REFORM against state-of-the-art models.

054
055

1 INTRODUCTION

056
057
058
059
060
061
062
063
064
Recent advances in Formal Mathematical Reasoning have demonstrated remarkable capabilities
across a variety of challenging scenarios (Polu & Sutskever, 2020; Yang et al., 2023; Xin et al.,
2024a;b; InternLM Team, 2023; Wu et al., 2024; Li et al., 2024; Wu et al., 2025; Ren et al., 2025;
Lin et al., 2025a; Weng et al., 2025). However, these advances are unevenly distributed across two
symbiotic tasks: Automated Theorem Proving (ATP), the process of finding a proof for a given for-
mal statement, and Autoformalization, the translation of natural language mathematical problems
into formal, machine-verifiable statements such as those in Lean (De Moura et al., 2015). This dis-
parity establishes autoformalization as a critical bottleneck: it remains a labor-intensive endeavor
that poses a great challenge even for human experts (Chen et al., 2025).065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
While Large Language Models (LLMs) (Hurst et al., 2024; Anthropic, 2025; Yang et al., 2025;
Google, 2025) have shown proficiency in generating syntactically well-formed statements that pass
Lean compiler verification (**syntactic correctness**), they often struggle to faithfully capture the se-
mantic intent of the original problem (**semantic consistency**). Recent studies (Peng et al., 2025)
have highlighted the pervasive issue of poor semantic fidelity in the current autoformalization sys-
tems. Several concurrent works (Wang et al., 2025a; Lin et al., 2025b) have attempted to address
this challenge by curating high-quality datasets specifically designed to improve semantic consis-
tency while still treating autoformalization as a direct translation task in which models generate for-
mal statements in a single forward pass, an approach we term the **one-pass generation paradigm**.
While these data-centric efforts yield notable improvements, we find that models trained under this
paradigm still frequently fail on subtle semantic details, such as misinterpreting quantifier scopes,
overlooking implicit constraints, incorrectly formalizing edge cases, etc., that fundamentally com-
promise the original problem’s intended meaning. In this work, we argue that the root of this persis-
tent limitation lies not only in the data quality, but more fundamentally in the one-pass generation
paradigm itself: without any mechanism for self-reflection and correction, models cannot progres-
sively identify and resolve their own semantic errors during generation. This stands in stark contrast
to how human experts tackle autoformalization. They employ an iterative process of review and re-
finement, continuously validating and adjusting their formal statements to ensure semantic fidelity.082
083
084
085
086
087
088
089
090
091
Inspired by this, we propose **REFORM**, a novel **Reflective Autoformalization paradigm** that em-
ulates the human process of iterative review and refinement to enhance semantic consistency. In-
stead of treating autoformalization as a single-pass translation task, REFORM reconceptualizes it
as a reflective, iterative process that interweaves autoformalization with semantic self-validation.
Specifically, REFORM operates through a self-correction loop: (1) it first generates a candidate for-
mal statement, (2) then critically evaluates whether this formalization faithfully captures the original
problem’s semantics, and (3) iteratively refines the statement based on the identified semantic dis-
crepancies. Unlike traditional one-pass approaches that commit to a single translation, this reflective
paradigm enables the model to detect and correct its own semantic errors during the generation pro-
cess, significantly reducing the risk of meaning distortions.092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
To prevent superficial or hallucinated critiques in the semantic self-validation, we design a **hetero-
geneous reward mechanism** that targets two synergistic objectives: achieving correct final formal
statements as the primary task (r_{task} rewarded at the sequence end) and producing accurate semantic
validation critiques as the auxiliary task (r_{aux} rewarded at intermediate steps). However, optimizing
such heterogeneous rewards poses a significant challenge for existing reinforcement learning (RL)
methods, which typically handle only a single terminal reward. We therefore introduce **Prospective
Bounded Sequence Optimization (PBSO)**, a novel RL algorithm that enables optimizing multiple
reward signals at different sequence positions. The key innovation of PBSO lies in its *prospective
bounded return*, which smoothly integrates these heterogeneous signals by computing a discounted
sum of future rewards for each step, while crucially bounding these returns within the reward func-
tion’s range to prevent unbounded accumulation and ensure training stability. This enables effective
credit assignment across steps with different reward objectives. That is the validation steps learn to
produce accurate critiques that facilitate later corrections, while generation steps benefit from the
improved validation signals. By optimizing these complementary objectives within each sequence,
the model both develops stronger self-validation capabilities and achieves better autoformalization
performance, with each capability reinforcing the other throughout the training process.107
Extensive experiments across four challenging autoformalization benchmarks validate the effective-
ness of our REFORM. We achieve an average improvement of 22.6 percentage points over the

strongest baselines. In the choice of evaluation metrics, while recent works predominantly rely on LLMs as judges for semantic consistency evaluation in autoformalization (Wang et al., 2025a; Lin et al., 2025b), the reliability of these LLM-based judges is not sufficiently studied. To rigorously investigate the reliability of frontier LLMs as evaluation metrics, we construct **ConsistencyCheck**, a benchmark of 859 expert-annotated items to test how accurately a model determines whether a given formal statement correctly captures the problem’s intent. Our analysis on ConsistencyCheck reveals three insights: (1) **Human Expert Fallibility**: 16.4% of miniF2F and 38.5% of ProofNet’s human-written formal statements contain semantic errors, demonstrating that autoformalization challenges even human experts. (2) **Evaluation Reliability Despite Imperfection**: Frontier LLMs make correct determination 85.8% of the time, indicating sufficient reliability as an evaluation metric. Crucially, REFORM’s substantial improvements far exceed the potential evaluation noise, confirming the robustness of our findings. (3) **Classification-Generation Gap**: This binary classification task is conceptually simpler than autoformalization task. However, its maximum performance is 85.8%, which helps explain why generating semantically faithful formalizations remains stubbornly difficult. These results confirm the effectiveness of our reflective method in producing more reliable and semantically faithful autoformalization.

In summary, our contributions are as follows:

- We propose REFORM, a reflective autoformalization paradigm that reconceptualizes autoformalization from one-pass translation to an iterative process interweaving generation with semantic self-validation, enabling progressive error identification and correction.
- We introduce Prospective Bounded Sequence Optimization (PBSO) to handle different reward signals at different sequence positions through prospective bounded returns that improve both autoformalization and semantic validation.
- We construct ConsistencyCheck benchmark to rigorously evaluate the reliability of LLM-based metrics and the quantify the challenges autoformalization poses.
- We demonstrate REFORM’s effectiveness across four challenging benchmarks. The model achieves an average improvement of 22.6% while maintaining computational efficiency.

2 RELATED WORKS

Autoformalization. Autoformalization—the translation of natural language problems into machine-verifiable formal languages—plays a pivotal role in formal mathematical reasoning (Wu et al., 2023; Jiang et al., 2023; Ying et al., 2024; Xie et al., 2025; He et al., 2025; Zhang et al., 2025; Jiayi et al., 2025; Yu et al., 2025b). While early approaches achieved syntactic correctness through increasing training data (Han et al., 2024; Xin et al., 2024b), recent studies (Peng et al., 2025) reveal that these models suffer from pervasive semantic infidelity. Recent concurrent works (Wang et al., 2025a; Lin et al., 2025b) focus on semantically-enhanced datasets to address this issue, yet they remain constrained by the *one-pass generation paradigm* without correction mechanisms. In contrast, our REFORM interweaves autoformalization with semantic self-validation, allowing the model to progressively identify and correct its own semantic errors during generation.

Reinforcement Learning for LLM Reasoning. Reinforcement Learning (RL) has emerged as a powerful paradigm for enhancing LLM reasoning capabilities (Schulman et al., 2017; Shao et al., 2024; Liu et al., 2025; Wang et al., 2025b; Guo et al., 2025; Yu et al., 2025a; Yue et al., 2025). However, existing methods predominantly rely on terminal-only rewards. While effective for single-objective tasks, this reward paradigm fails to monitor intermediate validation steps in multi-objective tasks, leading to superficial or hallucinated critiques that undermine the self-correction process. In contrast, our PBSO introduces a *prospective bounded return* to integrate heterogeneous rewards across sequence positions. This enables position-specific optimization for both reflective autoformalization and general sequential decision-making tasks with multi-objective requirements.

3 METHODOLOGY

As illustrated in Figure 2, we present REFORM, our reflective autoformalization framework that departs from the prevailing one-pass generation paradigm by introducing an iterative self-correction process for enhanced semantic consistency. In this section, we describe the Reflective Autoformalization Paradigm (§3.1) followed by the Prospective Bounded Sequence Optimization (§3.2).

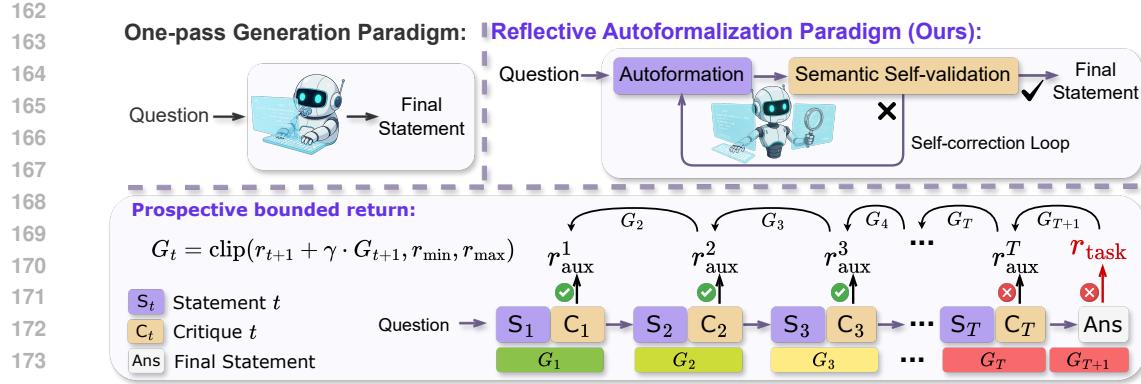


Figure 2: Overview of REFORM. **(Top)** Unlike traditional one-pass generation, our REFORM reconceptualizes it as an iterative process that interweaves autoformalization with semantic self-validation. **(Bottom)** We assign heterogeneous rewards across iterations: auxiliary rewards r_{aux}^t for critique quality and task reward r_{task} for final correctness. Prospective bounded returns G_t computed through clipped backward accumulation enable fine-grained credit assignment for each iteration, preventing the degeneration of self-validation while improving autoformalization performance.

3.1 REFLECTIVE AUTOFORMALIZATION PARADIGM

The core innovation of REFORM lies in reconceptualizing autoformalization as an iterative refinement process that interweaves formal statement generation with semantic self-validation. Unlike traditional one-pass approaches, our reflective paradigm establishes a self-correction loop where the model progressively refines its output based on its own semantic critiques.

Given a natural language mathematical question Q , REFORM operates through a sequence of refinement iterations. At iteration t , the model maintains the complete history of previous attempts: $\mathcal{H}_t = \{(S_1, C_1), \dots, (S_{t-1}, C_{t-1})\}$, where S_j and C_j denote the j -th formal statement and its corresponding semantic critique. This history enables the model to learn from its previous attempts, avoiding repeated errors and progressively converging toward a semantically faithful formalization. Each iteration comprises two interconnected stages:

- 1. Autoformalization:** The model π generates a new formal statement S_t conditioned on the question Q and history \mathcal{H}_t . For the initial iteration ($t = 1$), the model performs standard autoformalization: $S_1 = \pi(Q)$. For subsequent iterations ($t > 1$), the generation leverages insights from previous critiques to address identified semantic issues: $S_t = \pi(Q, \mathcal{H}_t)$.
- 2. Semantic Self-Validation:** Given the newly generated statement S_t , the model produces a critique $C_t = \pi(Q, \mathcal{H}_t, S_t)$ that assesses the semantic consistency between S_t and Q . The critique C_t provides detailed diagnostic feedback, identifying specific semantic discrepancies, enabling targeted improvements in subsequent iterations.

This ‘‘Autoformalization \leftrightarrow Self-validation’’ loop continues until the critique indicates satisfactory semantic fidelity after which the model produces the final statement.

Unified Generation. While conceptually iterative, our paradigm is implemented as a single continuous autoregressive generation. Both autoformalization and self-validation naturally unfold within the same generation sequence: the model generates S_t , which becomes part of the context for generating C_t , which in turn informs S_{t+1} . This design ensures that the entire reflective process occurs within a single forward pass, maintaining computational efficiency comparable to the one-pass methods while achieving superior semantic consistency. The model learns to autonomously identify and correct semantic errors during generation, effectively internalizing what would traditionally require multiple model calls and human oversight.

Mutual Reinforcement with Dual Capabilities. The interweaving of autoformalization and self-validation creates a virtuous cycle: the autoformalization capability progressively develops semantic awareness by learning from self-validation, while the self-validation capability becomes increasingly adept at identifying subtle errors by observing refinement patterns. This mutual reinforcement stands

216 in contrast to traditional one-pass approaches and is instrumental in enabling REFORM to achieve
 217 formal statements that are both syntactically valid and semantically faithful.
 218

219 **3.2 PROSPECTIVE BOUNDED SEQUENCE OPTIMIZATION**
 220

221 While the reflective autoformalization paradigm establishes the structural framework for iterative
 222 refinement, training models to effectively execute this process presents a unique challenge: *how to*
 223 *jointly optimize for both correct final autoformalizations and accurate intermediate self-validations*
 224 *within a single sequence?*

225 The core difficulty lies in the heterogeneous nature of these objectives. High-quality self-validation
 226 critiques are essential for guiding refinement, yet they serve as diagnostic tools rather than direct
 227 solutions. A model might generate insightful critiques identifying all semantic issues but fail to
 228 translate these insights into correct refinements, or conversely, produce correct formalizations de-
 229 spite superficial self-validations. This creates an important credit assignment problem: optimizing
 230 solely for final task success provides no explicit signal for the critique quality, potentially causing
 231 the self-validation mechanism to degenerate into trivial or hallucinated assessments.

232 **3.2.1 HETEROGENEOUS REWARD MECHANISM**
 233

234 To address this challenge, we introduce a heterogeneous reward structure that supervises both the
 235 primary autoformalization task and the auxiliary self-validation task:

236 **Task Reward for Autoformalization.** We assign a positive reward to the final formal statement
 237 (termed ‘Ans’ below) only when it achieves both syntactic and semantic correctness:

$$r_{\text{task}}(Q, \text{Ans}) = \begin{cases} 1 & \text{if } \text{PassesLean}(\text{Ans}) \wedge \text{IsConsistent}(Q, \text{Ans}) \\ 0 & \text{otherwise} \end{cases} \quad (1)$$

238 where `PassesLean` verifies syntactic validity through the Lean compiler, and `IsConsistent`
 239 assesses semantic consistency between “Ans” and the original question Q using an LLM-based
 240 judge¹. This reward drives the primary learning objective, encouraging the model to produce correct
 241 final formalizations.

242 **Auxiliary Rewards for Self-Validation Quality.** To prevent degeneration of self-validation, we
 243 introduce auxiliary rewards that directly supervise each critique C_t :

$$r_{\text{aux}}^t(Q, S_t, C_t) = \begin{cases} 1 & \text{if } \text{IsFaithfulCritique}(Q, S_t, C_t) \\ 0 & \text{otherwise} \end{cases} \quad (2)$$

244 where `IsFaithfulCritique` evaluates whether C_t accurately diagnoses the semantic relation-
 245 ship between the current statement S_t and question Q , penalizing false positives, false negatives,
 246 and premature termination (incorrectly claiming semantic fidelity when discrepancies remain).

247 Together, these heterogeneous rewards provide complementary supervision signals. The task reward
 248 ensures correct final outputs while auxiliary rewards maintain the integrity of the self-validation
 249 mechanism, jointly enabling effective reflective autoformalization.

250 **3.2.2 PROSPECTIVE BOUNDED RETURN**
 251

252 Existing RL methods typically assign rewards only at sequence termination, optimizing solely for
 253 task success. In our reflective paradigm, this method would provide little to no supervision for the
 254 quality of intermediate self-validations. Without explicit rewards for self-validation, the model is at
 255 risk of learning to generate superficial or hallucinated critiques that appear to justify refinements but
 256 provide no genuine diagnostic value, thereby undermining the entire reflective mechanism.

257 To address this problem, we introduce a prospective bounded return that maximizes expected cumu-
 258 lative reward while ensuring quality at each step. Our approach integrates both task and auxiliary
 259 rewards distributed across the trajectory, where each position’s return G_t captures the cumulative
 260 value of the remaining sequence from that point forward. This prospective view enables the model

261 ¹`IsConsistent` and `IsFaithfulCritique` are evaluated by `CriticLean-14B` (Peng et al., 2025)
 262 and `Qwen3-235B-A22B` (Yang et al., 2025), respectively. We provide detailed reliability evaluations in § 4.5.

270 to learn how current decisions contribute to eventual task success. For a trajectory with T iterations
 271 producing rewards $[r_{\text{aux}}^1, \dots, r_{\text{aux}}^T, r_{\text{task}}]$, we compute returns for each step through backward
 272 accumulation with bounded discounting:

$$273 \quad G_t = \text{clip}(r_t + \gamma \cdot G_{t+1}, r_{\min}, r_{\max}) \quad (3)$$

275 where $\gamma \in (0, 1]$ is the discount factor, $G_{T+1} = 0$, and the clipping operation bounds returns within
 276 the reward function’s range $[r_{\min}, r_{\max}]$ to prevent gradient instability from unbounded accumulation.
 277 Each G_t serves as the composite reward signal for the entire t -th iteration—encompassing
 278 both the statement generation S_t and its critique C_t —capturing how this complete reflective step
 279 contributes to the trajectory’s overall success.

280 **3.2.3 SEQUENCE OPTIMIZATION WITH POSITION-SPECIFIC ADVANTAGES**

282 Building on the prospective bounded returns, we now present our complete Prospective Bounded
 283 Sequence Optimization (PBSO) algorithm. Unlike existing RL methods that compute advantages
 284 using only terminal task rewards without supervising intermediate steps, PBSO leverages the full se-
 285 quence of heterogeneous returns to compute position-specific advantages. This enables fine-grained
 286 credit assignment where each iteration receives distinct supervision based on its actual contribution
 287 to the trajectory’s success.

288 For each question Q , we sample N complete trajectories, where trajectory j undergoes T_j itera-
 289 tions. The bounded return computation (Eq. 3) yields a sequence of returns $\{G_1^j, G_2^j, \dots, G_{T_j+1}^j\}$
 290 capturing the prospective value at each iteration. To enable policy optimization, we transform these
 291 returns into advantages through joint normalization across all sampled trajectories:

$$293 \quad \hat{A}_t^j = \frac{G_t^j - \text{mean}(\mathcal{G})}{\text{std}(\mathcal{G})}, \quad \text{where} \quad \mathcal{G} = \bigcup_{j=1}^N \{G_t^j : t = 1, \dots, T_j + 1\} \quad (4)$$

296 This produces position-specific advantage sequences $\hat{\mathbf{A}}^j = [\hat{A}_1^j, \hat{A}_2^j, \dots, \hat{A}_{T_j+1}^j]$ for each trajectory,
 297 where all tokens within iteration t receive advantage \hat{A}_t^j . These advantages vary across iterations
 298 even within the same trajectory—early iterations that successfully identify critical errors may receive
 299 higher advantages than later iterations that make minor refinements. We then update the policy using
 300 these position-specific advantages with standard GRPO (Shao et al., 2024), jointly optimizing both
 301 autoformalization accuracy and self-validation quality.

303 **4 EXPERIMENT**

305 **4.1 EXPERIMENTAL SETUP**

307 **Datasets.** To rigorously assess the effectiveness of REFORM, we evaluate on four challenging
 308 benchmarks: **(1) miniF2F** (Zheng et al., 2021): 244 test problems from high-school mathematics
 309 competitions. **(2) ProofNet** (Azerbayev et al., 2023): 186 undergraduate-level theorems from text-
 310 books spanning real analysis, abstract algebra, and topology. **(3) PutnamBench** (Tsoukalas et al.,
 311 2024): 644 college-level competition problems from the Putnam Mathematical Competition (1962-
 312 2023). **(4) AIME2025** (OpenCompass, 2025): 30 problems from the 2025 American Invitational
 313 Mathematics Examination, testing autoformalization on contemporary competition problems.

314 **Baselines.** We compare our REFORM against the state-of-the-art methods including: **(1) Propri-
 315 etary and Open-source Models:** We evaluate frontier LLMs including GPT-5 (OpenAI, 2025),
 316 Claude-3.7-Sonnet (Anthropic, 2025), Gemini-2.5-Pro (Google, 2025), DeepSeek-R1-0528 (Guo
 317 et al., 2025), QwQ-32B (Qwen, 2024), and Qwen3 series (Yang et al., 2025). **(2) Autoformalization
 318 Models:** We compare with state-of-the-art autoformalization models, including DeepSeek-Prover-
 319 V1.5-RL (Xin et al., 2024b), Goedel-V1 (Lin et al., 2025a), Kimina-Autoformalizer-7B (Wang et al.,
 320 2025a), and Goedel-FormalizerV2 (8B and 32B) (Lin et al., 2025b).

321 **Evaluation Metrics.** We consider two key metrics: **(1) Syntactic Correctness (syn):** whether the
 322 formal statement passes Lean compiler verification; **(2) Semantic Consistency (sem):** whether the
 323 statement is both syntactically correct and semantically faithful. This is our primary metric. We
 324 adopt Qwen3-235B-A22B as our default evaluation model unless explicitly stated otherwise.

324
 325
 326
 327
 328 Table 1: Main results. We report both syntactic correctness (syn) and semantic consistency (sem),
 329 with sem being our primary metric. \dagger Improvements are relative to the best baseline with comparable
 330 model size. The best results are in **bold**, and the second best are underlined among baselines.
 331
 332
 333
 334
 335

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 18

378
379

4.3 ABLATION STUDIES

380 We conduct comprehensive ablation studies to analyze the contribution of each
 381 component in our framework, as shown in Table 2. The experiments are divided
 382 into two parts: **(1) Training Components.** Removing the bounded clipping in Eq. 3 causes severe degradation particularly on the harder benchmarks, confirming that bounding returns is crucial for stable optimization with heterogeneous rewards. The auxiliary reward r_{aux} exhibits increasing importance as problem complexity increases, indicating that explicit supervision for self-validation quality becomes more critical for harder problems. The RL training phase provides consistent improvements across all datasets, with gains increasing on harder problems, demonstrating that PBSO effectively learns complex reasoning strategies beyond SFT. **(2) Paradigm Comparison.** The most striking result emerges from comparing our reflective paradigm against one-pass generation: when trained on identical data, the one-pass baseline shows dramatic performance gaps that widen with problem difficulty. This widening gap validates our core hypothesis: as mathematical complexity increases, the need for iterative self-correction becomes paramount. Single-pass generation fundamentally lacks the mechanism to identify and rectify its own semantic errors, while our reflective paradigm enables progressive refinement through self-validation.

401

402
403

4.4 TRAINING DYNAMICS OF PBSO

404

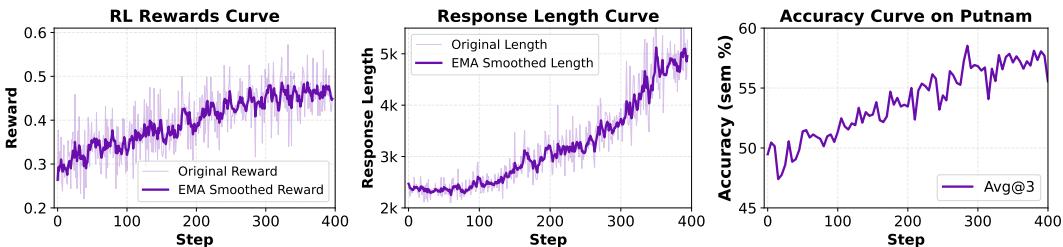
412
413

Figure 3: Training dynamics of our RL process.

414
415
416
417

To understand how Prospective Bounded Sequence Optimization enables effective learning of the reflective paradigm, we analyze the training dynamics in REFORM-8B across three key dimensions. Figure 3 reveals three critical insights into how PBSO shapes model behavior:

418
419
420
421
422
423
424
425
426
427
428
429
430
431

(1) Stable Heterogeneous-Objective Optimization. The training reward (left) steadily improves from 0.30 to 0.47 over 400 steps, with progressively narrowing confidence bands indicating stable convergence. This smooth progression demonstrates that PBSO successfully balances heterogeneous rewards at different sequence positions, optimizing both task success and critique quality. **(2) Emergent Reflective Behavior.** Response length (middle) exhibits remarkable organic growth from 2,300 to 4,800 tokens during training—a 2.1× expansion solely from heterogeneous reward signals, without any explicit length bonuses or penalties. This phenomenon reveals a crucial insight: when properly incentivized through auxiliary rewards for critique quality, models autonomously develop more thorough self-examination behaviors. **(3) Robust Generalization.** Performance on held-out PutnamBench (right) improves from 47% to 57% in semantic consistency, closely tracking training rewards. This tight correlation between training and test performance, maintained throughout optimization rather than diverging due to overfitting, demonstrates that PBSO enables learning of transferable reflective capabilities. Together, these dynamics reveal how PBSO orchestrates the RL process: heterogeneous rewards drive the emergence of reflective behavior, which in turn generates richer training signals, further improving both autoformalization and self-validation capabilities in a virtuous cycle.

Table 2: Ablation studies on training methodology and paradigm with semantic consistency score. All variants use identical training data to ensure fair comparison.

Method	miniF2F	ProofNet	Putnam	AIME25
<i>Ablation on training Methodology</i>				
REFORM	87.7	65.6	57.3	46.7
w/o clip	84.0	59.6	48.9	26.7
w/o r_{aux}	87.7	65.6	52.1	40.0
w/o RL	85.2	62.3	49.4	30.0
<i>Ablation on Paradigm</i>				
One-pass	82.7	59.1	40.8	16.7

432 4.5 RELIABILITY OF SEMANTIC CONSISTENCY EVALUATION
433

434 Since our evaluation relies on LLM-based judges to assess semantic consistency, establishing their
435 reliability is crucial for validating our experimental conclusions. We construct **ConsistencyCheck**, a
436 benchmark of 859 expert-annotated items where models perform binary classification: determining
437 whether a formal statement correctly preserves the mathematical semantics of the original question.

438 **Human expert fallibility in existing benchmarks.** During the annotation process, we uncovered
439 that 16.4% of miniF2F and 38.5% of ProofNet’s human-written formal statements contain semantic
440 errors. This high error rate in expert-crafted formalizations underscores that autoformalization chal-
441 lenges even human specialists, further motivating the need for automated approaches like REFORM.
442

443 Table 3: LLM performance on ConsistencyCheck benchmark for semantic consistency evaluation.
444 [†]Full model names: Claude-3.7-Sonnet, Qwen3-235B-A22B-Thinking, CriticLean-14B.

Metrics	GPT-5	Gemini-2.5-pro	Claude-3.7 [†]	DeepSeek-R1	Qwen3-235B [†]	QwQ	CriticLean [†]
Accuracy	82.5	85.8	77.2	78.1	82.9	77.9	79.1
Precision	88.9	84.4	75.7	84.7	<u>85.3</u>	75.5	80.7
Recall	82.9	96.9	93.3	79.0	<u>87.7</u>	<u>95.4</u>	87.3
F1	85.8	90.2	83.6	81.8	<u>86.5</u>	84.3	83.9

450 **LLM evaluation reliability analysis.** Table 3 reveals that while Gemini-2.5-Pro achieves the high-
451 est accuracy (85.8%), open-source Qwen3-235B-A22B provides comparable performance (82.9%)
452 with balanced precision-recall trade-offs. These results reveal two critical insights for the auto-
453 formalization community: (1) **Classification-Generation Gap validates autoformalization’s dif-
454 ficulty.** On this classification task, which is inherently simpler than generation, frontier models
455 plateau at 86% accuracy. This 14% error rate in merely *recognizing* semantic consistency helps
456 explain why *generating* faithful formalizations remains fundamentally challenging, as generation
457 requires not just recognition but creative synthesis under semantic constraints. (2) **Current evalua-
458 tion is sufficiently reliable for our experiments.** Despite imperfections, with an accuracy at 85.8%,
459 current LLMs provide adequate signals for drawing research conclusions. Crucially, REFORM’s im-
460 provements far exceed potential evaluation noise: our +14.4pp gain on PutnamBench represents
461 a 2.5-standard-deviation effect size given the judge’s error rate, while our +20.0pp improvement
462 on AIME2025 corresponds to 3.5 standard deviations — both statistically robust. Based on these
463 analyses, we adopt Qwen3-235B-A22B as our primary semantic judge (balancing quality with re-
464 producibility) and CriticLean-14B for RL training (for efficiency). Finally, ConsistencyCheck
465 is released to facilitate future research on autoformalization evaluation reliability.
466

467 **Human Evaluation on REFORM** While LLM-based evaluation provides scalable assessment,
468 we further conduct human evaluation to directly validate REFORM’s outputs. We evaluate the final
469 formal statements generated by REFORM-8B on miniF2F and ProofNet test sets. Each statement was
470 classified as “Correct” only if it was both syntactically valid and semantically faithful to the original
471 problem; otherwise, it was deemed “Incorrect”. The human evaluation revealed high fidelity, with
472 86.1% of miniF2F and 69.4% of ProofNet formalizations verified as correct, closely aligning with
473 our LLM-based semantic consistency scores (87.7% and 65.6% respectively) and validating the
474 reliability of automated evaluation.

475 5 CONCLUSION
476

477 We introduce REFORM, a reflective autoformalization paradigm that fundamentally shifts from one-
478 pass generation to an iterative process interweaving generation with semantic self-validation. To
479 effectively train the reflective paradigm, we propose Prospective Bounded Sequence Optimization,
480 which realizes heterogeneous rewards via prospective bounded returns. This enables models to jointly
481 optimize for both correct final formalizations and accurate intermediate critiques, preventing degen-
482 erate or hallucinated self-validations. Extensive experiments demonstrate the effectiveness of our
483 REFORM with an average improvement of 22.6% across four benchmarks. Our ConsistencyCheck
484 benchmark further reveals that autoformalization challenges even human experts while confirming
485 the reliability of LLM-based evaluation metrics.

486
487 ETHICS STATEMENT488 Our work focuses on advancing automated mathematical formalization through a novel reflective
489 paradigm and reinforcement learning algorithm. We have carefully considered the ethical implica-
490 tions of our research and taken appropriate measures to ensure responsible development.491 **Human Annotation and Labor.** The construction of our ConsistencyCheck benchmark involved
492 human experts in mathematics and Lean4. All annotators were fairly compensated for their exper-
493 tise and time according to prevailing standards for skilled technical work. The annotation process
494 was designed to be intellectually engaging rather than repetitive, leveraging the annotators’ mathe-
495 matical expertise. We ensured reasonable working conditions with no excessive time pressures, and
496 annotators retained the right to decline or withdraw from tasks at any point.497 **Intellectual Property and Attribution.** Our benchmark builds upon existing mathematical datasets
498 (miniF2F and ProofNet), which we use in accordance with their licenses and with proper attribution.
499 We acknowledge the substantial human effort that went into creating these original resources and
500 ensure all sources are appropriately cited.501 **Potential Impacts.** While our work aims to democratize access to formal mathematical reasoning
502 tools, we acknowledge potential concerns. The automation of mathematical formalization could
503 reduce demand for certain types of mathematical verification work. However, we believe our tech-
504 nology will primarily augment rather than replace human mathematicians, enabling them to focus
505 on higher-level creative and conceptual work. Furthermore, by making formal verification more
506 accessible, our work could enhance mathematical education and research, particularly in resource-
507 constrained settings.508
509 REPRODUCIBILITY STATEMENT510 To ensure the reproducibility of our work, we have made comprehensive efforts to document all
511 aspects of our methodology and experiments. Section 4.1 provides detailed descriptions of our eval-
512 uation benchmarks, baseline methods, and training data sources. Appendix B.1 contains thorough
513 documentation of our data collection process for SFT trajectory data, along with complete hyperpa-
514 rameters for both SFT and RL training phases. Additionally, we provide extensive **supplementary**
515 **materials** including our complete codebase with detailed implementation notes and example of our
516 ConsistencyCheck benchmark, ensuring that researchers can readily reproduce our results. The en-
517 tire ConsistencyCheck benchmark with expert annotations will be made publicly available upon
518 acceptance. These materials collectively enable full reproduction of our experimental results and
519 facilitate future research building upon our reflective autoformalization paradigm.520
521 REFERENCES523 Alon Albalak, Duy Phung, Nathan Lile, Rafael Rafailov, Kanishk Gandhi, Louis Castricato, Anikait
524 Singh, Chase Blagden, Violet Xiang, Dakota Mahan, et al. Big-math: A large-scale, high-quality
525 math dataset for reinforcement learning in language models. *arXiv preprint arXiv:2502.17387*,
526 2025.527 Anthropic. Claude 3.7 sonnet and claude code. <https://www.anthropic.com/news/claude-3-7-sonnet>, February 2025.530 Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W Ayers, Dragomir Radev, and
531 Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level mathemat-
532 ics. *arXiv preprint arXiv:2302.12433*, 2023.534 Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin,
535 Xing Jin, Chenggang Li, Kaijing Ma, et al. Seed-prover: Deep and broad reasoning for automated
536 theorem proving. *arXiv preprint arXiv:2507.23726*, 2025.538 Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
539 lean theorem prover (system description). In *International Conference on Automated Deduction*,
pp. 378–388. Springer, 2015.

540 Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
 541 Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark
 542 for large language models. *arXiv preprint arXiv:2410.07985*, 2024.

543 Google. Gemini 2.5 pro. <https://deepmind.google/technologies/gemini/pro/>,
 544 April 2025.

545 Daya Guo, Dejian Yang, Huawei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 546 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 547 via reinforcement learning. 2025.

548 Chuanyang Han, Pu Huang, Yixuan Wang, Yutao Chen, Sheng Zhang, and Li Song. Lean workbook:
 549 A large-scale lean problem set formalized from natural language math problems. *arXiv preprint
 550 arXiv:2404.14813*, 2024.

551 Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian
 552 Yu, Zhenwen Liang, Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging,
 553 de-contaminated, and verifiable mathematical dataset for advancing reasoning. *arXiv preprint
 554 arXiv:2504.11456*, 2025.

555 Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 556 trow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-Whitcomb,
 557 Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino,
 558 Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali Ka-
 559 mali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoonchian, Ananya
 560 Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codis-
 561 poti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko, Angela Baek, An-
 562 gela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano,
 563 Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben Rossen, Ben
 564 Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob McGrew, Bobby
 565 Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan Quinn, Brian
 566 Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo Lugaresi, Carroll L. Wainwright,
 567 Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern, Channing Con-
 568 ger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris Beaumont,
 569 Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim, Christina Choi, Christine McLeavey,
 570 Christopher Hesse, Claudia Fischer, Clemens Winter, Coley Czarnecki, Colin Jarvis, Colin Wei,
 571 Constantin Koumouzelis, and Dane Sherburn. Gpt-4o system card. *CoRR*, abs/2410.21276, 2024.
 572 doi: 10.48550/ARXIV.2410.21276. URL <https://doi.org/10.48550/arXiv.2410.21276>.

573 InternLM Team. Internlm: A multilingual language model with progressively enhanced capabilities.
 574 arXiv preprint arXiv:2307.16135, 2023.

575 Albert Qiaochu Jiang, Wenda Li, and Mateja Jamnik. Multilingual mathematical autoformalization.
 576 arXiv preprint arXiv:2311.03755, 2023.

577 Sheng Jiayi, Lyu Luna, Jin Jikai, Xia Tony, Gu Alex, Zou James, and Lu Pan. Solving inequality
 578 proofs with large language models. *arXiv preprint arXiv:2506.07927*, 2025.

579 Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, and Xujie
 580 Si. A survey on deep learning for theorem proving. *arXiv preprint arXiv:2404.09939*, 2024.

581 Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia,
 582 Danqi Chen, Sanjeev Arora, et al. Goedel-prover: A frontier model for open-source automated
 583 theorem proving. *arXiv preprint arXiv:2502.07640*, 2025a.

584 Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan
 585 Geng, Jiawei Ge, Jingruo Sun, et al. Goedel-prover-v2: Scaling formal theorem proving with
 586 scaffolded data synthesis and self-correction. *arXiv preprint arXiv:2508.03613*, 2025b.

587 Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
 588 Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
 589 2025.

594 OpenAI. Gpt-5 is here. <https://openai.com/gpt-5/>, August 2025.
 595

596 OpenCompass. AIME 2025 Benchmark. <https://huggingface.co/datasets/opencompass/AIME2025>, 2025.
 597

598 Zhongyuan Peng, Yifan Yao, Kaijing Ma, Shuyue Guo, Yizhe Li, Yichi Zhang, Chenchen Zhang,
 599 Yifan Zhang, Zhouliang Yu, Luming Li, et al. Criticlean: Critic-guided reinforcement learning
 600 for mathematical formalization. *arXiv preprint arXiv:2507.06181*, 2025.
 601

602 Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
 603 In *International Conference on Machine Learning*, pp. 7872–7882. PMLR, 2020.
 604

605 Qwen. QwQ: Reflect deeply on the boundaries of the unknown. *Hugging Face*, 2024.
 606

607 Alexander A Razborov and Steven Rudich. Natural proofs. In *Proceedings of the twenty-sixth
 608 annual ACM symposium on Theory of computing*, pp. 204–213, 1994.
 609

610 ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanja Zhao, Liyue Zhang,
 611 Zhe Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal mathematical rea-
 612 soning via reinforcement learning for subgoal decomposition. *arXiv preprint arXiv:2504.21801*,
 613 2025.
 614

615 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 616 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
 617

618 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 619 Mingchuan Zhang, Y. K. Li, Y. Wu, et al. Deepseekmath: Pushing the limits of mathematical
 620 reasoning in open language models. 2024.
 621

622 George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Ami-
 623 tayush Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on
 624 the putnam mathematical competition. *Advances in Neural Information Processing Systems*, 37:
 625 11545–11569, 2024.
 626

627 Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood
 628 Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large-
 629 formal reasoning models with reinforcement learning. *arXiv preprint arXiv:2504.11354*, 2025a.
 630

631 Weixun Wang, Shaopan Xiong, Gengru Chen, Wei Gao, Sheng Guo, Yancheng He, Ju Huang,
 632 Jiaheng Liu, Zhendong Li, Xiaoyang Li, et al. Reinforcement learning optimization for large-
 633 scale learning: An efficient and user-friendly scaling library. 2025b.
 634

635 Ke Weng, Lun Du, Sirui Li, Wangyue Lu, Haozhe Sun, Hengyu Liu, and Tiancheng Zhang. Auto-
 636 formalization in the era of large language models: A survey. *arXiv preprint arXiv:2505.23486*,
 637 2025.
 638

639 Yilun Wu, Albert Q Jiang, Wenda Li, Mateja Jamnik, Guillaume Lample, and M Rabe. Autoformal-
 640 ization with large language models. *Transactions on Machine Learning Research*, 2023.
 641

642 Zijian Wu, Suozhi Huang, Zhejian Zhou, Huaiyuan Ying, Jiayu Wang, Dahua Lin, and Kai Chen.
 643 Internlm2. 5-stepprover: Advancing automated theorem proving via expert iteration on large-scale
 644 lean problems. *arXiv preprint arXiv:2410.15700*, 2024.
 645

646 Zijian Wu, Suozhi Huang, Zhejian Zhou, Huaiyuan Ying, Zheng Yuan, Wenwei Zhang, Dahua Lin,
 647 and Kai Chen. Internlm2. 5-stepprover: Advancing automated theorem proving via critic-guided
 648 search. In *2nd AI for Math Workshop@ ICML 2025*, 2025.
 649

650 Jiaxuan Xie, Chengwu Liu, Ye Yuan, Siqi Li, Zhiping Xiao, and Ming Zhang. Fmc: Formalization
 651 of natural language mathematical competition problems. *arXiv preprint arXiv:2507.11275*, 2025.
 652

653 Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li,
 654 and Xiaodan Liang. Deepseek-prover: Advancing theorem proving in llms through large-scale
 655 synthetic data. *arXiv preprint arXiv:2405.14333*, 2024a.
 656

648 Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao, Wanja Zhao, Haocheng Wang, Bo Liu, Liyue
 649 Zhang, Xuan Lu, Qiushi Du, et al. Deepseek-prover-v1. 5: Harnessing proof assistant feedback
 650 for reinforcement learning and monte-carlo tree search. *arXiv preprint arXiv:2408.08152*, 2024b.
 651

652 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 653 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 654 *arXiv:2505.09388*, 2025.

655 Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
 656 Ryan J Prenger, and Animashree Anandkumar. Leandojo: Theorem proving with retrieval-
 657 augmented language models. *Advances in Neural Information Processing Systems*, 36:21573–
 658 21612, 2023.

659 Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook:
 660 A large-scale lean problem set formalized from natural language math problems. *Advances in*
 661 *Neural Information Processing Systems*, 37:105848–105863, 2024.

662

663 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 664 Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at
 665 scale. 2025a.

666 Zhouliang Yu, Ruotian Peng, Keyi Ding, Yizhe Li, Zhongyuan Peng, Minghao Liu, Yifan Zhang,
 667 Zheng Yuan, Huajian Xin, Wenhao Huang, et al. Formalmath: Benchmarking formal mathemati-
 668 cal reasoning of large language models. *arXiv preprint arXiv:2505.02735*, 2025b.

669

670 Yu Yue, Yufeng Yuan, Qiyi Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi
 671 Wang, TianTian Fan, Zhengyin Du, et al. Vapo: Efficient and reliable reinforcement learning for
 672 advanced reasoning tasks. 2025.

673 Ziyin Zhang, Jiahao Xu, Zhiwei He, Tian Liang, Qiuwei Liu, Yansi Li, Linfeng Song, Zhenwen
 674 Liang, Zhuosheng Zhang, Rui Wang, et al. Deeptheorem: Advancing llm reasoning for theorem
 675 proving through natural language and reinforcement learning. *arXiv preprint arXiv:2505.23754*,
 676 2025.

677 Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for
 678 formal olympiad-level mathematics. *arXiv preprint arXiv:2109.00110*, 2021.

679

680 Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. minif2f: a cross-system benchmark for
 681 formal olympiad-level mathematics. In *International Conference on Learning Representations*,
 682 2022. URL <https://openreview.net/forum?id=9ZPegFuFTFv>.

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A STATEMENT ON LLM USAGE

704
 705 In accordance with ICLR 2026’s policies on Large Language Model Usage, we disclose that LLMs
 706 were used in a limited capacity during the preparation of this manuscript. Specifically, we employed
 707 LLMs solely for language polishing tasks, including grammar checking, improving sentence clarity,
 708 and refining word choices to enhance readability. At no point were LLMs used to generate research
 709 ideas, produce experimental code, analyze results, or draft entire sections of this paper. All scientific
 710 content, experimental design, theoretical contributions, and analytical insights are the original work
 711 of the authors. We take full responsibility for the accuracy and integrity of all claims, data, and
 712 conclusions presented in this work.

713 B MORE IMPLEMENTATION DETAILS

714
 715 In this section, we provide a comprehensive implementation details of our proposed method. For
 716 additional insights and more intricate details, we refer the reader to our supplementary materials.
 717

718 B.1 IMPLEMENTATION DETAILS

719 Table 4: Key hyperparameters in the SFT phase. Table 5: Key hyperparameters in the RL phase.

720 Hyperparameter	721 Value	720 Hyperparameter	721 Value
724 Learning Rate	725 1e-5	724 Learning Rate	725 1e-6
725 Batch size	726 512	725 Batch size	726 32
726 #Epochs	727 3	726 Group size per Question (G)	727 16
727 Chat template	728 Qwen	727 Temperature	728 1.0
728 Max Context Length	729 40960	728 Top-p	729 0.95
729 Warmup ratio	730 0.03	729 KL coefficient (λ)	730 0.0
730 LR scheduler type	731 Cosine	730 Entropy coefficient	731 0.0

732
 733 **Supervised Fine-tuning Phase.** We utilize Slime² as our training framework for the initial su-
 734 pervised fine-tuning phase. The detailed hyper-parameters for this phase are presented in Table 4.
 735 Since current LLMs lack inherent capabilities for our iterative autoformalization paradigm, we first
 736 construct high-quality training data that demonstrates both autoformalization and semantic self-
 737 validation behaviors. We employ a multi-agent system based on Qwen3-235B-A22B-Thinking
 738 to generate training trajectories that embody our reflective paradigm. For each mathematical prob-
 739 lem in our source datasets (Section 4.1), we execute the following iterative process:

- 740 • (Step 1) **Initial Autoformalization:** Generate an initial Lean4 formalization using a standard
 741 one-pass prompt (Appendix E.1).
- 742 • (Step 2) **Syntactic Validation:** Verify the generated statement compiles successfully in Lean4.
 743 Non-compiling statements trigger subsequent refinement.
- 744 • (Step 3) **Semantic Consistency Evaluation:** For syntactically valid statements, apply a consis-
 745 tency checking prompt (Appendix E.2) to assess semantic alignment with the original problem.
- 746 • (Step 4) **Reflective Refinement:** When inconsistencies are detected, combine the failed statement
 747 with evaluation feedback to generate corrections using reflective prompts (Appendix E.1, E.2).
- 748 • (Step 5) **Iteration:** Repeat steps 2-4 until either (a) semantic consistency is achieved, (b) maxi-
 749 mum iterations (3 rounds) are reached, or (c) no further improvements are generated.

750 This pipeline produces training trajectories that naturally interweave autoformalization attempts with
 751 self-validation and correction, providing rich supervision for learning our reflective paradigm. The
 752 resulting dataset contains 447,508 trajectories with iteration distributions detailed in Table 6, where
 753 83.1% of problems achieve resolution within a single iteration while the remaining require multiple
 754 rounds of refinement.

755 ²<https://github.com/THUDM/slime>

756 Table 6: Data Statistics for SFT and RL Phase.
757

758 759 Stage	760 761 Data Type	762 Iteration Distribution			763 764 765 Total
		766 Iteration 1	767 Iteration 2	768 Iteration 3	
SFT	Trajectories	371,679	65,734	10,095	447,508
RL	Question only	-	-	-	2,048

763 Table 7: Main results. We report semantic consistency (sem) based on CriticLean-14B (Peng
764 et al., 2025) with sem being our primary metric. [‡]Improvements are relative to the best baseline with
765 comparable model size. The best results are in **bold**, and the second best are underlined.

766 767 Model	768 miniF2F	769 ProofNet	770 Putnam	771 AIME2025	772 AVG
<i>Proprietary and Open-source Models</i>					
GPT-5	66.8	41.5	44.1	13.3	41.7
Claude-3.7-Sonnet	34.8	22.6	10.9	0.0	17.1
Gemini-2.5-Pro	28.3	7.0	4.5	0.0	10.0
DeepSeek-R1-0528	33.2	10.2	11.2	3.3	14.5
Qwen3-235B-A22B	44.7	12.4	18.8	23.3	24.8
Qwen3-32B	54.1	7.5	6.7	6.7	18.8
Qwen3-8B	32.0	7.0	3.1	0.0	10.5
<i>Autoformalization Models</i>					
DeepSeek-Prover-V1.5-RL	44.3	0.0	0.5	0.0	11.2
Goedel-V1-32B-Workbook	48.8	18.3	9.6	3.3	20.0
Goedel-V1-32B-Sonnet	66.0	23.1	17.4	10.0	29.1
Kimina-Autoformalizer-7B	66.8	22.0	26.2	13.3	32.1
Goedel-Formalizer-V2-8B	86.9	54.8	40.8	26.7	52.3
Goedel-Formalizer-V2-32B	<u>89.3</u>	<u>59.1</u>	<u>44.3</u>	<u>33.3</u>	<u>56.5</u>
<i>Ours</i>					
REFORM-8B	92.2	69.4	59.6	60.0	70.3
+ Improvement [‡]	$\uparrow 5.3$	$\uparrow 14.6$	$\uparrow 18.8$	$\uparrow 33.3$	$\uparrow 18.0$
REFORM-32B	91.4	73.7	64.6	63.3	73.2
+ Improvement [‡]	$\uparrow 2.1$	$\uparrow 14.6$	$\uparrow 20.3$	$\uparrow 30.0$	$\uparrow 16.7$

790
791 **Reinforcement Learning Phase.** For training data in RL phase, we start with a diverse batch of
792 mathematical problems spanning various difficulties, grade levels, and domains. For each problem,
793 we generate 8 candidate formalizations by sampling from our SFT model. These candidates were
794 then evaluated against two successive criteria: compiler verification and a semantic consistency
795 check. From this pool, we curate a final dataset with 2048 items for RL. The selection was deliber-
796 ately stratified to include problems with varying pass rates (i.e., the proportion of the eight samples
797 that passed the checks), thereby ensuring the dataset represented a wide spectrum of formalization
798 difficulty. Moreover, Table 5 summarizes the key hyperparameters used during the reinforcement
799 learning phase. We also use Slime as our RL frameowrk due to its efficient and easy to use.

800
801 **Inference Phase.** During inference, we employ deterministic sampling with temperature 0.6 and
802 top-p 0.95 to balance between generation quality and diversity. The maximum generation length is
803 set to 40,960 tokens. We utilize vLLM³ as our inference engine.

804 B.2 ROBUSTNESS ANALYSIS ON MAIN RESULT EVALUATED BY CRITICLEAN-14B 805

806 To validate that our improvements are not artifacts of a specific evaluation metric, Table 7 presents
807 results evaluated by CriticLean-14B (Peng et al., 2025), an independent semantic consistency judge
808 trained specifically for autoformalization assessment.

809
810 ³<https://github.com/vllm-project/vllm>

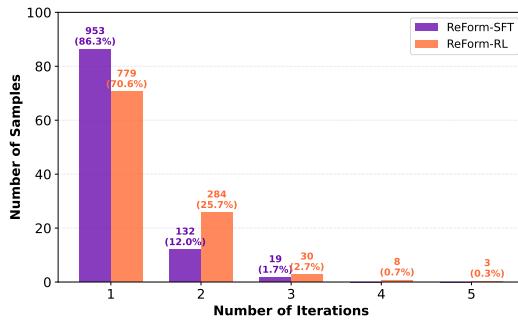
810 **(1) Consistent Improvements Across Evaluators.** REFORM maintains substantial advantages under CriticLean evaluation, with ReForm-8B achieving an average improvement of +18.0pp over Goedel-V2-8B (compared to +14.8pp under Qwen3-235B evaluation). This consistency across fundamentally different evaluators—a general-purpose LLM (Qwen3) versus a specialized critic model (CriticLean)—strongly validates the robustness of our approach.

811 **(2) Amplified Gains on Challenging Benchmarks.** The improvements are even more pronounced under CriticLean evaluation for difficult datasets: +33.3pp on AIME2025 (vs +20.0pp with Qwen3) and +18.8pp on PutnamBench (vs +14.4pp). This suggests that CriticLean may be more sensitive to semantic nuances in complex problems, where our reflective paradigm provides the greatest benefits.

812 **(3) Different Absolute Scores but Consistent Rankings.** While CriticLean generally assigns higher semantic consistency scores than Qwen3 (possibly due to different training objectives or calibration), the relative rankings remain largely consistent. Notably, REFORM achieves the highest scores under both evaluators, with ReForm-8B reaching 70.3% average semantic consistency under CriticLean—a remarkable achievement given the inherent difficulty of autoformalization.

813 These results from Table 1 and Table 7 confirm that the reflective paradigm’s effectiveness transcends specific evaluation methodologies, providing robust improvements in semantic consistency regardless of how it is measured.

814 B.3 IMPACT OF RL TRAINING ON ITERATIVE REFINEMENT BEHAVIOR



815 Figure 4: Iteration Distribution of our REFORM-SFT and RL.

816 We further analyze the distribution of iteration rounds for ReForm-8B across four benchmarks, comparing models after SFT and RL training stages. As shown in Figure 4, the results reveal striking behavioral changes that validate our reflective paradigm’s effectiveness.

817 REFORM-SFT exhibits a heavily skewed distribution, with 86.3% of samples terminating after a single iteration and the remaining samples distributed across 2-3 iterations—a pattern directly reflecting our SFT training data, which was capped at three iterations. In contrast, REFORM-RL demonstrates a markedly different behavioral pattern. Most notably, it explores iteration depths never seen during SFT training, with 0.7% and 0.3% of samples extending to 4 and 5 iterations respectively. More importantly, the overall distribution shifts toward deeper refinement: the percentage of single-iteration completions drops to 70.6%, while 2-iteration cases nearly double from 12.0% to 25.7%. This redistribution indicates that **PBSO training successfully teaches the model to recognize when additional refinement is beneficial, rather than prematurely terminating the reflective process**. The emergence of 4-5 iteration trajectories—patterns entirely absent from the SFT training data—demonstrates that PBSO enables genuine exploration beyond the supervised distribution, discovering more effective refinement strategies through trial and error. This finding is further corroborated by the consistent increase in average response length during RL training (Section 4.4), confirming that the model learns to invest more computational effort in challenging problems that benefit from extended reflection.

818 The results provide strong empirical evidence that our heterogeneous reward mechanism successfully prevents the degeneration of self-validation capabilities while encouraging productive iteration when needed, ultimately validating the core premise of our reflective autoformalization paradigm: that iterative self-correction, when properly incentivized, leads to superior semantic consistency.

864 C THE CONSISTENCYCHECK BENCHMARK
865
866
867868 **Annotation Team.** Our annotation team for both the ConsistencyCheck benchmark and the au-
869 toformalization results in Section 4.5 comprised 6 members. All are senior PhD. candidates with
870 a strong background in mathematical competitions and prior experience in formalization-related
871 annotation tasks.
872873
874 **Expertise & Training.** To ensure high-quality and consistent annotations, a rigorous training pro-
875 tocol was implemented. This included dedicated sessions on interpreting the annotation guidelines,
876 mastering the criteria for semantic consistency, and standardizing the handling of ambiguous or
877 edge cases. Furthermore, all annotators are active researchers in Lean and formalization-related
878 fields, possessing practical experience in formal proof development or autoformalization.
879880
881 **Annotation Protocol.** Our annotation protocol employed a three-annotator design per statement
882 to ensure robustness. Initially, two annotators worked independently. Subsequently, a third senior
883 annotator reviewed their annotations and accompanying textual comments (examples of which are
884 provided in Appendix C) to perform cross-validation, resolve any discrepancies, and render the final
885 judgment.
886887 **Annotation process.** To construct a high-quality benchmark for evaluating semantic consistency,
888 we commission a team of experts with deep proficiency in both mathematics and Lean4. The anno-
889 tators were tasked with assessing the semantic fidelity of formal statements from a dataset composed
890 of items from miniF2F (Zheng et al., 2022) and ProofNet (Azerbayev et al., 2023), which were pre-
891 sented to them in an anonymized format. For each item, **two experts** independently compared the
892 machine-verifiable formal statement against the original natural language problem. If the formaliza-
893 tion faithfully captured the problem’s semantic intent, it was labeled as “Correct”. If any semantic
894 discrepancy was found, it was labeled as “Incorrect”, and the annotators were required to provide
895 a detailed written justification. In cases of disagreement, **a third senior expert** was brought in to
896 adjudicate and determine the final label, ensuring the reliability of our benchmark.
897898 **Example of our ConsistencyCheck Benchmark.** A representative example of a semantic error
899 discovered in a ProofNet entry is illustrated in Example C. In this instance, the human-authored
900 formalization contained two critical flaws: (1) a “constant term mismatch”, where $\sqrt{11}$ from the
901 natural language was incorrectly transcribed as 11; and (2) a “degree bound inconsistency”, where
902 the constraint “degree ≤ 80 ” was altered to “degree < 80 ”. Notably, the annotation team also identi-
903 fied another significant class of error in miniF2F entries: cases where the formal statement included
904 an explicit answer, while the original natural language problem did not. These instances were also
905 systematically classified as “Incorrect.” Such discrepancies underscore the profound difficulty of
906 achieving true semantic fidelity, even in expert-curated datasets.
907908 Based on this benchmark, we investigate the performance of each LLMs in semantic consistency
909 evaluation. These models are tasked with assessing the semantic consistency following the prompt
910 specified in Appendix E.2, as discussed in Section 4.5.
911912 Examples in ConsistencyCheck Benchmark
913914 **Example 1**
915
916 **set:** ProofNet
917 **name:** exercise_5_4_3
918 **split:** test
919 **question:** If $a \in \mathbb{C}$ is such that $p(a) = 0$, where $p(x) = x^5 + \sqrt{2}x^3 + \sqrt{5}x^2 + \sqrt{7}x + \sqrt{11}$,
920

918

show that a is algebraic over \mathbb{Q} of degree at most 80.

header:

919

```
import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators
```

920

formal statement:

921

```
theorem exercise\_5\_4\_3 {a : ℝ} {p : ℝ → ℝ} \n (hp : p = λ x, x\^{}5 + real.sqrt 2 * x\^{}3 + real.sqrt 5 * x\^{}2 + \n real.sqrt 7 * x + 11)\n (ha : p a = 0) : \n ∃ p : polynomial ℝ, p.degree < 80 ∧ a ∈ p.roots ∧ \n ∀ n : p .support, ∃ a b : ℤ, p.coeff n = a / b :=
```

922

Human check

923

Incorrect

Human comments

924

1. Polynomial constant term mismatch: $\sqrt{11}$ in natural language vs 11 in formalization.

925

2. Degree bound inconsistency: degree ≤ 80 in natural language vs < 80 (i.e. ≤ 79) in formalization.

926

These discrepancies make the formalization mathematically inequivalent to the original statement.

927

Example 2

928

set: miniF2F

929

name: aime_1991_p6

930

split: test

931

question: Suppose r is a real number for which

932

$$\left\lfloor r + \frac{19}{100} \right\rfloor + \left\lfloor r + \frac{20}{100} \right\rfloor + \left\lfloor r + \frac{21}{100} \right\rfloor + \cdots + \left\lfloor r + \frac{91}{100} \right\rfloor = 546.$$

933

Find $\lfloor 100r \rfloor$. (For real x , $\lfloor x \rfloor$ is the greatest integer less than or equal to x .) Show that it is 743.

934

header:

935

```
import Mathlib\nimport Aesop\n\nset_option maxHeartbeats 0\n\nopen BigOperators Real Nat Topology Rat\n\n
```

936

formal statement:

937

```
theorem aime_1991_p6 (r : ℝ) (h₀ : (∑ k in Finset.Icc (19 : N) 91, Int.floor (r + k / 100)) = 546) : Int.floor (100 * r) = 743 := by
```

938

Human check

939

Correct

940

941

D CASE STUDY OF OUR REFORM

942

We present a detailed case study demonstrating our model’s reflective autoformalization capabilities in practice. The example below illustrates how REFORM successfully identifies and corrects its own semantic errors through iterative self-validation.

943

Round 1: Initial Attempt and Error Detection. The model generates its first autoformalization attempt, then performs semantic self-validation by systematically analyzing the formalization across five critical dimensions: (1) variable definitions and types, (2) mathematical constraints and conditions, (3) logical relationships between statements, (4) completeness of the formalization, and (5) alignment with the problem’s intent. Through this structured analysis, the model autonomously identifies semantic inconsistencies in its initial output (highlighted in red).

972 **Round 2: Self-Correction and Validation.** Leveraging its self-generated critique as feedback, the
 973 model produces a refined autoformalization that directly addresses the identified issues. The cor-
 974 rected statement undergoes another round of semantic validation, this time passing all consistency
 975 checks. This successful self-correction demonstrates the model’s ability to not only detect its own
 976 errors but also synthesize this understanding into improved formalizations.

977 This example showcases the core strength of our reflective paradigm: the model’s capacity for gen-
 978 uine self-improvement without external intervention, achieving semantic correctness through itera-
 979 tive refinement guided by its own critical analysis.
 980

981 Example of Our REFORM

982 **Question:** What value of x will give the minimum value of $x^2 - 14x + 3$? Show that it is 7.

983 **The response of our REFORM:**

984 <think>

985 **Round 1 (Autoformalization)**

986 <round>

987 The problem is asking for the value of x that minimizes the expression $x^2 - 14x + 3$, and it
 988 states that this value is 7.

989 To formalize this in Lean 4, I need to express that: 1. The function $f(x) = x^2 - 14x + 3$
 990 has a minimum at $x = 7$ 2. This means that for all real numbers x , we have $f(7) \leq f(x)$
 991 Let me think about how to express this properly in Lean 4:
 992

993
 994 ````lean4`
 995 `theorem test_problem : ∀ x : ℝ, (7 : ℝ) ^ 2 - 14 * 7 + 3 ≤ x ^ 2`
 996 `- 14 * x + 3 := by sorry`
 997 `````

998 Wait, let me think about this more carefully. The problem is asking "what value of x will
 999 give the minimum value". This suggests we want to find the argmin of the function.

1000 Actually, let me be more precise. The statement should be that 7 is the point where the
 1001 function achieves its minimum. So we want:

1002
 1003 ```` lean4`
 1004 `theorem test_problem : ∀ x : ℝ, (7 : ℝ) ^ 2 - 14 * 7 + 3 ≤ x ^ 2`
 1005 `- 14 * x + 3 := by sorry`
 1006 `````

1007 But this is a bit awkward with the explicit casting. Let me try:

1008
 1009 ```` lean4`
 1010 `theorem test_problem : ∀ x : ℝ, 7 ^ 2 - 14 * 7 + 3 ≤ x ^ 2 - 14`
 1011 `* x + 3 := by sorry`
 1012 `````

1013 Actually, in Lean 4, when we write

1014 `'7^2'` where `'7 : ℝ'`

1015 it should automatically be interpreted as a real number. But to be safe, let me be explicit:

1016
 1017 ```` lean4`
 1018 `theorem test_problem : ∀ x : ℝ, (7 : ℝ) ^ 2 - 14 * (7 : ℝ) + 3`
 1019 `≤ x ^ 2 - 14 * x + 3 := by sorry`
 1020 `````

1021 I'll verify the calculation to ensure accuracy. The key is to confirm that 7 truly minimizes
 1022 the quadratic expression by checking the algebraic properties of the function.
 1023

1026
1027
1028
1029

Expanding the squared term reveals the minimum occurs precisely at 7, with a value of -46. The algebraic manipulation shows $x^2 - 14x + 3$ reaches its lowest point when $x = 7$, supporting the original claim about the minimum value.

1030
1031
1032
1033
1034

The Lean theorem captures this relationship, demonstrating that for all real numbers, the function's value at 7 is less than or equal to the function's value at any other point. Looking at this problem, I need to formalize the statement that $x = 7$ gives the minimum value for the expression $x^2 - 14x + 3$.

1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

```
``` lean4
import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

theorem test_problem : ∀ x : ℝ, (7 : ℝ) ^ 2 - 14 * 7 + 3 ≤ x ^ 2
 - 14 * x + 3 := by sorry
```

```

1046
1047
1048
1049

Round 1 (Semantic Self-validation)

It's time to assess if the Formal Statement correctly captures the essence of the given math problem.

1050
1051
1052
1053
1054

1. Math Assertion Analysis: The problem asks for the value of x that minimizes the quadratic function $x^2 - 14x + 3$ and requires proving that this value is 7. The key components are: (a) the function $f(x) = x^2 - 14x + 3$, (b) the variable $x \in \mathbb{R}$, (c) the claim that $x = 7$ is the minimizer, and (d) the requirement to prove this claim.

1055
1056
1057
1058
1059

2. Lean Statement Analysis: The theorem asserts $\forall x : \mathbb{R}, (7^2 - 14 \cdot 7 + 3) \leq x^2 - 14x + 3$. This captures the inequality that the function's value at $x = 7$ is less than or equal to its value at any other $x \in \mathbb{R}$. However, it does not explicitly state that $x = 7$ is the minimizer (i.e., the argument where the minimum occurs). **The theorem only asserts the inequality, not the existence of the minimizer or its uniqueness.**

1060
1061
1062
1063
1064
1065

3. Comparative Verification: The Lean statement correctly captures the inequality part of the problem (that $f(7)$ is the minimum value). However, it does not explicitly state that $x=7$ is the value that achieves this minimum. The problem requires both identifying the minimizer ($x=7$) and proving the inequality. The Lean theorem omits the explicit identification of $x=7$ as the minimizer, focusing only on the inequality.

1066
1067
1068
1069
1070

4. Conclusion: **The Lean statement is incomplete as a formalization of the problem.** While it correctly captures the inequality that $f(7)$ is the minimum value, it does not explicitly state that $x=7$ is the value that achieves this minimum. The problem requires both the identification of the minimizer and the proof of the inequality, but the theorem only addresses the latter.

1071
1072
1073
1074
1075
1076
1077
1078
1079

5. Accuracy Confirmation: The Lean statement is incorrect. **It fails to explicitly state that $x=7$ is the minimizer, which is a critical part of the problem.** The theorem only asserts the inequality, not the identification of the minimizer.

Therefore, the outcome of the consistency verification is:
Incorrect

</round>

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Round 2 (Autoformalization)

Time to reformulate the Lean 4 Formal Statement based on verification analysis.

<round>

Thought Process

Looking at the informal statement and the critic, I see the issue with the previous formalization:

1. The problem asks for two things: - What value of x minimizes $x^2 - 14x + 3$ - Show that this value is 7
2. The previous formalization only captured the second part (that 7 gives the minimum value) but didn't explicitly state that 7 is the value that minimizes the expression.
3. To properly formalize this, I need to: - Define the function $f(x) = x^2 - 14x + 3$ - State that 7 is the unique minimizer of this function
4. In Lean, a proper formalization would need to express both that 7 is a minimizer and that it's the unique minimizer.

Given New Formal Statement:

```
```lean4
import Mathlib.Analysis.Calculus.Deriv.Basic
import Mathlib.Data.Real.Basic

theorem test_problem :
 let f : ℝ → ℝ := λ x => x^2 - 14*x + 3;
 (forall (x : ℝ), f 7 ≤ f x) ∧ (forall (x : ℝ), f x = f 7 → x = 7) := by
 sorry
```
```

Round 2 (Semantic Self-validation)

Now I'll check if the Formal Statement completely and correctly formalizes the mathematical question.

1. Math Assertion Analysis: The problem asks for the value of x that minimizes the quadratic function $f(x) = x^2 - 14x + 3$ and requires proving that this value is 7. The mathematical structure involves: (a) defining the function $f : ℝ → ℝ$, (b) asserting that $x = 7$ is the global minimum (i.e., $\forall x, f(7) \leq f(x)$), and (c) ensuring uniqueness (i.e., if $f(x) = f(7)$, then $x = 7$). The problem implicitly relies on the function's convexity (since the coefficient of x^2 is positive), guaranteeing a unique minimum.
2. Lean Statement Analysis: The theorem defines $f : ℝ → ℝ$ as $x^2 - 14x + 3$. The conclusion asserts two claims: (a) $\forall x, f(7) \leq f(x)$ (global minimum), and (b) $\forall x, f(x) = f(7) \rightarrow x = 7$ (uniqueness). The function definition, domain ($ℝ$), and logical structure match the problem's requirements.
3. Comparative Verification: The Lean statement correctly captures both the existence and uniqueness of the minimum at $x = 7$. The function definition matches the mathematical text. The universal quantifiers ($\forall x$) and implications (\rightarrow) align with the problem's logical structure. The use of $ℝ$ ensures the domain is preserved. No extraneous conditions or missing components are present.

```

1134
1135 4. Conclusion: The Lean statement accurately formalizes the problem's requirements.
1136
1137 5. Accuracy Confirmation: The Lean statement correctly formalizes the problem. The
1138 function definition, domain, and logical claims (global minimum and uniqueness) align
1139 perfectly with the mathematical text.
1140
1141 Consequently, the outcome of the consistency check is:
1142
1143 Correct
1144
1145 </round>
1146
1147 </think>
1148
1149 Final Statement
1150 With successful verification, here's the final Lean 4 Formal Statement:
1151
1152 ``` lean4
1153 import Mathlib.Analysis.Calculus.Deriv.Basic
1154 import Mathlib.Data.Real.Basic
1155
1156 theorem test_problem :
1157   let f : ℝ → ℝ := λ x => x^2 - 14*x + 3;
1158   (forall x : ℝ, f 7 ≤ f x) ∧ (forall x : ℝ, f x = f 7 → x = 7) := by
1159   sorry
1160
1161

```

E PROMPT

E.1 INSTRUCTION FOR COLLECTING SFT TRAJECTORIES

The autoformalization prompt firstly initializes the reflective data construction process by converting a natural language mathematical problem into a Lean 4 formal statement.

When an initial formalization fails the semantic consistency check, this prompt takes as input: (1) the original mathematical problem, (2) the failed formal statement, and (3) the detailed feedback from the consistency evaluation explaining the semantic discrepancies. By explicitly conditioning on both the failure case and its diagnosis, the prompt guides the model to generate targeted corrections that directly address the identified issues rather than producing entirely new attempts that might introduce different errors.

This prompt operationalizes our core insight that models can learn from their own mistakes through structured self-reflection.

Reflective Autoformalization for Collecting SFT trajectories

You are an expert mathematician and Lean 4 programmer. Your task is to translate the given mathematical problem in natural language into formal statement in Lean4 syntax, strictly following the guidelines below.

Guidelines

- If the previous iteration of autoformation and consistency check results are provided, analysis it and revise the autoformation according to it.
- If the math problem is algebra question, the answer will be provided as well.
- For non-standard mathematical problems, first reformulate them into standard mathematical format.

1188
 1189 - For complex problems containing multiple independent parts, break them down into
 1190 separate theorems.
 1191 - Must strictly follow Lean 4 syntax and utilize standard Lean 4 mathematical library
 1192 Mathlib4 components when possible.
 1193 1. Use correct type declarations and notation conventions
 1194 2. Include necessary imports
 1195 3. Leverage existing mathlib4 definitions and theorems
 1196 4. Follow proper naming conventions
 1197 - Pay attention to the consistency between the Natural Language Statement and the Formal
 1198 Statement in Lean4:
 1199 1. Variable domains (e.g., \mathbb{N} , \mathbb{Z} , \mathbb{R} , \mathbb{R}_+)
 1200 2. Boundary conditions (especially for special values like 0,1)
 1201 3. Quantifier scopes (\forall , \exists)
 1202 4. Prerequisites and assumptions
 1203 5. Logical implications (\rightarrow , \leftrightarrow , \wedge , \vee)
 1204 6. Function types and properties
 1205 7. Set-theoretic notations
 1206 - Only generate the translation. Do not try to solve or prove the problem.
 1207 - Include clear documentation comments for theorems.

1207 **Input Format**

1208 Informal Statement: [Natural language description of math problem]
 1209 History of Formal Statement and consistency Comments: [The existing Lean 4 formaliza-
 1210 tion and its critique, or an empty string if none exists.]

1212 **Thought Process**

1213 - Formatted Mathematical Problem
 1214 1. List all known conditions
 1215 2. Define variables and their domains
 1216 3. State assumption
 1217 - For multiple sub-problems:
 1218 Sub-problem 1: [Description]
 1219 Sub-problem 2: [Description]
 1220 ...
 1221 - For revised autoformalization
 1222 1. Analyze ambiguities with natural language and potential mismatches
 1223 2. Evaluate consistency comments' validity
 1224 3. Identify missing assumptions or incorrect type signatures
 1225 4. Determine required mathlib imports in Lean 4
 1226 5. Preserve original theorem name unless invalid

1226 **Output Format**

1227 Given New Formal Statement should always use '```lean4 to start the code block and '```
 1228 to end it:
 1229 '```lean4
 1230 [Corrected Lean4 code]
 1231 '```

1232 Now! It's your turn to generate the Formal Statement.

1233 Informal Statement: {INFORMAL STATEMENT (QUESTION) HERE.}

1234 History Formal Statement and critics: {HISTORY HERE.}

1235 Thought:

1236 The model's output here.

1237
 1238
 1239
 1240
 1241

1242 E.2 INSTRUCTION FOR SEMANTIC CONSISTENCY CHECK
12431244 This section presents the semantic consistency evaluation prompt that serves as the foundation for
1245 both our training and evaluation procedures. Specifically, this prompt template:
1246

- 1247 • Powers the `IsConsistent` reward function during RL training, providing binary semantic
1248 correctness signals
- 1249 • Drives the consistency evaluation in our `ConsistencyCheck` benchmark, ensuring uniform assess-
1250 ment criteria
- 1251 • A crucial component of SFT Trajectories by validating the outputs from both the initial and
1252 reflective autoformalization attempts.

1253 Instruction for Consistency Check
12541255 Your role is a Lean4 expert, please help me check consistency between natural language
1256 expression and its Lean4 formal statement.
12571258 Guidelines for Consistency Check
1259

1. Core Checking Requirements:

- 1260 - When a critique from a previous autoformalization and consistency check result is
1261 provided, you must first analyze its findings and then assess their problems.
- 1262 - Must carefully compare the Natural Language Statement and the Formal Statement in
1263 Lean4 through a rigorous and explicit process.
- 1264 - Determine if the Lean theorem statement is an exact and faithful formalization of the
1265 mathematical problem
- 1266 - If any result is Incorrect of consistency, briefly list all inconsistencies and reasons leading
1267 to the Incorrect determination in comments

1268 Evaluation Stages
1269

1. Math Assertion Analysis

1270 Identify all structurally and semantically relevant components of the mathematical problem,
1271 including variables, types, quantifiers, constraints, logic structure, conclusion, and so on.
1272 The analysis should be based on the actual content of the text.

1273 2. Lean Statement Analysis
1274

1275 Extract all structurally and semantically relevant components from the Lean statement,
1276 including

- 1277 - Variable domains (e.g., real numbers vs positive real numbers)
- 1278 - Boundary conditions (especially for 0,1)
- 1279 - Quantifier scopes
- 1280 - Prerequisites and assumptions
- 1281 - Logical implications

1282 3. Comparative Verification
1283

1284 Check for exact correspondence between the math and Lean statements; you may refer to
1285 aspects like:

- 1286 - Semantic alignment, logic structure, and quantifier correctness.
- 1287 - Preservation of constraints and boundary assumptions.
- 1288 - Accurate typing and use of variables.
- 1289 - Syntactic validity and proper Lean usage (free from errors).
- 1290 - Use of symbols and constructs without semantic drift.
- 1291 - No missing elements, no unjustified additions, and no automatic corrections or comple-
1292 tions.

1293 4. Final Judgement
1294

1295 Based solely on the above analysis, judge whether the Lean statement is a correct and exact
1296 formalization of the mathematical problem.

- 1297 - When a critique from a previous consistency check is provided, you must first analyze its

1296 findings and then assess their correctness. - Result must be strictly "Correct" or "Incorrect"
 1297 - Use "Correct" ONLY when 100% mathematical equivalence is confirmed
 1298
 1299 5. Accuracy Confirmation
 1300 If correct: clearly confirm why all elements match.
 1301 If incorrect: list all mismatches and explain how each one affects correctness.
 1302
 1303 **Input Format**
 1304 The Natural Language Statement:
 1305 [A math problem in Natural language]
 1306 The Formal Statement in Lean4:
 1307 ' ` ` lean4
 1308 [A Lean 4 theorem statement formalizing the problem]
 1309 ' ` `
 1310 Previous round of autoformalization and semantic validation if provided:
 1311 [The existing critique, or an empty string if none exists.]
 1312
 1313 **Output Format**
 1314 Return exactly one XML object
 1315 <comments>
 1316 Your brief analysis:
 1317 1. Math Assertion Analysis: [...]
 1318 2. Lean Statement Analysis (Proof Ignored): [...]
 1319 3. Comparative Verification: [...]
 1320 4. Conclusion: [...]
 1321 5. Accuracy Confirmation: [...match confirmation or list of discrepancies...]
 1322 </comments>
 1323 <consistency> Correct/Incorrect</consistency>
 1324
 1325 Now! It's your turn to compare the natural language statement with the formal state-
 1326 ment in Lean4:
 1327 The Natural Language Statement {INFORMAL STATEMENT (QUESTION) HERE.}
 1328
 1329 The Formal Statement in Lean4:
 1330 ' ` ` lean4
 1331 {FORMAL STATEMENT HERE.}
 1332 ' ` `
 1333 Previous autoformalization and consistency Comments:
 1334 {HISTORY CRITIC HERE}
 1335
 1336 Think about the consistent result:
 1337
 1338 The model's output here.

E.3 INSTRUCTION FOR ISFAITHFULCRITIQUE IN RL

Instruction for IsFaithfulCritique

Your role is a Lean4 expert, helping me review the previous consistency checking results.

Guidelines for IsFaithfulCritique Check

- Thoroughly examine the previous consistency result (Correct/Incorrect) and comments.
- Carefully evaluate whether the comparison results between informal statement and formal statement in previous consistency comments are correct, and if the reasoning is sufficient.
- Try to identify any errors in previous consistency comments.
- Try to compare the mathemat-

1350
 1351 ical problem and the Lean4 formal statement to see if you would reach the same consistency
 1352 conclusion. - If you agree with the previous consistency result, provide your consistency
 1353 result as "Correct"; if you disagree, provide "Incorrect" and explain your reasons for dis-
 1354 agreement in the comments.
 1355 **Input Format**
 1356 The Natural Language Statement:
 1357 [A math problem in Natural language]
 1358 Previous Validation result:
 1359 [Previous Lean4 formal statement and semantic validation result]
 1360
 1361 **Output Format**
 1362 Return exactly one xml object
 1363 <comments>
 1364 Brief analysis of my semantic validation result, with improvements if needed. If previous
 1365 result is not faithfull, explain why.
 1366 </comments>
 1367 <consistency>Correct/Incorrect</consistency>
 1368
 1369 Now review my consistency checking result:
 1370 The Natural Language Statement:
 1371 {INFORMAL STATEMENT (QUESTION) HERE.}
 1372
 1373 History formal statement and consistency check result:
 1374 {PREVIOUS CONSISTENCY CHECKING COMMENTS HERE}
 1375 {The model's output here.}

E.4 INSTRUCTION FOR OUR REFORM

1377 After collecting multi-turn autoformalization trajectories through our multi-agent system (Ap-
 1378 pendix B.1), we restructure these trajectories into a unified format for SFT. The key insight is to
 1379 present the entire reflective process—including initial attempts, validation results, and iterative re-
 1380 finements—as a single model response. This allows us to train models to internalize the complete
 1381 reflective paradigm within their generation process.

Instruction for our Reform

1384 Think step by step to translate the mathematical problem in natural language to Lean 4, and
 1385 verify the consistency.
 1386 {informal_statement}

1388 The model's output here.

1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403