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ABSTRACT

The advancements in artificial intelligence in recent years, such as Large Lan-
guage Models (LLMs), have fueled expectations for breakthroughs in genomic
foundation models (GFMs). The code of nature, hidden in diverse genomes since
the very beginning of life’s evolution, holds immense potential for impacting hu-
mans and ecosystems through genome modeling. Recent breakthroughs in GFMs,
such as Evo, have attracted significant investment and attention to genomic mod-
eling, as they address long-standing challenges and transform in-silico genomic
studies into automated, reliable, and efficient paradigms. In the context of this
flourishing era of consecutive technological revolutions in genomics, GFM studies
face two major challenges: the lack of GFM benchmarking tools and the absence
of open-source software for diverse genomics. These challenges hinder the rapid
evolution of GFMs and their wide application in tasks such as understanding and
synthesizing genomes, problems that have persisted for decades. To address these
challenges, we introduce GFMBench, a framework dedicated to GFM-oriented
benchmarking. GFMBench standardizes benchmark suites and automates bench-
marking for a wide range of open-source GFMs. It integrates millions of genomic
sequences across hundreds of genomic tasks from four large-scale benchmarks,
democratizing GFMs for a wide range of in-silico genomic applications. Addi-
tionally, GFMBench is released as open-source software, offering user-friendly
interfaces and diverse tutorials, applicable for AutoBench and complex tasks
like RNA design and structure prediction. To facilitate further advancements in
genome modeling, we have launched a public leaderboard showcasing the bench-
mark performance derived from AutoBench. GFMBench represents a step to-
ward standardizing GFM benchmarking and democratizing GFM applications.

1 INTRODUCTION

The central dogma of biology (Crick, 1970) posits that genomes, including DNA and RNA, encode
and transmit the genetic information essential for all living systems and underpin the translation of
proteins. Despite decades of advancements in molecular biology, deciphering genomes remains a
significant challenge (Beaulaurier et al., 2019; Cole et al., 1998; Strous et al., 2006). Researchers
have been striving for advanced and efficient genome analysis to better understand and synthesize
RNA (Leslie E, 2004) and DNA (Ramadan et al., 2004) genomes. However, the efficiency and per-
formance of conventional bioinformatics approaches (Min et al., 2017; Larranaga et al., 2006) have
hardly kept pace with the rapid advancements in high-throughput sequencing technologies (Reuter
et al., 2015; Loman et al., 2012). The recent proliferation of foundation models (Akiyama & Sakak-
ibara, 2022; Nguyen et al., 2023; Dalla-Torre et al., 2023) in the natural language processing do-
main has shown unprecedented potential for modeling complex ‘genomic languages’ (Nguyen et al.,
2023). These models are known as genomic foundation models (GFMs). Such GFMs are so versa-
tile that they not only uncover genomic encoding patterns within DNA and RNA, but also support
a diverse array of genomic tasks, such as RNA secondary structure prediction (Seetin & Math-
ews, 2012), RNA function (e.g., translation efficiency) prediction (Chu et al., 2024), and even RNA
molecular design (Westhof et al., 1996; Yesselman et al., 2019; Koodli et al., 2021).

Despite these advancements, the broader adoption of GFMs for genomic research and related fields,
including bioscience discovery and therapeutics design, is significantly hindered by the absence of
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standardized benchmarks. These benchmarks constitute the foundation for evaluating and com-
paring model performance, understanding model behavior, building confidence, and promoting the
widespread application of GFMs. Unlike the deep learning community in computer vision and natu-
ral language processing, where benchmarking has a long-standing tradition, the genomic field faces
unique challenges in establishing robust benchmarks due to the following challenges.

• Data Scarcity and Bias: A critical challenge is the lack of comprehensive and diverse datasets
necessary for robust training and testing of GFMs. In practice, many genomic datasets are lim-
ited in scope and size, often exhibiting biases toward specific species or genome sequences. For
instance, some GFMs are trained solely on evolutionary conserved sequences (Akiyama & Sakak-
ibara, 2022; Chen et al., 2022; Zhang et al., 2024). This scarcity of diverse datasets significantly
hampers the models’ ability to generalize and perform effectively across a wide range of genomic
contexts. This limitation not only restricts GFM training but also undermines their capacity to
discover novel patterns and make accurate predictions in less-studied species.

• Metric Reliability: Another major concern affecting model reliability is the inconsistency of met-
rics used to benchmark performance. Different studies may employ varying metrics or implement
the same metrics with minor differences (Post, 2018). This often leads to inconsistent results
across studies. For example, Chen et al. (2020) and Fu et al. (2022) has reported significantly
different results on the effectiveness of E2EFold (Chen et al., 2020) because of the variations
in evaluation metrics. Such inconsistencies can obscure true model performance and hinder the
ability to draw reliable conclusions in genomic studies.

• Reproducibility: Ensuring reliable reproducibility of GFM experiments across different research
environments remains a significant challenge. As reported by (Pineau et al., 2021), differences
in computational environments, dataset splits, and even minor code implementation variations
can lead to significant discrepancies in results. These inconsistencies hinder the validation and
comparison of GFMs. Moreover, the absence of standardized benchmarking practices exacerbates
these issues, underscoring the necessity of establishing protocols that can be consistently followed
across studies and laboratories to ensure reliable and reproducible research outcomes. In addition,
the inherent complexity of GFMs presents formidable roadblocks for domain scientists seeking
to identify and implement best practices for GFM building and training tailored to their scientific
inquiries. Together, these challenges significantly hamper the democratization of GFMs, limiting
their accessibility and adoption across diverse research domains.

• Adaptive Benchmarking: As reported in recent studies (Nguyen et al., 2024; Yang & Li, 2024),
predictive modeling performance can be significantly enhanced by jointly modeling various ge-
nomics, including DNA and RNA. While genomes and proteomes from diverse living systems
may share similar patterns in bio-sequence modeling, there is a lack of holistic understanding of
GFMs’ capabilities beyond their pre-training scenarios. For example, what is the capability of a
GFM for structure prediction (Tan et al., 2017; Danaee et al., 2018; Mathews, 2019; Kalvari et al.,
2021) when the model was not pre-trained on the structure annotations of the target species? To
address this, we developed a novel adaptive benchmarking protocol that enables comprehensive
evaluations across a wide range of genomes and species. It is distinguished by its compatibility
with diverse GFMs and benchmarks across different modalities of genomic data. Such adaptive
benchmarking can facilitate findings from cross-genomic studies and provide valuable insights for
future research.

To address these challenges, we develop a dedicated benchmarking toolkit, dubbed GFMBench, for
GFM-oriented genomics, capable of benchmarking and leveraging GFMs in in-silico tasks. This
platform champions the following four key characteristics.

• We have collected and integrated 4 large-scale benchmarks, 42 millions of genome sequences
from up to 75 genomic datasets, into GFMBench to mitigate issues of data scarcity. We also per-
form data filtering for downstream tasks, e.g., structure predictions, that suffer from data leakage,
reducing similar sequences and structures. This aids in addressing biases in the learning series
and annotated data.

• To mitigate data and implementation bias that break metric reliability, we have integrated com-
mon metrics and developed automatic performance recording in benchmark evaluations to ensure
consistently fair performance.

• To improve the reproducibility of benchmark experiments, GFMBench exploits the benchmarks
compiled in a unified protocol, specifying detailed metadata and benchmark settings that fol-
low the FAIR principles (Wilkinson et al., 2016). e.g., hyperparameters and dataset splits, that
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(b) In-silico Genomic Tasks
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(c) Built-in Application Interfaces

(a) Open-source Genomic Software

AutoBench Embedding RNA Design Augmentation LeaderboardFine-tuning Structure
Prediction OnlineHub

Figure 1: (a) shows the available tools in the open-source software, including the AutoBench
pipeline and genome embedding extraction. GFMBench also launches an online hub and leader-
board to support GFM development. (b) illustrates the diverse genomic tasks supported by
GFMBench, enabling both benchmarking and fine-tuning. This allows even novices in GFM to
implement and fine-tune models without writing custom code. GFMBench includes common task
templates and offers built-in interfaces for implementing new tasks. In addition to the fine-tuning
interfaces, GFMBench provides user-friendly tools for running inferences and deployments.

may lead to performance variance across models and datasets. On the other hand, the stark lack
of biologist-friendly GFM-oriented genomics software like ViennaRNA1, necessitates expertise
in language modeling and bioinformatics to democratize GFMs and hinders the exploration of
leveraging GFMs in genome modeling. The absence of standardized solutions may exacerbate
conclusion inconsistencies in genome modeling studies, as custom-built solutions may introduce
uncertainties in model reliability.

• Adaptive benchmarking is supported in GFMBench. It is distinguished by its compatibility
with diverse GFMs and benchmarks across different modalities of genomic data. Such adaptive
benchmarking can facilitate findings from cross-genomic studies and provide valuable insights
for future research. For example, Yang & Li (2024) showed that RNA structure pre-training sig-
nificantly improves model performance on DNA genomic benchmarks, indicating that structural
information is vital even for DNA genomes.

2 PROPOSED GFMBENCH

GFMBench is an open-source benchmarking software platform for GFMs, and its architecture
is shown in Figure 1. Figure 1 (a) presents the available toolkit for genomics, including the
AutoBench pipeline and genome embedding extraction, among other features. Figure 1 (b) shows
the diverse set of genomic tasks supported by GFMBench for both benchmarking and fine-tuning.
Moreover, Figure 1 (c) illustrates the user-friendly built-in interfaces in GFMBench for implement-
ing and fine-tuning new models, as well as for running inferences and deployments. We delineate
the components in the following sections.

1https://www.tbi.univie.ac.at/RNA
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GFMBench is an open-source benchmarking software platform for GFMs, and its architecture is
shown in Figure 1 Figure 1. Figure 1 (a) presents the available tools for genomics, including the
AutoBench pipeline and genome embedding extraction. Figure 1 (b) displays the genomic tasks
that GFMBench supports for benchmarking and fine-tuning. Figure 1 (c) shows the user-friendly
interfaces for implementing new models, as well as for running inferences and deployments. We
describe the components in detail below.

2.1 AUTOBENCH PIPELINE

AutoBench is an automated benchmarking solution for genomics, involving the concepts of
benchmark suite standardization, open-source GFM compatibility, and metric implementation. In
AutoBench, four standardized benchmark suites can be evaluated with existing open-source
GFMs, alleviating the data scarcity problem. Public and custom metric implementations are also
supported, allowing users to benchmark models against specific performance requirements. The
metrics in AutoBench are recommended and distributed as part of the benchmark suites to ensure
metric reliability for GFMs. It prioritizes the standardization of benchmark suites and protocols to
minimize benchmarking uncertainties.

Benchmark Suites It has been recognized that comprehensive benchmark suites are crucial for
language modeling evaluation. To be more specific, genome languages are complicated and far
from manipulation like natural languages, because the understanding of genetic information is chal-
lenging for GFMs. For example, single nucleotide variants (SNVs) (Miladi et al., 2020) and single
nucleotide polymorphisms (SNPs) (Rafalski, 2002) often lead to significant shifts in phenotypes,
while the critical base differences in such long sequences are sparse (Shastry, 2002) and diffi-
cult for GFMs to perceive. Moreover, each genome of a species can essentially be regarded as a
different language, which further complicates genome modeling. To achieve robust evaluations,
GFMBench has integrated four large-scale benchmarks that enable broad evaluations of in-silico
tasks. These benchmarks comprise 42 million genomic sequences and help alleviate the problem of
data scarcity and bias, allowing for precise and generalizable performance assessments of GFMs.

The brief introductions of the available benchmarks for AutoBench in GFMBench are as follows:

• RNA Genomic Benchmark (RGB) (Yang & Li, 2024). RGB consists of 7 challenging single-
nucleotide (SN) level genome understanding tasks, curated or collected from published sources,
as shown in Table 5. It aims to benchmark GFMs in SN-level modeling tasks such as predicting
mRNA degradation rates and secondary structures. The sequences in RGB range from 107 to
512 bases, making them suitable for verifying RNA model efficacy. These downstream tasks in
RGB assemble the first comprehensive RNA benchmark to assess the multi-species and SN-level
modeling capabilities of GFMs. For detailed information on each dataset, such as their sources
and sizes, please refer to Appendix B.1.

• Plant Genomic Benchmark (PGB). PGB2 (Mendoza-Revilla et al., 2023) shown in Table 7, pro-
vides a large-scale DNA benchmark suite designed to evaluate GFMs specialized in plant biology.
PGB involves 8 types of DNA downstream subtasks, including a range of critical tasks such as
promoter strength prediction and gene expression regression. There are 28 datasets in total, with
millions of DNA sequences in PGB, and the sequence lengths are up to 6, 000, which is quite long
for most genomic FMs. Since the original evaluation protocol is not publicly available, we have
re-implemented the auto-benchmark for all the subtasks from PGB in GFMBench.

• Genomic Understanding Evaluation (GUE) (Zhou et al., 2023). GUE is a multi-species genome
classification benchmark that includes 36 datasets across 9 important genome analysis tasks, with
input lengths ranging from 70 to 10, 000. The benchmark covers a variety of species, including
humans, fungi, viruses, and yeast, and explicitly defines evaluation metrics for each task, ensur-
ing fair comparisons across different models. GUE consists of 7 genome sequence classification
problems and 28 datasets, focusing on sequences with input lengths up to 1, 000, offering a robust
testing ground for models handling longer genomic sequences.

• Genomic Benchmarks (GB) (Grešová et al., 2023). GB is an early collection of DNA genome
datasets aimed at evaluating the genomic sequence classification performance of deep learning
models. The benchmark includes 9 datasets focusing on various regulatory elements, such as
promoters, enhancers, and open chromatin regions, across different species like humans, mice, and

2https://huggingface.co/datasets/InstaDeepAI/plant-genomic-benchmark
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roundworms. The downstream datasets aim to standardize comparisons, promote reproducibility,
and drive innovation in genomic modeling.

Benchmark Standardization The universal protocols for benchmark suites benchmarks has been
absent in existing works, leading to performance biases caused by in-consistent implementations,
such as hyperparameters. To tackle this problem, we propose the benchmark standardization, com-
piling suites with comprehensive components that guarantee identical benchmarking results, such as
metadata, hyperparameter settings, custom code implementations, metrics specifications.

Benchmark metadata is essential for ensuring adherence to the FAIR principles (Wilkinson et al.,
2016). We included primary keys in the metadata, including data sources, species information,
genome specifications (e.g., DNA, RNA), and data scale measures. We also encourage to include
custom keys in the future benchmarks to allow users to interpret such benchmark suites in depth. To
increase benchamrking reproducibility, We freeze the hyperparameter settings in the standardized
benchmark suites, because a slight change of hyperparameter may lead to significant variances (Post,
2018), such as batch sizes and optimizers. We also notice that the some genomic tasks requires
custom codes to complete the benchmark, e.g., codes to process the data and implement the model
and tokenizers. Therefore, GFMBench can parse custom codes in the configuration corresponding
to each task and override builtin behaviors. In GFMBench, we mirrored a diverse set of common
metrics from scikit-learn3 to supported diverse tasks. However, we are aware of some tasks that
demand special unsupported metrics, GFMBench will load the load metric implementations in the
standardized suites like the custom codes. In GFMBench, we have implemented a diverse set of
common performance metrics, such as F1 score, MCC and AUC. Apart from the built-in metrics,
custom metrics can be included in benchmark suites to eliminate the performance variance caused
by implementations.

The precompiled benchmark suites are distributed and evaluated according to GFMBench. This
standardization not only enhances the reproducibility of benchmark results but also facilitates a
more nuanced understanding of model strengths and limitations across diverse genomic tasks.

Genomic Foundation Models The primary challenges stem from the heterogeneity of GFM ar-
chitectures such as Transformers (Vaswani et al., 2017; Lin et al., 2023), Hyena (Poli et al., 2023;
Nguyen et al., 2023; 2024) and Mamba (Gu & Dao, 2023; Schiff et al., 2024b). These versatile
implementations of GFMs require distinct environment and package requirements, as we as dif-
ferent interfaces for initialization, training and inference, leading to inefficient GFMs performance
evaluation across benchmarks. Moreover, there have been attempts of genome tokenization meth-
ods (Zhou et al., 2023; Nguyen et al., 2023; Dalla-Torre et al., 2023; Li et al., 2024). The tokenization
of genome sequences encountered significant variances between different downstream tasks, such as
k-mers (Yang et al., 2023; Dalla-Torre et al., 2023), Byte Pair Encoding (BPE) (Devlin et al., 2019;
Zhou et al., 2023), and Single Nucleotide Tokenizers (SNT) (Nguyen et al., 2023; Chen et al., 2023;
Yang & Li, 2024). These tokenization methods feature different implementations and are tailored
to be compatible with particular GFMs. In instances where tokenizers are incorrectly instantiated or
utilized, this can lead to reports of unreliable performance metrics.

To standardize benchmarking across diverse GFMs with respect to specialized tokenizers, we have
developed wrapper templates to unify interfaces and tokenizers, streamlining elastic benchmarking
of open-source or customized GFMs. For example, GFMBench is capable of accommodating GFMs
integrating RNA secondary structures modeling (Yang & Li, 2024) with a simple model wrapper
while existing benchmark tools have yet to achieve such flexibility. We have supported an array
of open-source GFMs in GFMBench, detailed in Appendix C.3, and tutorials for adapting future
GFMs will be released along with the open-source repository.

AutoBench for Adaptive Benchmarking AutoBench parses the configuration4 of stan-
dardized benchmark suites, automates the evaluation processes via unified interfaces,
adaptive benchmarking benchmarking among diverse GFMs and suites is seamless in GFMBench,
i.e., without any modification of the command. The compiled suites offer standard benchmark

3https://scikit-learn.org
4We show an example configuration of RGB at https://tinyurl.com/GFMBench-Demo/

examples/RGB/RNA-mRNA/config.py
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processes among various GFMs and versatile data modalities from diverse species. We pro-
vide a tutorial for AutoBench in https://tinyurl.com/GFMBench-Demo/examples/
AutoBench_Tutorial.ipynb. The rationale of adaptive benchmarking in genomics is multi-
faceted. Firstly, given the vast diversity of genomic data across species, adaptive benchmarking can
reveal a GFM’s potential for cross-species applications, a critical factor in comparative genomics
and evolutionary studies. Finally, GFMs may exhibit surprising proficiency in tasks they weren’t
explicitly trained for, potentially uncovering novel applications or insights into the relationship be-
tween different genomic tasks. Secondly, it allows researchers to gauge models’ ability to capture
genomic knowledge rather than task-specific patterns, and it stress-tests GFMs under scenarios of
underrepresented genomic sequences or tasks. This helps identify limitations or biases in the mod-
els that may not be apparent in their primary training domains. Finally, the adaptive benchmarking
calls for standardized and universal platforms that accelerate the evolution of GFMs with largely
decreased requirements of expertise on benchmarking.

2.2 GENOMICS SOFTWARE

GFMs have been extensively used for proof-of-concept in-silico experiments, such as secondary
structure and translation efficiency predictions, but have yet to be widely acknowledged in in-vivo
scenarios. Existing GFM studies generally require significant expertise in both NLP and molecu-
lar biology, which hampers the widespread adoption of GFM-guided genome analysis. Therefore,
GFMBench has been designed as open-source software dedicated to genome modeling, similar to
ViennaRNA.

Genomic Toolkit As open-source software for universal genomics, we have curated a range of fea-
tures, including genome embedding extraction, genome data augmentation, and common genomic
tasks such as RNA design. Additionally, users can utilize the user-friendly application interfaces
(APIs) to complete genomic downstream tasks without any prior knowledge, such as training and
testing a GFM for RNA sequence classification, enabling users to easily integrate GFMBench into
their workflows. We provide some code examples5 to demonstrate the toolkit’s usage, e.g., auto-
mated benchmarking, showcasing the utmost utility of GFMBench in genomic modeling.

Online Hub Inspired by successful practices within the NLP community, we have developed an
online hub designed to host and distribute a wide range of resources. This hub provides a central-
ized platform where users can easily access precompiled benchmark suites and fine-tuned models,
enabling efficient testing and experimentation for GFMs. It simplifies the workflow for both novices
and experts by offering ready-to-use benchmarks and models that can be downloaded or directly
integrated into their research pipelines. This hub is community-driven, encouraging collaboration
and innovation by allowing researchers from around the world to contribute their own benchmarks,
models, and evaluation metrics.

Leaderboard We have developed an open GFM leaderboard, showcasing detailed task-wise per-
formance for DNA and RNA downstream tasks. Please refer to the current leaderboard in Ap-
pendix D. To mitigate benchmarking bias, performance fidelity and comparison fairness are ensured
as the evaluation results are generated by AutoBench, eliminating manual interventions. The
leaderboard helps researchers identify GFMs’ strengths and weaknesses on a task-by-task basis,
aiding them in selecting the most appropriate models for their tasks. The leaderboard also accepts
community contributions, such as new benchmark result submissions.

Design Principles To improve the sustainability of GFMBench, it has been specifically engi-
neered to simplify the complexities associated with genomic modeling, ensuring research reliability
and enhancing prediction efficiency, adhering to the following design principles:

• Utility: The software provides user-friendly interfaces for hundreds of downstream tasks, such as
RNA design. It allows the training and inference of genomic tasks to be conducted with minimal
coding.

• Simplicity: Comprehensive tutorials are available to assist GFM novices, covering a range of
topics from data curation and augmentation to GFM fine-tuning and inference.

5https://tinyurl.com/GFMBench-Demo/examples/readme.md
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• Diversity: A broad spectrum of benchmarks and GFMs is included to support the development of
various task types and model architectures, fostering innovation and experimentation in genomic
research.

• Extensibility: The software supports the benchmarking of custom tokenizers, GFMs, and metrics
without the need to modify existing source code, offering flexibility and adaptability to meet
specific research needs.

• Community: An interactive leaderboard showcases detailed performance evaluations of GFMs,
promoting transparency and competitive development within the field. Additionally, a container-
ized evaluation environment is provided to minimize the impact of software variability on the
reliability of benchmarking.

3 BENCHMARK RESULTS

In this section, we present a comprehensive evaluation of GFMs using the GFMBench. We report
the performance of open-source GFMs across four major genomic benchmark suites, i.e., RGB,
PGB, GUE and GB, highlighting GFMs’ strengths and weaknesses across diverse genomic tasks
and datasets. To mitigate potential class imbalance issues, we adopt the macro F1 score as the
metric in classification tasks, replacing accuracy where necessary.

3.1 RNA GENOMIC BENCHMARK (RGB)

The RGB comprises seven challenging single-nucleotide level RNA modeling tasks, designed to
evaluate models’ fine-grained capabilities in understanding RNA sequences, such as predicting RNA
structures. These tasks include mRNA degradation rate prediction, single-nucleotide modification
detection (SNMD), single-nucleotide modification regression (SNMR), and RNA secondary struc-
ture prediction tasks such as Archive2, Stralign, and bpRNA. Additionally, EternaV2 evaluates mod-
els on RNA design tasks.

Table 1 presents the performance of various GFMs on the RGB tasks. Overall, OmniGenome
achieves the best performance across all tasks, highlighting its exceptional capability in RNA struc-
ture modeling. This superior performance can be attributed to OmniGenome’s integration of struc-
tural information into its modeling process, which is particularly beneficial for tasks requiring sec-
ondary structure prediction.

Table 1: The performance of GFMBench and baseline models on the RGB, with results averaged
based on five random seeds. “N.A.” means not available for predictive tasks.

Model
mRNA SNMD SNMR Archive2 Stralign bpRNA EternaV2
RMSE AUC F1 F1 F1 F1 Accuracy

ViennaRNA N.A. N.A. N.A. 73.99 74.09 65.03 33
MXFold2 N.A. N.A. N.A. 90.09 97.01 64.99 N.A.
Ufold N.A. N.A. N.A. 89.78 95.76 78.38 N.A.

DNABERT2 0.8158 49.94 15.86 55.73 64.09 33.77 0
HyenaDNA 0.8056 53.32 39.80 71.18 91.24 57.43 0
Caduceus 0.8026 57.01 39.59 74.37 92.28 59.76 0
NT-V2 0.7826 50.49 26.01 68.36 83.18 56.95 0
Agro-NT 0.7830 49.99 26.38 62.81 72.54 46.87 0
SpliceBERT 0.7340 58.11 46.44 79.89 93.81 71.59 3
3UTRBERT 0.7772 50.02 24.01 68.62 88.55 57.90 0
RNABERT 0.8087 51.32 29.14 24.66 83.68 47.96 0
RNA-MSM 0.7321 57.86 45.22 68.72 91.15 64.44 2
RNA-FM 0.7297 59.02 42.21 82.55 95.07 78.16 4
OmniGenome 0.7121 64.13 52.44 91.89 98.21 83.18 84

In particular, OmniGenome significantly outperforms other models on the mRNA degradation rate
prediction task, achieving an RMSE of 0.7121, compared to the second-best RMSE of 0.7297 by
RNA-FM. Similarly, for the SNMD task, OmniGenome achieves an AUC of 64.13, surpassing the
second-best score of 59.02 by RNA-FM. These results indicate that OmniGenome effectively cap-
tures single-nucleotide level variations, which are crucial in RNA function and regulation. Fur-
thermore, in the secondary structure prediction tasks (Archive2, Stralign, bpRNA), OmniGenome
demonstrates superior performance, highlighting its proficiency in modeling RNA secondary struc-
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Table 2: Performance of open-source GFMs on PGB, where the results are re-implemented based on
our evaluation protocol. “PolyA” stands for Polyadenylation, “Chrom Acc” for Chromatin Acces-
sibility, “Prom Str” for Promoter Strength, “Term Str” for Terminator Strength, “Splice” for Splice
Site, “Gene Exp” for Gene Expression, and “Enh Reg” for Enhancer Region.

Model
PolyA LncRNA Chrom Acc Prom Str Term Str Splice Gene Exp Enhancer

F1 F1 F1 RMSE RMSE F1 RMSE F1

DNABERT2 41.35 72.55 61.49 0.99 0.24 45.34 14.78 36.40
HyenaDNA 83.11 58.21 52.20 0.88 0.26 90.28 14.79 66.17
Caduceus 70.89 68.40 64.53 0.91 0.26 78.51 14.72 60.83
NT-V2 71.26 73.08 65.71 0.81 0.27 95.05 14.79 73.89
Agro-NT 78.89 67.24 63.27 0.94 0.78 88.45 15.56 62.83
SpliceBERT 65.23 71.88 63.62 0.75 0.22 96.45 14.70 69.71
3UTRBERT 76.48 70.75 63.71 1.04 0.36 94.44 14.87 71.67
RNA-BERT 78.54 61.99 48.94 1.81 0.38 94.45 14.89 57.61
RNA-MSM 84.25 67.49 53.52 1.28 0.28 95.49 14.87 61.45
RNA-FM 84.94 68.75 54.92 0.95 0.27 95.95 14.83 57.14
OmniGenome 87.55 77.96 67.69 0.59 0.18 98.41 14.71 79.77

tures. This can be attributed to OmniGenome’s incorporation of structural context during pretrain-
ing, which enhances its ability to understand and predict RNA folding patterns. One limitation
observed is that models not specifically designed for RNA tasks, such as DNABERT2 and Hye-
naDNA, perform poorly on RNA-specific tasks. This underscores the importance of tailoring GFMs
to the specific characteristics of RNA sequences.

In summary, the RGB results highlight the critical role of structural modeling in RNA genomics
and demonstrate the effectiveness of OmniGenome in capturing complex RNA features. Future
GFMs may benefit from incorporating structural information to enhance performance on RNA-
related tasks.

3.2 PLANT GENOMIC BENCHMARK (PGB)

The PGB comprises DNA-based tasks focused on plant biology, and the detailed task descriptions
can be found in the Appendix B. The sequences in PGB contain up to 6, 000 bases, presenting chal-
lenges for models in handling long genomic sequences. Table 2 summarizes the performance of
various GFMs on the PGB tasks. Resembling the results of RGB, OmniGenome achieves top-tier
performance across most tasks, even though it was only trained on RNA. This suggests that Om-
niGenome generalizes well to DNA-based tasks, likely due to shared sequence motifs and structural
similarities between RNA and DNA.

In the PolyA task, OmniGenome achieves an F1 score of 87.55, outperforming the second-best
model, RNA-FM, which achieves 84.94. Similarly, for the LncRNA task, OmniGenome attains an
F1 score of 77.96, significantly higher than the second-best score of 73.08 by NT-V2. OmniGenome
excels in the Splice Site prediction task, achieving an F1 score of 98.41, surpassing the second-
best score of 96.45 by SpliceBERT. This suggests that OmniGenome effectively captures sequence
motifs important for splicing, which is crucial in gene expression regulation. These results indicate
that GFMs incorporating structural context, like OmniGenome, can generalize effectively across
different genomic modalities (RNA and DNA) and species (plants). The strong performance of
OmniGenome on DNA-based tasks suggests that structural modeling enhances the understanding of
genomic sequences beyond the specific type of nucleic acid. However, it’s also observed that some
models specifically designed for DNA tasks, such as NT-V2 and SpliceBERT, perform competitively
on certain tasks. This underscores the importance of task-specific pretraining and the potential
benefits of integrating both sequence and structural information in GFMs.

In summary, the PGB results highlight the potential for cross-modal generalization in GFMs and the
value of incorporating structural context to enhance performance on diverse genomic tasks.

3.3 GENOMIC UNDERSTANDING EVALUATION (GUE)

The GUE is a multi-species benchmark like RGB and PGB, but focuses on the non-plant genomes.
The sequences in GUE range in length and complexity, providing a robust assessment of GFMs’
abilities to generalize across species and genomic tasks. Table 3 presents the performance of various
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GFMs on the GUE tasks. While OmniGenome does not achieve the highest performance on all
tasks, it consistently delivers competitive results, demonstrating strong cross-species generalization
despite being primarily trained on RNA data.

Table 3: Performance of open-source GFMs on GUE, where the results are re-implemented based
on our evaluation protocol. The performance for each task is the average macro F1 score in all sub-
datasets.

Model
Yeast EMP Mouse TF-M Virus CVC Human TF-H Human PD Human CPD Human SSP

F1 F1 F1 F1 F1 F1 F1

DNABERT-2 75.85 86.23 58.23 81.80 90.17 82.57 85.21
HyenaDNA 73.08 73.44 27.59 77.62 91.19 84.31 83.34
Caduceus 73.49 78.18 27.49 79.56 89.13 85.09 81.82
NT-V2 74.93 78.10 32.71 79.12 90.87 84.70 84.13
SpliceBERT 77.66 84.97 47.17 82.77 92.24 83.96 93.81
3UTRBERT 71.89 71.46 34.84 74.85 82.37 90.51 81.95
RNA-BERT 60.14 59.83 21.08 67.48 79.87 76.25 44.75
RNA-MSM 64.99 79.15 51.81 78.72 91.28 85.42 84.24
RNA-FM 74.41 78.24 52.22 79.27 92.18 86.05 84.76
OmniGenome 78.51 84.72 64.41 81.73 90.04 85.22 90.39

In the Yeast EMP task, OmniGenome achieves the highest F1 score of 78.51, slightly outperforming
SpliceBERT of 77.66. For the Virus CVC task, OmniGenome also achieves the best performance
with an F1 score of 74.72, indicating its strong ability to model viral genomic sequences. However,
for tasks like Human TF-H and Human SSP, models like SpliceBERT and DNABERT2 achieve
higher scores. This suggests that these models may be better optimized for human genomic se-
quences or specific tasks like splice site prediction. The results on GUE highlight the challenges in
developing GFMs that generalize across different species and genomic tasks. While OmniGenome
demonstrates strong cross-species performance, there is variability depending on the specific task
and species. These findings suggest that combining the strengths of different GFMs or developing
ensemble methods could be a fruitful direction for future research. Additionally, incorporating more
diverse training data and task-specific fine-tuning may enhance the performance of GFMs across a
broader range of tasks.

3.4 GENOMIC BENCHMARKS (GB)

GB is a collection of DNA genome datasets aimed at evaluating the performance of models on
sequence classification tasks involving regulatory elements such as promoters, enhancers, and open
chromatin regions across different species including humans, mice, and roundworms. Table 4 shows
the performance of various GFMs. The tasks are denoted by their species and regulatory elements,
and the acronyms are explained in Appendix B.4.

Table 4: Performance of open-source GFMs on GB, where the results are re-implemented based on
our evaluation protocol.. The performance (macro F1) for each task is the average macro F1 score
across all sub-datasets.

Model
DEM DOW DRE DME HCE HEE HRE HNP HOR

F1 F1 F1 F1 F1 F1 F1 F1 F1
DNABERT-2 92.67 95.17 43.77 77.21 75.58 80.66 78.14 85.80 68.03
HyenaDNA 88.21 94.13 70.11 76.44 70.38 79.58 96.33 85.99 67.03
Caduceus 92.13 94.74 72.03 75.61 70.20 76.47 79.16 84.36 63.17
NT-V2 91.66 94.32 78.20 81.72 71.98 79.85 93.30 85.30 68.53
SpliceBERT 94.72 96.42 72.29 74.70 73.50 79.60 95.23 89.57 68.89
3UTRBERT 89.50 90.22 74.35 80.14 70.23 76.33 98.47 82.49 66.78
RNA-BERT 76.56 62.17 50.11 60.79 66.69 63.29 46.57 73.80 56.59
RNA-MSM 79.38 93.71 54.13 75.90 69.79 78.07 94.87 84.28 63.93
RNA-FM 91.53 95.49 74.77 79.74 71.62 80.03 95.72 87.14 69.38
GFMBench 94.16 93.49 77.17 80.34 73.51 82.23 95.66 87.87 68.97

In the DEM and DOW tasks, SpliceBERT achieves the highest F1 scores, with OmniGenome closely
following in DEM and RNA-FM in DOW. For the DRE task, NT-V2 achieves the best performance
with an F1 score of 78.20, with OmniGenome performing closely. In the HEE task, OmniGenome
attains the highest F1 score of 82.23, surpassing the second-best score of 80.03 by RNA-FM. This
indicates OmniGenome’s effectiveness in modeling human enhancer regions. From a global per-
spective, these results demonstrate that while different GFMs excel in specific tasks, OmniGenome
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consistently performs well across various genomic benchmarks, highlighting its versatility. The per-
formance variations across models suggest that task-specific features and training data significantly
impact model efficacy. A limitation observed is that GFMs primarily trained on RNA data, like
RNA-BERT and RNA-MSM, lost on DNA-based tasks. This underscores the importance of training
data relevance and the potential need for multimodal pretraining strategies.

In conclusion, the GB results emphasize the need for GFMs that can generalize across different
genomic tasks and species. Integrating structural information, as done in OmniGenome, appears to
enhance model performance on complex genomic tasks.

3.5 OVERALL DISCUSSION

Our comprehensive evaluation across four genomic benchmarks reveals that OmniGenome consis-
tently achieves top-tier performance, particularly excelling in tasks that involve structural modeling
of RNA sequences. The integration of structural information in OmniGenome enhances its ability
to capture complex sequence features, which is advantageous across diverse genomic tasks. While
OmniGenome demonstrates strong performance even on DNA-based tasks, models specifically tai-
lored to certain tasks or species, such as SpliceBERT and DNABERT2, sometimes outperform Om-
niGenome in those specific contexts. This suggests that task-specific or species-specific pretraining
can provide benefits, and there is potential for combining the strengths of different models.

The absence of results for certain models on some benchmarks (e.g., RNA-BERT, RNA-MSM,
and RNA-FM on GUE) highlights the challenges in benchmarking GFMs across diverse datasets.
Differences in model architectures, pretraining data, and tokenization strategies can impact a model’s
applicability to specific tasks. Future work should focus on developing unified evaluation protocols
and improving the interoperability of GFMs. An important consideration is the need for detailed
descriptions of the models evaluated, including their architectures, pretraining data, and key features.
This information is crucial for understanding the factors contributing to their performance and for
reproducing results. We acknowledge that such details are essential and included in Appendix B.

Overall, our comprehensive benchmarking highlights the importance of integrating structural in-
formation into GFMs and suggests that models capable of capturing both sequence and structural
features offer improved performance across a range of genomic tasks. This work provides valu-
able insights for the development of next-generation GFMs and underscores the need for continued
efforts in benchmarking to drive advancements in genomic modeling.

4 RELATED WORKS

The GFM-oriented platforms, such as benchmarking and application toolkits, have been investigated
but have yet to be revolutionised. For example, there are several benchmarking studies such as
RNABench (Runge et al., 2024), GenBench (Liu et al., 2024), BEACON (Ren et al., 2024), and
DEGB (West-Roberts et al., 2024), and the application software like Kipoi6 (Avsec et al., 2019).
Overall, these benchmarking tools do not prioritise the standardisation and automation of GFM
benchmarking and generally focus on specific scenarios such as DNA benchmarking. On the other
hand, there is no GFM-dedicated software which leverages the unprecedented capability of GFMs
in the wide applications of in-silico genomics. Please find more details of the related works in
Appendix A.

5 CONCLUSION

We propose GFMBench in this work to address the challenges of GFMs in benchmarking and ap-
plication. GFMBench tackles the crux lies in the evaluation of modeling the complex ’genomic
language’ of DNA and RNA by integrating four large-scale benchmarks and 42 million genome
sequences from 75 datasets, to support the evaluation of 10+ open-source GFMs. Moreover,
GFMBench is an open-source software that simplifies the pipelines of genomic modeling, ensur-
ing in-silico genomic research reliability and efficiency, and promoting community collaboration
through a dedicated leaderboard.

6https://kipoi.org
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A RELATED WORKS

A.1 BENCHMARK

Recognizing the critical role of benchmarking in genomic modeling, several tools have been devel-
oped to evaluate genomic models. Among these are RNABench (Runge et al., 2024), GenBench (Liu
et al., 2024), BEACON (Ren et al., 2024), and DEGB (West-Roberts et al., 2024).

RNABench focuses on a set of benchmarks, such as RNA secondary structure prediction, and lacks
support for evaluating the latest pre-trained models. GenBench is a modular DNA benchmarking
framework that provides a DNA evaluation solution but does not extend to RNA benchmarking,
and it may not prioritize user-friendliness. BEACON is a recent benchmarking tool aimed at RNA
foundational models, offering some RNA evaluation datasets. However, it may lack benchmarking
scalability and the complexity of its environment setup poses challenges for novices. DEGB serves
as an evaluation benchmark for genomic embeddings, supporting both amino acids and nucleic
acids. Its main limitation lies in the small scale of its evaluation benchmarks, and it does not support
downstream applications of GFMs. Classic genomic modeling tools like Kipoi7 (Avsec et al., 2019)
have been developed to standardize access to trained models for genomic sequence analysis, offering

7https://kipoi.org
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a repository of models. However, Kipoi focuses on providing access to classic models, not GFMs,
rather than benchmarking comprehensively.

There are some protein benchmarking tools, such as ProteinGym (Notin et al., 2024), Flip (Dallago
et al., 2021) and Peer (Xu et al., 2022), to name a few. ProteinGym is a large-scale benchmarking
tool focused on protein fitness prediction and design. It provides over 250 deep mutational scanning
assays, offering a standardized dataset to evaluate machine learning models across millions of mu-
tated protein sequences. ProteinGym is designed to assess both zero-shot and supervised models,
particularly in predicting the effects of mutations and aiding protein engineering for applications like
genetic disease, agriculture, and healthcare. Flip provides a benchmark for predicting the protein
sequence-function relationship, a critical aspect of protein engineering. It includes data for tasks
such as adeno-associated virus stability, protein domain stability, and thermostability from multiple
protein families. Flip is designed to evaluate model generalization under various conditions, such as
low-resource or extrapolative scenarios. Its datasets are curated to assess the capacity of models to
predict functional properties of proteins in real-world protein engineering tasks. Peer is a compre-
hensive multi-task benchmark that offers 17 tasks across five categories, including protein function
prediction, localization, structure, and interaction predictions. It evaluates a wide range of machine
learning methods, from traditional approaches to large pre-trained protein language models. Peers’
broad scope helps assess model performance in different protein-related tasks, contributing to ad-
vancements in protein sequence understanding and engineering.

Existing tools do not adequately address the challenges of comprehensive, large-scale evaluation of
RNA and DNA GFMs. They often lack support for downstream applications and do not facilitate
the ease of use or scalability necessary to catalyses the democratization and revolution of GFM
research. This gap has motivated the development of a new benchmarking tool designed to cover
a broad spectrum of foundational DNA and RNA models and provide an extensive benchmarking
suite.

A.2 GENOMIC FOUNDATION MODELS

In recent years, the modeling of biological sequences, including DNA, RNA, and proteins, has
garnered significant attention. Protein modeling, exemplified by works such as AlphaFold (Jumper
et al., 2021; Evans et al., 2021; Abramson et al., 2024) and ESM (Lin et al., 2022), has advanced
considerably over the past years, outpacing developments in DNA and RNA modeling.

In the domain of genomic sequence modeling, early efforts focused on adapting natural language
processing architectures to handle genomic data. For instance, DNABERT (Ji et al., 2021) repur-
posed the BERT (Devlin et al., 2019) architecture for genomic sequences, demonstrating preliminary
success on in-silico genomic tasks. Building upon this, DNABERT2 (Zhou et al., 2023) introduced
improvements by replacing k-mer tokenization with byte-pair encoding (BPE) tokenization, enhanc-
ing model performance across multiple species.

To explore the capabilities of large-scale foundation models (FMs), the Nucleotide Transformers
V2 (Dalla-Torre et al., 2023), AgroNT (Mendoza-Revilla et al., 2023), and SegmentNT (de Almeida
et al., 2024) scaled models to billions of parameters. These models achieved promising results
in understanding DNA genomes, with parameter counts reaching up to 2.5 billion and 1 billion,
respectively. AgroNT, pre-trained on multi-species edible plant DNA sequences, however, did not
transfer effectively to RNA sequence modeling in subsequent experiments. Addressing the challenge
posed by the considerable length of genomic sequences, recent works have emphasized long-range
sequence modeling and introduced auto-regressive FMs, such as HyenaDNA (Nguyen et al., 2023)
and Evo (Nguyen et al., 2024).

In the context of RNA genomic modeling, several preliminary studies have emerged, including
scBERT (Yang et al., 2022), RNABERT (Akiyama & Sakakibara, 2022), RNA-FM (Chen et al.,
2022), RNA-MSM (Zhang et al., 2023), and RNAErnie (Wang et al., 2024). These models, however,
are typically trained on limited-scale databases due to the scarcity and expense of obtaining RNA
sequences. Some FMs focus on specific RNA types, such as coding sequences (CDS)(Hallee et al.,
2023), 5’ untranslated regions (5’UTR)(Chu et al., 2024), 3’ untranslated regions (3’UTR)(Yang
et al., 2023), or precursor mRNA sequences(Chen et al., 2023), which constrains their ability to
capture the full diversity of RNA sequences. Uni-RNA (Wang et al., 2023) has been reported to
achieve strong performance owing to its large-scale model and extensive database. However, it is
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not open-sourced, precluding direct comparison in experiments. ChatNT (Richard et al., 2024) is
a multimodal conversational agent designed to assist with tasks involving DNA, RNA, and protein
sequences. It can handle diverse genomic and proteomic tasks, such as predicting sequence struc-
tures, simulating biological processes, or interacting with foundational models. ChatNT integrates
advanced AI models to facilitate research in genomic data processing, enhancing accessibility and
scalability in tasks across multiple biological modalities.

B BENCHMARK DETAILS

B.1 RNA GENOMIC BENCHMARK

The detailed task descriptions for each nucleic acid and species, including the number of examples,
classes, evaluation metric, and sequence length, are outlined in Table 5. Each task is carefully
curated to reflect the complexity and variety inherent in genomic data, providing a robust framework
for assessing the nuanced capabilities of state-of-the-art RNA FMs. RGB contains 6 SN-level tasks
that are curated or collected from published articles. The purpose of RGB is to benchmark genomic
FMs in challenging SN-level modeling tasks such as the detection and repair of SN mutations,
mRNA sequence degradation rates, and RNA secondary structure prediction. Due to the lack of a
plant RNA benchmark dataset, RGB includes the modeling of RNA sequences from a variety of
species, e.g., plant and human. The sequence length in RGB ranges from 107 to 512, which is
sufficient for most RNA understanding tasks. In summary, these multi-species and SN-level tasks
in RGB serve as the first comprehensive benchmark utilized to assess the RNA sequence modeling
capabilities of GFMBench and its baseline models. The brief introduction of the datasets in RGB is
as follows:

• Single-Nucleotide Mutation Detection (SNMD): We developed a plant RNA dataset synthesiz-
ing the single-nucleotide mutations. Focused on identifying potential single nucleotide changes,
this task is essential for detecting mutations linked to genetic disorders. The SNMD dataset intro-
duces up to 10 random mutations in the original sequences, regardless of variation ratios. Cross-
entropy is utilized as the loss function for this binary token classification task.

• Single-Nucleotide Mutation Repair (SNMR): This task challenges the model to suggest correc-
tive actions at the single nucleotide level, aiding in gene therapy approaches. The SNMR dataset
mirrors the SNMD dataset, with cross-entropy as the loss function, indicating a token 4-way (i.e.,
A, U, C, G) classification task.

• mRNA Degrade Rate Prediction (mRNA): Estimating the decay rate of nucleotides in mRNA
sequences, this task is vital for deciphering gene expression and regulation. The dataset orig-
inates from the Kaggle COVID-19 vaccine design competition8, focusing solely on sequence-
based degradation rate prediction and excluding RNA structures. It’s a token regression task using
MSE as the loss function, with the dataset re-split into training, validation, and testing sets for
evaluation.

• RNA Secondary Structure Prediction (bpRNA & Archive2 & RNAStralign): Aiming to pre-
dict RNA folding into secondary structures, this task is fundamental to RNA functionality and
interactions. We evaluated GFMBench on four datasets, bpRNA (Danaee et al., 2018) (TR0,
VL0, TS0 sets), ArchiveII (Mathews, 2019), RNAStralign (Tan et al., 2017) and Rfam (Kalvari
et al., 2021). Following existing works, we have excluded sequences over 512 bases and complex
structures, simplifying to three symbols: ‘(’, ‘.’, ‘)’Ṙesults may not directly compare with
other studies due to these modifications. Cross-entropy serves as the loss function.

Please find the appendix for the input and output examples of each subtask in RGB. The detailed task
descriptions for each nucleic acid and species, including the number of examples, classes, evaluation
metric, and sequence length, are outlined in Table 5. Each task is carefully curated to reflect the
complexity and variety inherent in genomic data, providing a robust framework for assessing the
nuanced capabilities of state-of-the-art RNA FMs.

Table 6 show the virtual examples of different datasets in RGB. Please refer to our supplementary
materials to find the datasets for more details.

8https://www.kaggle.com/competitions/stanford-covid-vaccine
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Table 5: The brief statistics of subtasks in the RGB. These benchmark datasets are held out or not
included in the pretraining database. The numbers of examples in training, validation and testing
sets are separated by “/”. ∗ indicates the datasets are used for zero-shot performance evaluation only.

Task Task Type # of examples # of classes Metric Sequence length Source
SNMD Token classification 8, 000/1, 000/1, 000 2 AUC 200 This work
SNMR Token classification 8, 000/1, 000/1, 000 4 macro F1 200 This work
mRNA Token regression 1, 735/193/192 — RMSE 107 Kaggle
bpRNA Token classification 10, 814/1, 300/1, 305 3 macro F1 ≤ 512 (Danaee et al., 2018)
AchiveII Token classification 2278/285/285 3 macro F1 ≤ 500 (Mathews, 2019)
RNAStrAlign Token classification 17483/2186/2185 3 macro F1 ≤ 500 (Tan et al., 2017)

Table 6: The virtual input and output examples in the four benchmarks. The “. . . ” represents the
sequences that are omitted for better presentation and the red color indicates the wrong prediction in
classification tasks. In the mRNA dataset, all single nucleotides have three values to predict. Note
that “T” and “U” can be regarded as the same symbol in RNA sequences and depend on different
datasets.

Genome Type Dataset Column Examples

RNA

SNMD
Input Sequence G A G T A . . . T T G A G

True Label 0 0 1 0 0 . . . 0 0 1 0 0
Prediction 0 0 0 0 0 . . . 0 0 1 0 0

SNMR
Input Sequence T A C G A . . . C T G A T

True Label T A C A A . . . G T A A T
Prediction T A C A A . . . C T G A T

mRNA
Input Sequence G G . . . A C

True Label [0.1,0.3,0.2] [0.8,0.4,0.1]. . . [0.9,0.4,0.3] [0.5,0.2,0.6]
Prediction [0.1,0.3,0.2] [0.8,0.4,0.1]. . . [0.9,0.4,0.3] [0.5,0.2,0.6]

bpRNA
Input Sequence G G C G A . . . C U U U U

True Label ( ( ( · · . . . · · ) ) )
Prediction ( ( ( ( · . . . · ) ) ) )

DNA

Classification
Input Sequence A T C G A . . . T A G

True Label 1
Prediction 0

Regression
Input Sequence G C C A T . . . G C T

True Label 2.56
Prediction 2.45

Chrom Acc (Multi-label)
Input Sequence A T C G . . . C T G

True Label [1, 0, 1, 1, 0, 1, 1, 0, 1]
Prediction [1, 1, 1, 1, 0, 1, 1, 0, 1]

Table 7: The genomic tasks in the Plant Genomic Benchmark. This table briefly enumerates each
task by name, the number of datasets available, the type of classification or regression analysis
required, the range of sequence lengths, and the total number of samples in each dataset. Please find
the dataset details of PGB in Agro-NT.

Task # of datasets Task Type Total # of examples # of classes Metric Sequence length
Polyadenylation 6 Sequence classification 738, 918 2 macro F1 400
Splice site 2 Sequence classification 4, 920, 835 2 macro F1 398
LncRNA 2 Sequence classification 58, 062 6 macro F1 101− 6000
Promoter strength 2 Sequence regression 147, 966 — RMSE 170
Terminator strength 2 Sequence regression 106, 818 — RMSE 170
Chromatin accessibility 7 Multi-label classification 5, 149, 696 9− 19 macro F1 1, 000
Gene expression 6 Multi-variable regression 206, 358 — RMSE 6, 000
Enhancer region 1 Sequence classification 18, 893 2 macro F1 1, 000

B.2 PLANT GENOMIC BENCHMARK

PGB (Mendoza-Revilla et al., 2023) provides a comprehensive suite of datasets designed to evalu-
ate and improve the predictive capabilities of GFMs in plant biology. This benchmark, as shown
in Table 7, encompasses a range of critical genomic tasks, including binary classification, single
and multi-variable regression, and multi-label classification, addressing various aspects of plant
genomics such as RNA processing, gene expression, and chromatin accessibility. By integrating
diverse genomic tasks, the PGB aims to facilitate advanced research and development in plant ge-
nomics, offering a robust platform for the assessment and enhancement of model performance across
different plant species. To obtain a detailed description of PGB, please refer to Agro-NT (Mendoza-
Revilla et al., 2023).
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B.3 GENOMIC UNDERSTANDING EVALUATION

GUE (Zhou et al., 2023) serves as a DNA genomic benchmark, encompassing 36 datasets across nine
crucial genome analysis tasks applicable to a variety of species. Similar to PGB and GB, it is used for
evaluating the generalizability of GFMBench on DNA genome benchmarking. To thoroughly assess
the capabilities of genome foundation models across sequences of varying lengths, tasks have been
chosen with input lengths spanning from 70 to 10, 000. The brief statistics for each dataset included
in the GUE benchmark are displayed in Table 8, and the task descriptions are available in Zhang
et al. (2023). Due to resource limitations, we do not include large-scale FMs in this benchmark,
e.g., Agro-NT. Besides, we run the evaluation on a subset of GUE, where for each task we randomly
select at most 10k samples from the original splits, e.g., training, testing and validation (if any) sets.

Table 8: Statistics of tasks in the GUE, these details can be found in Section B.2. from Zhang et al.
(2023).

Task Metric Datasets Training Validation Testing

Core Promoter Detection macro F1
tata 4, 904 613 613

notata 42, 452 5, 307 5, 307
all 47, 356 5, 920 5, 920

Promoter Detection macro F1
tata 4, 904 613 613

notata 42, 452 5, 307 5, 307
all 47, 356 5, 920 5, 920

Transcription Factor Prediction (Human) macro F1

wgEncodeEH000552 32, 378 1, 000 1, 000
wgEncodeEH000606 30, 672 1, 000 1, 000
wgEncodeEH001546 19, 000 1, 000 1, 000
wgEncodeEH001776 27, 497 1, 000 1, 000
wgEncodeEH002829 19, 000 1, 000 1, 000

Splice Site Prediction macro F1 reconstructed 36, 496 4, 562 4, 562

Transcription Factor Prediction (Mouse) macro F1

Ch12Nrf2\iggrab 6, 478 810 810
Ch12Zrf384hpa004051\iggrab 5, 395 674 674

MelJun\iggrab 2, 620 328 328
MelMafkDm2p5dStd 1, 904 239 239

MelNelf\iggrab 15, 064 1, 883 1, 883

Epigenetic Marks Prediction macro F1

H3 11, 971 1, 497 1, 497
H3K14ac 26, 438 3, 305 3, 305

H3K36me3 29, 704 3, 488 3, 488
H3K4me1 25, 341 3, 168 3, 168
H3K4me2 24, 545 3, 069 3, 069
H3K4me3 29, 439 3, 680 3, 680

H3K79me3 23, 069 2, 884 2, 884
H3K9ac 22, 224 2, 779 2, 779

H4 11, 679 1, 461 1, 461
H4ac 27, 275 3, 410 3, 410

Covid Variant Classification macro F1 Covid 77, 669 7, 000 7, 000

Enhancer Promoter Interaction macro F1

GM12878 10, 000 2, 000 2, 000
HeLa-S3 10, 000 2, 000 2, 000
HUVEC 10, 000 2, 000 2, 000
IMR90 10, 000 2, 000 2, 000
K562 10, 000 2, 000 2, 000

NHEK 10, 000 2, 000 2, 000

Species Classification macro F1
fungi 8, 000 1, 000 1, 000
virus 4, 000 500 500

B.4 GENOMIC BENCHMARKS

GB is also a DNA-oriented FM benchmark suite, which can be used for generalizability evaluation
of OmniGenome. It contains a well-curated collection of datasets designed for the classification
of genomic sequences, focusing on regulatory elements across multiple model organisms. This
collection facilitates robust comparative analysis and development of genomic FMs. The task names
in the original repository are complex, we abbreviate the names as follows:

• DEM corresponds to ”Demo Coding vs Intergenomic Seqs”
• DOW is for ”Demo Human or Worm”
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• DRE represents ”Drosophila Enhancers Stark”

• HCE is short for ”Human Enhancers Cohn”

• HEE denotes ”Human Enhancers Ensembl”

• HRE abbreviates ”Human Ensembl Regulatory”

• HNP shortens ”Human Nontata Promoters”

• HOR is an abbreviation for ”Human Ocr Ensembl”

• DME simplifies ”Dummy Mouse Enhancers Ensembl”

The brief statistics for each dataset included in the GUE benchmark are displayed in Table 8. Similar
to GUE, we run the evaluation on a subset of GB, where for each task we randomly select at most
10k samples from the original splits, e.g., training, testing and validation (if any) sets.

Table 9: The brief statistics of datasets reported in the genomic benchmark (Grešová et al., 2023).

Task # of Sequences # of Classes Class Ratio Median Length Standard Deviation
DME 1, 210 2 1.0 2, 381 984.4
DEM 100, 000 2 1.0 200 0.0
DOW 100, 000 2 1.0 200 0.0
DRE 6, 914 2 1.0 2, 142 285.5
HCE 27, 791 2 1.0 500 0.0
HEE 154, 842 2 1.0 269 122.6
HRE 289, 061 3 1.2 401 184.3
HNP 36, 131 2 1.2 251 0.0
HOR 174, 456 2 1.0 315 108.1

C DATA FILTERING IN BENCHMARKING

The pertaining involves RNA sequences and structures prediction, we take the data and annotation
leakage problem seriously.

• To avoid structure annotation leakage of downstream benchmarks, the secondary structure pre-
dictors for all FMs were randomly initialized for fair comparisons, which means the pre-trained
structure predictor of GFMBench was not used in benchmarks, except for zero-shot SSP experi-
ments. Please find the source codes for details.

• To reduce sequence leakage caused by evolutionary conservative sequences across multiple
species, we use the ch-hit-est tool to calculate the sequence similarity between sequences from
the OneKP database and downstream tasks. We adopt the similarity threshold of 80% for ch-hit-
est (Li & Godzik, 2006) to eliminate sequences whose homogeneous sequences appeared in the
OneKP database. Subsequently, we exploit the blastn (Altschul et al., 1990) tool to query poten-
tially leaked sequences in downstream benchmark datasets and further alleviate the data leakage
problem. The e-value has been set to 1 for rigorous sequence filtering.

C.1 EXPERIMENT SETTINGS

In this experiment, we carefully selected a set of key hyperparameters to optimize model perfor-
mance. Below are the main hyperparameter settings along with detailed explanations:

• Dropout: To prevent the model from overfitting during training, we set the Dropout value to 0,
meaning that no random neuron dropout is applied during training. This choice was made based
on our consideration of model stability and generalization ability.

• Learning Rate: We set the learning rate to 2e-5, which is a relatively small value to ensure stable
convergence, especially in complex training tasks. A smaller learning rate helps to avoid drastic
fluctuations during the training process, leading to more precise optimization.
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Table 10: The brief statistics of RNA and DNA FM baselines. Please note that the pertaining data
scales cannot be directly compared because the measurements are different in various publications.
The detailed introduction of these FMs can be found in original publications.

Model Tokenization # of Params. Pre-training Data Scale Pre-training Data Source Species Sequence Type
DNABERT-2 BPE 117M 32.49B Tokens The 1000 Genomes Project Human + 135 Species DNA
NT-V2-100M k-mers 96M 300B Tokens The 1000 Genomes Project, etc. Human + 850 Species DNA
HyenaDNA-Large SNT 47M 3.2B Tokens Genome Reference Consortium Human DNA
Caduceus SNT 1.9M 35B Tokens Genome Reference Consortium Human DNA
Agro-NT-1B k-mers 985M 472.5B Tokens Ensembl Plants Database 48 Edible Plants DNA

SpliceBERT SNT 19M 2M Sequences UCSC Genome Browser Multi-Vertebrates precursor-mRNA
RNA-BERT SNT 0.5M 4, 069 RNA Families The RNA Families Database Multi-Species ncRNA
RNA-MSM SNT 96M 4, 069 RNA Families The RNA Families Database Multi-Species ncRNA
RNA-FM SNT 96M 23M Sequences RNAcentral Database Multi-Species ncRNA
3UTRBERT k-mers 86M 20, 362 Sequences The GENCODE Project Human mRNA 3’UTR

OmniGenome SNT 186M 54.2B Tokens The OneKP Initiative 1124 Plant Species mRNA, CDS, UTR

• Weight Decay: We applied a weight decay of 0.01 to control model complexity and prevent
overfitting. Weight decay is a regularization technique that effectively constrains the growth of
model parameters, maintaining the model’s generalization capability.

• Adam Optimizer: We used the Adam optimizer with its parameters set to β1 = 0.9 and
β2 = 0.999. The Adam optimizer combines the benefits of momentum and adaptive learning
rates, accelerating convergence and adapting to different gradient changes, thereby improving the
efficiency and effectiveness of model training.

• Learning Rate Scheduler: We opted for a linear decay learning rate scheduler, allowing the
learning rate to gradually decrease during training. This strategy helps the model make smaller
adjustments as it approaches the optimal solution, ensuring a better convergence outcome.

• Batch Size: The batch size was set to 8. This relatively small batch size helps to efficiently train
the model within limited memory resources, particularly when handling large-scale data, enabling
a balance between model performance and computational resource usage.

• # of Epochs: We set the number of training epochs to 20. This setting ensures that the model can
fully learn the features within the data while avoiding the negative effects of overtraining.

• Early Stopping: We implemented an early stopping mechanism, terminating the training early
if the validation performance does not improve for 5 consecutive epochs. This mechanism effec-
tively prevents model overfitting and saves training time.

It is important to note that for different tasks, some hyperparameter settings may be adjusted. To
obtain accurate experimental results, please refer to the detailed parameter configurations in the
compiled dataset specific to each task.

C.2 DEVELOPMENT ENVIRONMENT

The benchmark experiments based on GFMBench were conducted on a dedicated Linux computa-
tion node, equipped with 2 NVIDIA RTX 4090 GPUs. For distributed model training, we employed
version 4.44.0 of the Transformers library alongside version 0.28.3 of the Accelerate library. Our
implementation framework of choice for GFMBench was PyTorch, specifically version 2.1.0. The
ViennaRNA version is 2.6.4 in our experiments. While some existing code was adapted for the mod-
ules within GFMBench, the majority of the codebase, such as genomic sequences preprocessing,
model pre-training, objective functions, and experiments, was meticulously crafted from scratch.

C.3 EVALUATION BASELINES

To comprehensively evaluate the performance of the existing GFMs across the integrated bench-
marks, i.e., RGB, PGB, GUE and GB, we have obtained the results of existing GFMs based on
GFMBench.

Please note that it is assumed that the structure annotation from ViennaRNA is always available
for structure-contextualized modeling to enhance OmniGenome. In SSP tasks, we can also use the
ViennaRNA’s structure annotations as contexts to improve downstream SSP performance. Please
refer to Appendix C.3 for brief introductions of these FMs.
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We can compare GFMBench with the following RNA and DNA FMs shown in Table 10 as baselines
to help evaluate the performance of GFMBench. We are aware that some FMs are also developed
for RNA, such as Uni-RNA (Wang et al., 2023), 5UTR-LM (Chu et al., 2024), etc. However, we
cannot compare GFMBench with them because their source codes are very hard to work with in our
efforts or are not publicly available. To help understand the baseline FMs, we briefly summaries the
FM in the following sections. Please find the method and experiment details of these FMs in the
original publications.

• ViennaRNA (Lorenz et al., 2011). ViennaRNA is a comprehensive genomic analysis tool that
includes a diverse set of interfaces, such as RNAFold9 and RNAInverse10 design. ViennaRNA
serves as the baseline for RNA structure prediction and RNA design in our experiments.

• DNABERT2 (Zhou et al., 2023). DNABERT2 is one of the latest DNA FMs which improves the
performance of DNABERT. The main modification of DNABERT2 is the tokenization method,
which was changed to BPE from k-mers.

• HyenaDNA (Nguyen et al., 2023). HyenaDNA is an autoregressive FM optimized for long-range
genome data processing. HyenaDNA is based on the Hyena convolution architecture and capable
of handling sequences up to 1M bases in length.

• Caduceus (Schiff et al., 2024a). Caduceus11 is an advanced DNA language model built on the
MambaDNA architecture, designed to address challenges in genomic sequence modeling, such as
long-range token interactions and reverse complementarity (RC).

• Nucleotide Transformer (NT) V2 (Dalla-Torre et al., 2023). The NT FMs were trained on DNA
data, including the human reference genome and multi-species DNA sequences. They aim to cap-
ture the complex patterns within nucleotide sequences for various genome modeling applications.

• Agricultural Nucleotide Transformer (Agro-NT) (Mendoza-Revilla et al., 2023). Agro-NT is a
large-scale DNA FM (1B parameters) akin to the Nucleotide Transformers but with a focus on
plant DNA.

• SpliceBERT (Chen et al., 2023). It was trained on 2M precursor messenger RNA (pre-mRNA)
and specialised in RNA splicing of pre-mRNA sequences.

• 3UTRBERT (Yang et al., 2023). This model was trained on 20k 3’UTRs for 3’UTR-mediated gene
regulation tasks. It uses k-mers tokenization instead of SNT. RNA-BERT (Akiyama & Sakakibara,
2022). RNA-BERT is a BERT-style model pre-trained on a large corpus of non-coding RNA
sequences. It uses masked language modeling (MLM) as its primary training objective. The
model is designed to predict RNA structural alignments and can be fine-tuned for various RNA
sequence classification and regression tasks

• RNA-MSM (Zhang et al., 2024) RNA-MSM is an unsupervised RNA language model based on
multiple sequence alignment (MSA). It is the first model of its kind to produce embeddings and at-
tention maps that directly correlate with RNA secondary structure and solvent accessibility. RNA-
MSM is particularly effective for tasks involving evolutionary relationships in RNA sequences.

• RNA-FM (Chen et al., 2022) RNA-FM is a BERT-based RNA foundation model trained on a vast
dataset of non-coding RNA sequences. The model excels in predicting RNA structure and function
by leveraging masked language modeling (MLM) during pre-training. RNA-FM’s training data
is sourced from the RNAcentral database, providing it with extensive knowledge across diverse
RNA species.

• GFMBench. GFMBench is the RNA genome FM that advocates the importance of sequence-
structure alignment. Moreover, it is the first FM which addressed the in-silico RNA design task.

• OmniGenome: A FM dedicated to RNA genome modeling. This model leverages the
computation-based structure to enhance the genome modeling ability and archives impressive
performance on both RNA and DNA genomes.

9https://www.tbi.univie.ac.at/RNA/RNAfold.1.html
10https://www.tbi.univie.ac.at/RNA/RNAinverse.1.html
11https://huggingface.co/kuleshov-group/caduceus-ps_seqlen-131k_d_

model-256_n_layer-16
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Figure 2: The current webpage interface of the public leaderboard.

D PUBLIC LEADERBOARD

The public leaderboard has been launched with the manuscript, and the current layout of the leader-
board is illustrated in Figure 2. We have included the results of open-source GFMs among four
benchmark suites, and new results can be expected from the community. We are still working to
include the performance of recent GFMs, and refine the leaderboard interface with better integrity.

E LIMITATIONS

The GFM benchmarking may not reflect the accurate performance in biology reality, we attribute
the limitations of benchmarking to two major aspects:

• Lack of in-vivo Data: One of the critical limitations of GFMs lies in the absence of in-vivo verified
genome data. While GFMs perform well in in-silico environments, where computational models
and simulations are used to predict biological processes, these models are rarely validated against
in-vivo data, which refers to experimental data obtained from living organisms. This presents a
significant challenge for accurately translating model predictions to real-world biological appli-
cations. To be more specific, the complexity of biological systems, including interactions within
cells, tissues, and organisms, often introduces variables that are not fully captured in computa-
tional simulations. For example, gene regulation, environmental factors, and cellular responses to
genetic modifications may behave differently in living organisms than predicted by models trained
on in-silico data. As a result, GFMs might not fully capture the biological complexity, leading to
discrepancies between predicted and actual outcomes.

• Model Scale Constraints: The second major limitation is the model scales in benchmarking.
As GFMs become larger and more sophisticated, their performance improves, but this scaling
comes at a significant cost. Training as well as benchmarking large-scale GFMs requires immense
computational resources, including high-performance GPUs or TPUs, massive memory allocation,
and extensive storage for datasets. The cost of acquiring and maintaining this infrastructure can
be prohibitive for many research institutions or companies, limiting access to cutting-edge GFMs.
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F ETHIC STATEMENT

The development of GFMs presents various ethical challenges that must be carefully considered.
As we push the boundaries of what is possible with large-scale GFMs, such as Evo, it is crucial to
establish a responsible framework for their development and application. GFMs enable advanced ca-
pabilities like generating and predicting DNA sequences at a whole-genome scale, which opens the
door to significant breakthroughs in fields such as genetic engineering and therapeutic development.
However, these same capabilities pose risks related to bio-security, inequality, and environmental
disruption.

Safety and Ethical Implications: GFMs like OmniGenome could be misused by malicious actors for
harmful purposes, such as creating synthetic organisms that could threaten bio-safety. It is essential
to establish strict guidelines on access and use, including the development of safety guardrails,
access controls, and audits to monitor queries and research outcomes.

Health and Social Inequity: While the open-source nature of GFMs promotes transparency and
accessibility, there are concerns that the benefits of these tools may disproportionately favor well-
resourced organizations, such as pharmaceutical companies, which could lead to further inequalities
in global health. Intellectual property considerations also arise, as companies using open-source
tools might monopolize treatments or set prohibitive costs, exacerbating health disparities.

Environmental Impact: The enhanced capabilities for genetic manipulation that GFMs enable could
disrupt natural ecosystems, leading to potential loss of biodiversity or the emergence of harmful
species. Additionally, the computational demands of training large models have environmental
costs, such as increased carbon footprints, that must be weighed against the benefits of the scientific
advancements.

In response to these concerns, we are committed to promoting ethical guidelines, transparency, and
the responsible use of GFMs. We will collaborate with the community to continually refine these
guidelines as the field evolves.

G SOCIAL IMPACT

The societal impact of GFMs is substantial, with applications ranging from personalized medicine to
environmental management. These models have the potential to revolutionize fields such as health-
care and agriculture by providing deeper insights into genetic data, enabling the discovery of new
biomarkers, and assisting in the development of more effective therapies. In healthcare, GFMs can
drive advancements in precision medicine, allowing for personalized treatments based on individual
genetic profiles, which could drastically improve patient outcomes for conditions such as cancer or
rare genetic disorders. In agriculture, GFMs can contribute to sustainable practices by improving
crop yields and resistance to disease. However, careful consideration must be given to the ecologi-
cal balance, as genetic modifications could have unforeseen consequences on ecosystems. As GFMs
continue to evolve, their responsible development and deployment will be crucial to ensuring that
their societal impact is positive and equitable.

However, there are also risks associated with the unequal access to these powerful tools. Entities
with more resources and technical expertise may benefit disproportionately from GFMs, accelerating
their research and economic returns while leaving lower-resourced institutions and countries at a
disadvantage. To mitigate this, it is critical to ensure that access to GFMs is democratized through
open-source initiatives, global collaboration, and capacity-building efforts in low-resource settings.
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