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Abstract—Neural  Information  Processing  Systems
(NeurIPS) holds a challenge to ensure that published articles
are reliable and reproducible. The goal of this report is
to study and reproduce experiment described in “’Image
Synthesis with a Single (Robust) Classifier” published by
Shibani Santurkar in 2019, where a basic classification
framework was used to tackle challenging tasks in image
synthesis such as image generation, inpainting, super-
resolution, etc. The CIFAR-10 dataset is chosen for this
experiment to compare the results with the original paper
on the image generation task. We also discovered a set
of parameters which the results might be more plausible
[11-13].

Index Terms—Adversarial Examples, Image Generation,
Robust Classifiers

I. INTRODUCTION

The development and prosperity of machine learning
algorithm leads to the trend of image synthesis in the
technology industry for the past few years. Before the
trend of machine learning, researchers used traditional
image synthesis methods which is time-consuming and
complicated. For example, to merge two pictures, one
has to find the features in both images applying feature
detection and description methods such as scale-invariant
feature transform (SIFT) or Speeded up robust features
(SURF), match the image with algorithms like Random
sample consensus (RANSAC), and finally blend the image
using multiband-blending [4]-[7]. Merging images could
be that hard, not to mention image synthesis. Nevertheless,
the field of image processing changed revolutionary in
2014. In 2014, Ian Goodfellow published the first generative
adversarial network (GAN) algorithm and opened the gate
for image synthesis [8]. In 2017, an astonishing research
paper ”Progressive Growing of GANs for Improved Quality,
Stability, and Variation” published by Tero Karras rose
attention to the image synthesis with GAN [9]. The image
synthesized by Karras’ team is so real that human can
hardly distinguish the real ones and those synthesized by
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Karras’ team. Now, GAN is used for image translation,
super-resolution, image translation, image generation, etc.
However, researchers are searching for simpler algorithms
or methods compared GAN to gain better performance, and
Shibani Santurkar proposed a possible solution in “Image
Synthesis with a Single (Robust) Classifier” [10].

The purpose of this experiment is to reproduce the result
from “Image Synthesis with a Single (Robust) Classifier”
by Shibani Santurkar [10]. We focus on training a robust
classifier from scratch and reproduce the image generation
task based on the model. Furthermore, we extend the range
of datasets that can be used for the image inpainting task.

In ”Image Synthesis with a Single (Robust) Classifier”,
Shibani proposed a simpler toolkit than GAN for solving
this task. As mentioned in their report, they “employ a
generic classification setup (ResNet-50 with default hy-
perparameters) without any additional optimizations (e.g.,
domain-specific priors or regularizers)” [10].

Shibani’s team perform input manipulation to maximize
the prediction scores with gradient descent. They imple-
mented adversarially robust classifier trained by robust
optimization objective, and, instead of minimizing expected
loss £ with Equation 1,
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the worst case loss over a specific perturbation set A is
minimized with Equation 3.[10]

2)

Shibani’s team applied Projected Gradient Descent (PGD)
as adversarial attacks, in order to efficiently solve this min-
max problem. Details will be provided in the later section.

In order to achieve the similar results, a robust classifier
was trained with VGG-13[11] architecture as shown in
Figure 1, a simple CNN structure from today’s view. We
successfully trained a classifier which can handle perturba-
tion on CIFAR-10 dataset. The performance of the classifier
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is surprisingly similar , even better than the one used by the
paper.
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Fig. 1. VGG-13 architecture [12]

II. DATASET

The dataset used is the same as one of the datasets used
in ”Image Synthesis with a Single (Robust) Classifier” to
reduce variance of the experiment. We trained the model
with CIFAR-10 as applied in the paper.

CIFAR-10 contains 60,000 32x32 3-channels images in
10 classes and is designed to have 50,000 training images
and 10,000 testing images. Each class has 6,000 images to
eliminate bias from the dataset as shown in Figure 2 [3].
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Fig. 2. CIFAR-10 dataset [3]

ITI. IMPLEMENTATION

A. Robust Classifier

The core of this task is to leverage robust models for
image synthesis. Robust models learn representations that

are more visible and plausible from the
humans.

perception of

Fig. 3. Similar features [13]

For a standard classifier, despite these two images look
completely different to humans, they share very similar
representations, while adversarial examples will be possibly
misclassified with such standard models.
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Fig. 4. Perturbation [14]

The image on the left is correctly classified by a state-
of-the-art convolutional neural network. After perturbing
the image slightly, the classifier regards it as an “airliner”
with high confidence. Such phenomenon indicates that the
features learnt from a standard classifier are not human-
meaningful. Images with perturbation, rotation or transla-
tion are not supposed to be misclassified.

1) Intuition behind robust training: To avoid misclas-
sification, one of the simplest strategies is to construct
and incorporate such adversarial examples into the train-
ing purpose. Since the standard classifiers are susceptible
to perturbation, we can train some adversarial examples.
However, what kind of perturbation should be applied on
images for training purpose becomes one of the question
we countered. To solve this question, we went back to
the loss function we mentioned at the beginning, which is
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If we want to optimize 6 by stochastic gradient descent,
this involves computing repeatedly the gradient with respect
to 6 for the loss function on some batch, which is repeti-
tively update Equation 4.
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2) Danskin’s Theorem and Adversarial Attacks: The

inner part is computed by using Danskin’s theorem [15].
The theorem states that in order to compute the gradient
of a function containing a max term, we need to find the



maximum, and compute the normal gradient evaluated at
that point. In other words, the steps is
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where

0*(x) = argmaxL(hg(x 4+ 0),y). (6)

However, finding the max is not an easy task. The better
we solve the inner part, the closer the Danskin’s theorem
will hold. Consequently, in order to perform well on solving
the maximization problem, it is essential to apply strong
adversarial attacks into the inner maximization procedure.
Projected gradient descent (PGD) approach,a canonical
method for solving constrained optimization problems, is
the strongest attack founded so far [15]. PGD is an approach
that repeatedly takes a step in the direction of the gradient
of the loss function, and then projects the result point back
to the constraint set:
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Here, 11 refers to projecting a point onto the set C'. For
a given point x, computing ITx(2’)corresponds to finding
the point in C' that is closest to x. And, 7 denotes the step
size [15].

B. Illustration and Model for synthesis tasks

For the illustration purpose, we constructed a sample
convolutional neural network, and trained both normally
with SGD and robustly using projected gradient descent
(PGD). The dataset relied on was the standard MNIST
database. We used the default hyperparameters and a 0.3
for PGD [16]. The standard trained model was indeed
susceptible to perturbation as shown in Table I. This
training process did well on classifying original images.
However, when perturbation was introduced, the error was
almost 100%. The PGD training amazingly overcame the
perturbation, original images and images with perturbation
were both correctly classified. The result was based on 20
epochs on either training procedure.

Training | Train Error | Test Error | Adv Error
SGD 3.5% 3.4% 99.9%
PGD 7.2% 2.2% 6.9%

TABLE I

ERROR OF TWO MODELS

It took approximately 20 seconds to go through every
epoch of PGD training. This efficiency is under the support
of NVIDIA Tesla P4. On the other hand, as we attempted
to train from scratch on the CIFAR-10 database, each PGD
epoch took 9 minutes and converged fairly slowly. This part
of the reason that we decided to illustrate our scratching
based on MNIST database.

For the sake of time, we leveraged the set-up from
package robustness[17]. We built up a VGG-13 classifier
trained adversarially on the CIFAR-10 dataset, and set the
adversarial perturbation budget to be a small value, 1.0.
The trade-off is that once a really large value is set for the
perturbation budget, it is extremely difficult for the model
to learn. The model we constructed with 100 epochs works
quite well even when the perturbation budget increases to
1.5 on the test set. It reaches 89.6%, and 95.7% accuracy on
the test set with 0.8 budget. This model will be leveraged
for the image generation task.

IV. ANALYSIS AND DISCUSSION
A. Realistic Image Generation

Image generation or synthesis is the task of producing
new images from a given dataset. The first step of gener-
ating an image is to fit a distribution (in this case, we kept
using multivariate normal distribution as mentioned in the
paper) to each class to sample seeds. To generate a sample
of class y, we sampled a seed randomly and minimize the
loss L of label y using projected gradient descent (PGD)
according to

(®)

r= argmin L(z',y),
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where Gy is the class-conditional seed distribution.

cusss cuss s
F ]
- ; Y ,

Fig. 6. Conditional image synthesis using Resnet (model from the
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Fig. 7. Conditional image synthesis using our VGG-13 classifier
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Dataset Resnet VGG-13
CIFAR-10 | 4.244+0.1 | 6.682+0.1
TABLE 1I

INCEPTION SCORES (IS) FOR SAMPLES GENERATED USING
ROBUSTLY TRAINED CLASSIFIERS



Inception score is a metric for estimating the visual
quality of generated images based on the variety in the set
of generated images and the degree to which the images
are realistic, i.e. each image looks like something. It is
calculated by computing the KL divergence between the
response produced by the image and the marginal distri-
bution using an Inception network trained on ImageNet.
We generated realistic images using both provided Resnet
and our own VGG-13 model. The images generated using
Resnet look blurry while the images generated using VGG-
13 are sharper and have higher IS.

When tuning the hyperparameters, we increased the num-
ber of iterations from its default value of 60 to 100 and this
slightly increased the inception scores of both classifiers.
Increasing the step size would make the generated images
sharper as a large step size leads to numerical instability.
The difference in the generated images between Resnet and
VGG could be explained through their structures. Since
Resnet uses residual blocks to prevent the problem of
vanishing gradient on deep neural networks, we expect
Resnet to give more stable outputs. Our results show that,
using the same hyperparameters, VGG’s outputs have more
extrema, which makes the images look sharper.

B. Image inpainting

Image inpainting is a process of recovering images with
corrupted regions. The goal of inpainting is filling the miss-
ing pixels in a manner that is plausible in human’s sense.
Given an image x, corrupted in a region corresponding to
a binary mask m € {0,1}¢. Shibani’s work suggests that a
robustly trained feed-forward model suffices to tackle such
a reconstruction task.

To go through the process, images are optimized to
maximize the score of true class. Given a robust model
trained on complete images, and an image X labelled y
with missing pixels. Solving the following equation will
arise the fixed image.

Xi = sargmin L(X,y) + (X = X) (D1~ m)]l2
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where L stands for the entropy loss, () denotes the

element-wise multiplication, and A is a constant. PGD is

used to optimizing the equation as mentioned in Shibani’s
work.

This paper provides examples from ImageNet dataset.
Since an image with more pixels contains more information,
an 224 x 224 image is easier to be recovered effectively
compared to those with lower resolution, and leads to more
visibility.

From the point of reproducibility, we also attempted to
recover images with smaller size. In this case, we were
handling this inpainting task with CIFAR-10 dataset.

From the result shown above, the reconstructed images
look fairly similar to the original ones. The key for re-
constructing smaller images is to apply fewer iterations
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Fig. 8. Randomly chosen images for inpainting task (Clear images see
in notebooks)
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and smaller perturbation budget while optimization using
PGD compared to the setting from ImageNet examples.
Large budget will ruin the consistency of images because
models trained on small images are susceptible to larger
perturbation, which leads to presence of obvious color
difference. Decreasing the number of iterations will also
overcome this issue due to the lack of information.

Back to the 224%224 images, intuitively we can enable a
larger perturbation budget and a larger number of iterations
for more details of images. We kept the budget parameters
the same as in the original codes, and increased the number
of iterations by 300.

The results split into two extreme cases as shown in
Figure 9. Reconstruction on the body of objects is to a high-
level human-meaningful result. Meanwhile, the procedure is
not able to handle recovering the background of images at
all. To reason about the split-up, the model we leveraged
only classified the objects but not the backgrounds. In
another word, the Equation 9 optimization will fail while
maximizing the score of true class.
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Fig. 9. Randomly chosen images from Restricted ImageNet. Those two
birds and the insect images are almost perfectly constructed, but the first
and fifth one are not really plausible to human
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V. CONCLUSION AND DISCUSSION

In this project, we constructed an adversarially robust
classifier which is not susceptible to perturbation on images,
and leveraged it to the realistic image generation task
mentioned in “Image Synthesis with a Single (Robust)
Classifier”.

Our results show that robust classifiers can be used for
synthesizing realistic images. The difference between the
provided model and our own VGG model is that Resnet
gives outputs that are more stable as Resnet solves the
degradation problem of deep networks. As a result, using



the same hyperparameters, the images generated by VGG
are sharper as there are more pixels that have values close
to extrema in the images.

Moreover, we created a baseline for the image inpainting
task. Images with smaller size are able to be reconstructed
with smaller parameters values during PGD optimization.
Slight adjustment on the PGD parameters led to a better
result (at least from the perception of human) , for the
ImageNet dataset.

However, behind the simplicity of leveraging simple
robust classifier for complicated image synthesis tasks, the
unignorable limitation remains unsolved to us. This proce-
dure is not able to handle the background. The generated
background of images is not negligible to human eyes,
while the missing pixels on the background is almost un-
recoverable due to the reason that a single robust classifier
is hardly learning from the background.

In addition, we were not able to re-verify the image
translation task since we had no access to the dataset, and
we did not train a robust model based on ImageNet due
to the lack of GPU supports. For curiosity and learning
purpose, we aimed to improve our model efficiency to
reduce the time complexity. As mentioned early in this
report, the model from scratch took 9 minutes for each
epoch, while the robustness package only took 3 minutes.

Overall, we are able to claim that experiments on this
paper are reproducible. Our simpler robust model generated
similar results as the ResNet-50 used by the author’s team.
Moreover, we expanded the availability of the toolkit on
the inpainting task. We also reconstructed images which
seemed more plausible by slightly adjusting the PGD pa-
rameters.

VI. CONTRIBUTION ON THIS PROJECT

Tian Bai: Construct the robust model and study on the
inpainting task.

Qiang Xu: Focused on image generation task.

Kevin Chen: Organizing Write Up
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