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ABSTRACT

Autoformalization, which translates natural language mathematics into machine-
verifiable formal statements, is critical for using formal mathematical reasoning
to solve math problems stated in natural language. While Large Language Models
can generate syntactically correct formal statements, they often fail to preserve
the original problem’s semantic intent. This limitation arises from the LLM ap-
proaches’ treating autoformalization as a simplistic translation task which lacks
mechanisms for self-reflection and iterative refinement that human experts natu-
rally employ. To address these issues, we propose ReForm, a Reflective Autofor-
malization method that tightly integrates semantic consistency evaluation into the
autoformalization process. This enables the model to iteratively generate formal
statements, assess its semantic fidelity, and self-correct identified errors through
progressive refinement. To effectively train this reflective model, we introduce
Prospective Bounded Sequence Optimization (PBSO), which employs different
rewards at different sequence positions to ensure that the model develops both ac-
curate autoformalization and correct semantic validations, preventing superficial
critiques that would undermine the purpose of reflection. Extensive experiments
across four autoformalization benchmarks demonstrate that ReForm achieves an
average improvement of 22.6 percentage points over the strongest baselines. To
further ensure evaluation reliability, we introduce ConsistencyCheck, a bench-
mark of 859 expert-annotated items that not only validates LLMs as judges but
also reveals that autoformalization is inherently difficult: even human experts pro-
duce semantic errors in up to 38.5% of cases.
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Figure 1: Autoformalization performance of REFORM against state-of-the-art models.
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1 INTRODUCTION

Recent advances in Formal Mathematical Reasoning have demonstrated remarkable capabilities
across a variety of challenging scenarios (Polu & Sutskever, 2020; Yang et al., 2023; Xin et al.,
2024a;b; InternLM Team, 2023; Wu et al., 2024; Li et al., 2024; Wu et al., 2025; Ren et al., 2025;
Lin et al., 2025a; Weng et al., 2025). However, these advances are unevenly distributed across two
symbiotic tasks: Automated Theorem Proving (ATP), the process of finding a proof for a given for-
mal statement, and Autoformalization, the translation of natural language mathematical problems
into formal, machine-verifiable statements such as those in Lean (De Moura et al., 2015). This dis-
parity establishes autoformalization as a critical bottleneck: it remains a labor-intensive endeavor
that poses a great challenge even for human experts (Chen et al., 2025).

While Large Language Models (LLMs) (Hurst et al., 2024; Anthropic, 2025; Yang et al., 2025;
Google, 2025) have shown proficiency in generating syntactically well-formed statements that pass
Lean compiler verification (syntactic correctness), they often struggle to faithfully capture the se-
mantic intent of the original problem (semantic consistency). Recent studies (Peng et al., 2025)
have highlighted the pervasive issue of poor semantic fidelity in the current autoformalization sys-
tems. Several concurrent works (Wang et al., 2025a; Lin et al., 2025b) have attempted to address
this challenge by curating high-quality datasets specifically designed to improve semantic consis-
tency while still treating autoformalization as a direct translation task in which models generate for-
mal statements in a single forward pass, an approach we term the one-pass generation paradigm.
While these data-centric efforts yield notable improvements, we find that models trained under this
paradigm still frequently fail on subtle semantic details, such as misinterpreting quantifier scopes,
overlooking implicit constraints, incorrectly formalizing edge cases, etc., that fundamentally com-
promise the original problem’s intended meaning. In this work, we argue that the root of this persis-
tent limitation lies not only in the data quality, but more fundamentally in the one-pass generation
paradigm itself: without any mechanism for self-reflection and correction, models cannot progres-
sively identify and resolve their own semantic errors during generation. This stands in stark contrast
to how human experts tackle autoformalization. They employ an iterative process of review and re-
finement, continuously validating and adjusting their formal statements to ensure semantic fidelity.

Inspired by this, we propose REFORM, a novel Reflective Autoformalization paradigm that em-
ulates the human process of iterative review and refinement to enhance semantic consistency. In-
stead of treating autoformalization as a single-pass translation task, REFORM reconceptualizes it
as a reflective, iterative process that interweaves autoformalization with semantic self-validation.
Specifically, REFORM operates through a self-correction loop: (1) it first generates a candidate for-
mal statement, (2) then critically evaluates whether this formalization faithfully captures the original
problem’s semantics, and (3) iteratively refines the statement based on the identified semantic dis-
crepancies. Unlike traditional one-pass approaches that commit to a single translation, this reflective
paradigm enables the model to detect and correct its own semantic errors during the generation pro-
cess, significantly reducing the risk of meaning distortions.

To prevent superficial or hallucinated critiques in the semantic self-validation, we design a hetero-
geneous reward mechanism that targets two synergistic objectives: achieving correct final formal
statements as the primary task (rtask rewarded at the sequence end) and producing accurate semantic
validation critiques as the auxiliary task (raux rewarded at intermediate steps). However, optimizing
such heterogeneous rewards poses a significant challenge for existing reinforcement learning (RL)
methods, which typically handle only a single terminal reward. We therefore introduce Prospective
Bounded Sequence Optimization (PBSO), a novel RL algorithm that enables optimizing multiple
reward signals at different sequence positions. The key innovation of PBSO lies in its prospective
bounded return, which smoothly integrates these heterogeneous signals by computing a discounted
sum of future rewards for each step, while crucially bounding these returns within the reward func-
tion’s range to prevent unbounded accumulation and ensure training stability. This enables effective
credit assignment across steps with different reward objectives. That is the validation steps learn to
produce accurate critiques that facilitate later corrections, while generation steps benefit from the
improved validation signals. By optimizing these complementary objectives within each sequence,
the model both develops stronger self-validation capabilities and achieves better autoformalization
performance, with each capability reinforcing the other throughout the training process.

Extensive experiments across four challenging autoformalization benchmarks validate the effective-
ness of our REFORM. We achieve an average improvement of 22.6 percentage points over the
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strongest baselines. In the choice of evaluation metrics, while recent works predominantly rely on
LLMs as judges for semantic consistency evaluation in autoformalization (Wang et al., 2025a; Lin
et al., 2025b), the reliability of these LLM-based judges is not sufficiently studied. To rigorously
investigate the reliability of frontier LLMs as evaluation metrics, we construct ConsistencyCheck, a
benchmark of 859 expert-annotated items to test how accurately a model determines whether a given
formal statement correctly captures the problem’s intent. Our analysis on ConsistencyCheck reveals
three insights: (1) Human Expert Fallibility: 16.4% of miniF2F and 38.5% of ProofNet’s human-
written formal statements contain semantic errors, demonstrating that autoformalization challenges
even human experts. (2) Evaluation Reliability Despite Imperfection: Frontier LLMs make cor-
rect determination 85.8% of the time, indicating sufficient reliability as an evaluation metric. Cru-
cially, REFORM’s substantial improvements far exceed the potential evaluation noise, confirming
the robustness of our findings. (3) Classification-Generation Gap: This binary classification task
is conceptually simpler than autoformalization task. However, its maximum performance is 85.8%,
which helps explain why generating semantically faithful formalizations remains stubbornly diffi-
cult. These results confirm the effectiveness of our reflective method in producing more reliable and
semantically faithful autoformalization.

In summary, our contributions are as follows:

• We propose REFORM, a reflective autoformalization paradigm that reconceptualizes autoformal-
ization from one-pass translation to an iterative process interweaving generation with semantic
self-validation, enabling progressive error identification and correction.

• We introduce Prospective Bounded Sequence Optimization (PBSO) to handle different reward
signals at different sequence positions through prospective bounded returns that improve both
autoformalization and semantic validation.

• We construct ConsistencyCheck benchmark to rigorously evaluate the reliability of LLM-based
metrics and the quantify the challenges autoformalization poses.

• We demonstrate REFORM’s effectiveness across four challenging benchmarks. The model
achieves an average improvement of 22.6% while maintaining computational efficiency.

2 RELATED WORKS

Autoformalization. Autoformalization—the translation of natural language problems into machine-
verifiable formal languages—plays a pivotal role in formal mathematical reasoning (Wu et al., 2023;
Jiang et al., 2023; Ying et al., 2024; Xie et al., 2025; He et al., 2025; Zhang et al., 2025; Jiayi et al.,
2025; Yu et al., 2025b). While early approaches achieved syntactic correctness through increasing
training data (Han et al., 2024; Xin et al., 2024b), recent studies (Peng et al., 2025) reveal that these
models suffer from pervasive semantic infidelity. Recent concurrent works (Wang et al., 2025a;
Lin et al., 2025b) focus on semantically-enhanced datasets to address this issue, yet they remain
constrained by the one-pass generation paradigm without correction mechanisms. In contrast, our
REFORM interweaves autoformalization with semantic self-validation, allowing the model to pro-
gressively identify and correct its own semantic errors during generation.

Reinforcement Learning for LLM Reasoning. Reinforcement Learning (RL) has emerged as a
powerful paradigm for enhancing LLM reasoning capabilities (Schulman et al., 2017; Shao et al.,
2024; Liu et al., 2025; Wang et al., 2025b; Guo et al., 2025; Yu et al., 2025a; Yue et al., 2025).
However, existing methods predominantly rely on terminal-only rewards. While effective for single-
objective tasks, this reward paradigm fails to monitor intermediate validation steps in multi-objective
tasks, leading to superficial or hallucinated critiques that undermine the self-correction process. In
contrast, our PBSO introduces a prospective bounded return to integrate heterogeneous rewards
across sequence positions. This enables position-specific optimization for both reflective autofor-
malization and general sequential decision-making tasks with multi-objective requirements.

3 METHODOLOGY

As illustrated in Figure 2, we present REFORM, our reflective autoformalization framework that
departs from the prevailing one-pass generation paradigm by introducing an iterative self-correction
process for enhanced semantic consistency. In this section, we describe the Reflective Autoformal-
ization Paradigm (§3.1) followed by the Prospective Bounded Sequence Optimization (§3.2).
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Figure 2: Overview of REFORM. (Top) Unlike traditional one-pass generation, our REFORM recon-
ceptualizes it as a iterative process that interweaves autoformalization with semantic self-validation.
(Bottom) We assign heterogeneous rewards across iterations: auxiliary rewards rtaux for critique
quality and task reward rtask for final correctness. Prospective bounded returns Gt computed through
clipped backward accumulation enable fine-grained credit assignment for each iteration, preventing
the degeneration of self-validation while improving autoformalization performance.

3.1 REFLECTIVE AUTOFORMALIZATION PARADIGM

The core innovation of REFORM lies in reconceptualizing autoformalization as an iterative refine-
ment process that interweaves formal statement generation with semantic self-validation. Unlike
traditional one-pass approaches, our reflective paradigm establishes a self-correction loop where the
model progressively refines its output based on its own semantic critiques.

Given a natural language mathematical question Q, REFORM operates through a sequence of re-
finement iterations. At iteration t, the model maintains the complete history of previous attempts:
Ht = {(S1, C1), . . . , (St−1, Ct−1)}, where Sj and Cj denote the j-th formal statement and its cor-
responding semantic critique. This history enables the model to learn from its previous attempts,
avoiding repeated errors and progressively converging toward a semantically faithful formalization.
Each iteration comprises two interconnected stages:

1. Autoformalization: The model π generates a new formal statement St conditioned on the ques-
tion Q and history Ht. For the initial iteration (t = 1), the model performs standard autoformal-
ization: S1 = π(Q). For subsequent iterations (t > 1), the generation leverages insights from
previous critiques to address identified semantic issues: St = π(Q,Ht).

2. Semantic Self-Validation: Given the newly generated statement St, the model produces a cri-
tique Ct = π(Q,Ht, St) that assesses the semantic consistency between St and Q. The critique
Ct provides detailed diagnostic feedback, identifying specific semantic discrepancies, enabling
targeted improvements in subsequent iterations.

This “Autoformalization ↔ Self-validation” loop continues until the critique indicates satisfactory
semantic fidelity after which the model produces the final statement.

Unified Generation. While conceptually iterative, our paradigm is implemented as a single contin-
uous autoregressive generation. Both autoformalization and self-validation naturally unfold within
the same generation sequence: the model generates St, which becomes part of the context for gen-
erating Ct, which in turn informs St+1. This design ensures that the entire reflective process occurs
within a single forward pass, maintaining computational efficiency comparable to the one-pass meth-
ods while achieving superior semantic consistency. The model learns to autonomously identify and
correct semantic errors during generation, effectively internalizing what would traditionally require
multiple model calls and human oversight.

Mutual Reinforcement with Dual Capabilities. The interweaving of autoformalization and self-
validation creates a virtuous cycle: the autoformalization capability progressively develops semantic
awareness by learning from self-validation, while the self-validation capability becomes increasingly
adept at identifying subtle errors by observing refinement patterns. This mutual reinforcement stands
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in contrast to traditional one-pass approaches and is instrumental in enabling REFORM to achieve
formal statements that are both syntactically valid and semantically faithful.

3.2 PROSPECTIVE BOUNDED SEQUENCE OPTIMIZATION

While the reflective autoformalization paradigm establishes the structural framework for iterative
refinement, training models to effectively execute this process presents a unique challenge: how to
jointly optimize for both correct final autoformalizations and accurate intermediate self-validations
within a single sequence?

The core difficulty lies in the heterogeneous nature of these objectives. High-quality self-validation
critiques are essential for guiding refinement, yet they serve as diagnostic tools rather than direct
solutions. A model might generate insightful critiques identifying all semantic issues but fail to
translate these insights into correct refinements, or conversely, produce correct formalizations de-
spite superficial self-validations. This creates an important credit assignment problem: optimizing
solely for final task success provides no explicit signal for the critique quality, potentially causing
the self-validation mechanism to degenerate into trivial or hallucinated assessments.

3.2.1 HETEROGENEOUS REWARD MECHANISM

To address this challenge, we introduce a heterogeneous reward structure that supervises both the
primary autoformalization task and the auxiliary self-validation task:

Task Reward for Autoformalization. We assign a positive reward to the final formal statement
(termed ‘Ans’ below) only when it achieves both syntactic and semantic correctness:

rtask(Q,Ans) =
{
1 if PassesLean(Ans) ∧ IsConsistent(Q,Ans)
0 otherwise

(1)

where PassesLean verifies syntactic validity through the Lean compiler, and IsConsistent
assesses semantic consistency between “Ans” and the original question Q using an LLM-based
judge1. This reward drives the primary learning objective, encouraging the model to produce correct
final formalizations.

Auxiliary Rewards for Self-Validation Quality. To prevent degeneration of self-validation, we
introduce auxiliary rewards that directly supervise each critique Ct:

rtaux(Q,St, Ct) =

{
1 if IsFaithfulCritique(Q,St, Ct)

0 otherwise
(2)

where IsFaithfulCritique evaluates whether Ct accurately diagnoses the semantic relation-
ship between the current statement St and question Q, penalizing false positives, false negatives,
and premature termination (incorrectly claiming semantic fidelity when discrepancies remain).

Together, these heterogeneous rewards provide complementary supervision signals. The task reward
ensures correct final outputs while auxiliary rewards maintain the integrity of the self-validation
mechanism, jointly enabling effective reflective autoformalization.

3.2.2 PROSPECTIVE BOUNDED RETURN

Existing RL methods typically assign rewards only at sequence termination, optimizing solely for
task success. In our reflective paradigm, this method would provide little to no supervision for the
quality of intermediate self-validations. Without explicit rewards for self-validation, the model is at
risk of learning to generate superficial or hallucinated critiques that appear to justify refinements but
provide no genuine diagnostic value, thereby undermining the entire reflective mechanism.

To address this problem, we introduce a prospective bounded return that maximizes expected cumu-
lative reward while ensuring quality at each step. Our approach integrates both task and auxiliary
rewards distributed across the trajectory, where each position’s return Gt captures the cumulative
value of the remaining sequence from that point forward. This prospective view enables the model

1IsConsistent and IsFaithfulCritique are evaluated by CriticLean-14B (Peng et al., 2025)
and Qwen3-235B-A22B (Yang et al., 2025), respectively. We provide detailed reliability evaluations in § 4.5.
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to learn how current decisions contribute to eventual task success. For a trajectory with T itera-
tions producing rewards [r1aux, . . . , r

T
aux, rtask], we compute returns for each step through backward

accumulation with bounded discounting:

Gt = clip (rt + γ ·Gt+1, rmin, rmax) (3)

where γ ∈ (0, 1] is the discount factor, GT+1 = 0, and the clipping operation bounds returns within
the reward function’s range [rmin, rmax] to prevent gradient instability from unbounded accumula-
tion. Each Gt serves as the composite reward signal for the entire t-th iteration—encompassing
both the statement generation St and its critique Ct—capturing how this complete reflective step
contributes to the trajectory’s overall success.

3.2.3 SEQUENCE OPTIMIZATION WITH POSITION-SPECIFIC ADVANTAGES

Building on the prospective bounded returns, we now present our complete Prospective Bounded
Sequence Optimization (PBSO) algorithm. Unlike existing RL methods that compute advantages
using only terminal task rewards without supervising intermediate steps, PBSO leverages the full se-
quence of heterogeneous returns to compute position-specific advantages. This enables fine-grained
credit assignment where each iteration receives distinct supervision based on its actual contribution
to the trajectory’s success.

For each question Q, we sample N complete trajectories, where trajectory j undergoes Tj itera-
tions. The bounded return computation (Eq. 3) yields a sequence of returns {Gj

1, G
j
2, . . . , G

j
Tj+1}

capturing the prospective value at each iteration. To enable policy optimization, we transform these
returns into advantages through joint normalization across all sampled trajectories:

Âj
t =

Gj
t − mean(G)

std(G)
, where G =

N⋃
j=1

{Gj
t : t = 1, . . . , Tj + 1} (4)

This produces position-specific advantage sequences Âj = [Âj
1, Â

j
2, . . . , Â

j
Tj+1] for each trajectory,

where all tokens within iteration t receive advantage Âj
t . These advantages vary across iterations

even within the same trajectory—early iterations that successfully identify critical errors may receive
higher advantages than later iterations that make minor refinements. We then update the policy using
these position-specific advantages with standard GRPO (Shao et al., 2024), jointly optimizing both
autoformalization accuracy and self-validation quality.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. To rigorously assess the effectiveness of REFORM, we evaluate on four challenging
benchmarks: (1) miniF2F (Zheng et al., 2021): 244 test problems from high-school mathematics
competitions. (2) ProofNet (Azerbayev et al., 2023): 186 undergraduate-level theorems from text-
books spanning real analysis, abstract algebra, and topology. (3) PutnamBench (Tsoukalas et al.,
2024): 644 college-level competition problems from the Putnam Mathematical Competition (1962-
2023). (4) AIME2025 (OpenCompass, 2025): 30 problems from the 2025 American Invitational
Mathematics Examination, testing autoformalization on contemporary competition problems.

Baselines. We compare our REFORM against the state-of-the-art methods including: (1) Propri-
etary and Open-source Models: We evaluate frontier LLMs including GPT-5 (OpenAI, 2025),
Claude-3.7-Sonnet (Anthropic, 2025), Gemini-2.5-Pro (Google, 2025), DeepSeek-R1-0528 (Guo
et al., 2025), QwQ-32B (Qwen, 2024), and Qwen3 series (Yang et al., 2025). (2) Autoformalization
Models: We compare with state-of-the-art autoformalization models, including DeepSeek-Prover-
V1.5-RL (Xin et al., 2024b), Goedel-V1 (Lin et al., 2025a), Kimina-Autoformalizer-7B (Wang et al.,
2025a), and Goedel-FormalizerV2 (8B and 32B) (Lin et al., 2025b).

Evaluation Metrics. We consider two key metrics: (1) Syntactic Correctness (syn): whether the
formal statement passes Lean compiler verification; (2) Semantic Consistency (sem): whether the
statement is both syntactically correct and semantically faithful. This is our primary metric. We
adopt Qwen3-235B-A22B as our default evaluation model unless explicitly stated otherwise.
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Table 1: Main results. We report both syntactic correctness (syn) and semantic consistency (sem),
with sem being our primary metric. ‡Improvements are relative to the best baseline with comparable
model size. The best results are in bold, and the second best are underlined among baselines.

miniF2F ProofNet Putnam AIME2025 AVGModel syn sem syn sem syn sem syn sem syn sem

Proprietary and Open-source Models
GPT 5 70.9 66.0 49.5 44.6 61.6 45.8 13.3 13.3 48.8 42.4
Claude-3.7-sonnet 40.2 34.0 28.5 22.0 20.2 10.1 3.3 3.3 22.2 16.5
Gemini-2.5-pro 28.7 25.8 23.1 8.1 15.7 6.5 13.3 0.0 20.2 10.1
DeepSeek-R1-0528 38.5 35.2 11.3 9.7 19.7 11.3 16.7 3.3 21.6 14.9
Qwen3-235B-A22B 55.7 43.9 16.7 12.9 33.1 19.9 20.0 13.3 31.4 22.5
Qwen3-32B 57.4 53.3 10.8 8.1 8.2 6.2 10.0 10.0 21.6 19.4
Qwen3-8B 37.7 31.6 7.5 5.9 4.5 3.1 3.3 0.0 16.6 10.1

Autoformalization Models
DeepSeek-Prover-V1.5-RL 86.1 43.0 36.6 16.1 11.3 8.6 0.0 0.0 30.8 14.8
Goedel-V1-32B-Workbook 95.1 47.1 48.4 18.3 62.1 9.3 70.0 3.3 68.9 19.5
Goedel-V1-32B-Sonnet 93.4 69.3 47.8 26.3 73.1 17.2 80.0 13.3 73.6 31.5
Kimina-Autoformalizer-7B 92.6 67.6 53.2 23.6 69.7 25.1 80.0 16.7 73.9 33.3
Goedel-Formalizer-V2-8B 97.5 81.1 70.4 47.3 74.5 42.9 66.7 26.7 77.3 49.5
Goedel-Formalizer-V2-32B 97.1 82.0 71.5 50.5 74.2 41.4 66.7 26.7 77.3 50.1

Ours
REFORM-8B 98.4 87.7 78.5 65.6 81.9 57.3 83.3 46.7 85.5 64.3

+ Improvement‡ ↑ 0.9 ↑ 6.6 ↑ 8.1 ↑ 18.3 ↑ 7.4 ↑ 14.4 ↑ 3.3 ↑ 20.0 ↑ 8.2 ↑ 14.8

REFORM-32B 97.1 91.4 82.3 70.4 83.1 62.3 86.7 66.7 87.3 72.7
+ Improvement‡ ↑ 0.0 ↑ 9.4 ↑ 10.8 ↑ 19.9 ↑ 8.9 ↑ 20.9 ↑ 6.7 ↑ 40.0 ↑ 10.0 ↑ 22.6

Implementation Details. We implement REFORM based on Qwen3 (8B and 32B) (Yang et al.,
2025). We curate training data from diverse open sources including Omni-MATH (Gao et al., 2024),
IneqMath (Jiayi et al., 2025), the Lean Workbook (Ying et al., 2024), DeepTheorem (Zhang et al.,
2025), Natural Proofs (Razborov & Rudich, 1994), and Big-Math (Albalak et al., 2025), with rig-
orous deduplication against all test sets to ensure fair evaluation. For details, we refer readers to
Appendix B.1 for dataset statistics, SFT and RL training procedures.

4.2 MAIN RESULTS

Table 1 presents comprehensive evaluation results across four challenging autoformalization bench-
marks. Additionally, we provide CriticLean based evaluation results to further validate the
robustness of our findings (Appendix B.2). We have two key findings that validate the effectiveness
of the reflective paradigm.

First, our REFORM achieves state-of-the-art performance with substantial improvements across all
benchmarks. REFORM-8B surpasses the strongest baseline Goedel-FormalizerV2-8B by an average
of +14.8pp in semantic consistency while improving syntactic correctness (+8.2pp). Remarkably,
our 8B model even outperforms the 4× larger Goedel-FormalizerV2-32B by +14.2pp in seman-
tic consistency, demonstrating that the reflective paradigm’s architectural innovation goes byond
mere parameter scaling. The improvements are particularly pronounced on the more challenging
benchmarks: +18.3pp on ProofNet and +14.4pp on PutnamBench compared to Goedel-V2-8B, with
the most dramatic gain of +20.0pp on AIME2025. These consistent improvements across diverse
benchmarks confirm that iterative self-validation fundamentally enhances semantic understanding.

Second, the reflective paradigm specifically addresses the critical semantic issue that plagues exist-
ing autoformalization systems. All baseline methods exhibit a severe syntactic-semantic perfor-
mance gap, revealing that models readily generate Lean-compilable code but systematically fail at
semantic fidelity. This gap is most extreme in the more difficult datasets (e.g. Putname). In con-
trast, REFORM’s improvements are more concentrated on semantic consistency than on syntactic
refinement. This asymmetric improvement pattern amplifies on harder benchmarks, with semantic
gains consistently exceeding syntactic improvements by 2-3×, demonstrating that by making seman-
tic validation an integral part of generation, REFORM transforms autoformalization from superficial
pattern matching to genuine mathematical understanding.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.3 ABLATION STUDIES

Table 2: Ablation studies on training methodology and
paradigm with semantic consistency score. All variants
use identical training data to ensure fair comparison.
Method miniF2F ProofNet Putnam AIME25

Ablation on training Methodology

REFORM 87.7 65.6 57.3 46.7
w/o clip 84.0 59.6 48.9 26.7
w/o raux 87.7 65.6 52.1 40.0
w/o RL 85.2 62.3 49.4 30.0

Ablation on Paradigm

One-pass 82.7 59.1 40.8 16.7

We conduct comprehensive ablation stud-
ies to analyze the contribution of each
component in our framework, as shown
in Table 2. The experiments are divided
into two parts: (1) Training Compo-
nents. Removing the bounded clipping
in Eq. 3 causes severe degradation par-
ticularly on the harder benchmarks, con-
firming that bounding returns is crucial for
stable optimization with heterogeneous re-
wards. The auxiliary reward raux exhibits
increasing importance as problem com-
plexity increases, indicating that explicit
supervision for self-validation quality be-
comes more critical for harder problems. The RL training phase provides consistent improvements
across all datasets, with gains increasing on harder problems, demonstrating that PBSO effectively
learns complex reasoning strategies beyond SFT. (2) Paradigm Comparison. The most striking re-
sult emerges from comparing our reflective paradigm against one-pass generation: when trained on
identical data, the one-pass baseline shows dramatic performance gaps that widen with problem dif-
ficulty. This widening gap validates our core hypothesis: as mathematical complexity increases, the
need for iterative self-correction becomes paramount. Single-pass generation fundamentally lacks
the mechanism to identify and rectify its own semantic errors, while our reflective paradigm enables
progressive refinement through self-validation.

4.4 TRAINING DYNAMICS OF PBSO

0 100 200 300 400
Step

0.2

0.3

0.4

0.5

0.6

Re
w

ar
d

RL Rewards Curve

Original Reward
EMA Smoothed Reward

0 100 200 300 400
Step

2k

3k

4k

5k

Re
sp

on
se

 L
en

gt
h

Response Length Curve
Original Length
EMA Smoothed Length

0 100 200 300 400
Step

45

50

55

60

Ac
cu

ra
cy

 (
se

m
 %

)

Accuracy Curve on Putnam

Avg@3

Figure 3: Training dynamics of our RL process.

To understand how Prospective Bounded Sequence Optimization enables effective learning of the
reflective paradigm, we analyze the training dynamics in REFORM-8B across three key dimensions.
Figure 3 reveals three critical insights into how PBSO shapes model behavior:

(1) Stable Heterogeneous-Objective Optimization. The training reward (left) steadily improves
from 0.30 to 0.47 over 400 steps, with progressively narrowing confidence bands indicating stable
convergence. This smooth progression demonstrates that PBSO successfully balances heteroge-
neous rewards at different sequence positions, optimizing both task success and critique quality. (2)
Emergent Reflective Behavior. Response length (middle) exhibits remarkable organic growth from
2,300 to 4,800 tokens during training—a 2.1× expansion solely from heterogeneous reward signals,
without any explicit length bonuses or penalties. This phenomenon reveals a crucial insight: when
properly incentivized through auxiliary rewards for critique quality, models autonomously develop
more thorough self-examination behaviors. (3) Robust Generalization. Performance on held-out
PutnamBench (right) improves from 47% to 57% in semantic consistency, closely tracking train-
ing rewards. This tight correlation between training and test performance, maintained throughout
optimization rather than diverging due to overfitting, demonstrates that PBSO enables learning of
transferable reflective capabilities. Together, these dynamics reveal how PBSO orchestrates the RL
process: heterogeneous rewards drive the emergence of reflective behavior, which in turn generates
richer training signals, further improving both autoformalization and self-validation capabilities in a
virtuous cycle.
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4.5 RELIABILITY OF SEMANTIC CONSISTENCY EVALUATION

Since our evaluation relies on LLM-based judges to assess semantic consistency, establishing their
reliability is crucial for validating our experimental conclusions. We construct ConsistencyCheck, a
benchmark of 859 expert-annotated items where models perform binary classification: determining
whether a formal statement correctly preserves the mathematical semantics of the original question.

Human expert fallibility in existing benchmarks. During the annotation process, we uncovered
that 16.4% of miniF2F and 38.5% of ProofNet’s human-written formal statements contain semantic
errors. This high error rate in expert-crafted formalizations underscores that autoformalization chal-
lenges even human specialists, further motivating the need for automated approaches like REFORM.

Table 3: LLM performance on ConsistencyCheck benchmark for semantic consistency evaluation.
†Full model names: Claude-3.7-Sonnet, Qwen3-235B-A22B-Thinking, CriticLean-14B.
Metrics GPT-5 Gemini-2.5-pro Claude-3.7† DeepSeek-R1 Qwen3-235B† QwQ CriticLean†

Accuracy 82.5 85.8 77.2 78.1 82.9 77.9 79.1
Precision 88.9 84.4 75.7 84.7 85.3 75.5 80.7
Recall 82.9 96.9 93.3 79.0 87.7 95.4 87.3
F1 85.8 90.2 83.6 81.8 86.5 84.3 83.9

LLM evaluation reliability analysis. Table 3 reveals that while Gemini-2.5-Pro achieves the high-
est accuracy (85.8%), open-source Qwen3-235B-A22B provides comparable performance (82.9%)
with balanced precision-recall trade-offs. These results reveal two critical insights for the auto-
formalization community: (1) Classification-Generation Gap validates autoformalization’s dif-
ficulty. On this classification task, which is inherently simpler than generation, frontier models
plateau at 86% accuracy. This 14% error rate in merely recognizing semantic consistency helps
explain why generating faithful formalizations remains fundamentally challenging, as generation
requires not just recognition but creative synthesis under semantic constraints. (2) Current evalua-
tion is sufficiently reliable for our experiments. Despite imperfections, with an accuracy at 85.8%,
current LLMs provide adequate signals for drawing research conclusions. Crucially, REFORM’s im-
provements far exceed potential evaluation noise: our +14.4pp gain on PutnamBench represents
a 2.5-standard-deviation effect size given the judge’s error rate, while our +20.0pp improvement
on AIME2025 corresponds to 3.5 standard deviations — both statistically robust. Based on these
analyses, we adopt Qwen3-235B-A22B as our primary semantic judge (balancing quality with re-
producibility) and CriticLean-14B for RL training (for efficiency). Finally, ConsistencyCheck
is released to facilitate future research on autoformalization evaluation reliability.

Human Evaluation on REFORM While LLM-based evaluation provides scalable assessment,
we further conduct human evaluation to directly validate REFORM’s outputs. We evaluate the final
formal statements generated by REFORM-8B on miniF2F and ProofNet test sets. Each statement was
classified as “Correct” only if it was both syntactically valid and semantically faithful to the original
problem; otherwise, it was deemed “Incorrect”. The human evaluation revealed high fidelity, with
86.1% of miniF2F and 69.4% of ProofNet formalizations verified as correct, closely aligning with
our LLM-based semantic consistency scores (87.7% and 65.6% respectively) and validating the
reliability of automated evaluation.

5 CONCLUSION

We introduce REFORM, a reflective autoformalization paradigm that fundamentally shifts from one-
pass generation to an iterative process interweaving generation with semantic self-validation. To
effectively train the reflective paradigm, we propose Prospective Bounded Sequence Optimization,
which realizes heterogeneous rewards via prospective bounded returns. This enable models to jointly
optimize for both correct final formalizations and accurate intermediate critiques, preventing degen-
erate or hallucinated self-validations. Extensive experiments demonstrate the effectiveness of our
REFORM with an average improvement of 22.6% across four benchmarks. Our ConsistencyCheck
benchmark further reveals that autoformalization challenges even human experts while confirming
the reliability of LLM-based evaluation metrics.
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ETHICS STATEMENT

Our work focuses on advancing automated mathematical formalization through a novel reflective
paradigm and reinforcement learning algorithm. We have carefully considered the ethical implica-
tions of our research and taken appropriate measures to ensure responsible development.

Human Annotation and Labor. The construction of our ConsistencyCheck benchmark involved
human experts in mathematics and Lean4. All annotators were fairly compensated for their exper-
tise and time according to prevailing standards for skilled technical work. The annotation process
was designed to be intellectually engaging rather than repetitive, leveraging the annotators’ mathe-
matical expertise. We ensured reasonable working conditions with no excessive time pressures, and
annotators retained the right to decline or withdraw from tasks at any point.

Intellectual Property and Attribution. Our benchmark builds upon existing mathematical datasets
(miniF2F and ProofNet), which we use in accordance with their licenses and with proper attribution.
We acknowledge the substantial human effort that went into creating these original resources and
ensure all sources are appropriately cited.

Potential Impacts. While our work aims to democratize access to formal mathematical reasoning
tools, we acknowledge potential concerns. The automation of mathematical formalization could
reduce demand for certain types of mathematical verification work. However, we believe our tech-
nology will primarily augment rather than replace human mathematicians, enabling them to focus
on higher-level creative and conceptual work. Furthermore, by making formal verification more
accessible, our work could enhance mathematical education and research, particularly in resource-
constrained settings.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made comprehensive efforts to document all
aspects of our methodology and experiments. Section 4.1 provides detailed descriptions of our eval-
uation benchmarks, baseline methods, and training data sources. Appendix B.1 contains thorough
documentation of our data collection process for SFT trajectory data, along with complete hyperpa-
rameters for both SFT and RL training phases. Additionally, we provide extensive supplementary
materials including our complete codebase with detailed implementation notes and example of our
ConsistencyCheck benchmark, ensuring that researchers can readily reproduce our results. The en-
tire ConsistencyCheck benchmark with expert annotations will be made publicly available upon
acceptance. These materials collectively enable full reproduction of our experimental results and
facilitate future research building upon our reflective autoformalization paradigm.
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A STATEMENT ON LLM USAGE

In accordance with ICLR 2026’s policies on Large Language Model Usage, we disclose that LLMs
were used in a limited capacity during the preparation of this manuscript. Specifically, we employed
LLMs solely for language polishing tasks, including grammar checking, improving sentence clarity,
and refining word choices to enhance readability. At no point were LLMs used to generate research
ideas, produce experimental code, analyze results, or draft entire sections of this paper. All scientific
content, experimental design, theoretical contributions, and analytical insights are the original work
of the authors. We take full responsibility for the accuracy and integrity of all claims, data, and
conclusions presented in this work.

B MORE IMPLEMENTATION DETAILS

In this section, we provide a comprehensive implementation details of our proposed method. For
additional insights and more intricate details, we refer the reader to our supplementary materials.

B.1 IMPLEMENTATION DETAILS

Table 4: Key hyperparameters in the SFT phase.

Hyperparameter Value
Learning Rate 1e-5
Batch size 512
#Epochs 3
Chat template Qwen
Max Context Length 40960
Warmup ratio 0.03
LR scheduler type Cosine

Table 5: Key hyperparameters in the RL phase.

Hyperparameter Value
Learning Rate 1e-6
Batch size 32
Group size per Question (G) 16
Temperature 1.0
Top-p 0.95
KL coefficient (λ) 0.0
Entropy coefficient 0.0

Supervised Fine-turning Phase. We utilize Slime2 as our training framework for the initial su-
pervised fine-tuning phase. The detailed hyper-parameters for this phase are presented in Table 4.
Since current LLMs lack inherent capabilities for our iterative autoformalization paradigm, we first
construct high-quality training data that demonstrates both autoformalization and semantic self-
validation behaviors. We employ a multi-agent system based on Qwen3-235B-A22B-Thinking
to generate training trajectories that embody our reflective paradigm. For each mathematical prob-
lem in our source datasets (Section 4.1), we execute the following iterative process:

• (Step 1) Initial Autoformalization: Generate an initial Lean4 formalization using a standard
one-pass prompt (Appendix E.1).

• (Step 2) Syntactic Validation: Verify the generated statement compiles successfully in Lean4.
Non-compiling statements trigger subsequent refinement.

• (Step 3) Semantic Consistency Evaluation: For syntactically valid statements, apply a consis-
tency checking prompt (Appendix E.2) to assess semantic alignment with the original problem.

• (Step 4) Reflective Refinement: When inconsistencies are detected, combine the failed statement
with evaluation feedback to generate corrections using reflective prompts (Appendix E.1, E.2).

• (Step 5) Iteration: Repeat steps 2-4 until either (a) semantic consistency is achieved, (b) maxi-
mum iterations (3 rounds) are reached, or (c) no further improvements are generated.

This pipeline produces training trajectories that naturally interweave autoformalization attempts with
self-validation and correction, providing rich supervision for learning our reflective paradigm. The
resulting dataset contains 447,508 trajectories with iteration distributions detailed in Table 6, where
83.1% of problems achieve resolution within a single iteration while the remaining require multiple
rounds of refinement.

2https://github.com/THUDM/slime
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Table 6: Data Statistics for SFT and RL Phase.

Stage Data Type Iteration Distribution TotalIteration 1 Iteration 2 Iteration 3

SFT Trajectories 371,679 65,734 10,095 447,508
RL Question only - - - 2,048

Table 7: Main results. We report semantic consistency (sem) based on CriticLean-14B (Peng
et al., 2025) with sem being our primary metric. ‡Improvements are relative to the best baseline with
comparable model size. The best results are in bold, and the second best are underlined.

Model miniF2F ProofNet Putnam AIME2025 AVG
Proprietary and Open-source Models

GPT-5 66.8 41.5 44.1 13.3 41.7
Claude-3.7-Sonnet 34.8 22.6 10.9 0.0 17.1
Gemini-2.5-Pro 28.3 7.0 4.5 0.0 10.0
DeepSeek-R1-0528 33.2 10.2 11.2 3.3 14.5
Qwen3-235B-A22B 44.7 12.4 18.8 23.3 24.8
Qwen3-32B 54.1 7.5 6.7 6.7 18.8
Qwen3-8B 32.0 7.0 3.1 0.0 10.5

Autoformalization Models
DeepSeek-Prover-V1.5-RL 44.3 0.0 0.5 0.0 11.2
Goedel-V1-32B-Workbook 48.8 18.3 9.6 3.3 20.0
Goedel-V1-32B-Sonnet 66.0 23.1 17.4 10.0 29.1
Kimina-Autoformaiizer-7B 66.8 22.0 26.2 13.3 32.1
Goedel-Formalizer-V2-8B 86.9 54.8 40.8 26.7 52.3
Goedel-Formalizer-V2-32B 89.3 59.1 44.3 33.3 56.5

Ours
REFORM-8B 92.2 69.4 59.6 60.0 70.3

+ Improvement‡ ↑ 5.3 ↑ 14.6 ↑ 18.8 ↑ 33.3 ↑ 18.0

REFORM-32B 91.4 73.7 64.6 63.3 73.2
+ Improvement‡ ↑ 2.1 ↑ 14.6 ↑ 20.3 ↑ 30.0 ↑ 16.7

Reinforcement Learning Phase. For training data in RL phase, we start with a diverse batch of
mathematical problems spanning various difficulties, grade levels, and domains. For each problem,
we generate 8 candidate formalizations by sampling from our SFT model. These candidates were
then evaluated against two successive criteria: compiler verification and a semantic consistency
check. From this pool, we curate a final dataset with 2048 items for RL. The selection was deliber-
ately stratified to include problems with varying pass rates (i.e., the proportion of the eight samples
that passed the checks), thereby ensuring the dataset represented a wide spectrum of formalization
difficulty. Moreover, Table 5 summarizes the key hyperparameters used during the reinforcement
learning phase. We also use Slime as our RL frameowrk due to its efficient and easy to use.

Inference Phase. During inference, we employ deterministic sampling with temperature 0.6 and
top-p 0.95 to balance between generation quality and diversity. The maximum generation length is
set to 40,960 tokens. We utilize vLLM3 as our inference engine.

B.2 ROBUSTNESS ANALYSIS ON MAIN RESULT EVALUATED BY CRITICLEAN-14B

To validate that our improvements are not artifacts of a specific evaluation metric, Table 7 presents
results evaluated by CriticLean-14B (Peng et al., 2025), an independent semantic consistency judge
trained specifically for autoformalization assessment.

3https://github.com/vllm-project/vllm
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(1) Consistent Improvements Across Evaluators. REFORM maintains substantial advantages un-
der CriticLean evaluation, with ReForm-8B achieving an average improvement of +18.0pp over
Goedel-V2-8B (compared to +14.8pp under Qwen3-235B evaluation). This consistency across fun-
damentally different evaluators—a general-purpose LLM (Qwen3) versus a specialized critic model
(CriticLean)—strongly validates the robustness of our approach.

(2) Amplified Gains on Challenging Benchmarks. The improvements are even more pronounced
under CriticLean evaluation for difficult datasets: +33.3pp on AIME2025 (vs +20.0pp with Qwen3)
and +18.8pp on PutnamBench (vs +14.4pp). This suggests that CriticLean may be more sensitive to
semantic nuances in complex problems, where our reflective paradigm provides the greatest benefits.

(3) Different Absolute Scores but Consistent Rankings. While CriticLean generally assigns
higher semantic consistency scores than Qwen3 (possibly due to different training objectives or
calibration), the relative rankings remain largely consistent. Notably, REFORM achieves the highest
scores under both evaluators, with ReForm-8B reaching 70.3% average semantic consistency under
CriticLean—a remarkable achievement given the inherent difficulty of autoformalization.

These results from Table 1 and Table 7 confirm that the reflective paradigm’s effectiveness tran-
scends specific evaluation methodologies, providing robust improvements in semantic consistency
regardless of how it is measured.

B.3 IMPACT OF RL TRAINING ON ITERATIVE REFINEMENT BEHAVIOR
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Figure 4: Iteration Distribution of our REFORM-SFT and RL.

We further analyze the distribution of iteration rounds for ReForm-8B across four benchmarks,
comparing models after SFT and RL training stages. As shown in Figure 4, the results reveal striking
behavioral changes that validate our reflective paradigm’s effectiveness.

REFORM-SFT exhibits a heavily skewed distribution, with 86.3% of samples terminating after a sin-
gle iteration and the remaining samples distributed across 2-3 iterations—a pattern directly reflecting
our SFT training data, which was capped at three iterations. In contrast,REFORM-RL demonstrates
a markedly different behavioral pattern. Most notably, it explores iteration depths never seen during
SFT training, with 0.7% and 0.3% of samples extending to 4 and 5 iterations respectively. More im-
portantly, the overall distribution shifts toward deeper refinement: the percentage of single-iteration
completions drops to 70.6%, while 2-iteration cases nearly double from 12.0% to 25.7%. This
redistribution indicates that PBSO training successfully teaches the model to recognize when
additional refinement is beneficial, rather than prematurely terminating the reflective pro-
cess. The emergence of 4-5 iteration trajectories—patterns entirely absent from the SFT training
data—demonstrates that PBSO enables genuine exploration beyond the supervised distribution, dis-
covering more effective refinement strategies through trial and error. This finding is further cor-
roborated by the consistent increase in average response length during RL training (Section 4.4),
confirming that the model learns to invest more computational effort in challenging problems that
benefit from extended reflection.

The results provide strong empirical evidence that our heterogeneous reward mechanism success-
fully prevents the degeneration of self-validation capabilities while encouraging productive iteration
when needed, ultimately validating the core premise of our reflective autoformalization paradigm:
that iterative self-correction, when properly incentivized, leads to superior semantic consistency.
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C THE CONSISTENCYCHECK BENCHMARK

Annotation Team. Our annotation team for both the ConsistencyCheck benchmark and the aut-
oformalization results in Section 4.5 comprised 6 members. All are senior PhD. candidates with
a strong background in mathematical competitions and prior experience in formalization-related
annotation tasks.

Expertise & Training. To ensure high-quality and consistent annotations, a rigorous training pro-
tocol was implemented. This included dedicated sessions on interpreting the annotation guidelines,
mastering the criteria for semantic consistency, and standardizing the handling of ambiguous or
edge cases. Furthermore, all annotators are active researchers in Lean and formalization-related
fields, possessing practical experience in formal proof development or autoformalization.

Annotation Protocol. Our annotation protocol employed a three-annotator design per statement
to ensure robustness. Initially, two annotators worked independently. Subsequently, a third senior
annotator reviewed their annotations and accompanying textual comments (examples of which are
provided in Appendix C) to perform cross-validation, resolve any discrepancies, and render the final
judgment.

Annotation process. To construct a high-quality benchmark for evaluating semantic consistency,
we commission a team of experts with deep proficiency in both mathematics and Lean4. The anno-
tators were tasked with assessing the semantic fidelity of formal statements from a dataset composed
of items from miniF2F (Zheng et al., 2022) and ProofNet (Azerbayev et al., 2023), which were pre-
sented to them in an anonymized format. For each item, two experts independently compared the
machine-verifiable formal statement against the original natural language problem. If the formaliza-
tion faithfully captured the problem’s semantic intent, it was labeled as “Correct”. If any semantic
discrepancy was found, it was labeled as “Incorrect”, and the annotators were required to provide
a detailed written justification. In cases of disagreement, a third senior expert was brought in to
adjudicate and determine the final label, ensuring the reliability of our benchmark.

Example of our ConsistencyCheck Benchmark. A representative example of a semantic error
discovered in a ProofNet entry is illustrated in Example C. In this instance, the human-authored
formalization contained two critical flaws: (1) a “constant term mismatch”, where

√
11 from the

natural language was incorrectly transcribed as 11; and (2) a “degree bound inconsistency”, where
the constraint “degree ≤ 80” was altered to “degree < 80”. Notably, the annotation team also identi-
fied another significant class of error in miniF2F entries: cases where the formal statement included
an explicit answer, while the original natural language problem did not. These instances were also
systematically classified as “Incorrect.” Such discrepancies underscore the profound difficulty of
achieving true semantic fidelity, even in expert-curated datasets.

Based on this benchmark, we investigate the performance of each LLMs in semantic consistency
evaluation. These models are tasked with assessing the semantic consistency following the prompt
specified in Appendix E.2, as discussed in Section 4.5.

Examples in ConsistencyCheck Benchmark

Example 1
set: ProofNet
name: exercise 5 4 3
split: test
question: If a ∈ C is such that p(a) = 0, where p(x) = x5+

√
2x3+

√
5x2+

√
7x+

√
11,
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show that a is algebraic over Q of degree at most 80.
header:

import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators

formal statement:

theorem exercise\_5\_4\_3 {a : R} {p : R → R} \n (hp : p =
λ x, x\ˆ{}5 + real.sqrt 2 * x\ˆ{}3 + real.sqrt 5 * x\ˆ{}2
+ \n real.sqrt 7 * x + 11)\n (ha : p a = 0) : \n ∃ p
: polynomial R, p.degree < 80 ∧ a ∈ p.roots ∧ \n ∀ n : p
.support, ∃ a b : Z, p.coeff n = a / b :=

Human check
Incorrect
Human comments
1. Polynomial constant term mismatch:

√
11 in natural language vs 11 in formalization.

2. Degree bound inconsistency: degree ≤ 80 in natural language vs < 80 (i.e. ≤ 79) in
formalization.
These discrepancies make the formalization mathematically inequivalent to the original
statement.

Example 2
set: miniF2F
name: aime 1991 p6
split: test
question: Suppose r is a real number for which⌊

r +
19

100

⌋
+

⌊
r +

20

100

⌋
+

⌊
r +

21

100

⌋
+ · · ·+

⌊
r +

91

100

⌋
= 546.

Find ⌊100r⌋. (For real x, ⌊x⌋ is the greatest integer less than or equal to x.) Show that it is
743.
header:

import Mathlib\nimport Aesop\n\nset_option maxHeartbeats 0\n\
nopen BigOperators Real Nat Topology Rat\n\n

formal statement:

theorem aime_1991_p6 (r : R) (h0 : (
∑

k in Finset.Icc (19 :
N) 91, Int.floor (r + k / 100)) = 546) :

Int.floor (100 * r) = 743 := by

Human check
Correct

D CASE STUDY OF OUR REFORM

We present a detailed case study demonstrating our model’s reflective autoformalization capabilities
in practice. The example below illustrates how REFORM successfully identifies and corrects its own
semantic errors through iterative self-validation.

Round 1: Initial Attempt and Error Detection. The model generates its first autoformalization
attempt, then performs semantic self-validation by systematically analyzing the formalization across
five critical dimensions: (1) variable definitions and types, (2) mathematical constraints and condi-
tions, (3) logical relationships between statements, (4) completeness of the formalization, and (5)
alignment with the problem’s intent. Through this structured analysis, the model autonomously
identifies semantic inconsistencies in its initial output (highlighted in red).
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Round 2: Self-Correction and Validation. Leveraging its self-generated critique as feedback, the
model produces a refined autoformalization that directly addresses the identified issues. The cor-
rected statement undergoes another round of semantic validation, this time passing all consistency
checks. This successful self-correction demonstrates the model’s ability to not only detect its own
errors but also synthesize this understanding into improved formalizations.

This example showcases the core strength of our reflective paradigm: the model’s capacity for gen-
uine self-improvement without external intervention, achieving semantic correctness through itera-
tive refinement guided by its own critical analysis.

Example of Our REFORM

Question: What value of x will give the minimum value of x2 − 14x+3? Show that it is 7.

The response of our REFORM:
<think>

Round 1 (Autoformalization)
<round>
The problem is asking for the value of x that minimizes the expression x2 − 14x+ 3, and it
states that this value is 7.
To formalize this in Lean 4, I need to express that: 1. The function f(x) = x2 − 14x + 3
has a minimum at x = 7 2. This means that for all real numbers x, we have f(7) ≤ f(x)
Let me think about how to express this properly in Lean 4:

‘‘‘lean4
theorem test_problem : ∀ x : R, (7 : R)ˆ2 - 14 * 7 + 3 ≤ xˆ2

- 14 * x + 3 := by sorry
‘‘‘

Wait, let me think about this more carefully. The problem is asking ”what value of x will
give the minimum value”. This suggests we want to find the argmin of the function.
Actually, let me be more precise. The statement should be that 7 is the point where the
function achieves its minimum. So we want:

‘‘‘ lean4
theorem test_problem : ∀ x : R, (7 : R)ˆ2 - 14 * 7 + 3 ≤ xˆ2

- 14 * x + 3 := by sorry
‘‘‘

But this is a bit awkward with the explicit casting. Let me try:

‘‘‘ lean4
theorem test_problem : ∀ x : R, 7ˆ2 - 14 * 7 + 3 ≤ xˆ2 - 14

* x + 3 := by sorry
‘‘‘

Actually, in Lean 4, when we write

‘7ˆ2‘ where ‘7 : R‘
it should automatically be interpreted as a real number. But to be safe, let me be explicit:

‘‘‘ lean4
theorem test_problem : ∀ x : R, (7 : R)ˆ2 - 14 * (7 : R) + 3

≤ xˆ2 - 14 * x + 3 := by sorry
‘‘‘

I’ll verify the calculation to ensure accuracy. The key is to confirm that 7 truly minimizes
the quadratic expression by checking the algebraic properties of the function.
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Expanding the squared term reveals the minimum occurs precisely at 7, with a value of
-46. The algebraic manipulation shows x2 − 14x + 3 reaches its lowest point when x = 7,
supporting the original claim about the minimum value.

The Lean theorem captures this relationship, demonstrating that for all real numbers, the
function’s value at 7 is less than or equal to the function’s value at any other point.Looking
at this problem, I need to formalize the statement that x = 7 gives the minimum value for
the expression x² - 14x + 3.

‘‘‘ lean4
import Mathlib
import Aesop

set\_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

theorem test_problem : ∀ x : R, (7 : R)ˆ2 - 14 * 7 + 3 ≤ xˆ2
- 14 * x + 3 := by sorry

‘‘‘

Round 1 (Semantic Self-validation)
It’s time to assess if the Formal Statement correctly captures the essence of the given math
problem.

1. Math Assertion Analysis: The problem asks for the value of x that minimizes the
quadratic function x2 − 14x + 3 and requires proving that this value is 7. The key
components are: (a) the function f(x) = x2 − 14x+3, (b) the variable x ∈ R, (c) the claim
that x = 7 is the minimizer, and (d) the requirement to prove this claim.

2. Lean Statement Analysis: The theorem asserts ∀x : R, (72 − 14 · 7+ 3) ≤ x2 − 14x+3.
This captures the inequality that the function’s value at x = 7 is less than or equal to its
value at any other x ∈ R. However, it does not explicitly state that x = 7 is the minimizer
(i.e., the argument where the minimum occurs). The theorem only asserts the inequality, not
the existence of the minimizer or its uniqueness.

3. Comparative Verification: The Lean statement correctly captures the inequality part
of the problem (that f(7) is the minimum value). However, it does not explicitly state
that x=7 is the value that achieves this minimum. The problem requires both identifying
the minimizer (x=7) and proving the inequality. The Lean theorem omits the explicit
identification of x=7 as the minimizer, focusing only on the inequality.

4. Conclusion: The Lean statement is incomplete as a formalization of the problem. While
it correctly captures the inequality that f(7) is the minimum value, it does not explicitly
state that x=7 is the value that achieves this minimum. The problem requires both the
identification of the minimizer and the proof of the inequality, but the theorem only
addresses the latter.

5. Accuracy Confirmation: The Lean statement is incorrect. It fails to explicitly state that
x=7 is the minimizer, which is a critical part of the problem. The theorem only asserts the
inequality, not the identification of the minimizer.

Therefore, the outcome of the consistency verification is:
Incorrect

</round>
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Round 2 (Autoformalization)
Time to reformulate the Lean 4 Formal Statement based on verification analysis.

<round>

## Thought Process

Looking at the informal statement and the critic, I see the issue with the previous formaliza-
tion:

1. The problem asks for two things: - What value of x minimizes x² - 14x + 3 - Show that
this value is 7

2. The previous formalization only captured the second part (that 7 gives the minimum
value) but didn’t explicitly state that 7 is the value that minimizes the expression.

3. To properly formalize this, I need to: - Define the function f(x) = x² - 14x + 3 - State that
7 is the unique minimizer of this function

4. In Lean, a proper formalization would need to express both that 7 is a minimizer and that
it’s the unique minimizer.

Given New Formal Statement:

‘‘‘ lean4
import Mathlib.Analysis.Calculus.Deriv.Basic
import Mathlib.Data.Real.Basic

theorem test_problem :
let f : R → R := λ x => xˆ2 - 14*x + 3;
(∀ x : R, f 7 ≤ f x) ∧ (∀ x : R, f x = f 7 → x = 7) := by

sorry
‘‘‘

Round 2 (Semantic Self-validation)
Now I’ll check if the Formal Statement completely and correctly formalizes the mathemati-
cal question.

1. Math Assertion Analysis: The problem asks for the value of x that minimizes the
quadratic function f(x) = x2 − 14x + 3 and requires proving that this value is 7. The
mathematical structure involves: (a) defining the function f : R → R, (b) asserting that
x = 7 is the global minimum (i.e., ∀x, f(7) ≤ f(x)), and (c) ensuring uniqueness (i.e., if
f(x) = f(7), then x = 7). The problem implicitly relies on the function’s convexity (since
the coefficient of x2 is positive), guaranteeing a unique minimum.

2. Lean Statement Analysis: The theorem defines f : R → R as x2 − 14x + 3.
The conclusion asserts two claims: (a) ∀x, f(7) ≤ f(x) (global minimum), and (b)
∀x, f(x) = f(7) → x = 7 (uniqueness). The function definition, domain (R), and logical
structure match the problem’s requirements.

3. Comparative Verification: The Lean statement correctly captures both the existence and
uniqueness of the minimum at x = 7. The function definition matches the mathematical
text. The universal quantifiers (∀x) and implications (→) align with the problem’s logical
structure. The use of R ensures the domain is preserved. No extraneous conditions or
missing components are present.
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4. Conclusion: The Lean statement accurately formalizes the problem’s requirements.

5. Accuracy Confirmation: The Lean statement correctly formalizes the problem. The
function definition, domain, and logical claims (global minimum and uniqueness) align
perfectly with the mathematical text.

Consequently, the outcome of the consistency check is:

Correct

</round>

</think>

Final Statement
With successful verification, here’s the final Lean 4 Formal Statement:

‘‘‘ lean4
import Mathlib.Analysis.Calculus.Deriv.Basic
import Mathlib.Data.Real.Basic

theorem test_problem :
let f : R → R := λ x => xˆ2 - 14*x + 3;
(∀ x : R, f 7 ≤ f x) ∧ (∀ x : R, f x = f 7 → x = 7) := by

sorry
‘‘‘

E PROMPT

E.1 INSTRUCTION FOR COLLECTING SFT TRAJECTORIES

The autoformalization prompt firstly initializes the reflective data construction process by converting
a natural language mathematical problem into a Lean 4 formal statement.

When an initial formalization fails the semantic consistency check, this prompt takes as input: (1) the
original mathematical problem, (2) the failed formal statement, and (3) the detailed feedback from
the consistency evaluation explaining the semantic discrepancies. By explicitly conditioning on
both the failure case and its diagnosis, the prompt guides the model to generate targeted corrections
that directly address the identified issues rather than producing entirely new attempts that might
introduce different errors.

This prompt operationalizes our core insight that models can learn from their own mistakes through
structured self-reflection.

Reflective Autoformalization for Collecting SFT trajectories

You are an expert mathematician and Lean 4 programmer. Your task is to translate the given
mathematical problem in natural language into formal statement in Lean4 syntax, strictly
following the guidelines below.

Guidelines
- If the previous iteration of autoformation and consistency check results are provided,
analysis it and revise the autoformation according to it.
- If the math problem is algebra question, the answer will be provided as well.
- For non-standard mathematical problems, first reformulate them into standard mathemati-
cal format.
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- For complex problems containing multiple independent parts, break them down into
separate theorems.
- Must strictly follow Lean 4 syntax and utilize standard Lean 4 mathematical library
Mathlib4 components when possible.
1. Use correct type declarations and notation conventions
2. Include necessary imports
3. Leverage existing mathlib4 definitions and theorems
4. Follow proper naming conventions
- Pay attention to the consistency between the Natural Language Statement and the Formal
Statement in Lean4:
1. Variable domains (e.g., N, Z, R, R+)
2. Boundary conditions (especially for special values like 0,1)
3. Quantifier scopes (∀, ∃)
4. Prerequisites and assumptions
5. Logical implications (→, ↔, ∧, ∨)
6. Function types and properties
7. Set-theoretic notations
- Only generate the translation. Do not try to solve or prove the problem.
- Include clear documentation comments for theorems.

Input Format
Informal Statement: [Natural language description of math problem]
History of Formal Statement and consistency Comments: [The existing Lean 4 formaliza-
tion and its critique, or an empty string if none exists.]

Thought Process
- Formatted Mathematical Problem
1. List all known conditions
2. Define variables and their domains
3. State assumption
- For multiple sub-problems:
Sub-problem 1: [Description]
Sub-problem 2: [Description]
...
- For revised autofomalization
1. Analyze ambiguities with natural language and potential mismatches
2. Evaluate consistency comments’ validity
3. Identify missing assumptions or incorrect type signatures
4. Determine required mathlib imports in Lean 4
5. Preserve original theorem name unless invalid

Output Format
Given New Formal Statement should always use ‘‘‘lean4 to start the code block and ‘‘‘
to end it:
‘‘‘lean4
[Corrected Lean4 code]
‘‘‘

Now! It’s your turn to generate the Formal Statement.
Informal Statement: {INFORMAL STATEMENT (QUESTION) HERE.}
History Formal Statement and critics: {HISTORY HERE.}
Thought:

The model’s output here.
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E.2 INSTRUCTION FOR SEMANTIC CONSISTENCY CHECK

This section presents the semantic consistency evaluation prompt that serves as the foundation for
both our training and evaluation procedures. Specifically, this prompt template:

• Powers the IsConsistent reward function during RL training, providing binary semantic
correctness signals

• Drives the consistency evaluation in our ConsistencyCheck benchmark, ensuring uniform assess-
ment criteria

• A crucial component of SFT Trajectories by validating the outputs from both the initial and
reflective autoformalization attempts.

Instruction for Consistency Check

Your role is a Lean4 expert, please help me check consistency between natural language
expression and its Lean4 formal statement.

Guidelines for Consistency Check
1. Core Checking Requirements:
- When a critique from a previous autoformalization and consistency check result is
provided, you must first analyze its findings and then assess their problems.
- Must carefully compare the Natural Language Statement and the Formal Statement in
Lean4 through a rigorous and explicit process.
- Determine if the Lean theorem statement is an exact and faithful formalization of the
mathematical problem
- If any result is Incorrect of consistency, briefly list all inconsistencies and reasons leading
to the Incorrect determination in comments

Evaluation Stages
1. Math Assertion Analysis
Identify all structurally and semantically relevant components of the mathematical problem,
including variables, types, quantifiers, constraints, logic structure, conclusion, and so on.
The analysis should be based on the actual content of the text.

2. Lean Statement Analysis
Extract all structurally and semantically relevant components from the Lean statement,
including
- Variable domains (e.g., real numbers vs positive real numbers)
- Boundary conditions (especially for 0,1)
- Quantifier scopes
- Prerequisites and assumptions
- Logical implications

3. Comparative Verification
Check for exact correspondence between the math and Lean statements; you may refer to
aspects like:
- Semantic alignment, logic structure, and quantifier correctness.
- Preservation of constraints and boundary assumptions.
- Accurate typing and use of variables.
- Syntactic validity and proper Lean usage (free from errors).
- Use of symbols and constructs without semantic drift.
- No missing elements, no unjustified additions, and no automatic corrections or comple-
tions.

4. Final Judgement
Based solely on the above analysis, judge whether the Lean statement is a correct and exact
formalization of the mathematical problem.
- When a critique from a previous consistency check is provided, you must first analyze its
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findings and then assess their correctness. - Result must be strictly ”Correct” or ”Incorrect”
- Use ”Correct” ONLY when 100% mathematical equivalence is confirmed

5. Accuracy Confirmation
If correct: clearly confirm why all elements match.
If incorrect: list all mismatches and explain how each one affects correctness.

Intput Format
The Natural Language Statement:
[A math problem in Natural language]
The Formal Statement in Lean4:
‘‘‘lean4
[A Lean 4 theorem statement formalizing the problem]
‘‘‘
Previous round of autoformalization and sematic validation if provided:
[The existing critique, or an empty string if none exists.]

Output Format
Return exactly one XML object
<comments>
Your brief analysis:
1. Math Assertion Analysis: [...]
2. Lean Statement Analysis (Proof Ignored): [...]
3. Comparative Verification: [...]
4. Conclusion: [...]
5. Accuracy Confirmation: [...match confirmation or list of discrepancies...]
</comments>
<consistency> Correct/Incorrect</consistency>

Now! It’s your turn to compare the natural language statement with the formal state-
ment in Lean4:
The Natural Language Statement {INFORMAL STATEMENT (QUESTION) HERE.}

The Formal Statement in Lean4:
‘‘‘lean4
{FORMAL STATEMENT HERE.}
‘‘‘

Previous autoformalization and consistency Comments:
{HISTORY CRITIC HERE}

Think about the consistent result:

The model’s output here.

E.3 INSTRUCTION FOR ISFAITHFULCRITIQUE IN RL

Instruction for IsFaithfulCritique

Your role is a Lean4 expert, helping me review the previous consistency checking results.

Guidelines for IsFaithfulCritique Check
- Thoroughly examine the previous consistency result (Correct/Incorrect) and comments. -
Carefully evaluate whether the comparison results between informal statement and formal
statement in previous consistency comments are correct, and if the reasoning is sufficient. -
Try to identify any errors in previous consistency comments. - Try to compare the mathemat-
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ical problem and the Lean4 formal statement to see if you would reach the same consistency
conclusion. - If you agree with the previous consistency result, provide your consistency
result as ”Correct”; if you disagree, provide ”Incorrect” and explain your reasons for dis-
agreement in the comments.
Intput Format
The Natural Language Statement:
[A math problem in Natural language]
Previous Validation result:
[Previous Lean4 formal statement and semantic validation result]

Output Format
Return exactly one xml object
<comments>
Brief analysis of my semantic validation result, with improvements if needed. If previous
result is not faithfull, explain why.
</comments>
<consistency>Correct/Incorrect</consistency>

Now review my consistency checking result:
The Natural Language Statement:
{INFORMAL STATEMENT (QUESTION) HERE.}

History formal statement and consistency check result:
{PREVIOUS CONSISTENCY CHECKING COMMENTS HERE}
{The model’s output here.}

E.4 INSTRUCTION FOR OUR REFORM

After collecting multi-turn autoformalization trajectories through our multi-agent system (Ap-
pendix B.1), we restructure these trajectories into a unified format for SFT. The key insight is to
present the entire reflective process—including initial attempts, validation results, and iterative re-
finements—as a single model response. This allows us to train models to internalize the complete
reflective paradigm within their generation process.

Instruction for our Reform

Think step by step to translate the mathematical problem in natural language to Lean 4, and
verify the consistency.
{informal statement}

The model’s output here.
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