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ABSTRACT

What is the maximal number of languages that a single machine translation model
can translate? It is a critical challenge to learn a single model for massive lan-
guages. Prior methods focus on increasing the model size and training data size.
However, large models are difficult to optimize efficiently even with distributed
parallel training and translation capacity can interfere among languages. To ad-
dress the challenge, we propose LegoMT2, an efficient approach with a tailored
model architecture for massive multilingual neural machine translation. LegoMT2
organizes 435 languages into 8 language-centric groups and attributes one local
encoder-decoder for each group and a global encoder-decoder for all languages.
LegoMT2 then trains each local and global encoder-decoder on a group-dedicated
set of clients through asynchronous updating of parameters. We trained LegoMT2
on a large dataset with 25 billion sentence pairs beyond English-centric. LegoMT2
is 16.2× faster than the distributed training method for the same-size NLLB while
improving the translation results by an average of 2.2 BLEU on Flores-101 1.

1 INTRODUCTION

Recent years have witnessed great success in multilingual neural machine translation (MNMT) (Ha
et al., 2016; Johnson et al., 2017; Bapna et al., 2019; Liu et al., 2020; Fan et al., 2021; Costa-jussà
et al., 2022) that uses a single model for translating all directions. To construct an MNMT system that
supports high-quality translation for massive directions, many efforts have been put into scaling up
the model size and training corpus (Liu et al., 2020; Fan et al., 2021). For example, Costa-jussà et al.
(2022) constructed a 54.5B NLLB model to support translation among 200 languages. Additionally,
recent advancements in large language models, such as GPT-4 (OpenAI, 2023) and LLAMA (Touvron
et al., 2023), have shown promising potential in multilingual machine translation. Generally, these
multilingual models are also trained using a single model.

However, with the increasing model size, training a single model over massive data brings new
challenges. Specifically, the challenge is two-fold: (1) huge training costs. Training and serving
a large MNMT model requires a pile of GPUs associated with massive communication costs for
aggregation among different devices (Johnson et al., 2017; Fan et al., 2021), which brings huge
training delays and thus largely reduces training efficiency (Rasley et al., 2020; Narayanan et al.,
2021); (2) parameter interference. Parameter interference is a fundamental problem in multilingual
machine translation. It refers to the competition between different languages for the limited parameters
of a model when we hope to use a single model to handle all translation directions. This can result in
good translation results for some languages, while the translation results for other languages may
be less satisfactory. Previous studies have observed parameter interference, especially when dealing
with numerous translation directions (Aharoni et al., 2019; Gordon et al., 2021; Yang et al., 2022;
Fan et al., 2021). Test error often falls off as a power law with model size in machine translation.
Mixture-of-Experts (MoE) (Jacobs et al., 1991; Shazeer et al., 2017; Lepikhin et al., 2020; Fedus
et al., 2021; Du et al., 2022; Fan et al., 2021; Costa-jussà et al., 2022) is a popular solution to reduce
parameter interference, but it also introduces substantial memory and computational requirements.

1We will release the model and code to the public.
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To address these challenges, we propose LegoMT2, an efficient approach to massive MNMT.
LegoMT2 consists of three key designs: a proper language grouping scheme, a tailored multi-way
model architecture, and a non-blocking federated learning algorithm.

First, LegoMT2 splits data into carefully designed language groups. This grouping affects our method
design and training algorithm. Under this scheme, we arrange all languages based on the size of
the language-centric data (sentence pairs that are from or to a specific language) and divide this
language-centric data into 8 different groups of equal size. Each group may contain a different
numbers of languages. Each group’s data is stored on a dedicated set of GPU servers, therefore no
moving of training data is needed.

Second, we design a multi-way detachable model to alleviate parameter interference. Our key insight
is the separation of the model used for training and inference and splitting language capacity into
different model components. The model at training time includes but can be much larger than the
inference model. Our multi-way model consists of a global encoder-decoder for all languages and
one local encoder-decoder for each language group. In total, the model has 9 encoder-decoders at
training time. At inference time, it only uses the global encoder-decoder. The model architecture also
affects our algorithm design decisions.

Third, we design a non-blocking distributed learning algorithm to accelerate the training. Our key
insight is that at training time, we no longer need to load all model parameters (for 9 encoder-decoder)
into all servers, thanks to our language grouping scheme and associated multi-way architecture. We
dedicate one set of servers to one language group. We only load and train the encoder-decoder param-
eters responsible for the group, plus the global encoder-decoder. A separate thread is responsible for
aggregating the global parameters across different servers. Parameter communication is asynchronous
and efficient, which does not block the training on local servers. We only need to transfer the global
parameters from servers at intervals. The need for transferring local encoder-decoder is eliminated,
thereby reducing communication costs. While asynchronous training has been studied before, our
work is the first to demonstrate its effectiveness in massive MNMT training.

We construct a large-scale MNMT translation dataset to train LegoMT2. The proposed dataset con-
tains 25B parallel pairs, covering 435 languages and 22,613 translation directions. Our contribution
can be summarized below:

• We propose an efficient training framework LegoMT2 for MNMT. LegoMT2 is empowered by
an efficient non-blocking optimization algorithm to accelerate training and a tailored multi-way
detachable model architecture.

• We design a proper grouping scheme of 435 languages and 22k language directions. Our
approach properly attributes one encoder-decoder to each group, with which we train a 1.6B
LegoMT2 model for 435 languages.

• Our experiments on Flores-101 show that LegoMT2 achieves 16.2× speedups and 2.2 BLEU
gains over the prior best approach.

2 RELATED WORK

The most common approach in MNMT is using a single model to handle all translation directions Ha
et al. (2016); Johnson et al. (2017); Bapna et al. (2019); Liu et al. (2020); Fan et al. (2021), which has
promising generalization abilities by transferring knowledge from high-resources and low-resources.
Nevertheless, researchers Aharoni et al. (2019) have observed that there is the trade-off between
translation quality and language number when using a single model for inference. Federated learning
is originally proposed to address privacy problems. McMahan et al. (2017) first introduced Federated
Learning and applied this algorithm in both computer vision and NLP tasks. Since then, more and
more studies have explored NLP models with federated learning (Sui et al., 2020; Lin et al., 2021;
Passban et al., 2022; Weller et al., 2022; Tian et al., 2022). Sui et al. (2020) focused on efficient
federated communication methods. Lin et al. (2021) evaluated different federated methods on various
NLP tasks. Passban et al. (2022) introduced federated learning into multi-domain translation. Most
of them focused on using federated learning to better fine-tune a pre-trained model. Unlike these
studies, Tian et al. (2022) proposed a framework that collaboratively pre-trained a BERT model
with privacy data in a federated way. In this paper, we propose a new training recipe for MNMT
pre-training based on the Federated Learning framework.
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Figure 1: Overview of LegoMT2. It partitions data into language-centric groups. E.g. all parallel
sentences from/to English, French, and Spanish are in Group 1 and stored on client 1. The model
consists of a global encoder-decoder for all languages and multiple local encoder-decoder for specific
language groups. During training, each client transmits its global encoder-decoder parameters to
the federated server (PUSH) and gets the updated global parameters from the server (PULL) at
pre-determined intervals. Parameter communication is asynchronous, which does not block the
training on local clients.

3 THE LEGOMT2 APPROACH

3.1 OVERVIEW

Our goal is to develop a single model to translate massive languages (over 400). Prior approach
needs to scale the model to extremely large (e.g. 54 billion parameters for NLLB), which is costly to
train. We aim to tackle this challenge through a holistic approach considering three aspects: a proper
language/data grouping scheme, a tailored architecture, and a more efficient distributed training
algorithm. We design LegoMT2 approach with tailored components in all three aspects (Figure 1).

First, LegoMT2 includes a group scheme that arranges all sentence pairs from and to a specific
language into a group. Our goal is to balance the number of parallel sentences in each group so that
each contains equal data size. Figure 1 shows 3 groups while in our experiment we use 8 groups.

Second, LegoMT2 uses a multi-way model that includes multiple encoder-decoders with shared
embedding space. LegoMT2 includes one local encoder-decoder for each language group and
one global encoder-decoder for all languages. The purpose is to alleviate parameter interference
while keeping the multilingual capability. As shown in Figure 1, by incorporating global encoder-
decoder (Eg −Dg), LegoMT2 ensures the sharing of essential knowledge across all language groups,
facilitating the accumulation of collective intelligence during the training process. Simultaneously,
the local encoder-decoder, such as E1−D1, E2−D2 or E3−D3, allow for fine-tuning the adaptation
to address the unique characteristics and challenges of individual languages.

Third, LegoMT2 provides a non-blocking training algorithm, as illustrated in Figure 1. Each server
stores a local and a global encoder-decoder. It calculates gradient updates for two encoder-decoders
using the language group data stored on the server. Each server only pushes the global encoder-
decoder parameter to the central server and pulls from that at pre-defined intervals. This update is
asynchronous and minimizes the parameters for transferring across servers.

3.2 LANGUAGE GROUPING SCHEME

We assign different data groups to different clients. Given a multilingual parallel dataset D with
N languages, D = {D1→·,D·→1, · · · ,Dn→·,D·→n, · · · ,DN→·,D·→N}, where Dn→· refers to a
parallel data from the n-th source language to any language except itself. D·→n refers to a parallel
data from other languages to the n-th language. The combination of D·→n and Dn→· is language-
centric data. Then we split all N language-centric data into P clients, that is, reorganizing D into
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{DS1
, · · · ,DSP

}. The non-identical distribution for clients i and j is DSi
̸= DSj

.
|S1| + · · · + |Si| + · · · + |SP | = N, Si ∩ Sj = ∅, |Si| ̸= 0 (1)

where Si is a language set contains one or many languages; |Si| refers to the number of languages.
DSj

is the combination of language-centric data covering all languages in Sj .

For instance, a dataset D = {DEn→Fr,DFr→En,DZh→Nl,DNl→Zh,DFr→Nl,DNl→Fr} with N = 4
languages needs to split into 3 different clients with S1 = {En,Fr}, S2 = {Zh} and S3 = {Nl} lan-
guage sets. The result is DS1

= {DEn→Fr,DFr→En,DFr→Nl,DNl→Fr}, DS2
= {DZh→Nl,DNl→Zh},

DS3
= {DFr→Nl,DNl→Fr,DZh→Nl,DNl→Zh}. Here, we arrange languages based on the size of the

language-centric data and divide them into different groups of equal size. Further details in our
implementation are described in Appendix C.

3.3 MULTI-WAY MODEL ARCHITECTURE

LegoMT2 is not constrained to a specific implementation of the backbone model (e.g, Shared
mode +Adapter (Houlsby et al., 2019), multi-way model (Fan et al., 2021; Yuan et al., 2022)). For
simplification, we adopt a multi-way detachable model Yuan et al. (2022) with standard Transformer
architecture, which decomposes the MNMT model with a global encoder-decoder and a local encoder-
decoder. To clarify, each client possesses a local language-specific encoder-decoder and a duplicate
of the global encoder-decoder. This setup can also be applied to structures that only contain a decoder.
It’s important to note that only the global module is shared across all devices. Although the local
module is not shared, its parameters are subject to adjustment through the shared global module.

LegoMT2 is also not limited to a specific initialization. To minimize training costs, we utilize
NLLB-200-1.3B to initialize both global and local parameters. To accommodate a large number of
languages, we expanded the size of the vocabulary from 256K to 490K tokens. This is achieved by
training Byte Pair Encoding (BPE) separately for each language and then merging these vocabularies.
We use pre-trained embeddings for the tokens that are already in the original vocabulary and randomly
initialized embeddings for the new ones.

To train the global and local parameters, we follow the three data flows in Yuan et al. (2022) to train
client parameters: a global encoder with a local decoder (Dec-Flow), a global encoder with a global
decoder (Mix-Flow), and a local encoder with a global decoder (Enc-Flow). Each flow can be used
independently during the inference phase.

Mix-Flow Mix-Flow uses a global encoder and global decoder. The loss for it of client i:

FiM
=

∑
x,y∼Dimulti

−logPθim
(y|x) (2)

where (x,y) is a sample from multilingual data, the parameters of Mix-Flow are θm and the proba-
bilities output by the decoder is Pθi

m
. The multilingual data, including one-to-many dataset (DSi→·)

and many-to-one dataset (D·→Si
), for client i is denoted as Dimulti

= D·→Si
∪ DSi→·.

Enc-Flow The loss for the Enc-Flow, which employs a local encoder and a global decoder:

FiE
=

∑
x,y∼DSi→·

−logPθie
(y|x) (3)

where (x,y) is a sample from one-to-many (DSi→·) training data, Pθe is probability output by the
decoder of Mix-Flow, θe is the parameters of Enc-Flow, and i is client id.

Dec-Flow Dec-Flow uses a global encoder and a local decoder. The loss for client i is:

FiD
=

∑
x,y∼D·→Si

−logP
θi
d
(y|x) (4)

where (x,y) is a sample from many-to-one (D·→Si
) data, Pθd is the parameters of Dec-Flow.

The training strategy follows the approach outlined by Yuan et al. (2022) for individual clients i:

Stage 1: Training fi = FiM + FiE on client i where the multilingual encoder/decoder and local
encoder are trained together. This stage necessitates collaboration among all clients.

Stage 2: After stage 1 is completed, fixing the multilingual decoder and utilizing FiD to train the
local decoder. This step is executed independently on a single client.
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As observed, the performance of the global decoder is directly affected by the local encoders.
However, the local decoder has no impact on the global module. Research conducted by Yuan et al.
(2022) demonstrates employing local decoders potentially causes a significant shift in the distribution
of multilingual encoders, leading to catastrophic forgetting.

Formally, the training objective for the whole system is F (θ) = Ei∼P [Fi(θ)],where Fi(θ) =
Ex∼Di [fi(θ, x)], θ refers to the parameter of the target model; Fi represents the local objective
function at client i; P is the total number of client; Di is the data distribution in client i and
fi = FiM + FiE . The function FiD is used on the client i and does not impact the overall system.

3.4 NON-BLOCKING OPTIMIZATION ALGORITHM

Large-scale training usually requires massive communication costs to collect gradients from each
client. LegoMT2 develops an effective communication approach by exchanging parameters in an
asynchronous way to broadcast global parameters across different clients and a federated server. In
this work, the file system serves as the actual server, and the number of requests from LegoMT2 is
significantly lower than the file system’s maximum load capacity. The whole non-blocking federated
learning comprises three main operations: PUSH, MERGE, PULL, as shown in Figure 1.

PUSH: In contrast to traditional federated learning approaches, where the shared module is uploaded
to the server only after local training, LegoMT2 operates differently. It employs an asynchronous
approach by saving the global module to the federated server at regular intervals α during training.

MERGE: In traditional federated learning, the server is required to wait until it collects the global
encoder-decoder from all clients before merging them to generate a unified global model. In LegoMT2,
the server can directly merge (simply average) global models that have been pushed to the federated
server without waiting for the arrival of all models from all clients.

PULL: Each client will pull the latest fusion model from the federated server to update (the newest
version overwrites the existing one) its local server every fixed interval β.

LegoMT2 uses these three operations to complete parameter communication across all clients. These
functions do not pause the training of local clients, therefore largely improving the throughput of
models. The whole training algorithm is shown in Algorithm 1.

4 EXPERIMENTS

4.1 DATASET, MODELS AND TRAINING DETAILS

Training Set: We gather many-to-many dataset from OPUS, an open corpus that compiles numerous
parallel sentences from the internet, covering a wide range of domains, from legislative to religious
texts. The dataset we constructed consists of 435 languages and approximately 22,000 language pairs,
comprising around 25 billion sentence pairs. In the training set, over 11,000 language pairs contain
more than 1,000 sentence pairs, and 1,151 of them have more than 1 million sentence pairs. Among
all the languages, 19 have more than 1 billion sentence pairs (see more in Appendix B).

Metric: To evaluate the effectiveness of our model, we have taken a comprehensive approach. Since
no dataset currently covers 400 languages, we have partially followed the standard testing process
and assessed our model’s performance on the widely-used multilingual dataset known as Flores-101.
We use the same evaluation metric of sentence piece BLEU (abbreviated as spBLEU) to compare our
approach with strong baselines and present the average performance of the 86 languages2 that overlap
with Flores-101 for all M2M-100 models. Additionally, there is no parallel evaluation data for the
majority low-resource languages that are not in Flores-101. we have employed back translation
(src-tgt-srcb) to evaluate our model’s performance over 435 language translations. This process
involves translating text from the source language (src) to the target language (tgt) and then back to
the source language (srcb). Back-spBLEU evaluates the spBLEU score between src and srcb. To
avoid counting direct copies, we also report the translation performance between src and tgt.

2These 86 languages are: af, am, ar, ast, be, bg, bn, bs, ca, ceb, cs, cy, da, de, el, en, es, et, fa, ff, fi, fr, ga, gl,
gu, ha, he, hi, hr, hu, hy, id, ig, is, it, ja, jv, ka, kk, km, kn, ko, lb, lg, ln, lo, lt, lv, mk, ml, mn, mr, ms, my, ne, nl,
no, ns, oc, or, pa, pl, ps, pt, ro, ru, sd, sk, sl, so, sr, sv, sw, ta, th, tl, tr, uk, ur, uz, vi, wo, xh, yo, zh, zu.
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Algorithm 1: Non-Blocking Federated Training
Data: Given P clients and client-centric data, with predefined values for α and β such that α < β. Here, α

represents the frequency in minutes at which the latest model is pushed to the federated server, while
β represents the frequency in minutes at which the latest model is pulled from the federated server.

for client i = 1 to P do
Shuffle client-centric data to obtain a new client-centric training sequence B ;
Record the save start time as ts and the load start time as tl ;
for batch b = 1 to B do

Record the current time as tc ;
if tc − ts ⩾ β then

θiavg ← MERGE ({θ1m, θ2m, · · · , θPm}) ; // running on the central server

θim ← PULL (θiavg) ; // running on the client i
ts ← tc ; // running on the client i

end
if tc − tl ⩾ α then

PUSH (θim) ; // running on the client i
tl ← tc ; // running on the client i

end
end

end

Models: Flores-175MB / 615MB are two baselines released with the Flores-101 dataset (Goyal
et al., 2022), which are based on M2M-100 model. M2M-100-1.2B (Fan et al., 2021) is a powerful
multilingual sequence-to-sequence model that can translate between 100 languages in 9,900 directions.
It is an encoder-decoder model trained for Many-to-Many multilingual translation and built using the
Transformer architecture. M2M-100-12B (Fan et al., 2021) is a multilingual encoder-decoder (seq-to-
seq) model that builds on M2M-100-1.2B by adding language-specific information. Its main purpose
is to perform translation tasks between any of the 100 languages. NLLB-200-1.3B (Costa-jussà
et al., 2022) is a distilled variant of the NLLB-200 model, which is a pre-trained MNMT model that
supports 200 languages.NLLB-200-54.5B (Costa-jussà et al., 2022) is a Mixture of Experts (MoE)
model and is the largest MT model. To ensure a fair comparison, we fine-tune the NLLB-200-1.3B
model on our datasets using a standard centralized training method, recorded as Single-FT.

LegoMT2 Parameters: We use a Transformer with 24 encoder-decoders. Given a vocabulary
size of 490k and an embedding dimension of 1024, the total number of parameters for the embed-
ding amounts to 0.5 billion, record as #embedding = 0.5B. The embedding weight is shared
between all encoder-decoder. A single encoder-decoder, comprising 24 transformer encoder lay-
ers and 24 transformer decoder layers, has a total parameter count of 1.1 billion, recorded as
#encoder− decoder = 1.1B. During training, the total number of parameters of LegoMT2 is:
#embedding + #encoder− decoder × 9 = 0.5 + 1.1 × 9 = 10.4B. During inference, we only
use the multilingual global encoder and the multilingual global decoder, therefore the total number of
parameters is #embedding + #encoder− decoder = 0.5 + 1.1 = 1.6B.

Training Details: We split training into 8 language groups in our framework. For balanced training,
we sort all languages based on language-centric data and uniformly split all languages into 8 groups.
The language details of 8 groups can be found in Appendix C. The training code is developed on
fairseq3 repository. The model architecture follows the design in Yuan et al. (2022), with different
configurations and vocabulary size. Both the global and private models are initialized with NLLB-200-
1.3B weights. In order to synchronize the speed among different clients as much as possible, GPU
resources are allocated to each group as follows: each client model is trained on 8 80G A100-chips
using the Adam optimizer with β1 = 0.9, β2 = 0.999, learning rate 1e− 4, the maximum number of
tokens in a batch is 4, 000, update parameters every 48 batch, when in an epoch. The interval of save
α and load β is set as 6 and 12, respectively. This setting primarily considers the fault tolerance time
for three consecutive loading failures.

4.2 EXPERIMENTAL RESULTS

LegoMT2 outperforms single-model fine-tuning by a large margin. As illustrated in Table 1,
LegoMT2 outperforms Single-FT by a large marge with 2.2 spBLEU on many-to-one translation and

3https://github.com/facebookresearch/fairseq.
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Table 1: Result on the Flores-101 devtest. “Para.” refers to the number of parameters required for
inference. “H” and “L” represent average results from or to high/low-resource languages, where
high-resource languages include all languages in Families 1-6 while low-resource languages include
all languages in Families 7-8. Single-FT and LegoMT2 have the same training data and can be fairly
compared. LegoMT2, supporting 435 languages, outperforms Single-FT by a large margin.

Model H L H L H L H L H L H L H L AVG.X→ En X→ Pt X→ Hu X→ Da X→ Zh X→ Sw X→ Pa

NLLB-200-54.5B 44.9 39.0 35.8 30.8 27.8 22.8 34.6 28.7 17.3 16.7 28.4 25.4 30.7 27.0 29.3

Flores-175M 23.5 8.4 23.5 7.8 15.8 5.3 20.9 5.4 10.7 3.6 12.3 4.5 2.3 1.3 10.4
Flores-615M 30.9 12.8 30.1 11.8 22.0 8.0 27.5 9.6 15.9 6.2 18.6 7.4 3.7 2.1 14.8
M2M-100-1.2B 36.3 16.8 33.1 14.8 24.8 10.4 31.0 13.0 18.3 7.8 20.6 9.7 3.7 2.5 17.3
M2M-100-12B 38.2 18.6 34.8 17.0 26.1 12.2 32.2 14.5 18.3 8.7 23.9 12.9 12.5 7.0 19.8
NLLB-200-1.3B 41.6 35.9 34.0 28.5 23.9 19.3 32.1 25.9 14.5 13.7 27.5 24.3 29.4 25.9 26.9

Single-FT-1.6B 40.1 33.0 34.1 27.6 23.5 18.0 31.6 24.9 18.0 15.1 26.3 22.2 26.5 22.8 26.0
LegoMT2-435-1.6B 42.9 35.6 36.8 29.5 26.0 20.6 33.9 27.0 20.5 16.8 28.1 24.2 28.6 24.9 28.2

Model En→ X Pt→ X Hu→ X Da→ X Zh→ X Sw→ X Pa→ X AVG.

NLLB-200-54.5B 40.3 30.6 34.2 26.4 29.3 23.0 33.5 25.5 25.3 20.4 29.0 22.9 29.9 24.8 28.2

Flores-175M 21.2 4.8 20.3 4.4 16.4 3.4 20.2 4.1 12.4 2.7 12.9 3.2 3.2 1.1 9.3
Flores-615M 29.8 7.0 26.4 5.8 22.4 4.8 26.7 5.6 17.7 4.1 19.4 4.8 5.4 1.6 13.0
M2M-100-1.2B 33.8 9.6 29.2 7.7 25.4 6.5 29.2 7.4 20.8 5.5 21.5 6.6 9.7 3.1 15.4
M2M-100-12B 36.2 14.0 31.1 11.6 26.9 9.6 31.0 10.9 21.8 8.4 23.8 9.9 13.7 6.6 18.3
NLLB-200-1.3B 36.4 28.3 30.9 24.4 25.7 20.9 30.2 23.5 21.7 18.1 25.4 21.3 25.6 22.3 25.3

Single-FT-1.6B 35.8 24.6 30.2 21.0 24.9 18.2 30.1 21.2 22.0 17.0 25.0 19.5 25.1 18.6 23.8
LegoMT2-435-1.6B 38.6 27.5 32.5 23.3 28.3 20.7 32.9 23.2 23.6 18.2 28.2 21.9 27.5 21.4 26.3

Table 2: Back-translation evaluation results. Back-translation (src-trg-srcb) is an unsupervised
evaluation method that involves translating source text to target text src-trg (S-T, such as En→X) and
then translating target text back to source text src-srcb (S-Sb, such as En→X→En). Lower S-T and
higher S-Sb are better. Experimental results demonstrate that LegoMT2 outperforms Single-FT on
back-translation performance with almost the same src-trg (S-T) score.

Model S-T↓ S-Sb↑ S-T↓ S-Sb↑ S-T↓ S-Sb↑ S-T↓ S-Sb S-T↓ S-Sb↑ S-T↓ S-Sb↑ S-T↓ S-Sb↑ S-T↓ S-Sb↑
En→X→En Pt→X→Pt Hu→X→Hu Da→X→Da Zh→X→Zh Mt→X→Mt Pa→X→Pa Lo→X→Lo

Single-FT 8.3 36.6 2.8 31.3 1.7 18.1 2.6 26.7 1.3 15.8 1.4 27.9 0.2 17.4 1.1 14.6
LegoMT2 9.6 43.2 3.0 37.7 1.8 22.2 2.7 33.0 1.3 20.1 1.5 35.0 0.2 22.3 1.2 18.3

Model Fr→X→Fr Nl→X→Nl Bg→X→Bg Sk→X→Sk Mk→X→Mk Is→X→Is Ig→X→Ig Li→X→Li

Single-FT 2.7 32.1 2.7 25.0 0.7 27.5 1.7 22.9 0.7 24.3 1.7 17.7 1.4 13.4 2.5 7.1
LegoMT2 2.8 38.4 2.9 31.5 0.9 31.1 1.8 28.0 0.8 30.3 1.9 22.5 1.5 14.6 2.4 9.8

Model Ja→X→Ja Es→X→Es Ar→X→Ar Lt→X→Lt Fo→X→Fo De→X→De Uk→X→Uk Zu→X→Zu

Single-FT 0.2 16.7 4.7 27.7 0.8 17.2 1.1 19.8 1.8 13.2 2.8 23.8 0.5 20.7 1.2 16.4
LegoMT2 0.3 21.6 4.1 33.0 0.8 21.8 1.2 24.5 1.6 12.9 2.9 30.8 0.6 26.9 1.5 20.4

2.5 spBLEU on one-to-many translation. For a fair comparison, we only report results by using the
shared global encoder and global decoders for all translation directions. With additional language-
specific parameters, LegoMT2 alleviates parameter interference and brings better results. Furthermore,
unlike traditional synchronous aggregation methods, we adopt asynchronous aggregation to update
global parameters to reduce communication costs and delays. The better results also demonstrate that
asynchronous training is an effective method for training massive models.

LegoMT2 supports 435 languages, the supported language number outperforming all existing
open-source multilingual machine translation systems. To build a fair comparison, we conduct
a large-scale multilingual training set. The key challenge lies in balancing the trade-off between
knowledge transferring and parameter interference. If not well-handled, involving more languages
would result in performance degeneration. Due to the lack of high-quality test translations over 400+
languages, we adopt a practical unsupervised metric, Back-spBLEU to compute the BLEU score
between source text and back-translated text. As shown in Table 2, we sample several language-
centric results and LegoMT2 demonstrates an improvement in back-translation performance without
copying source text issues (comparable src-trg scores).

Human evaluation results show that the performance of LegoMT2 reaches commercial transla-
tors’ performance. We manually assessed the performance of Google Translator, Baidu Translator,
LegoMT2, and NLLB-200-1.3B models on Chinese-centric translation tasks. The resulting evaluation
scores ranged from 0 to 5. A score of 0 meant that the language was not supported or could not be
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Figure 2: Analysis on deferred global param-
eters. The client is able to use delayed global
parameters from other clients for inference with-
out experiencing any decrease in performance.
This observation substantiates the notion that the
employment of deferred global parameters does
not exert a significant influence on model train-
ing. The # Param is the total number of a system.

Figure 3: Analysis on α and β. We analyzed the
save/load interval and performed two different
settings: 1) save interval of α = 10min and load
interval of β = 20min; 2) save interval of α =
20min and load interval of β = 10min, while
recording the frequency of setting 1 over setting
2. Results indicate the system’s performance is
negatively affected by low update frequency.

Table 3: The training speed. The number of tokens a model can handle per second is represented by
‘Token/s’. The analysis on training demonstrates that LegoMT2 can process more tokens per second
with higher GPU efficiency.

Module Training Strategy Parallelism #Param Training
(during training) Token/s Speedup

Single-FT Centralized Learning DDP 1.6B 76,116 40.6×
Single-FT + MOE Centralized Learning DDP + Pipeline 12B 1,873.4 1.0×

LLaMA Centralized Learning DDP + Tensor + Pipeline, Flash Attention 13B 7,091.3 3.8×
LegoMT2 Traditional Federated Learning - 10.4B 18,719.2 10.0×
LegoMT2 Non-blocking Federated Learning - 10.4B 30,280.9 16.2×

translated at all. A score of 5 implied that not only was the content preserved, but the expression
was also very smooth. The performance of LegoMT2 is between Google and Baidu, while largely
better than NLLB-200-1.3B. More human evaluation details are shown in Appendix D. Among the
overlapped languages, LegoMT2 has an average translation score of 3.12, while Google Translator
has an average score of 3.64. Among the overlapped languages, LegoMT2’s average score is 3.03,
while Baidu Translator’s average score is 2.55.

LegoMT2 achieves 1.6× speedups over traditional federated training Training a single model on
multiple GPUs can result in significant communication costs, limiting training efficiency. In this work,
we propose LegoMT2 to reduce the bottlenecks caused by aggregation across GPUs. By splitting
models into different clients, we can get almost 10× speedups. With reduced communication costs,
LegoMT2 further achieves almost 1.6× speedups. Finally, LegoMT2 brings almost 16× speedups.
As shown in Table 3, LegoMT2 can process more tokens per second and has higher GPU efficiency
than a comparable single model with 12B parameters. We also compared LegoMT2 with widely-
used distributed training acceleration frameworks, (e.g., deepspeed (Rajbhandari et al., 2020) and
megatron (Shoeybi et al., 2019)), LegoMT2 also shows over 4× throughput improvements. In baseline
“Single-FT”, we implement DDP and pipeline parallelism (Huang et al., 2019) to accelerate training
using the released code training NLLB. In addition, we also report a LLM baseline LLaMA (Touvron
et al., 2023) having a similar model size with almost the SOTA distributed setting: DDP + tensor
parallelism and pipeline parallelism. Additionally, we use an efficient version of Transformer Flash
Attention (Dao et al., 2022) for faster inference. Compared to these advanced training methods,
LegoMT2 is a simple but efficient method.

LegoMT2 brings better performance improvements on high-resource translation We find that
multi-way training benefits high-resource translation by relieving parameter interference. On high-
resource translation, LegoMT2 outperforms NLLB-200-1.3B with gains of 1.3 BLEU on many-to-one
translation and 2.0 BLEU on one-to-many translation. LegoMT2 largely narrows the gap with the
largest machine translation model, NLLB-200-54.5B. Specifically, some results even approach the
NLLB-200-54.5B. Taking Family-5 as an example, LegoMT2 yields +3.2% spBLEU improvements
over NLLB-200-54.5B on Family-5 on many-to-one settings. Meanwhile, LegoMT2 is on par with
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Table 4: Using Dec-Flow, translation perfor-
mance on Flores-101 devtest can be improved.
Remarkably, this improvement is achievable
even for low-resource languages.

Module X→Ne X→Mi X→Be X→Km AVG.

Mix-Flow 27.2 19.0 18.7 14.3 19.8
Dec-Flow 28.7 18.5 20.0 16.9 21.0

Table 5: The experiment results indicate that an
extremely unbalanced grouping within the sys-
tem is not conducive to its optimal performance.

Direction Setting Hr Bg Da AVG.

LG→X Similarity 14.7 14.9 16.1 15.2
Random 16.9 17.6 18.9 17.8

X→LG Similarity 12.9 18.5 19.1 16.8
Random 15.0 21.2 22.4 19.5

NLLB-200-1.3B on low-resource settings. It is mainly because NLLB focuses on low-resource
settings and extremely optimizes low-resource settings based on techniques like back-translation. We
only cover limited resources for each translation pair to support more languages.

5 ANALYSIS ON LEGOMT2

Language-specific decoder enhances model performance According to our results, we find that
Dec-Flow largely improves low-resource inference results. To enhance low-resource translation
performance, we train Family-7 and Family-8 via Dec-Flows in the second training stage. Table 4
shows that the introduction of Dec-Flow helps low-resource translation.

Explaining why asynchronous training works LegoMT2 introduces asynchronous training to
reduce communication delays to accelerate training. Each client pulls the latest parameters every k
steps and pushes current parameters into the federated server every m steps. It represents that all
clients do not always enjoy and latest parameters. To prove whether such delay affects final perfor-
mance, we conduct experiments by using global modules from other clients for inference.Figure 2
shows delayed global parameters basically do not affect model training. The client can use delayed
global parameters from other clients for inference without any performance drops.

Impact of language groups In this work, we sort languages based on the size of language-centric
data and split languages into different equal-size groups. We adopt this split method because we find
that balanced training flows in different clients help multilingual machine translation. In addition,
the common strategy of language clustering is by similarity. Therefore, we use similarity clustering
to construct a baseline. Given an MNMT model, here we use the single multilingual model to get
language id embedding, then directly apply KMeans 4 on those embedding. The clustering results are
shown in Appendix E. It is clear that the number of languages in different clusters varies. Meanwhile,
we also conduct an experiment by randomly splitting language groups. According to new language
groups, we conduct experiments and show results in Table 5. Experiment results show the severely
unbalanced distribution of clients hurt the system’s performance.

Impact of save/load (α/β) intervals setting Test the effect of different save/load intervals on system
performance, i.e. the effect of α and β in the algorithm. Theoretically, when α and β are small
enough, the localized training by LegoMT2 is approximately equal to centralized training. Here, we
conduct two different settings: 1) α = 10min, β = 20min and 2) α = 20min, β = 40min. We test
two settings LegoMT2 on the Flores-101 devtest. If the result of setting 1 is better than setting 2,
record to 1; otherwise 0. As shown in Figure 3, exchanging information too late may cause the loss
of information and reduce the performance of the system.

6 CONCLUSION

The typical multilingual neural machine translation is training a single model for all directions
with a centralized training schema, which faces many challenges in practice including parameter
competition and efficiency problems. In this paper, we propose a new MNMT pre-training framework
with federated learning, LegoMT2. Extensive experiments verify the effectiveness of LegoMT2. It
brings 16.2× training speedups and large performance gains. We build a translation system that
supports 435 languages, the supported language number outperforming all existing open-source
multilingual machine translation systems.

4Implemented by sklearn.
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LIMITATION

This paper also has several limitations. Firstly, our analysis reveals that the augmentation of low-
resource translation through the use of language-specific decoders and encoders is not as effective
as anticipated, necessitating a deeper exploration of the interplay between parameter sharing and
tension. Secondly, the assessment of few-shot languages continues to pose a significant challenge.
Despite our training dataset encompassing 435 languages, our evaluation is limited to back-translation
performance, underscoring the need for more rigorous benchmarks.

A MECHANISM OF NON-BLOCKING

The non-blocking mechanism is facilitated by asynchronous communication, which effectively
minimizes the blocking time caused by communication.

Figure 4: The mechanism of non-blocking. (1) Left figure presents an overview of non-blocking
communication among different clients. To enable parallel training, LegoMT2 divides the training
process into multiple clients, each having its own language-specific data and a copy of global
parameters (W1 and W2). To minimize the blocking time caused by communication, we adopt an
asynchronous approach. This asynchronous communication ensures that local training is not hindered
by waiting for parameter updates. (2) The right figure compares traditional federated learning with
MT. In traditional federated learning, parameter communication occurs synchronously, which often
leads to blocking local training due to the additional synchronous wait.

B DATASET CONSTRUCTION

In this section, we will go through the details of constructing a Many-to-Many dataset. The entire
pipeline is made up of six steps:

Step 1: Data Collection The unprocessed data is obtained from OPUS5. It is an open corpus that
collects a large number of parallel sentences from the Web and covers a wide range of domains from
legislative to religious texts.

Step 2: Data Unification OPUS has datasets from several sources, which causes the two important
problems listed below.

1) Different Language Code: Language code is the abbreviation for a language. In OPUS, there
are some languages has multiple language codes. One of the causes is that different corpora follow
different standards, including ISO 639-1, ISO 639-2, ISO 639-3, or self-defined language codes.
Another scenario is that some datasets use language code and region code together. We take ISO
639-1 as the unique code and replaced ISO 639-2 and ISO 639-3 language codes with ISO 639-1
language codes. All these language codes are released by SIL International (formerly known as the
Summer Institute of Linguistics)6.

5https://opus.nlpl.eu/
6https://iso639-3.sil.org/sites/iso639-3/files/downloads/iso-639-3.tab
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2) Inconsistent Operation: There are some inconsistent operations in some datasets, for example,
pre-tokenize for Chinese and Japanese.

To address the above issue, we first handle the case where the language code ends with the region
code by removing the region code. Then we standardize all language codes by ISO 639-1. All
replaced language codes are listed in Table 6. For the language codes out of ISO 639 series, we report
the detail of the language and the corpus that they come from in Table 7. For ease of understanding,
we report all used languages with their full name in Table 8. Finally, for the dataset with inconsistent
operations, we uniformly perform a removal operation to restore them to natural text.

Step 3: Data Merging After unifying the language code and operation, the parallel data with the
same language code will be merged into a file.

Step 4: Data Cleaning There are some low-quality text in OPUS. They are mainly caused by
following reason.

1) Duplication: We apply fairseq7 deduplication script for each language pair.

2) Missing Translation: Some low-quality parallel data lacked the correct translation results. We
discard using the sentence where the source sentence is without a corresponding target sentence or
simply repeat the source sentence as a target sentence.

3) Length Mismatching: The length mismatching mainly focuses on the case where the difference
between the length of the source and the target is too large. The length of a sentence is defined as the
number of words after segmenting with white space (individual characters for Chinese and Japanese).
We reuse the filtering script from Moses8.

Step 5: Train-Dev-Test Split The train-dev-test split scheme is specified by the data quantity.

1) A dataset has over 6.000 parallel sentences. For a dataset, 2,000 randomly selected parallel
sentences are used as a test set, another 2000 randomly selected parallel sentences are used as a
validation set, and the rest of the dataset is used as the training set.

2) A dataset has less than 6.000 parallel sentences. We use 80%, 10%, and 10% of all parallel
sentences as train, validation, and test set.

Meanwhile, we remove the sentence included in the widely used benchmark (WMT, Flores-101)
from our training and validation set to keep the fairness of comparison.

Step 6: Data Preprocessing The data preprocessing consists of two main steps:

1) Sampling: Because the full dataset is huge, we sample some data for our training. Our dataset
contains 445 languages and about 25B sentence pairs. Table 9 shows the number of parallel sentences
in the training set for each language. We present statistics on parallel sentence pairs for the top 100
languages in our constructed data, as shown in Figure 5. The dataset comprises 435 languages and
approximately 25 billion sentence pairs. Among these, 19 languages have over 1 billion sentence
pairs, while for most languages, the total number of sentence pairs in the dataset does not exceed 1
million.

2) Preprocessing: The data is preprocess using the SentencePiece tokenizer provided by Costa-jussà
et al. (2022) with a expaned vocabulary of size 491,404.

C CLIENT INFORMATION

The language group result as shown in Table 10.

We surprisingly find that low-resource language groups harm pre-training During the training
process of LegoMT2, we include all clients to update global parameters. However, we find that

7https://github.com/facebookresearch/fairseq/edit/main/examples/
backtranslation/deduplicate_lines.py

8https://github.com/moses-smt/mosesdecoder
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Figure 5: We present an analysis of parallel sentence pairs for the top 100 languages in our constructed
dataset. Comprising 435 languages and approximately 25 billion sentence pairs, our dataset reveals
that 19 languages have over 1 billion sentence pairs. In contrast, the majority of languages have a
total number of sentence pairs that do not exceed 1 million.
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Table 6: Code Replacement List. We use the codes in the column “Original” to replace the codes in
the column “replaced” if these replaced codes exist in OPUS.

Original Replaced Original Replaced Original Replaced Original Replaced Original Replaced Original Replaced

ak aka es es_HN pt pt_BR es es_CL kr kau tr tr_TR
am amh es es_EC pt pt_br es es_SV kv kpv ur ur_PK
ar ara es es_CO pt pt_PT es es_NI ln lin vi vi_VN
ar ar_SY fa fa_IR rn run es es_UY mg mlg wo wol
ar ar_TN fa fa_AF rw kin es es_PE ms ms_MY xh xho
ay aym ff ful sn sna es es_VE nb nb_NO yo yor
az az_IR fr fr_FR so som es es_AR nds nds_nl ze ze_zh
bg bg_BG fr fr_CA sr srp es es_MX nl nl_NL ze ze_en
bm bam fr fr_BE sr sr_ME es es_MX nl nl_NL ze ze_en
bn bn_IN fr fr_ca st sot es es_PA nl nl_BE zh zh_cn
ca cat ha hau sw swa es es_CR nn nn_NO zh zh_CN
da da_DK hi hi_IN ta ta_LK es es_PR no no_nb zhtrad zh_HK
de de_CH ig ibo tg tg_TJ es es_ES ny nya zhtrad zh_TW
de de_AT it it_IT ti tir es es_GT om orm zhtrad zh_tw
de de_DE jp jap tl tl_PH es es_DO pa pan zu zul

Table 7: Unkown Language Codes, which are out of ISO 639 series. We can’t confirm their full
names.

Code Dataset Code Dataset Code Dataset Code Dataset Code Dataset

crp bible-uedin cb MultiCCAligned sz MultiCCAligned sgn QED cycl Tatoeba
tc EUbookshop cx MultiCCAligned zz MultiCCAligned iro QED nah Tatoeba
zhs GlobalVoices ns MultiCCAligned ze OpenSubtitles mo QED,Ubuntu
zht GlobalVoices qd MultiCCAligned bh QED ber QED,Ubuntu
tmp GNOME qa MultiCCAligned bnt QED toki Tatoeba
gr GNOME tz MultiCCAligned ry QED kzj Tatoeba

if we directly combine low-resource languages in Family-7 and Family-8 into pre-training, it will
increase the proportion of low-resource excessively, thus reducing the performance of the entire
system. As shown in Figure 6, we conduct two experiments by involving Family-7 and Faimly-8
or not and report the performance improvements caused by removing Family-7 and Family-8 from
pre-training. Experiments show that low-resource languages bring negative effects on pre-training by
overestimating the distribution of long-tailed languages.

D HUMAN EVALUATION PERFORMANCE

Human evaluation results show that the performance of LegoMT2 far exceeds that of Baidu and is
on par with Google. We manually assessed the performance of Google Translator, Baidu Translator,
LegoMT2, and NLLB-1.3B models on Chinese-centric translation tasks and found that, on average,
Google Translator outperformed LegoMT2. LegoMT2 performed better than Baidu Translator and
NLLB-1.3B, as shown in Table 11. Here are the specifics of our human evaluation:

1) Data source: We evaluated a total of 100 raw data samples, including 58 samples from the
Flores-101 dataset and 42 samples from the domains of sports, entertainment, and financial news.
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Table 8: List of Languages. Our dataset mainly use ISO 639 series as language code. For traditional
Chinese, we define “zhtrad” as code.

Language Code Language Code Language Code Language Code Language Code Language Code

Abkhazian ab Corsican co Iban iba Lower Sorbian dsb Ossetian os Swahili (macrolanguage) sw
Achinese ace Cree cr Icelandic is Lukpa dop Ottoman Turkish (1500-1928) ota Swati ss
Achuar-Shiwiar acu Creek mus Ido io Luo (Kenya and Tanzania) luo Paite Chin pck Swedish sv
Adyghe ady Crimean Tatar crh Igbo ig Lushootseed lut Palauan pau Swiss German gsw
Afar aa Croatian hr Iloko ilo Luxembourgish lb Pali pi Syriac syr
Afrihili afh Cusco Quechua quz Indonesian id Luyia luy Pampanga pam Tachawit shy
Afrikaans af Czech cs Ingrian izh Macedonian mk Pangasinan pag Tachelhit shi
Aguaruna agr Danish da Ingush inh Macedo-Romanian rup Panjabi pa Tagal Murut mvv
Ainu (Japan) ain Dari prs Interlingua ia Madurese mad Papiamento pap Tagalog tl
Akan ak Dinka din Interlingue ie Maithili mai Papuan Malay pmy Tahaggart Tamahaq thv
Akawaio ake Drents drt Inuktitut iu Malagasy mg Pedi nso Tahitian ty
Aklanon akl Dungan dng Inupiaq ik Malay (individual language) zlm Pennsylvania German pdc Tajik tg
Albanian sq Dutch nl Iranian Persian pes Malay (macrolanguage) ms Persian fa Talossan tzl
Algerian Arabic arq Dutton World Speedwords dws Irish ga Malayalam ml Phoenician phn Talysh tly
American Sign Language ase Dzongkha dz Italian it Maltese mt Picard pcd Tamashek tmh
Amharic am Eastern Canadian Inuktitut ike Jakun jak Mam mam Piemontese pms Tamil ta
Ancient Greek (to 1453) grc Eastern Mari mhr Jamaican Creole English jam Mambae mgm Pipil ppl Tarifit rif
Ancient Hebrew hbo Eastern Maroon Creole djk Japanese ja Mandarin Chinese cmn Plateau Malagasy plt Tase Naga nst
Arabic ar Efik efi Javanese jv Manx gv Polish pl Tatar tt
Aragonese an Egyptian Arabic arz Jewish Babylonian Aramaic tmr Maori mi Portuguese pt Telugu te
Armenian hy Emilian egl Kabyle kab Marathi mr Potawatomi pot Tena Lowland Quichua quw
Arpitan frp English en Kadazan Dusun dtp Marshallese mh Prussian prg Tetelcingo Nahuatl nhg
Asháninka cni Erzya myv Kalaallisut kl Mesopotamian Arabic acm Pushto ps Tetum tet
Assamese as Esperanto eo Kalmyk xal Miahuatlán Zapotec zam Quechua qu Thai th
Asturian ast Estonian et Kamba (Kenya) kam Middle English (1100-1500) enm Quenya qya Tibetan bo
Avaric av Evenki evn Kannada kn Middle French (ca. 1400-1600) frm Quiotepec Chinantec chq Tigrinya ti
Avestan ae Ewe ee Kanuri kr Mikasuki mik Rapanui rap Tohono O’odham ood
Awadhi awa Extremaduran ext Kaqchikel cak Mi’kmaq mic Romanian ro Tok Pisin tpi
Aymara ay Faroese fo Karelian krl Min Dong Chinese cdo Romansh rm Tonga (Tonga Islands) to
Azerbaijani az Fiji Hindi hif Kashmiri ks Min Nan Chinese nan Romany rom Traditional Chinese zhtrad
Baluchi bal Fijian fj Kashubian csb Minangkabau min Rundi rn Tsonga ts
Bambara bm Filipino fil Kazakh kk Mingrelian xmf Russian ru Tswana tn
Banjar bjn Finnish fi Kekchí kek Mirandese mwl Rusyn rue Tupí tpw
Barasana-Eduria bsn French fr Khakas kjh Mískito miq Samoan sm Turkish tr
Bashkir ba Friulian fur Khasi kha Modern Greek (1453-) el Samogitian sgs Turkmen tk
Basque eu Fulah ff Khmer km Mohawk moh Sango sg Tuvalu tvl
Bavarian bar Galela gbi K’iche’ quc Mongolian mn Sanskrit sa Twi tw
Baybayanon bvy Galician gl Kikuyu kik Morisyen mfe Santali sat Uab Meto aoz
Belarusian be Gan Chinese gan Kinyarwanda rw Moroccan Arabic ary Sardinian sc Udmurt udm
Bemba (Zambia) bem Ganda lg Kirghiz ky Mossi mos Saterfriesisch stq Uighur ug
Bengali bn Garhwali gbm Klingon tlh Nauru na Scots sco Ukrainian uk
Berom bom Georgian ka Koasati cku Navajo nv Scottish Gaelic gd Uma ppk
Bhojpuri bho German de Kölsch ksh Neapolitan nap Sediq trv Umbundu umb
Bislama bi Gheg Albanian aln Komi kv Nepali (individual language) npi Serbian sr Upper Sorbian hsb
Bodo (India) brx Gilbertese gil Komi-Permyak koi Nepali (macrolanguage) ne Serbo-Croatian sh Urdu ur
Bosnian bs Goan Konkani gom Kongo kg Nigerian Fulfulde fuv Shan shn Uspanteco usp
Breton br Gothic got Korean ko Niuean niu Shona sn Uzbek uz
Brithenig bzt Gronings gos Kotava avk Nogai nog Shuar jiv Venda ve
Buginese bug Guadeloupean Creole French gcf Kriang ngt North Levantine Arabic apc Shuswap shs Venetian vec
Bulgarian bg Guarani gn Kuanyama kj North Moluccan Malay max Sicilian scn Vietnamese vi
Buriat bua Guerrero Amuzgo amu Kurdish ku Northern Frisian frr Silesian szl Vlaams vls
Burmese my Guerrero Nahuatl ngu Kven Finnish fkv Northern Kurdish kmr Sindarin sjn Volapük vo
Cabécar cjp Gujarati gu Láadan ldn Northern Sami se Sindhi sd Walloon wa
Camsá kbh Gulf Arabic afb Ladin lld Northwestern Ojibwa ojb Sinhala si Walser wae
Catalan ca Haida hai Ladino lad Norwegian no Slovak sk Waray (Philippines) war
Cebuano ceb Haitian ht Lakota lkt Norwegian Bokmål nb Slovenian sl Welsh cy
Central Huasteca Nahuatl nch Hakha Chin cnh Lao lo Norwegian Nynorsk nn Somali so Western Frisian fy
Central Kurdish ckb Hakka Chinese hak Latgalian ltg Novial nov South Azerbaijani azb Western Panjabi pnb
Central Sama sml Hausa ha Latin la Nuer nus South Ndebele nr Wolaytta wal
Chamorro ch Hawaiian haw Latvian lv Nyanja ny Southern Kurdish sdh Wolof wo
Chavacano cbk Hebrew he Ligurian lij Occitan (post 1500) oc Southern Sami sma Wu Chinese wuu
Chechen ce Hiligaynon hil Limburgan li Old English (ca. 450-1100) ang Southern Sotho st Xhosa xh
Cherokee chr Hindi hi Lingala ln Old French (842-ca. 1400) fro Southwestern Dinka dik Yakut sah
Chhattisgarhi hne Hiri Motu ho Lingua Franca Nova lfn Old Frisian ofs Spanish es Yaqui yaq
Chinese zh Hmong Daw mww Literary Chinese lzh Old Norse non Standard Malay zsm Yiddish yi
Choctaw cho Ho hoc Lithuanian lt Old Russian orv Standard Moroccan Tamazight zgh Yoruba yo
Church Slavic cu Huastec hus Liv liv Old Spanish osp Sumerian sux Zarma dje
Chuvash cv Hungarian hu Lojban jbo Oriya (macrolanguage) or Sundanese su Zaza zza
Coptic cop Hunsrik hrx Lombard lmo Orizaba Nahuatl nlv Swabian swg Zulu zu
Cornish kw Hupa hup Low German nds Oromo om Swahili (individual language) swh

2) Annotation method: To better evaluate the quality of large-scale translation, we adopted a transla-
tion and back-translation method in our human evaluation. For instance, we presented a Chinese input
text to the models and asked them to produce a translated text and a back-translated Chinese text. The
annotators assessed the degree of information overlap between the input text and the back-translated
Chinese text.

3) Annotation process: To ensure inter-annotator agreement, we assigned each sample to two distinct
annotators at a cost of $0.028 per datum. The resulting evaluation scores ranged from 0 to 5. A
score of 0 meant that the language was not supported or could not be translated at all. A score of
5 implied that not only was the content preserved, but the expression was also very smooth. The
average inter-annotator agreement score was 0.79, indicating good evaluation quality.

Among the overlapping languages, LegoMT2 had an average translation score of 3.12, while Google
Translator had an average score of 3.64. Among the non-overlapping languages, LegoMT2’s average
score was 3.03, while Baidu Translator’s average score was 2.55.

E LANGUAGE GROUP BY KMEANS.

In this study, we categorize languages based on the magnitude of language-specific data and partition
them into distinct groups of equivalent size. This partitioning method was chosen due to our
observation that balanced training flows among different clients facilitate multilingual machine
translation. Furthermore, language clustering is commonly performed based on similarity. While it
is possible to utilize existing linguistic knowledge for classification, this approach becomes labor-
intensive when dealing with more than 400 languages. As such, we employ similarity clustering
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Table 9: Statistics of the constructed dataset.
code sentence pairs code sentence pairs code sentence pairs code sentence pairs code sentence pairs code sentence pairs

aa 25190 cni 366213 he 768039586 lo 2934940 pag 41 swg 1485
ab 24734 co 5679 hi 218864052 lt 467441039 pam 1897 swh 767
ace 55744 cop 392871 hif 30 ltg 25791 pap 16428 syr 393273
acm 38 cr 128 hil 2044 luo 91 pau 28 sz 10
acu 275510 crh 583965 hne 3624732 lut 61 pcd 238 szl 45989
ady 10 crp 1698290 ho 51 luy 105 pck 1722862 ta 90971643
ae 139 cs 1457869889 hoc 517 lv 355693685 pdc 63 tc 2831
af 55335682 csb 1087185 hr 737162068 lzh 540 pes 1744278 te 20088988
afb 77 cu 1996 hrx 558 mad 947 phn 30 tet 12255
afh 73 cv 24927 hsb 662844 mai 1969608 pi 2306 tg 11994239
agr 296459 cx 2852903 ht 12715844 mam 358606 pl 1650606708 th 111068105
ain 306 cy 15839521 hu 1254849755 max 345 plt 1715974 thv 41
ak 13593 cycl 43 hup 287 mfe 8944 pms 6128 ti 98816
ake 278088 da 1024948205 hus 81 mg 18564176 pmy 5324 tk 237791
akl 23 de 2564377381 hy 19095048 mgm 27 pnb 154 tl 62019683
aln 23 dik 290563 ia 243295 mh 188 pot 163018 tlh 22430
am 12065296 din 2457 iba 42 mhr 150906 ppk 363985 tly 38
amu 375783 dje 1728497 id 697068570 mi 5753968 ppl 27 tmh 166643
an 457768 djk 354595 ie 19196 mic 10 prg 407 tmp 19110
ang 151166 dng 22 ig 4802381 mik 15 prs 14123 tmr 380
aoz 20 dop 381489 ik 393 min 84 ps 7700300 tn 488012
apc 35 drt 46 ike 32 miq 8506 pt 2812386990 to 1479
ar 1079338710 dsb 7157 ilo 891090 mk 177474445 qa 521 toki 37627
arq 50647 dtp 1911 inh 17366 ml 57004885 qd 1896 tpi 81
ary 155 dws 56 io 149762 mn 11603195 qu 31780 tpw 72
arz 78593 dz 161086 iro 8 mo 31 quc 358962 tr 1193231266
as 2307772 ee 376963 is 104661362 moh 72 quw 391236 trv 1535
ase 6084 efi 4358 it 2093054002 mos 1864 quz 20 ts 51109
ast 12083731 egl 322 iu 6120 mr 31855664 qya 171 tt 1501339
av 7398 el 1258104866 izh 9 ms 149607728 rap 22 tvl 13
avk 1757 en 5781922682 ja 434118540 mt 82700941 rif 60 tw 479
awa 225 enm 741 jak 368614 mus 9229 rm 10037 ty 17
ay 43034 eo 71211656 jam 29 mvv 8 rn 6358 tz 55
az 22317802 es 3911731697 jbo 53616 mwl 36153 ro 1335221001 tzl 1415
azb 6270 et 647382971 jiv 278960 mww 65 rom 391669 udm 53
ba 414706 eu 79865761 jv 12235804 my 9517618 ru 1460007489 ug 915049
bal 2285 evn 64 ka 23136675 myv 22 rue 175 uk 280561930
bar 75324 ext 57 kab 469669 na 16 rup 2965 umb 54
be 41361204 fa 383151473 kam 8 nah 160 rw 1271784 ur 47703807
bem 19058 ff 329791 kbh 407244 nan 9666 ry 5054 usp 368078
ber 192407 fi 1081684445 kek 1674772 nap 3093 sa 93931 uz 3381954
bg 1130459221 fil 1091348 kg 131420 nb 27802066 sah 835 ve 8057
bh 2613 fj 3443 kha 1282 nch 75 sat 114 vec 26482
bho 1263 fkv 498 kik 267 nds 6525803 sc 55166 vi 500458007
bi 6112 fo 228021 kj 5446 ne 36233624 scn 7790 vls 430
bjn 16 fr 3412558369 kjh 15 ngt 15 sco 44793 vo 4484
bm 5993 frm 827 kk 16875999 ngu 31 sd 2816050 wa 2659876
bn 156924699 fro 44 kl 33411 nhg 376653 sdh 28 wae 74267
bnt 1534 frp 82087 km 11875237 niu 24 se 1912829 wal 374085
bo 108249 frr 402 kmr 714 nl 1777745084 sg 10 war 1230
bom 39 fur 328314 kn 5999187 nlv 12 sgn 688 wo 983607
br 4839927 fuv 2482 ko 285583000 nn 6036066 sgs 40 wuu 10993
brx 2126 fy 6208767 koi 12 no 698491446 sh 22711333 xal 3583
bs 221212239 ga 21763185 kr 11412 nog 79 shi 378312 xh 8640822
bsn 325256 gan 12 krl 314 non 16 shn 40453 xmf 36
bua 1948 gbi 350547 ks 64356 nov 919 shs 20833 yaq 81
bug 1659 gbm 33 ksh 2892 npi 93 shy 15 yi 1038001
bvy 21 gcf 1009 ku 6566496 nr 874 si 52111630 yo 5433688
bzt 1196 gd 833984 kv 59 ns 103879 sjn 293 zam 1379
ca 303844363 gil 12 kw 82917 nso 427594 sk 809520471 ze 25667080
cak 355513 gl 110969736 ky 7814500 nst 644 sl 834996012 zgh 97
cb 354133 gn 10158 kzj 1543 nus 2496 sm 73 zh 660697725
cbk 2141 gom 49256 la 6202902 nv 358 sma 39 zhs 37264
cdo 20 gos 3382 lad 4634 ny 4130938 sml 1711 zht 39547
ce 13338 got 234 lb 13159469 oc 8708362 sn 4557031 zhtrad 143676341
ceb 3534028 gr 5607 ldn 163 ofs 8 so 9082662 zlm 92
ch 356694 grc 1105 lfn 13823 ojb 299926 sq 203389893 zsm 2719
cho 309 gsw 247 lg 248315 om 203313 sr 825444520 zu 3516139
chq 356343 gu 7015993 li 365187 ood 21 ss 672164 zz 44
chr 392260 gv 537765 lij 1673 or 1005953 st 10364 zza 27246
cjp 389090 ha 8504550 liv 27 orv 1348 stq 128
ckb 78358 hai 1866 lkt 25 os 61302 su 10421463
cku 571 hak 16 lld 10268 osp 10 sux 153
cmn 16159 haw 385 lmo 13318 ota 880 sv 1297167012
cnh 1784 hbo 101 ln 171241 pa 7181860 sw 87842873

to establish a baseline. Utilizing a single multilingual model, we obtain language id embeddings
and apply KMeans clustering to them. The results of this clustering are depicted in Figure 7, which
clearly illustrates the variation in the number of languages across different clusters. We also conduct
an experiment in which language groups are randomly split. Our findings, indicate that a severely
unbalanced distribution of clients negatively impacts system performance.

A comparison is made between the performance of ChatGPT and LegoMT2 using the first 100 samples
extracted from the Flores-101 devtest. The effects of both X→En and En→X are tested. For the sys-
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Table 10: Language groups. We sort languages based on the size of language-centric data and split
them into 8 equal-size chunks.

Family 435 Languages

Family-1 fr, es, en
Family-2 nl, tr, pl, it, de, pt
Family-3 bg, ar, ru, fa, el, hu, ro, cs
Family-4 sk, da, uk, sl, he, fi, id, sv, vi
Family-5 ko, sq, hr, mk, sr, zh, no, bs, hi
Family-6 eo, mt, eu, sw, is, lv, ca, th, ms, zhtrad, bn, lt, et

Family-7 ig, km, ky, ps, tg, gv, nb, br, ss, sh, ze, zu, nn, pa, so, sn, kk, cy, mg, am, xh, az, gu , hy, kn, te,
ga, gl, be, mr, ne, si, af, ml, tl

Family-8 iro, kam, mvv, ofs, izh, ady, mic, osp, sg, sz, gan, gil, koi, nlv, tvl, kjh, mik, ngt, shy, bjn, hak, na,
non, ty, aoz, cdo, quz, bvy, ood, dng, myv, rap, akl, aln, niu, lkt, liv, mgm, ppl, pau, sdh, jam, hif,
phn, mo, ngu, ike, gbm, apc, xmf, acm, tly, bom, sma, sgs, pag, thv, iba, cycl, fro, zz, drt, ho,
udm, umb, tz, dws, ext, kv, rif, lut, pdc, evn, mww, moh, tpw, afh, sm, nch, afb, nog, hus, tpi,
yaq, min, luo, zlm, npi, zgh, hbo, luy, sat, cr, stq, ae, sux, pnb, ary, nah, ldn, qya, rue, mh, awa,
got, pcd, gsw, kik, hup, sjn, ain, cho, krl, egl, max, nv, tmr, haw, ik, frr, prg, vls, tw, fkv, hoc, qa,
lzh, hrx, cku, nst, sgn, kmr, enm, swh, frm, sah, nr, ota, nov, mad, gcf, grc, bzt, war, bho, kha,
orv, que, zam, tzl, to, swg, bnt, trv, kzj, bug, lij, sml, avk, cnh, mos, hai, qd, pam, dtp, bua, cu,
hil, brx, cbk, zhyue, bal, pi, din, fuv, nus, bh, zsm, tc, ksh, rup, nap, gos, fj, xal, efi, vo, lad, ry,
pmy, kj, gr, co, bm, ase, bi, iu, pms, azb, rn, hbs, dsb, av, scn, ve, miq, mfe, mus, mwl, nan, rm,
gn, lld, st, wuu, kr, tet, lmo, ce, ak, lfn, prs, cmn, pap, ber, inh, bem, tmp, ie, toki, shs, tlh, ab, cv,
aa, ltg, zhs, vec, zza, zht, qu, kl, ilo, bar, shn, ay, sco, szl, arz, gom, arq, ts, jbo, sc, ace, os, ks,
wae, ckb, frp, kw, zhtw, ti, sa, ns, bo, kg, ba, fo, io, dz, mhr, ang, ln, pot, tmh, om, fil, ia, lg, tk,
csb, yi, acu, ake, cb, jiv, se, dik, an, tn, agr, tt, kek, ojb, crp, pck, plt, dje, pes, lb, gbi, djk, cak,
mai, bsn, chq, quc, mam, ch, fur, ppk, cni, usp, jak, wal, amu, ee, lo, rw, nhg, shi, dop, wa, cx, li,
cjp, rom, quw, chr, cop, syr, ug, su, kab, hsb, kbh, hne, uz, nso, fy, ht, wo, crh, la, ny, or, gd, oc,
jv, nds, mn, as, ast

Figure 6: Pre-training is negatively impacted
by low-resource language groups. Two experi-
ments were conducted to determine the effects of
including or excluding Family-7 and Family-8.
The Y-axis displays the performance improve-
ments from pre-training.

Figure 7: Language clustering results. After
obtaining the model through single-model fine-
tuning, we extract embedding vectors corre-
sponding to all language IDs. Then perform
K-means clustering on this embedding matrix
and visualize the clustering results using PCA.
The results show that the clustering quantity is
unbalanced between clusters.

tem, the given prompt for ChatGPT is: “You are a helpful assistant that translates {SOURCE_LANG}
to {TARGET_LANG}.” For the sentences that needed to be translated, the given prompt is: “Translate
the following {SOURCE_LANG} text to {TARGET_LANG}: {SOURCE_TEXT}.” Both zero-shot
and eight-shot results are tested, with the eight-shot samples being randomly extracted from the
Flores-101 dev.

18



Under review as a conference paper at ICLR 2024

Table 11: Human evaluation result on Zh→X direction. Manually comparing the performance of
LegoMT2 with NLLB-200-1.3B, Google, and Baidu translators, respectively. Based on the results
of human evaluation, it has been found that LegoMT2’s performance surpasses that of Baidu by a
substantial margin and is on par with Google’s performance.

Translator En Es Fr Pt De It Nl Pl Ru Da Kn Mr Ka Ja Fa

LegoMT2 3.96 2.99 3.34 3.74 3.61 3.53 2.94 3.58 3.64 3.63 3.29 3.57 2.78 3.63 2.90
NLLB-200-1.3B 2.52 2.16 2.31 2.44 2.43 2.10 1.86 2.10 2.39 2.16 2.52 2.57 1.87 2.30 2.32

Google 4.32 3.33 3.46 3.95 3.88 3.96 3.32 3.82 3.84 4.25 3.80 3.96 3.81 3.66 3.10
Baidu 4.32 3.18 3.51 3.94 3.87 3.93 3.30 3.72 3.80 4.02 1.95 2.70 1.95 4.14 2.79

Correlation 0.70 0.44 0.41 0.68 0.62 0.79 0.72 0.69 0.7 0.71 0.83 0.51 0.83 0.76 0.27

Translator Sr Sk He Hr No Id Et Vi Lt Ms Yo Te Hy Ca Ko

LegoMT2 3.23 3.28 3.54 3.47 2.70 3.76 2.87 3.95 3.69 3.41 3.18 3.46 3.48 3.45 3.24
NLLB-200-1.3B 2.27 1.88 1.88 1.86 2.03 2.49 2.02 2.70 2.33 2.34 2.44 2.32 2.12 2.47 2.35

Google 3.74 3.72 3.90 3.70 3.32 3.87 3.16 4.23 4.06 4.00 3.74 4.01 3.59 3.72 3.69
Baidu 3.26 3.29 3.39 3.55 2.62 3.73 3.15 4.10 3.77 3.63 1.67 1.87 3.29 3.48 4.20

Correlation 0.62 0.60 0.72 0.7 0.66 0.64 0.45 0.63 0.65 0.6 0.74 0.76 0.71 0.56 0.76

Translator Th Gl Is Mt Tl Ml Af Ur Be Tg Ig Kk Cy Uk Bs

LegoMT2 3.49 2.80 3.28 3.44 3.40 3.58 3.39 3.13 1.60 3.51 3.29 3.30 3.14 3.55 3.32
NLLB-200-1.3B 2.18 2.08 1.92 2.54 2.36 2.72 1.71 2.72 1.91 2.37 2.20 2.16 2.20 2.31 2.08

Google 3.75 2.94 4.09 4.14 3.94 4.05 3.63 3.99 3.26 3.94 3.42 3.73 3.43 3.91 3.79
Baidu 3.91 2.93 3.12 3.82 3.25 2.77 3.03 2.81 2.89 2.54 2.23 0.00 3.05 3.45 3.59

Correlation 0.66 0.47 0.77 0.61 0.65 0.68 0.6 0.63 0.69 0.65 0.69 0.94 0.61 0.66 0.74

Translator Km My So Oc Xh Ha Ky Pa Gu Ln Sn Jv Ast Hi Mk

LegoMT2 2.92 2.83 2.75 2.82 3.52 2.98 3.19 3.37 3.49 3.21 2.85 3.26 2.41 3.37 3.71
NLLB-200-1.3B 2.15 1.86 2.10 2.55 2.61 2.40 1.98 2.73 2.60 2.45 2.20 2.40 1.36 2.55 2.59

Google 3.43 3.20 3.12 0.00 3.83 3.44 3.83 3.92 3.74 3.88 3.22 3.70 0.00 3.73 4.15
Baidu 1.75 1.90 1.99 2.67 2.85 1.89 2.31 1.91 2.13 1.09 1.83 1.12 3.29 2.48 3.84

Correlation 0.83 0.74 0.45 0.92 0.58 0.6 0.78 0.72 0.71 0.82 0.53 0.88 0.85 0.63 0.67

Translator Cs Ro Sv El Hu Tr Bg Fi Ar Lg Ny Am Lo Bn As

LegoMT2 3.50 3.41 3.42 3.64 3.72 3.84 3.06 2.97 3.18 2.24 2.86 3.07 3.60 3.42 2.64
NLLB-200-1.3B 2.09 2.40 2.15 2.24 2.03 2.21 1.55 2.16 1.62 1.98 2.34 1.99 2.84 2.42 2.00

Google 3.75 3.80 3.99 3.94 3.80 4.04 3.34 3.24 3.45 3.66 3.08 3.30 3.97 3.68 3.41
Baidu 3.75 1.93 3.85 3.78 3.76 3.44 3.27 3.13 2.93 2.20 1.01 1.74 1.73 2.59 1.72

Correlation 0.72 0.72 0.64 0.61 0.69 0.59 0.59 0.28 0.54 0.83 0.83 0.49 0.59 0.68 0.63
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Table 12: Comparison of ChatGPT and LegoMT2: While ChatGPT outperforms LegoMT2 for some
language pairs, LegoMT2 has an absolute advantage for the vast majority. On average, ChatGPT lags
behind LegoMT2 in both the En→X and X→En directions by more than 6 points.

X→En ChatGPT LegoMT2 X→En ChatGPT LegoMT2 X→En ChatGPT LegoMT2 X→En ChatGPT LegoMT2

af 54.9 58.9 gu 20.0 39.1 lo 9.8 37.3 ru 32.6 36.8
am 2.7 32.4 ha 13.4 31.3 lt 30.9 35.4 sd 13.0 22.0
ar 33.7 41.6 he 32.6 41.5 luo 8.1 27.5 sk 35.5 41.6
as 12.9 31.1 hi 33.9 47.1 lv 30.5 35.7 sl 33.7 36.7
ast 38.3 33.3 hr 36.9 39.5 mi 19.4 30.0 sn 13.2 30.5
az 18.7 27.7 hu 32.6 35.6 mk 37.6 43.0 so 14.3 32.5
be 19.2 19.9 hy 14.5 39.0 ml 18.5 41.0 sr 35.2 40.7
bg 37.1 41.4 id 40.1 45.0 mn 11.1 30.2 sv 46.3 49.4
bn 21.2 38.5 ig 8.7 28.4 mr 20.4 39.6 sw 40.4 47.0
bs 41.3 44.6 is 28.9 35.0 ms 43.8 47.6 ta 13.6 32.5
ca 43.1 46.3 it 34.4 35.5 mt 42.8 60.5 te 18.6 42.1

ceb 37.5 45.0 ja 26.5 30.5 my 2.8 30.2 tg 13.4 32.9
cs 38.2 43.7 jv 27.4 45.1 ne 21.2 40.5 th 21.9 33.6
cy 44.0 54.6 ka 12.1 27.6 nl 34.8 36.2 tl 41.9 51.4
da 47.6 51.3 kam 9.8 19.6 no 41.3 45.7 tr 36.0 39.0
de 41.4 44.4 kea 33.7 51.2 ns 13.9 43.2 uk 37.2 41.5
el 33.9 39.1 kk 18.6 35.6 ny 15.1 32.4 umb 5.0 14.8
es 29.9 31.4 km 13.6 36.8 oc 45.3 56.8 ur 24.6 38.5
et 35.9 38.7 kn 20.0 35.1 om 4.9 22.6 uz 19.3 34.6
fa 30.4 37.2 ko 26.1 28.3 or 14.0 36.3 vi 33.3 42.0
ff 7.3 12.0 ku 9.6 35.7 pa 24.0 44.2 wo 8.5 21.5
fi 31.5 33.9 ky 10.7 26.9 pl 29.9 33.6 xh 17.1 39.6
fr 43.9 46.9 lb 39.6 45.5 ps 10.6 35.6 yo 9.8 26.0
ga 33.2 43.3 lg 11.1 23.1 pt 47.5 50.5 zh 28.3 30.5
gl 39.2 40.5 ln 10.6 28.7 ro 42.7 48.1 zu 18.0 41.5

EN→X ChatGPT LegoMT2 EN→X ChatGPT LegoMT2 EN→X ChatGPT LegoMT2 EN→X ChatGPT LegoMT2
af 44.3 45.3 gu 19.0 34.8 lo 4.0 28.9 ru 36.0 39.0
am 2.9 26.9 ha 8.1 26.9 lt 27.2 33.5 sd 8.4 33.3
ar 31.6 36.1 he 27.0 37.2 luo 4.2 18.3 sk 34.5 38.9
as 7.3 24.6 hi 29.2 46.6 lv 27.9 23.2 sl 32.5 37.1
ast 29.8 30.3 hr 34.4 35.7 mi 16.0 19.8 sn 5.8 19.5
az 11.8 20.4 hu 27.2 34.9 mk 33.1 43.4 so 6.4 18.2
be 16.4 23.4 hy 10.5 33.1 ml 12.0 38.0 sr 1.5 29.3
bg 38.7 49.3 id 45.4 46.6 mn 5.5 18.8 sv 46.5 46.6
bn 18.4 33.7 ig 6.2 19.9 mr 10.4 27.4 sw 37.5 40.1
bs 34.0 35.1 is 22.0 30.2 ms 39.2 47.2 ta 10.2 20.8
ca 46.8 48.9 it 35.8 36.5 mt 31.6 64.4 te 13.2 41.6

ceb 24.5 18.9 ja 29.7 33.5 my 2.5 15.5 tg 11.0 32.5
cs 36.7 40.5 jv 15.6 30.3 ne 15.0 26.4 th 22.1 21.1
cy 44.0 43.8 ka 11.1 23.0 nl 31.7 31.9 tl 31.2 34.9
da 45.4 45.5 kam 4.9 7.4 no 36.6 37.2 tr 34.5 36.4
de 40.3 41.7 kea 11.5 17.5 ns 6.6 26.8 uk 33.3 40.1
el 30.9 34.5 kk 11.1 33.7 ny 6.3 23.8 umb 2.8 2.9
es 32.3 30.7 km 4.4 15.9 oc 28.2 44.0 ur 16.8 27.4
et 33.6 34.4 kn 14.3 31.6 om 1.7 10.8 uz 15.8 27.3
fa 25.4 35.0 ko 25.0 26.0 or 11.3 32.3 vi 38.7 43.2
ff 3.0 0.1 ku 5.0 3.5 pa 20.3 36.1 wo 5.1 6.3
fi 33.3 31.2 ky 7.2 24.4 pl 29.3 31.9 xh 6.4 28.9
fr 53.2 56.8 lb 24.2 1.1 ps 3.4 22.0 yo 3.4 4.2
ga 26.9 3.7 lg 3.6 12.5 pt 54.6 55.4 zh 30.7 27.1
gl 36.3 38.2 ln 5.8 26.0 ro 44.4 48.2 zu 6.6 32.2

Table 13: Comparison between ChatGPT and LegoMT2. Both in the En→X and X→En direction,
ChatGPT falls behind LegoMT2 even with eight-shot.

Model X→En En→X AVG.
ChatGPT zero-shot 27.9 23.9 25.9
ChatGPT eight-shot 31.9 24.7 28.3
LegoMT2 38.3 31.6 35.0

The detailed results are shown in the table below Table 13. For some language pairs, the performance
of ChatGPT is better than that of LegoMT2, such as En→Zh, where ChatGPT scores 30.7 versus
LegoMT2 ’s 27.1. However, for the vast majority of language pairs, LegoMT2 has an absolute
advantage. On average, ChatGPT lags behind LegoMT2 in both the En→X and X→En directions by
more than 6 points.

Comparison between ChatGPT with LegoMT2 A comparative analysis between ChatGPT (GPT
3.5) and LegoMT2 on 100 samples in Flores-101, as shown in Table 13, reveals that in zero-
shot and eight-shot performance, ChatGPT lags behind LegoMT2 in the En→X and X→En direc-
tion more than 6 points. The prompts utilized for ChatGPT are “You are a helpful assistant that
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translates {SOURCE_LANG} to {TARGET_LANG}.” for the system and “Translate the following
{SOURCE_LANG} text to {TARGET_LANG}: {SOURCE_TEXT}.” for the user.
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