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LLVM LLAVIDAL

 A. No, the woman in the video is not   
    holding a bread in her hand.  

 Q. What is the person doing in this
video?

 Q. Is she holding a bread in her hand?

 A. Yes, the woman is holding a bread 
 in her hand while preparing food.

 A. The video shows a woman, preparing
food in a kitchen. She is standing in
front of a sink and a stove, while

various utensils, pots and pans nearby.
The woman is wearing a pink top and 
black pants while preparing food.

(Action : Paragliding)

 A. First,we see a young woman wearing
pink glasses standing in the kitchen.

She is holding a cell phone and looking
at it. Next, she is standing infront of

a sink in the kitchen.

3D Poses

Object Tracks

ADL-X videos 

(Actions : Eating,Phone call)

Web videos

Multimodal Training
(MMT) (MMT)

Training

Inference 

 Q. Is she holding a bread in her hand?

 Q. What is the person doing in this
video?

Figure 1: Comparison of LLVM vs LLAVIDAL : In real world scenarios, web-video trained models
struggle to understand Activities of Daily Living due to the subtle nuances in the video, whereas our
ADL-X trained LLAVIDAL model triumphs in understanding complex human-object interactions.

Abstract
Large Language Vision Models (LLVMs) have demonstrated effectiveness in1

processing internet videos, yet they struggle with the visually perplexing dynamics2

present in Activities of Daily Living (ADL) due to limited pertinent datasets3

and models tailored to relevant cues. To this end, we propose a framework for4

curating ADL multiview datasets to fine-tune LLVMs, resulting in the creation of5

ADL-X, comprising 100K RGB video-instruction pairs, language descriptions, 3D6

skeletons, and action-conditioned object trajectories. We introduce LLAVIDAL,7

an LLVM capable of incorporating 3D poses and relevant object trajectories to8

understand the intricate spatiotemporal relationships within ADLs. Furthermore,9

we present a novel benchmark, ADLMCQ, for quantifying LLVM effectiveness in10

ADL scenarios. When trained on ADL-X, LLAVIDAL consistently achieves state-11

of-the-art performance across all ADL evaluation metrics. Qualitative analysis12

reveals LLAVIDAL’s temporal reasoning capabilities in understanding ADL. The13

link to the dataset is provided at: https://adl-x.github.io/14

1 Introduction15

Human cognitive perception integrates information from multiple sensory modalities to form a unified16

representation of the world [1]. Towards emulating human cognitive perception in digital intelligence,17

initial efforts focused on integrating vision and language modalities [2, 3, 4, 5, 6]. Subsequently,18
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the success of LLMs like GPT [7], PALM [8], BLOOM [9] led to the introduction of multimodal19

conversational models[10, 11, 12, 13, 14, 15, 16] that combine image pixels and LLMs, we dub20

as Large Language-Vision Language Models (LLVMs). However, these image-based LLVMs lack21

the capability for complex reasoning and interactions, particularly in understanding spatio-temporal22

relationships involved in human activities. In this study, we investigate the understanding of Activities23

of Daily Living (ADL) videos by LLVMs, which present various challenges including multiple exo-24

centric viewpoints, fine-grained activities with subtle motion, complex human-object interactions, and25

long-term temporal relationships. We envision that LLVMs capable of addressing these challenges26

will significantly influence the future intelligent systems, particularly in healthcare applications such27

as eldercare monitoring, cognitive decline assessment, and robotic assistance development.28

Recently, [17, 18, 19, 20, 21, 22, 23] have integrated videos into LLMs, leading to the development29

of video-based LLVMs capable of capturing spatio-temporal features. However, these models are30

predominantly trained on large-scale web videos [24, 25, 26, 27, 28], which mainly consists of sports31

clips, movie excerpts, and instructional videos. These videos, typically filmed by professionals,32

follow strict temporal sequences in closely controlled background (e.g., Paragliding). The evident33

temporal structure and scene semantics in such videos facilitate spatial understanding within LLVMs,34

as shown in 1. In contrast, ADL videos pose additional challenges, characterized by temporal35

unstructuredness where diverse actions may unfold concurrently within a single sequence [29]. For36

instance, a person cooking could intermittently engage in unrelated activities like making a phone call37

or drinking water, disrupting the linear progression of the composite action cooking. Consequently,38

existing LLVMs trained on web videos struggle to capture such visually perplexing dynamics inherent39

in ADL scenarios. Moreover, unlike specialized video architectures designed for understanding40

ADL [30, 31, 32, 33, 34, 35, 36], these LLVMs lack explicit utilization of cues like 3D poses or41

object encodings, which are crucial for understanding ADL. These cues aid in learning view-invariant42

representations and capturing fine-grained details essential for interpreting complex human activities.43

Hence, the current limitations in understanding ADL stem from the lack of instruction tuning of44

LLVMs on real-world multiview ADL datasets captured in indoor settings and the simplistic design45

of LLVMs with holistic operations.46

To this end, we propose a framework of curating ADL videos for instruction tuning LLVMs. This47

framework introduces the ADL-X dataset, comprising 100K untrimmed RGB video-instruction pairs,48

3D poses (P), language descriptions, and action-conditioned object trajectories (see Table 1). We then49

introduce the Large LAnguage VIsion model for Daily Activities of Living (LLAVIDAL), trained on50

ADL-X, which integrates videos, 3D poses, and object cues into the LLM embedding space. Our study51

explores various strategies for integrating 3D pose information and human-object interactions within52

LLVMs, demonstrating that language contextualized features extracted from 3D poses and object53

trajectories can effectively be integrated into LLAVIDAL. Furthermore, we introduce a benchmark54

ADL Multiple Choices Question (ADLMCQ), specifically designed to evaluate the effectiveness of55

LLVMs for ADL. ADLMCQ includes action recognition (ADLMCQ-AR) and action forecasting56

(ADLMCQ-AF), assessed through a multiple choice question-answering task. We also evaluate57

existing LLVMs for generating video description of ADL scenes and compare their performance with58

LLAVIDAL. Our empirical findings indicate that LLAVIDAL with object cues, outperforms other59

LLVMs, including those trained on datasets of ten times the size, on the ADL benchmarks.60

To summarize our contributions:61

• We introduce ADL-X, the first multiview RGBD instruction ADL dataset, curated through a62

novel semi-automated framework for training LLVMs.63

• LLAVIDAL is introduced as the first LLVM tailored for ADL, incorporating 3D poses and64

object cues into the embedding space of the LLM.65

• A new benchmark, ADLMCQ, is proposed for an objective evaluation of LLVMs on ADL66

tasks, featuring MCQ tasks for action recognition & forecasting.67

• Exhaustive experiments are conducted to determine the optimal strategy for integrating68

poses or objects into LLAVIDAL. Evaluation of existing LLVMs on ADLMCQ and video69

description tasks reveals that LLAVIDAL trained on ADL-X significantly outperforms70

baseline LLVMs.71
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Table 1: Video Instruction Dataset Comparison.

Dataset Modalities Subjects Multiple Videos QA Pairs Atomic Actions Temporal Object Type
Views per Vid Rand. Traj.

TimeIT[21] RGB+L NA No 173000 173K Medium No No Web
VideoChat[17] RGB+L NA No 8196 11K Low No No Web
Valley[26] RGB+L NA No 64,687 65K Low No No Web
VideoChatGPT [20] RGB+L NA No 27,801 100K Medium No No Web

ADL-X RGB+P+L 106 Yes 16,343 100K High Yes Yes ADL72

2 Semi-automated Framework for generating ADL Video-instructions Pairs73

This section describes the data curation framework employed for the creation of a novel dataset,74

ADL-X. This dataset specifically caters to the instruction tuning of LLVMs within the ADL domain.75

ADL-X comprises video recordings of ADLs. To enrich the dataset and facilitate LLM training,76

question-answer (QA) pairs were generated from a corpus of long-form ADL videos. These QA77

pairs target various aspects of the ADLs, including: human pose configuration, objects relevant to78

the human actions, scene appearance, and the fine-grained actions performed. We hypothesize that79

incorporating such instructional tuning during the LLVM training process will promote alignment of80

visual tokens within the LLM’s embedding space. ADL-X represents a comprehensive ADL dataset81

encompassing various modalities: - RGB videos, 3D poses, Language descriptions, object tracklets.82

This rich dataset offers a valuable tool for evaluating the capabilities of LLVMs in tasks related to83

ADLs, including description, recognition, and anticipation.84

A critical characteristic of ADL videos lies in the inherent spontaneity of the actions performed.85

Unlike scripted scenarios [25, 37, 38], fine-grained actions within ADLs often occur randomly. To86

capture this essential characteristic within our dataset, we curated ADL-X from NTU RGB+D 12087

dataset [39]. This selection was motivated by the dataset’s focus on ADL videos and its inherent88

diversity in terms of actions, subjects, and camera viewpoints. Also, this data curation framework89

could be extended to any existing trimmed/untrimmed ADL datasets [40, 41, 42]. Below, we elaborate90

the steps involved in building the ADL-X in a chronological order.91

Person-centric Cropping. ADL tasks necessitate a focus on the individual performing the actions,92

the actions themselves, and the human-object interactions. To achieve this targeted focus within the93

data curation framework, we implemented a person-centric cropping strategy leveraging the pose94

information captured through Kinect sensors [43]. By using the pose information in each frame95

of the NTU RGB+D 120 dataset, we are able to detect and crop out the person(s) performing the96

actions. This cropping process effectively reduces the amount of background information present97

in the videos, eliminating data irrelevant to the target ADLs. This step is crucial as existing ADL98

datasets often contain extensive background information that is not relevant to the actions being99

performed. The presence of such extraneous information can significantly hinder subsequent stages100

within the data curation framework.101

Summary 

In the video,a man
standing against a

plain white wall in a

room. He is wearing a
gray hoodie over a
blackshirt.......

Frame 1:The image

showcases a man

standing against a

plain white wall. 

Frame 2:He is wearing

a gray hoodie, a black

shirt, and black

pants.

          

Frame T: The man is

drinking from a silver

tumbler. He has a

backpack on..... 

Image Captioner
Combined Actions

Video 

Q.What is happening in the video with the
two men and what are they wearing ?GPT

GPT
Q.What action are being performed by the

individual in the video, based  on the dense
caption?

A.The person is involved in activities such
as driniking water,eating a meal,making a

phone call,playing a phone or tablet, giving
an object and shaking hands  

Generated QA Pairs

Action List  

Detection and
cropping

Input Video

Drink water,Eat meal, 

Phone call 

Generated Action Sequences

A.In the video, there are two men in a
room. One man is wearing a gray hoodie

over a black shirt, black pants, and dark
shoes, while the other man is wearing a
white shirt and beige pants. They appear

to be engaging in a conversation.

Drink
water,Walking,Reading a

book,Eat,Phone call,shake
head,chest pain....... 

Figure 2: Dataset Curation Pipeline: We employ CogVLM[44] as our person-centric image captioner
and GPT 3.5 Turbo[7] as our summarizer and QA generator.

Stitching shorts clips. To capture the inherent randomness of real-world ADLs, we constructed a set102

of 160 composite action sequences. These sequences were generated by prompting a GPT to combine103

individual actions from the original NTU RGB+D 120 dataset’s list of 120 actions (denoted as A1, A2,104

..., A120). An example sequence structure could be represented as A1 → A3 → A17. Following these105
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generated composite action sequences, we temporally stitched together short video clips (clipaj , where106

a is the action class) from the NTU dataset. This stitching process ensured that all clips within a video107

belonged to the same subject and camera view, maintaining coherence in the resulting video sequence.108

For instance, a stitched video sequence might be represented as [clip1r1 clip3r2 clip17r3] where r1, r2,109

r3 represent unique clip identifiers within the dataset for the specific subject performing the actions110

(actions 1, 3, and 17, respectively). The intentional randomness of the generated action sequences111

reflects the unstructured flow of actions encountered in ADL. To further enhance diversity and ensure112

no bias towards specific subject-action combinations, we shuffled both the action sequences and the113

subject assignments. This process resulted in the creation of 16,343 stitched videos with an average114

5 actions per video.115

Frame Level Captioning and Dense Descriptions. This step is the process of generating weak116

pseudo-labels for automated instruction tuning of the LLVM with the curated dataset. An image117

captioning model CogVLM [44] is employed to automatically generate frame-level captions for the118

stitched ADL videos at a rate of 0.5fps. These captions are subsequently compiled into a dictionary119

linking each frame identifier to its corresponding description. To enhance the reliability of the pseudo-120

labels, we implemented an action-conditioned filtering while generating the video descriptions. The121

dictionary with the frame descriptions, along with the action labels present in the stitched videos,122

are then used to prompt a GPT 3.5 turbo model to generate a cohesive structured description of the123

entire stitched video, constrained to a maximum of 300 words. This step leverages the known action124

labels associated with each video to remove irrelevant noise potentially introduced during the caption125

generation process. We evaluated various image captioning models, including BLIP-2 [45], and126

InstructBLIP [46] for frame-level caption generation. However, CogVLM is ultimately chosen due127

to its ability to generate denser and appropriate descriptions. Please refer to the appendix for our128

detailed prompting strategy in generating the descriptions.129

Generating QA Pairs. LLVMs necessitate training data in the form of question-answer (QA) pairs.130

To generate domain-specific QA pairs for ADL, we leverage the dense video descriptions obtained in131

the previous step as illustrated in Figure 2. An instruction template (detailed in the Appendix) guides132

GPT-3.5 in formulating questions across various categories relevant to ADL. These categories include:133

video summary, performed actions, spatial details, human-object interactions and other video-specific134

inquiries. Through this prompting approach, we curate a dataset of 100K video instruction pairs,135

namely ADL-X, for the stitched ADL videos. These QA pairs benefit from the detailed descriptions136

and person-centric cropping, resulting in reduced LLM hallucinations compared to other existing137

methods [17, 20].138

Notably, the framework employed for constructing ADL-X from trimmed, labeled action videos can139

be generalized to other existing datasets. This generalization paves the way for efficient training of140

domain-specific LLVMs.141

Figure 3: Overview of LLAVIDAL, which utilizes an LLM to integrate multiple modalities, including
video, pose, and object features. Videos are represented by embeddings obtained from a VLM, poses
are processed through (PoseLM), and object embeddings are obtained through (ObjectLM). These
embeddings are projected into the LLM space, where they are concatenated with tokenized text
queries for instruction tuning.
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3 LLAVIDAL: An LLVM for ADL142

LLAVIDAL is a large language vision model designed to align ADL videos with an LLM to generate143

meaningful conversation about the daily activities performed by humans. This model, similar144

to Video-ChatGPT [20] and LLaVA [18], integrates a visual encoder with the Vicuna language145

decoder [47] and is fine-tuned on instructional language-vision data. Unlike Video-ChatGPT [20] and146

LLaVA [18], LLAVIDAL leverages the random temporal structure present in ADL-X and incorporates147

additional data modalities such as 3D human poses and human-object interaction cues. This allows148

LLAVIDAL to generate accurate conversations that are not only contextually appropriate but also149

temporally aligned with the human activities depicted in the input video. This section will first present150

a background of LLVM models to align videos with LLMs. Then, we will outline the strategies151

employed to integrate 3D poses and object interaction cues within the language space of the LLM152

for enhanced understanding of videos featuring ADL. Subsequently, we will describe the training153

architecture of LLAVIDAL.154

3.1 Background: LLVM155

Following [20], given an input video denoted by νi ∈ RT×H×W×C , where T represents the frames156

encoded using a pretrained vision-language model (VLM) CLIP-L/14 [2] to obtain frame-level157

embeddings for the video, xi ∈ RT×h×w×D, with D as the embedding dimension, and h = H/p,158

w = W/p representing the dimensions adjusted by patch size p. Temporal and spatial features159

are extracted by aggregating these frame-level embeddings along the respective dimensions. The160

video-level features, Vi ∈ RFν×Dν , are obtained by concatenating the temporal and spatial features,161

where Fv represents the spatio-temporal tokens and Dν is the video feature dimension. The video162

features are projected into the LLM embedding space using a linear projection layer Tv. Thus, we163

obtain input tokens Qv for the video features:164

Qv = Tv(Vi) ∈ RFv×K (1)

The text query is also tokenized such that Qt ∈ RFt×K . The text query Qt, refers to a question from165

the training data. The input to the LLM is the concatenation of Qt and Qv following the template :166

[USER: ⟨Qt⟩ ⟨Qv⟩ Assistant:]. We perform instruction-tuning of the LLM on the prediction tokens,167

using its original auto-regressive training objective. The parameters of the LLM are frozen, thus the168

loss gradients only propagate through the projection layer Tv .169

3.2 3D Poses for LLAVIDAL170

ADL are rich in actions that primarily involve the movements of critical body parts or joints. The171

dataset ADL-X includes 3D human poses, which can be utilized to incorporate human kinematics172

and view-invariant features into the input embedding space of a LLM. These poses can be integrated173

into the LLM input space in several ways: as an additional text query Qt for instruction tuning of174

the LLM, by deriving language descriptions of joint movements to provide context for the LLM, or175

through features extracted using a suitable pose-language encoder.176

Poses as QA. We input the 3D joint coordinates alongside the associated human action from the177

video into GPT-3.5 Turbo [7], which generates a general description of the pose. This description is178

then re-fed into GPT-3.5 Turbo to generate two QA pairs that provide detailed explanations of the179

action’s motions. These QA pairs are subsequently added to the set of text queries Qt in our training180

set for instruction tuning the LLM.181

Poses as Context. To extract contextual information from human poses, we initially identify five182

peripheral joints — the head, right hand, left hand, right knee, and left knee — due to their significant183

contribution to motion in various actions. Using GPT-3.5 Turbo, we generate descriptions of the184

motion for each of these joints based on their trajectories throughout the video, specifically focusing185

on how the coordinates of these five joints evolve. The generated descriptions, denoted as Qp
t ,186

are subsequently appended to the text query Qt, incorporates these pose descriptions as additional187

contextual information. This enriched query Qnew
t = [Qp

t Qt] is then employed for instruction188

tuning of the LLAVIDAL.189

Poses as Features. To incorporate poses as tokens into the LLM, it is crucial to align the pose190

features with a language-contextualized space. To achieve this, we utilize a pretrained Pose-Language191

model (PoseLM), specifically PoseCLIP, to extract pose features that are aligned with the language192

5



domain. The PoseCLIP model comprises a pose backbone [48] and a CLIP text encoder [2], and it193

undergoes training in two phases. Initially, the pose backbone is pretrained on the NTU RGB+D194

dataset [49] for action classification. Subsequently, in the second phase, we optimize the similarity195

between pose features and text features, which encode the prompts describing their action labels,196

using cross-entropy supervision as outlined in [3]. Further details on the training of this model are197

provided in the Appendix. These pose features, denoted as Pi ∈ RFp×Dp , where Dp represents the198

pose feature dimension, can be utilized as input tokens for training LLAVIDAL.199

3.3 Action-Conditioned Object Cue for LLAVIDAL200

To comprehensively understand ADL, it is crucial to not only grasp the semantics of objects but201

also their trajectories, which are closely linked to the actions performed. Consequently, we propose202

to explicitly utilize these object trajectories as integral components for training LLAVIDAL. Our203

framework involves a two-stage pipeline to extract object information directly from RGB video204

data: (i) Action-conditioned object detection and (ii) Object Localization and Tracking. Both stages205

leverage off-the-shelf models that are effective without the need for additional training, facilitating206

integration into LLAVIDAL for ADL analysis.207

Action conditioned object detection. Given a stitched ADL video, which comprises a sequence of208

trimmed video segments (denoted as clipj), the first stage extracts the categories of objects present209

that are pertinent to the actions performed within each clip. We uniformly sample 8 frames from each210

video and employ a pre-trained BLIP-2 model [45] to generate a list of distinct objects observed in211

the frames. To avoid training LLAVIDAL with noisy data, we perform a filtering on the list of objects212

using the ground-truth action labels and GPT-3.5. Specifically, for each clipj within a stitched video,213

we input the corresponding action label and the list of detected objects to GPT-3.5 and prompt it214

to identify the object(s) most relevant to the given action. For instance, if the objects plant, chair,215

bottle, table are detected in a video labeled with the action Drinking, GPT-3.5 is expected to filter216

out and select [bottle] as the relevant object for clipj . Refer to the appendix for our detailed action217

conditioned object detection prompting strategy.218

Object Localization and Tracking. Given the list of relevant objects identified in the first stage,219

the second stage involves spatial localization of these objects within the scene and their temporal220

association (i.e., object tracking) based on the feature similarity of the image regions corresponding221

to the localized objects in the stitched video. We employ a pre-trained open vocabulary object222

localization model (ObjectLM), OWLv2 [50], and input the list of relevant objects detected in stage223

1 along with the corresponding video. Localization and tracking are performed on 8 frames that224

are uniformly sampled from clipj within a stitched video. For each frame, we obtain bounding225

boxes Bt ∈ Rn×4, where each bounding box corresponds to one of the n relevant objects in the tth226

frame. Features for each object are then extracted from the image regions within these bounding227

boxes using our object localization model. We denote the features for the objects in frame t as228

Ot ∈ R8n×Do , where Do is the object feature dimension. To associate objects across frames, we229

utilize a feature-based object tracking approach. Specifically, for each object in frame t, represented230

by the feature vector Ot
i ∈ RDo , we compute the cosine similarity between Ot

i and all feature vectors231

in frame t+ 1. The object i in frame t is then associated with the object in frame t+ 1 that exhibits232

the highest similarity score. This matching process is iterated for all objects in each frame, thereby233

establishing a track for each relevant object throughout the sampled frames. These object tracks, with234

corresponding bounding boxes and features, facilitate the integration of object information into the235

training of LLAVIDAL: Object as QA, Object as context, and Object as features.236

Object as QA. Similar to the approach taken with poses, to generate QA pairs for objects, we237

formulate a question based on the trajectory coordinates of the relevant object(s). These QA pairs are238

added to the set of text queries Qt for instruction tuning LLAVIDAL.239

Object as Context. To integrate the context of detected objects into the LLM space, we append240

the list of relevant object labels, denoted by Qo
t , to each text query token Qt. Consequently, the241

updated text query is represented as Qnew
t = [Qo

t Qt]. This enhanced text query, Qnew
t , is utilized242

for instruction tuning.243

Object as Features. The object features extracted during the object localization and tracking stage are244

utilized as input tokens Qo ∈ R8n×Do , which are incorporated alongside the text query tokens (Qt)245

and input video tokens (Qv). For n relevant objects detected, the object query Qo is structured using246
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the following template [⟨Qo⟩ = ⟨Q1
o⟩ ⟨Q2

o⟩ ...⟨Qn
o ⟩] where Qj

o ∈ R8×Do represent the features of247

each relevant object in the video.248

3.4 Training LLAVIDAL249

As illustrated in Figure 3, the QA pairs, along with context or features obtained from the RGB video,250

3D poses, and object cues can be integrated into LLAVIDAL. Integrating QA pairs and contextual251

information is straightforward; they are introduced into Qt and trained using standard methods for252

LLVM. However, to integrate other modalities with features, we feed these additional cues through253

specific projection layers designed to align them with the input space of the LLM. Accordingly, the254

video, pose, and object features are projected into the LLM embedding space using linear projection255

layers Tj for each cue j = {v, p, o}, resulting in LLM input token representation of the video, pose,256

and object cues, respectively:257

Qv = Tv(Vi); Qp = Tp(Pi); Qo = To(Oi) (2)

where Qj ∈ RFj×K . Thus, the input to the LLM comprises the concatenation of Qt and Qj for258

j = {v, p, o}, structured according to the template: [USER: ⟨Qt⟩ ⟨Qv⟩ ⟨Qo⟩ ⟨Qp⟩ Assistant:]. This259

training scheme ensures that the video, object, and pose cues are effectively aligned to the LLM embed-260

ding space, facilitating an accurate understanding of ADL. During the inference, LLAVIDAL utilizes261

only the holistic video cue, omitting person-centric cropping and consequently eliminating additional262

cues. In practice, the embedding dimensions are Dv = 1024 for visual, Do = 512 for object features,263

Dp = 216 for pose features and K = 4096. The number of tokens is set as Fv = 356 and Fp = 256264

for visual and pose tokens respectively. We train LLAVIDAL for 3 epochs with a batch size of 32265

and a learning rate of 2e−5 on 8 A6000 48GB GPUs. For the purpose of promoting research in this266

field, we also provide the pose features and object trajectories of LLAVIDAL along with the dataset.267

4 Experiments268

4.1 Experimental Setting269

Evaluation Metrics. Inspired by [20], LLVM’s ability to generate video-level descriptions is270

evaluated. This involves comparing the generated descriptions with ground truth and scoring them271

on dimensions such as Correctness of Information, Detail Orientation, Contextual Understanding,272

Temporal Understanding, and Consistency, with scores scaled to be bounded at 100. Due to the273

subjective nature of this metric, Mementos Evaluation [51] is also conducted to assess the recognition274

of common action-verbs and object-nouns in the video descriptions compared to ground truth,275

presenting F1 scores for these classifications. However, comparing video descriptions generated276

by LLVMs presents a challenge due to the inherently subjective nature of these descriptions. Some277

objective evaluation benchmarks for LLVMs [52, 53, 54] primarily focus on video tasks involving278

in-the-wild activities. Therefore, this paper introduces novel benchmarks for assessing LLVM’s279

temporal understanding of ADL videos. We propose two new ADLMCQ benchmarks including280

ADLMCQ-AR and ADLMCQ-AF. ADLMCQ-AR involves multiple-choice question-answering for281

action recognition, where the model selects the correct action from a set of options given a question282

about the action performed in a video. Similarly, ADLMCQ-AF focuses on action forecasting,283

requiring the model to predict the next action based on the preceding actions. It is important to note284

that all evaluations are performed zero-shot.285

Evaluation Datasets. For ADLMCQ-AR evaluation, we utilize the Charades [55] and Toyota286

Smarthome [56] datasets. Evaluation for ADLMCQ-AF is conducted using LEMMA [57] and Toyota287

Smarthome Untrimmed (TSU) [58] datasets. Video description tasks are assessed using the Charades288

and TSU datasets, both featuring long-duration videos with multiple actions per video. Notably,289

for the TSU dataset, we manually annotated video descriptions with fine-grained details regarding290

activities performed by elderly individuals, employing 6 human annotators for 174 videos. Our291

evaluation relies on these annotated descriptions, which we also provide to the community as part of292

the test set for ADL-X.293

4.2 Impact of ADL-X Training on LLVMs294

To understand the requirement of ADL-X, we assess VideoChatGPT [20] trained on 100K in-295

struction pairs from ActivityNet [25], trimmed NTU120 [39], and ADL-X in Table 2. Notably,296
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Table 2: Impact of ADL-X Training

Method Training ADLMCQ-AR ADLMCQ-AF Action Description (Charades)
Data (Smarthome) (LEMMA) Object Action Correctness

VideoChatGPT [20] ActivityNet 40.8 35.7 14.8 16.1 35.8
VideoChatGPT [20] NTU120 49.8 33.5 27.0 10.1 38.8
ADL-X ChatGPT [20] ADL-X 52.3 44.8 32.2 13.4 43.0

ADL-X ChatGPT, trained on ADL-X, consistently outperforms the others in both ADLMCQ-AR297

and ADLMCQ-AF tasks. However, it’s worth mentioning that while the baseline [20] exhibits strong298

performance in the action metric of Mementos, it notably underperforms in the object metric. It’s299

important to emphasize that ADLMCQ evaluations offer more objective and reliable assessments for300

understanding the temporal comprehension of LLVMs.301

Table 3: Introducing Pose and Object Cues into LLAVIDAL

Method ADLMCQ-AR ADLMCQ-AF AD (Charades) AD (TSU)
Charades Smarthome LEMMA TSU Object Action Object Action

ADL-X ChatGPT 58.0 52.3 44.8 25.25 16.6 14.8 16.6 14.8

Pose QA 48.5 49.0 42.0 21.2 31.8 14.0 16.5 15.9
Pose Context (PC) 50.8 54.0 45.0 22.3 30.5 14.8 18.6 15.4
Pose Features (PF) 56.7 57.0 51.3 26.0 32.7 13.5 18.2 13.0
PC + PF 52.5 53.1 44.6 24.9 32.1 13.6 17.5 15.6

Object QA 51.1 50.1 40.3 23.0 32.1 13.7 17.0 16.0
Object Context 44.6 46.2 41.8 21.0 31.2 14.7 17.2 16.5
Object Features (OF) 59.0 58.8 52.6 27.0 33.1 14.3 18.0 17.7
PF + OF 56.2 56.1 51.0 26.6 30.4 14.1 20.0 14.1

4.3 How to introduce object and pose cues into the LLM space?302

Table 3 explores the integration of pose and object cues into LLAVIDAL. We evaluate incorporating303

poses as QA, context (PC), and features (PF). While both pose context and features outperform304

the baseline ADL-X ChatGPT, projecting pose features directly into the LLM embedding space305

yields superior performance. This suggests the effectiveness of language contextualization for306

pose information. Combining pose context and features hinders performance, suggesting potential307

redundancy. In contrast, object cues as QA or context offer minimal discriminative information308

for the LLM. However, object features derived from ObjectLM significantly improve performance309

across most tasks, highlighting their importance in understanding ADL. A detailed analysis of these310

cues’ impact on ADLMCQ action classes is provided in the Appendix, revealing complementary311

information learned. Interestingly, LLAVIDAL with object features outperforms the model with312

pose features on all tasks. However, attempts to combine both pose and object features result in313

performance converging towards the pose-only model. We hypothesize this is due to the challenge314

of optimizing the projection layer Tv that effectively aligns both Tp and To. Therefore, multi-cue315

integration is left for future work. Given its superior performance, LLAVIDAL with object features is316

used for the remainder of the paper.317

Table 4: Performance on Video Description. [CI: Correctness of Information, DO: Detail Orientation,
CU: Contextual Understanding, TU: Temporal Understanding, Con: Consistency]

Method Training Charades TSU
Data Size Object Action CI DO CU TU Con Object Action CI DO CU TU Con

CogVLM [44] + GPT [7] 1.5B Images 19.8 9.4 44.2 42.0 33.2 33.0 40.6 16.8 6.1 41.0 37.0 37.6 34.4 40.2
CogVLM [44] + Llama [11] 1.5B Images 20.9 9.3 44.2 41.8 34.8 32.0 40.6 17.9 7.8 30.0 33.4 35.4 33.8 30.0
BLIP2 [45] + GPT [7] 1.5B Images 21.1 17.3 33.6 33.8 35.4 30.0 34.4 23.2 22.8 38.0 35.4 30.6 37.2 38.4

VideoLlama [19] 2.6M QA Pairs 14.7 15.9 32.2 32.0 36.0 34.4 39.6 21.0 13.4 33.2 30.4 31.2 34.6 42.0
VideoLlava [18] 1.2M QA Pairs 15.8 15.5 38.2 44.4 44.0 37.4 40.2 20.9 15.3 37.8 33.8 40.2 40.4 39.6
VideoChatGPT [20] 100K QA Pairs 14.8 16.1 35.8 44.2 41.6 42.2 37.8 21.8 18.0 43.0 45.8 41.4 43.0 50.0

ADL-X ChatGPT [20] 100K QA Pairs 32.2 13.4 43.0 46.8 42.2 43.8 38.6 16.6 14.8 43.0 47.2 39.6 37.6 50.0
LLAVIDAL 100K QA Pairs 33.1 14.3 51.8 54.2 44.0 49.2 41.8 18.0 17.7 46.0 48.6 42.2 45.8 58.0

4.4 Comparison to the state-of-the-art318

We compare LLAVIDAL against the state-of-the-art (SOTA) in the performance on video description319

generation and ADLMCQ tasks involving action recognition and forecasting.320

Video Description Generation. Table 4 shows the performance comparison of baseline LLVMs and321

LLAVIDAL on their video description capabilities on the Charades and TSU datasets. Video-level322

descriptions are obtained directly from the Charades dataset. For the TSU dataset, comprising lengthy323

videos, we segment each video into 1-minute clips and input them individually to the LLVMs for324
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 Q. Pick the correct action that is being performed in the 
 video among the options?

 a) Pouring coffee grains              b) Using tablet
 
 c) Drinking from bot                  d) Cleaning dishes  Q. Describe the video in detail?

In the video, a person is seen moving a blue blanket or sheet off a bed,

possibly to clean or rearrange the bed. The person is also seen walking

towards a table with a laptop on it, possibly to use the laptop for work

or entertainment.

The video depicts a man and a woman in a bedroom. The man is seen bending

over a bed, while the woman is standing next to him. The man then proceeds

to pull the mattress away from the bed frame, revealing the box spring. He

then proceeds to pull the box spring out of the bed frame. The woman then

takes the box spring and places it on the floor. The man then pulls the

mattress back into the bed frame. The video focuses on the actions of the

man and woman in the bedroom, with a particular emphasis on the movements

and interactions with the objects in the room.

In the video, a young man is seen working in a bedroom. He is seen laying
down a bed, folding a bed, and putting a bed away. The man is wearing a

black shirt and a blue jacket. The room has a white floor and a white wall.

The man is also seen using a chair and a table. The video is shot in a home

in India. The man is seen working alone in the room.

In the video, a person is seen moving a blue and white blanket from a bed,

possibly to clean or rearrange the room. The person is also seen walking

towards a bed with a blue pillow, which suggests that they are interacting

with the bed and its contents. The room has a white floor, a blue blanket on

the bed, and a chair nearby. The person's actions and interactions with the

objects in the room, such as the bed and the chair, highlight the ongoing

activities within the space.

  Throw tissue in trash-can
   Put lettuce or wrapping on

table with hand

  Fill cup with water
dispenser

Q .What action should the human perform after the action "get cup on

table with hand" was performed followed by the action "turn-on TV

with remote"?'choose from the following options

a) Throw tissue in trash-can        b) Put meat or tomato in fridge 

                                            with hand
c) Fill cup with water-dispenser    d) Put lettuce or wrapping on   
                                            table with hand 
e) Close wrapping                   f) Put lettuce or bread with   
                                            hand

  Throw tissue in trash-can

  Pouring coffee grains

     The person is cleaning 
           dishes

  The person is cleaning 

dishes

    The person is using a

         tablet

a) Action Recognition Task

b) Action Forecasting Task c) Video Description Task

Video LLaVA Video LLaMA Video-ChatGPT LLAVIDAL

Figure 4: Qualitative results comparing LLAVIDAL with SOTA models. Incorrect descriptions are
marked in red.
generating clip-level descriptions. Subsequently, we concatenate all clip-level descriptions and utilize325

GPT-3.5 turbo to summarize them into a video-level description, following the same instruction326

template utilized in our dense description pipeline for ADL-X. LLAVIDAL consistently surpasses327

SOTA and outperforms all models including, image captioners-summarizers pipelines which are328

trained on billions of images, across all 5 VideoChatGPT metrics. However, in the Mementos329

Evaluation, LLVM baselines exhibit superior performance over LLAVIDAL in the Smarthome330

domain. This discrepancy may be attributed to the loss of relevant information when generating331

video-level descriptions using GPT.
Table 5: ADLMCQ - Action Recognition

Method Charades Smarthome
VideoLlama [19] 33.0 27.4
VideoLlava [18] 44.4 54.0
VideoChatGPT [20] 56.0 40.8
ADL-X ChatGPT [20] 58.0 52.3
LLAVIDAL 59.0 58.8

Table 6: ADLMCQ - Action Forecasting

Method LEMMA TSU
VideoLlama [19] 20.8 15.6
VideoLlava [18] 32.2 20.2
VideoChatGPT [20] 35.7 25.0
ADL-X ChatGPT [20] 44.8 25.3
LLAVIDAL 52.6 27.0332

ADLMCQ. Table 5 compares LLAVIDAL to SOTA LLVMs on the ADLMCQ-AR benchmark.333

LLAVIDAL achieves significant improvements, surpassing VideoChatGPT by +5.4% and +44.1% on334

the Charades and Smarthome datasets, respectively. Similarly, Table 6 demonstrates LLAVIDAL’s335

superiority on the ADLMCQ-AF benchmark. It outperforms VideoChatGPT by up to +47.3%,336

highlighting its exceptional capability in action forecasting tasks.337

Figure 4 provides a visual comparison of LLAVIDAL against representative baselines on the ADL338

benchmarks. More visual samples are provided in the Appendix.339

5 Conclusion & Future Work340

In this work, we present a framework for curating ADL datasets for instruction tuning LLVMs,341

thus introducing ADL-X. We introduce LLAVIDAL, an LLVM capable of integrating 3d poses and342

human-object interaction cues by projecting their language contextualized representations into the343

LLM embedding space. To assess LLVM performance in ADL scenarios, we propose the ADLMCQ344

benchmark. Results demonstrate that LLAVIDAL, when trained on ADL-X, surpasses other LLVM345

baselines in ADLMCQ tasks, indicating its efficacy in grasping intricate temporal relationships within346

ADL contexts. Future research will focus on expanding ADL-X by integrating additional curated347

ADL datasets and exploring stage-wise training strategies to effectively integrate both pose and object348

cues within LLAVIDAL.349
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