
Published as a conference paper at MathAI 2025

EXPLORING CONVOLUTIONAL KAN ARCHITECTURES
WITH NAS

Vladimir Latypov, Alexander Hvatov
NSS Lab
ITMO University
Saint-Peresburg, 197101, Russia
{vlatypov,alex hvatov}@itmo.ru

ABSTRACT

This study addresses the challenge of evaluating emerging neural architectures
against extensively optimized legacy models. Kolmogorov-Arnold networks
(KANs) offer a potential alternative to conventional deep learning, yet their bene-
fits remain difficult to quantify. We introduce a neural architecture search (NAS)
framework that systematically optimizes and compares KANs with convolutional
neural networks (CNNs), eliminating human design biases. Experiments on im-
age classification (MNIST, Fashion-MNIST, EuroSAT) and sea ice concentration
estimation reveal distinct performance characteristics, demonstrating the impact
of automated optimization on architectural selection.

1 INTRODUCTION

The pursuit of novel neural architectures has gained traction in recent years, particularly with the
emergence of Kolmogorov-Arnold networks Liu et al. (2024b) (KANs). Although standard deep
learning architectures, such as convolutional neural networks (CNNs) and multilayer perceptrons
(MLPs), have undergone extensive optimization, it remains unclear whether new architectures like
KANs can offer substantial advantages beyond incremental improvements. A significant challenge
in such comparisons is eliminating biases introduced by expert-designed architectures and hyperpa-
rameter choices, ensuring a fair evaluation.

Several recent studies compare neural networks and KANs across different setups. Time series
Genet & Inzirillo (2024), computer vision Cheon (2024a), PINNs and around Liu et al. (2024a),
transformers Yang & Wang (2024). Most attempts and efforts are made to replace NN with KAN in
a relatively standard setup (LSTM, PINN, transformer architectures). Less attention has been given
to leveraging KAN’s strengths in symbolic regression to better represent activation functions with
different types of KAN architecture, like in Do et al. (2025).

There is a fair Shukla et al. (2024) and a fairer Yu et al. (2024) comparison that shows that KAN
outperforms NN in symbolic regression. In contrast, NN outperforms all possible problems: table
data, image processing with dense networks, NLP (natural language processing), and audio process-
ing. However, many of these comparisons are based on manually selected architectures, making
it difficult to assess whether the observed performance differences stem from the architectures or
human-imposed design choices.

To address this issue, we introduce a NAS (neural architecture search) framework for a systematic
and unbiased comparison of KAN and CNN architectures. By automating the search process, NAS
minimizes the impact of human biases on model selection and hyperparameter tuning. We use
this framework to evaluate both architectures on multiple standard benchmarks, including MNIST,
Fashion MNIST, EuroSAT, and a real-world task: sea ice concentration prediction.

This study aims to demonstrate that NAS can reduce expert bias in architecture design, providing a
more systematic evaluation of emerging neural architectures.

1

Published as a conference paper at MathAI 2025

Contribution:
Unified NAS Framework – We introduce an evolutionary NAS algorithm that optimizes KAN and
CNN architectures within the same search space, ensuring a fairer comparison.
Empirical Benchmarking – We evaluate NAS-optimized architectures on standard datasets and
real-world tasks, providing a comprehensive assessment of their capabilities.
Insights into KAN Performance – We analyze the conditions under which KANs excel or struggle,
particularly in convolutional settings, and discuss their limitations in deep architectures.

Data and code are available at anonymous repository https://anonymous.4open.
science/r/nas-kan-29A1

Limitations: This study does not exhaustively evaluate all possible architectures and benchmarks.
Additionally, the fairest comparisons require significant computational resources, which may limit
scalability. We aim not to claim one architecture’s absolute superiority over another but to highlight
how expert bias in architectural design influences performance comparisons.

2 BACKGROUND

2.1 CONVOLUTION KAN LAYER GEOMETRIES

Kolmogorov-Arnold Networks (KANs) modify CNNs using learnable non-linear transformations
instead of traditional linear filters, enhancing expressiveness and increasing computational com-
plexity.

KAN convolutions for images In ConvKAN Bodner et al. (2024), the convolution kernel is defined
as a matrix of learnable non-linear functions rather than fixed linear filters. Specifically, for an input
value x, a KAN kernel transformation is given by

ϕ(x) = w1 · spline(x) + w2 · silu(x) (1)

, where w1, w2 are trainable weights that control the contribution of different non-linear transfor-
mations, spline(x) is a learnable piecewise polynomial function that enables localized non-linear
transformations, and SiLU(x) is an additional non-linearity to enhance flexibility. CNN kernels are
a special case where the spline function reduces to a linear mapping.

Like traditional CNN convolutions, a KAN convolution kernel scans the input feature map, applying
non-linear transformations at each position. Unlike CNN kernels, which use fixed weights, KAN
kernels apply learned functions, enhancing flexibility but increasing computational cost. Given an
input image a ∈ Rh×w and a KAN kernel K of size N ×M K ∈ ΦN×M where Φ is the space of
spline functions, the convolution operation is defined as

(Image ∗K)i,j =

N∑
k=1

M∑
l=1

ϕkl(ai+k,j+l) (2)

,where ϕkl is the learnable mapping applied at position (k, l) within the kernel.

Extension to multiple channels An important architectural choice in KAN-based convolutional
networks is the connectivity pattern between input and output channels. We refer to it as a map from
input cin and output cout channels where a c channel feature map is of the form:

FeatureMap ∈ Rc×N×M

We consider two main approaches for extension:

Sparse KAN convolutions (ConvKAN-style) compute each output channel from a single input
channel, leading to a grouped convolution structure where different channels process separate as-
pects of the data. The convolution kernel for a sparse KAN layer is

K ∈ Φnconvs×N×M

2

https://anonymous.4open.science/r/nas-kan-29A1
https://anonymous.4open.science/r/nas-kan-29A1

Published as a conference paper at MathAI 2025

Each of the elements of cout = cin · nconvs output channel feature map depends on the corresponding
pair of kernel and input channel taken from their dot product:

(FeatureMap ∗K)snconvs+c,i,j =

N∑
k=1

M∑
l=1

ϕckl(as,i+k,j+l) (3)

, so each output channel only depends on one input channel.

Sparse KAN convolutions, like standard grouped convolutions, restrict feature interactions, which
may limit representation power in deeper networks. Dense KAN convolutions mitigate this limi-
tation by allowing full connectivity across channels, improving hierarchical feature extraction. The
kernel formulation is

K ∈ Φcout×cin×N×M

, and the formula for FeatureMap convolution is:

(FeatureMap ∗K)c,i,j =

cin∑
c′=1

N∑
k=1

M∑
l=1

ϕc′ckl(ac′,i+k,j+l) (4)

, which means that each output channel depends on all input channels.

Throughout this paper, we refer to the layer with Eq. 4 connection pattern as dense KAN convolu-
tions. We will use the general term KAN convolution to refer to both of these input-output channel
connectivity patterns.

In standard convolutional terminology, sparse KAN convolutions correspond to group convolutions
groups = cin, whereas dense KAN convolutions correspond to depth-wise convolutions with com-
plete mixing groups = 1.

Transposed KAN convolutions In applications requiring upsampling, such as image generation
and time-series forecasting, transposed convolutions are needed. To extend KAN convolutions to
transposed variants, we define the operation as

(FeatureMap ∗K)c,i,j =
∑

c′,r,s,k,l
r+k=i
s+l=j

ϕc′ckl(ac′,i+k,j+l) (5)

, ensuring that non-linear transformations are applied symmetrically during upsampling.

Overall model structure Every model considered in the paper is a series of interconnected con-
volutional layers of CNN or KAN convolutions with different geometries and KAN or NN fully
connected layers. Every layer has a parameter set, such as input size, kernel size, stride size, and
weights.

It is convenient for the NAS application to consider two different parts of the model - structure
S = {s1, s2, ...sj}, where si , i = 1, .., j is the layer type and data flow encoding and parameters
set P = {p1, ...pj}, where pi , i = 1, ..., j is the corresponding layer’s numeric or categorical
parameter set. So, the resulting model is considered in the form

M(S, P, x) : X → Y (6)

In Eq. 6, x ∈ X is an element of input space X , and Y corresponds to the problem target set.

3

Published as a conference paper at MathAI 2025

2.2 NAS AT A GLANCE

Neural Architecture Search (NAS) optimizes performance for specific tasks. NAS methods can be
roughly categorized into three approaches: NAS from scratch, full NAS, one-shot NAS, and few-
shot NAS Poyser & Breckon (2024), each with distinct methodologies, strengths, and limitations.
Roughly, we depict the scheme in Fig. 1. We do not intend to make a full review of each method of
NAS, but we try to describe the requirements to start with a novel architecture.

Figure 1: NAS classification scheme

The difference between NAS algorithms is the building blocks for architectures: basic operation,
basic layers, and parametrized or fixed layer combinations. The smaller the scale of the block, the
more variability of architecture is possible, but it is achieved with a larger number of intermediate
steps.

NAS from scratch focuses on generating neural architectures and their weights entirely from the
ground up Geada et al. (2024); Ericsson et al. (2024), without relying on pre-trained models, weight
inheritance, or structured priors. This approach simultaneously explores the search space and the
training process, optimizing the architecture and its parameters from an uninitialized state.

Full NAS (for example, Tong & Du (2022)) conducts an exhaustive search of the architectural
space to identify the optimal network configuration. Traditionally, this method employs reinforce-
ment learning, evolutionary algorithms, or Bayesian optimization to guide the search process. Full
NAS explores the search space thoroughly, often yielding architectures with state-of-the-art perfor-
mance. Multiple objectives can also be used, such as accuracy, latency, and energy consumption.
However, the search process can take weeks or even months on large-scale datasets.

One-Shot NAS (also often referred to as weight sharing, for example, ENAS Pham et al. (2018))
addresses the computational challenges of full NAS by training a single, over-parameterized ”su-
pernet” that encompasses all possible architectures. Candidate architectures are then evaluated as
subnetworks of the supernet without independent retraining. However, supernet architecture must
be defined so that it can be reduced thereafter. Sub-networks often inherit weights from the supernet,
leading to discrepancies between search time and stand-alone performance.

Few-Shot NAS (as an example Liu et al. (2018a)) serves as a middle ground between the full
NAS and the one-shot NAS, using partial training of candidate architectures or transfer learning to
reduce computational demands using an intermediate assessment model. It often involves training
a smaller pool of architectures for a limited number of epochs or fine-tuning pre-trained networks.
The drawback is that the smaller pool of candidates may lead to sub-optimal architectures compared
to full NAS.

Our aim is to show that the standard CNN approaches to build architectures may not apply to con-
volutional KANs in the general case. However, we already have some prior blocks, such as splines,
and a way to form convolution using splines. To compare CNN and KAN with convolution layers

4

Published as a conference paper at MathAI 2025

(it could not necessarily be a KAN, any novel architecture) in a fair way, we are required to generate
architecture from small but existing priors and compare the best possible result within a uniform
setup. Therefore, we require (a) a full NAS algorithm to have as broad a search space as possible
and (b) a NAS algorithm with the ability to work simultaneously with CNN and convolutional KAN.
Below, we briefly describe the evolutionary Full NAS approach used in the paper.

3 USED NAS APPROACH

Among different search algorithms – gradient-based, RL, and evolutionary – for novel architec-
ture, the most viable competitors are the last two. Gradient-based methods (DARTS-like Liu et al.
(2018b)) require a fixed-dimensional search space, where inactive parameters are often set to zero.
The fixed numerical search space may introduce an implicit bias in the search process. We use
a relatively standard evolutionary multi-objective optimization approach based on the MOEA/DD
algorithm with the following features:

– Models are represented by DAGs (directed acyclic graphs) with single sink
– Computation volume is constrained
– Evolutionary operations are made such that the DAG structure is preserved

In this case, DAG is represented by parametrized convolutional and fully connected layers, as ver-
tices and edges represent data flow. Regarding Eq. 6, DAG is the structure S. The parameters set is
determined during the training of a model with a given structure.

As a result, optimization has the form:

argmin
S∈Σ

F (M(S, P, x)) (7)

In Eq. 7 F (·) = F (f1, ...fq) is the mutli-objective operator over objectives fi, Σ is the set of all
achevable structures. For optimization we use objective fmetric = min

P
L(M(S, P,X), Y), where L

is the loss function corresponding to a given problem and objective fpar(S) = |P | with |P | is the
number of parameters for a given structure S.

More details and a complete realization scheme can be found in Appendix A.

4 EXPERIMENTAL SETUP

4.1 APPROACH TO COMPARISON

The guiding principle of the experiments is to ensure that the evolutionary process is as exhaustive
as possible. However, it is impossible to cover every point in the search space due to the full
computational complexity of the NAS. The following measures have been adopted to achieve as
full a search space as possible:

• The search space is narrowed by introducing inductive biases specific to each type of struc-
ture (CNN, KAN, CNN+KAN).

• Smaller models are discovered to save computational resources, allowing for a larger num-
ber of trials, and the corresponding more manageable benchmark datasets are selected to
suit small models’ evaluation better.

• The models are compared based on benchmark metrics and complexity.

• Complexity is computed as the number of learnable parameters of the model.

While limiting model size reduces computational cost, it may also restrict the discovery of high-
performing architectures. We mitigate this by allowing broader kernel size variations and flexible
layer depths.

The full justifications for the particular choices are available in Appendix B.

5

Published as a conference paper at MathAI 2025

4.2 DATASETS

For classification, standard benchmarks were taken:

MNIST (LeCun et al. (2010) available under CC-BY-SA 3.0 license)
Fashion MNIST (Xiao et al. (2017) available under MIT license)
EuroSAT (Helber et al. (2019) available under MIT license)

Another non-benchmarked problem was taken to avoid bias: sea-ice concentration prediction based
on the OSI SAF Global Sea Ice Concentration (SSMIS) data Lavergne et al. (2019) (available under
the CC-BY 4.0 license). The data were adjusted to a consistent 14 km grid, hence being repre-
sentable as an image. The Laptev Sea is selected for the experiments. The data’s temporal resolu-
tion was reduced to a week to facilitate long-term forecasting and minimize insignificant dynamic
reproduction. Forecasting for one year is performed using data from the previous two years. Such a
3-year window is sliding through the timeline to generate the dataset.

4.3 EXPERIMENTAL PARAMETERS

The common parameters chosen for experiments are listed in Tab 1.

Table 1: Common hyperparameters used in NAS
Parameter Value
n generations 7
pop size 8
Pooling kernel size & stride 2

max parameters < 200k (low range),
< 1.5m (high range)

NN train epochs task dependent
NN train timeout (min) task dependent

Convolution kernel size {3, 5 } (KAN)
{3,5,7}(CNN)

While the multi-objective approach to evolution allows sharing of fitness information between net-
works of different size categories, a more reliable approach is to merge multiple evolution al-
gorithm runs for different parameter count ranges. In Tab 1, merged ranges are referred to as
max parameters.

For NSGANet Lu et al. (2019) for search space=micro the suggested parameters are
n generations=30 and n individs=20. In our case, the search space was wider, and KANs,
unlike their NN counterparts, have extended train time. We determine parameters such as the plateau
reached for the Pareto frontier and training loss to preserve fairness.

The maximum number of epochs is set to 30, with a timeout of 12 minutes for the MNIST and
FashionMNIST datasets, and 50 epochs with a timeout of 40 minutes for the EuroSAT dataset.

A larger number of epochs is employed for the final solution refinement: 50 epochs for the MNIST
and FashionMNIST datasets and 70 epochs for the EuroSAT dataset.

4.3.1 CNN SETUP

BatchNorm2d, pooling, and activations of the following types are employed in the convolutional
layers as node supplementary operations (Appendix A.4): ELu, SeLu, SoftPlus, ReLu, SoftSign,
tanh, HardSigmoid, and Sigmoid.

The number of convolutional layers, n conv layers, ranges from 2 to 8 for the EuroSAT dataset and
from 2 to 6 for the MNIST and FashionMNIST datasets for both parameter ranges. The convolu-
tional filter depths, conv filter depths, are the same for all datasets and range from 16 to 64 for the
high parameter range and 4 to 64 for the low parameter range.

The number of fully connected layers, n fc layers, ranges from 2 to 3 for all datasets. Their hidden
sizes range from 32 to 128 for the high parameter range and 16 to 128 for the low parameter range.

6

Published as a conference paper at MathAI 2025

4.3.2 KAN SETUP

The extremely small and large values of parameters have been demonstrated in ConvKAN to be
less effective and do not align with the principle of exhaustiveness (Appendix B.1). Specifically,
spline order = 3 and grid size is always one of {5, 10}. Consequently, the search space is restricted
to these choices for both fully connected and convolutional KAN layers.

For grayscale datasets, the convolutional filter depths, conv filter depths, range from 2 to 16, while
for the EuroSAT dataset, they range from 3 to 24. These choices are consistent across KAN convo-
lutional layer geometries and parameter ranges.

Following the authors of ConvKAN, we only consider one fully connected KAN layer. This decision
is based on the fact that having multiple layers in the classification head of a KAN causes an explo-
sion in the number of parameters and computational resources, placing it outside of the concerned
search space. The reasons for the high number of parameters in this case are as follows:

• Even with the same dimensions, the KAN Linear layer contains more parameters than a
CNN layer.

• Multiple layers in the classification head imply that the preceding layers are larger than the
number of classes, making the number of parameters for a multilayered head even larger
and the first layer the largest parameter consumer.

• A typically lower number of KAN convolutions than CNN convolutions results in a large
matrix size in the final convolution layer and, hence, a large output from the flattening layer.

However, the complexity of the classification head can be controlled by the choice of grid size.

4.4 TIME SERIES FORECASTING

Lagged transformation (sliding window) is applied to the test and train datasets to collect sufficient
dataset sizes. Transformations are not applied since only rotations by 90◦ · k are physical and
impractical since the cross-sea transfer learning is not conducted.

Using layers with padding=same could lead to non-physical prediction. Sea ice has spatial dis-
tribution and is governed by physical laws that should be preserved – mechanics, heat transfer, and
others. Hence, transposed convolutions are used.

The total number of convolutions and transposed convolutions ranges from 4 to 8 in the CNN case
and 2 to 4 in the KAN case. The number of steps in the logarithmic scale between output size and
input size for channel numbers of convolutional layers is 10.

5 EXPERIMENTAL RESULTS

As contestants we consider the following search spaces for NAS: CNN, pure convolutional NN,
KAN, following ConvKAN, such models use KAN convolutional layers with ConvKAN geometry
and fully connected KAN layers in classification head, CNN+KAN, the same KAN classification
head follows classical convolutions, denseConvKAN, dense KAN convolutional layers (Eq. 4)
with KAN classification head.

Where applicable, we provide results reported in ConvKAN Bodner et al. (2024) paper with mark
(ConvKAN).

For all experiments single NVIDIA A100 GPU with 48 GB RAM within DGX A100 server was
used.

For every type of network, the Pareto frontier was recorded together with optimization history and a
complete model set in population. Every model of the resultant Pareto fronts has been evaluated ten
times to account for the stochasticity of the learning process.

MNIST is usually considered a straightforward problem. However, it shows that the approach gener-
ally works. In Fig. 2, the final Pareto frontier, together with the confidence interval and distributions,
is shown.

7

Published as a conference paper at MathAI 2025

Figure 2: MNIST Pareto frontier. Boxes are accuracy distributions for a given parameter range. Box
width is proportional to the considered parameters range. Lines are mean Pareto frontiers with 95-%
confidence interval across ten runs.

The best model accuracy for the MNIST dataset and the number of parameters is shown in Tab. 2.

Table 2: MNIST best models discovered
Architecture #Parameters Accuracy
CNN 29.6k 0.992
CNN (ConvKAN) 157.0k 0.991
denseConvKAN 140.6k 0.989
CNN+KAN 346.9k 0.992
CNN+KAN 91.6k 0.99
CNN+KAN (ConvKAN) 95.0k 0.988
KAN 120.1k 0.986
KAN (ConvKAN) 94.9k 0.989

The table shows that a more competitive accuracy (0.991 vs. 0.989) may be obtained with fewer
parameters (157.0k vs. 140.6k). However, CNNs could not be beaten with KAN architectures for
the best possible accuracy. We also mention that the human-built model reported in Drokin (2024)
achieves a validation accuracy of 99.48 with the number of parameters 1542199 (1.5m).

Fashion MNIST is considered an alternative to MNIST but with more complex content. Pareto
frontiers obtained during NAS are shown in Fig. 3.

The best model accuracy for the Fashion MNIST dataset and the number of parameters is shown in
Tab. 3.

The paper Bodner et al. (2024) reports the best accuracy of 0.8856 for KKAN (which is considered
the direct human-built competitor to denseConvKAN) architecture with 74.88k parameters. We can
achieve an accuracy of 0.905 with a double number of parameters 164.6k.

8

Published as a conference paper at MathAI 2025

Figure 3: FashionMNIST Pareto frontier. Boxes are accuracy distributions for a given parameter
range. Box width is proportional to the considered parameters range. Lines are mean Pareto frontiers
with 95-% confidence interval across ten runs.

Table 3: FashionMNIST best models discovered
Architecture #Parameters Accuracy
CNN 119.4k 0.92
CNN 46.6k 0.91
CNN (ConvKAN) 157.0k 0.901
denseConvKAN 164.6k 0.905
CNN+KAN 263.2k 0.915
CNN+KAN 35.1k 0.906
CNN+KAN (ConvKAN) 95.0k 0.888
KAN 474.4k 0.907
KAN 78.9k 0.898
KAN (ConvKAN) 94.9k 0.897

EuroSAT We could not find a human-built convolutional KAN architecture. However, it is often
used in NAS algorithms. The resulting Pareto frontier is shown in Fig. 4.

The best models for EuroSAT are shown in Tab 4.

Table 4: EuroSAT best models discovered
Architecture #Parameters Accuracy
CNN 214.9k 0.932
denseConvKAN 210.1k 0.918
CNN+KAN 296.3k 0.922
KAN 922.3k 0.805

9

Published as a conference paper at MathAI 2025

Figure 4: Eurosat Pareto frontier. Boxes are accuracy distributions for a given parameter range. Box
width is proportional to the considered parameters range. Lines are mean Pareto frontiers with 95-%
confidence interval across ten runs.

Although there are no direct competitors, we refer to Cheon (2024b) reporting that ConvNeXt with
MLP replaced to KAN (CNN + KAN direct competitor) has 94 % precision with an amount of
parameter ranging from 29m to 200m for ConvNeXt Liu et al. (2022) with MLP. In our case,
denseConvKAN has the same performance as CNN+KAN with fewer parameters.

OSI SAF Sea-ice (SSMIS) As a task unbiased by standard benchmarking, we use sea ice con-
centration data at the Laptev Sea. The main difference is that we require transposed convolutions
introduced in the pipeline to make forecasts. Two samples of prediction are shown in Fig. 5.

Figure 5: Laptev sea ice prediction. The first week (left) and last (52, right) of prediction for one
year are shown.

The resulting Pareto frontier is shown in Fig. 6.

10

Published as a conference paper at MathAI 2025

Figure 6: Laptev sea Pareto frontier. Boxes are accuracy distributions for a given parameter range.
Box width is proportional to the considered parameters range. Lines are mean Pareto frontiers with
95-% confidence interval across ten runs.

The best prediction models are shown in Tab 5.

Table 5: Ice prediction in the Laptev Sea best models discovered
Architecture #Parameters L1 Loss SSIM
CNN 233.2k 0.067 0.79
CNN 97.0k 0.069 0.778
CNN 73.3k 0.073 0.773
CNN 73.2k 0.074 0.768
denseConvKAN 1.3M 0.082 0.74
denseConvKAN 898.6k 0.083 0.74

KAN models may struggle in this task due to the lack of strong spatial priors, which CNNs inherently
exploit through weight sharing in convolutional layers. However, the CNN results might have sharp
edges and not satisfy physical constraints. So, the resultant fields of the models are hand-reviewed
after the evolutionary process.

6 DISCUSSION

Deep architecture design with ConvKAN layers Constructing deep architectures with classical
ConvKAN geometry is unfeasible because adding more convolutions results in a power-law growth
of elements , causing the convolutional weights’ share to decrease rapidly with depth. This reduces
spatial data bias from convolutional layers, worsens quality, and causes computational inefficiencies
because ConvKAN’s geometry does not mix channels until the fully connected part, leading to
replication.

11

Published as a conference paper at MathAI 2025

Even in smaller models, frequent pooling layers are needed to manage feature map size by reducing
spatial resolution, unlike in classical CNNs, where pooling follows a block of convolutions. Calcu-
lations in Table 6 show ConvKAN models like KANConv&MLP and KKAN have low parameter
fractions in convolutional layers.

Table 6: Convolution and linear layer percentage
#Parameters FC, % Conv, %

1 Layer MLP 7.8k 100.0% 0.0%
ConvNet (Small) 2.7k 89.78% 10.22%
ConvNet (Medium) 157.0k 99.24% 0.76%
ConvNet (Big) 887.5k 90.77% 9.23%
KANConv&MLP 163.7k 99.45% 0.55%
Simple Conv&KAN 37.0k 99.24% 0.76%
KKAN 94.7k 99.05% 0.95%

ResNet152 58.2M 5.06% 94.94%
ConvNeXt (small) 49.5M 0.02% 99.98%
AlexNet 57.0M 95.67% 4.33%
MobileNet 2.2M 0.57% 99.43%

Despite the extremely low share of convolutional part parameters, the amount of computations of
the convolutional part is comparable to regular CNNs due to a higher params-to-flops ratio.

Other Approaches to Evolution It should be noted that more refined approaches could be em-
ployed instead of the NAS algorithm used to accumulate more abstract information on the depen-
dence of the quality-complexity trade-off resolution on the position in the graph. This leans towards
indirect encoding or surrogate models, i.e., the Few-Shot NAS, which is beyond the scope of this
paper.

A carefully designed algorithm of this kind can function as an end-to-end algorithm. It could effi-
ciently identify the subspaces to search for each type of structure when running on a larger shared
space, leading to even less biased results by further reducing human intervention compared to regular
NAS and allowing for analyzing big models without loss of exhaustiveness.

Dropout Layers In terms of KANs, there are no changes in the dropout requirement to avoid
overfitting, compared to CNNs/MLPs. The DropKAN study Altarabichi (2024) proposes a version
of the Dropout layer adjusted for the KAN architecture.

However, in CNNs, batch normalization has largely supplanted dropout, performing its functions
and being somewhat incompatible with it Li et al. (2019). Consequently, this type of layer is not
included in the search space.

Concatenation Across DAG Input Edges A common approach in DAG-based NAS is concate-
nating all incoming edges to obtain the node input, as seen in manually designed architectures such
as inception blocks. However, the encoding used in this study only supports merging activations
by an element-wise sum like that in ResNet. This encoding is less rich but enables one to maintain
exhaustiveness.

7 CONCLUSION

NAS allows for better model performance for KAN, yet it remains unfeasible for real problems due
to the extended training time. With the proposed approach, we were able to create more appropriate
building blocks for convolutional networks within the KAN paradigm.

The main findings are the following:

• The fairest conclusion is that KANs achieve comparable accuracy to CNNs on image
classification tasks but require significantly more computational resources.

12

Published as a conference paper at MathAI 2025

• To build KAN architecture with convolutions, modifications such as dense KAN convolu-
tions and transposed convolutions are required.

• By automating architecture discovery, NAS reduces human bias in model selection, reveal-
ing alternative designs that might otherwise be overlooked.

Our results suggest that KANs can achieve comparable accuracy to CNNs but require significantly
more computational resources. This study highlights the importance of NAS in fairly evaluating
novel architectures, ensuring that promising designs are not overlooked due to human biases in
architecture selection.

REFERENCES

Mohammed Ghaith Altarabichi. Dropkan: Regularizing kans by masking post-activations. arXiv
preprint arXiv:2407.13044, 2024.

Alexander Dylan Bodner, Antonio Santiago Tepsich, Jack Natan Spolski, and Santiago Pourteau.
Convolutional kolmogorov-arnold networks, 2024. URL https://arxiv.org/abs/
2406.13155.

Minjong Cheon. Demonstrating the efficacy of kolmogorov-arnold networks in vision tasks. arXiv
preprint arXiv:2406.14916, 2024a.

Minjong Cheon. Kolmogorov-arnold network for satellite image classification in remote sensing.
arXiv preprint arXiv:2406.00600, 2024b.

Phuc Hao Do, Tran Duc Le, Truong Duy Dinh, et al. Classifying iot botnet attacks with kolmogorov-
arnold networks: A comparative analysis of architectural variations. IEEE Access, 2025.

Ivan Drokin. Kolmogorov-arnold convolutions: Design principles and empirical studies, 2024. URL
https://arxiv.org/abs/2407.01092.

Linus Ericsson, Miguel Espinosa, Chenhongyi Yang, Antreas Antoniou, Amos Storkey, Shay B
Cohen, Steven McDonagh, and Elliot J Crowley. einspace: Searching for neural architectures
from fundamental operations. arXiv preprint arXiv:2405.20838, 2024.

Rob Geada, David Towers, Matthew Forshaw, Amir Atapour-Abarghouei, and A Stephen McGough.
Insights from the use of previously unseen neural architecture search datasets. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22541–22550, 2024.

Remi Genet and Hugo Inzirillo. Tkan: Temporal kolmogorov-arnold networks. arXiv preprint
arXiv:2405.07344, 2024.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

Thomas Lavergne, Atle Macdonald Sørensen, Stefan Kern, Rasmus Tonboe, Dirk Notz, Signe
Aaboe, Louisa Bell, Gorm Dybkjær, Steinar Eastwood, Carolina Gabarro, et al. Version 2 of
the eumetsat osi saf and esa cci sea-ice concentration climate data records. The Cryosphere, 13
(1):49–78, 2019.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Xiang Li, Shuo Chen, Xiaolin Hu, and Jian Yang. Understanding the disharmony between dropout
and batch normalization by variance shift. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 2682–2690, 2019.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceed-
ings of the European conference on computer vision (ECCV), pp. 19–34, 2018a.

13

https://arxiv.org/abs/2406.13155
https://arxiv.org/abs/2406.13155
https://arxiv.org/abs/2407.01092

Published as a conference paper at MathAI 2025

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018b.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976–11986, 2022.

Ziming Liu, Pingchuan Ma, Yixuan Wang, Wojciech Matusik, and Max Tegmark. Kan 2.0:
Kolmogorov-arnold networks meet science. arXiv preprint arXiv:2408.10205, 2024a.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. arXiv preprint
arXiv:2404.19756, 2024b.

Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb, Erik Goodman, and
Wolfgang Banzhaf. Nsga-net: neural architecture search using multi-objective genetic algorithm.
In Proceedings of the genetic and evolutionary computation conference, pp. 419–427, 2019.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search
via parameters sharing. In International conference on machine learning, pp. 4095–4104. PMLR,
2018.

Matt Poyser and Toby P Breckon. Neural architecture search: A contemporary literature review for
computer vision applications. Pattern Recognition, 147:110052, 2024.

Khemraj Shukla, Juan Diego Toscano, Zhicheng Wang, Zongren Zou, and George Em Karniadakis.
A comprehensive and fair comparison between mlp and kan representations for differential equa-
tions and operator networks. arXiv preprint arXiv:2406.02917, 2024.

Lyuyang Tong and Bo Du. Neural architecture search via reference point based multi-objective
evolutionary algorithm. Pattern Recognition, 132:108962, 2022.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Xingyi Yang and Xinchao Wang. Kolmogorov-arnold transformer. arXiv preprint
arXiv:2409.10594, 2024.

Runpeng Yu, Weihao Yu, and Xinchao Wang. Kan or mlp: A fairer comparison. arXiv preprint
arXiv:2407.16674, 2024.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization, 2017. URL https://arxiv.org/abs/
1611.03530.

14

https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1611.03530

Published as a conference paper at MathAI 2025

A EVOLUTIONARY NAS

Due to the high cost associated with the objective evaluation in Neural Architecture Search (NAS),
the (λ+ µ)-EA evolutionary algorithm is utilized to enhance exploitation.

A.1 EVOLUTIONARY ENCODING OF NETWORKS

A special type of Directed Acyclic Graphs (DAG) with a single source, a single sink, and node input
arity (i.e., the number of incoming data sources to a computation node) of 1 or 2, where the second
input edge serves as a shortcut connection, is utilized as an encoding, as illustrated in Figure 7 and
Figure 8. The graph nodes are treated as layers, and the edges are data paths between layers. So, if
the input of a node is 2, the input of the corresponding mapping is calculated as an element-wise sum
of the two connected node outputs. The input image is passed as the input to the source node, and
the result is taken from the sink node. A model is rendered from the graph, learned, and evaluated
on the validation set to evaluate an individual in the fitness function.

For both classification and time-series forecasting tasks, the transformations of the convolutional
part are applied first.

For classification (Fig, 7), a single flatten layer is the part of the model following the convolutional
backbone and preceding the fully connected part (classification head). To guarantee that the output
shape of the last layer of the model matches the number of classes, an additional last layer of the
corresponding shape is added to the model during its construction from the graph. Cross-entropy
holdout validation is implemented as the fitness function.

Convolutional Part FC Part
Flatten
Layer

Figure 7: NAS encoding for classification tasks

For time series forecasting (Fig. 8), the convolutional backbone consists of two parts with the same
number of layers along any data path: encoder and decoder (see Section 4.4). The output feature
map of the sink node is interpreted as the resultant sequence of images evaluated against the ground
truth of the validation set with the l1 metric.

Hyperparameters for each node, such as the number of filters, kernel sizes, activation types, spline
grid sizes, etc., are chosen individually rather than uniformly across the entire graph. Each node
negotiates a trade-off between quality and simplicity, the resolution of which depends heavily on its
position within the graph.

Fully connected layers (KAN and MLP), CNN convolutional layers, and dense KAN convolutional
layers in the classification task are sized as powers of 2 within a specific range, producing a reason-
able logarithmic scale. A logarithmic scale with a smaller factor is used for time series forecasting
to cover the sizes between the number of input channels (max) and output channels (min).

15

Published as a conference paper at MathAI 2025

Encoder part Decoder part

nforecast
channels

nhistory
channels

Figure 8: Time series forecaster NAS encoding

According to the specialized data flow in convolutions of ConvKAN’s geometry, the output dimen-
sion of this type of layer should be divisible by its input dimension. Therefore, dimensions for such
layers are selected from the form image input channels · 2k, where k ∈ [l, r].

A.2 GENETIC OPERATORS AND VALIDATION RULES

A.2.1 GENETIC OPERATORS

During the application of each genetic operator (mutation and crossover), changes are iteratively
sampled using mutation and crossover attempts. The first change that satisfies the validation rules
is accepted. Mutation types include adding a single node, dropping a single node, adding a single
edge, and changing a node, while crossover involves exchanging subtrees within the graphs. For
time series forecasting, due to the rigid encoder-decoder structure of the model (Section 4.4), a pair
of consecutive mutations is sampled before the validation rule check because any single mutation
changing the model structure would affect only one of the two parts and thus would violate the
equality constraint on the number of layers of encoder and decoder along each data path. This
makes the search space connected.

A.2.2 VALIDATION RULES

Validation rules stipulate that the graph must remain a DAG with a single source and sink and that
proper separation between network parts (convolution, flatten, classification head for classification
and encoder, decoder for time series forecasting) is maintained, along with dimension correctness.
Less obvious rules include:

• Convolution filter depths must increase along any data path in classification tasks and de-
crease for time series forecasting from input channels (= given period length) to output
channels (= forecasting period length).

• Complexity-controlling rules to allow ”thin” architectures (see A.6).

A.2.3 SEARCH SPACE CONNECTEDNESS

Given the constraints imposed by the validation rules, one might question whether the search space
remains connected because any model within the search space can be reached from any other model
through a sequence of these mutations.

16

Published as a conference paper at MathAI 2025

A.3 BATCHNORM

The primary function of the Batch Normalization (BatchNorm) layer is to adjust data into the non-
trivial range of activation functions. However, the KAN layers’ grid extension capability already
achieves this effect.

In ConvKAN, batch normalization was experimentally introduced as an alternative to the built-in
KAN scaling, but no significant improvement was observed.

Consequently, in our experiments, the BatchNorm layer is applied only to CNN convolutions and
not to KAN convolutions for both theoretical and practical reasons.

A.4 SUPPLEMENTARY OPERATIONS IN A NODE

In addition to the main convolutional operations, each convolutional node of the graph incorporates
several supplementary operations that are sequentially applied during the forward pass. When gen-
erating new nodes through mutations, supplementary operations are added with a certain probability.

The supplementary operations include batch normalization, activation, and pooling, where applica-
ble.

The set of supplementary operations considered and their associated probabilities depend on the
type of layer, as described in Section 4.3.

An alternative approach would be to treat these operations as separate graph nodes. However, this
would complicate the design of mutations necessary to maintain the layered structure with alternate
convolutions and supplementary operations, which structure is known to be effective. Mutations
might otherwise disrupt this structure.

A.5 MULTIOBJECTIVE

In ConvKAN, models are manually compared based on the number of parameters and quality met-
rics across a set of manually constructed models. When applying Neural Architecture Search (NAS),
a natural extension explicitly searches for this trade-off as a Pareto frontier, as typically done in
multi-objective optimization MOEA/DD, with the number of parameters serving as the second met-
ric.

Multi-objective optimization serves a dual purpose. First, the Pareto frontier is helpful for presenting
results. Second, it helps overcome local minima by allowing intermediate models to survive due to
their smaller size. Consequently, the multi-objective approach can achieve better fitness function
values than a single-objective algorithm.

The particular complexity metric choice is discussed in B.2.

A.6 COMPUTATIONAL VOLUME CONSTRAINT

A strict computational volume constraint is imposed during the optimization process to diversify the
search space and narrow it to models with a low computational volume.

Simultaneously, constraints on specific model parameters that affect complexity, such as the maxi-
mum number of layers and filters per layer, should be higher.

The rationale is to widen the search space to permit deep and ”thin” models; however, if every
parameter is maximized, the computations will become excessively lengthy.

This approach is expected to yield more interesting models while conserving computational time.

Therefore, a small percentile of the generated models, which would otherwise consume a substantial
portion of computational resources, is truncated.

Computational volume is measured by repeatedly passing a random tensor of batch dimensions
through a model and recording the time.

The computational resource thresholds are experimentally determined to exclude only a small per-
centage of the generated individuals.

17

Published as a conference paper at MathAI 2025

Similarly, a parameter number constraint is imposed to maintain exploration within the search space
delineated in Section B.4. The threshold for parameters is derived from the considerations discussed
in that section.

A.7 STATISTICAL EVALUATION

Experimentation reveals that the stochasticity of learning a model on the training dataset may affect
the rankings. This is acceptable for the evolutionary process due to its stochastic nature and con-
straints on fitness evaluation time. However, more accurate results may be obtained for the final best
individuals.

We use 95

chosen
node

Initialization
Start

Initial

Objectives
evaluation

M1

M2

example
population

........

Stop
Terminate

Update
archive

Parents Selection

Crossover
Crossover example

(subtree)
N2N1

Mutation
Mutation example
(exchange node)

Source ind Result

Population
Selection

........

EVOLUTION

Best
structuresPopulation

Parents+
offspring

N1
' N2

'

Parameters

Metrics
Modelling error

Structural complexity

Optimizer parameters

Search space
parameters

Dataset

FC partlayers

Convolutional
part layers

Available nodes

Flatten
layer

Complexity

Q
ua

lit
y

Pareto frontier

Statistical
evaluation

Individuals pool

........

SPEA-2
Tournament

One individual selection example

Selected
individual

0.1
0.9

0.8

0.6

0.5

0.1

M1

Objectives

predict

accuracy#paramters
qualitycomplexity

fit

Figure 9: NAS pipeline: evolution, followed by statistical evaluation

A.8 CONVERGENCY, DIVERSITY AND SPACE COVERAGE TEST

An example of fitness dynamics during evolution is presented in Figure 10.

Figure 10: Best fitness dynamics during evolution for CNN+KAN setup on EuroSAT

18

Published as a conference paper at MathAI 2025

To ensure coverage of the range of the number of parameters in question chosen according to Ap-
pendix B.4, the histograms of the distributions of the numbers of parameters of individuals across
evolution generations have been formed.

Note that only the individuals accepted for generations are recorded in the histograms, not all the
evaluated candidates.

Together with the Pareto fronts, histograms demonstrate that the complexity range for low- to high-
performing models is covered and that architectures with a larger number of parameters have been
examined but were unable to generalize well and outperform the smaller models of the resultant
Pareto front; hence, exhaustiveness is held.

Figure 11: KAN on EuroSAT parameter number distribution histogram

Figure 12: CNN on EuroSAT parameter number distribution histogram

To assess the extent to which the evolutionary process explores various trade-offs between the com-
plexities of the convolutional module and the classification head, we analyze the distribution of
parameter shares in the convolutional layers. Figures 14, 15 ,16, and 17 present histograms of the
fraction of parameters allocated to the convolutional layers for different architectures. In these his-
tograms, the x-axis demonstrates the fraction of the total number of parameters in the convolutional
layers, while the y-axis shows the fraction of the evaluated models exhibiting this property.

19

Published as a conference paper at MathAI 2025

Figure 13: CNN-KAN on EuroSAT parameter number distribution histogram

Figure 14: Distribution histogram of parameter shares in convolutional layers for CNN on EuroSAT

Figure 15: Distribution histogram of parameter shares in convolutional layers for CNN+KAN on
EuroSAT

B APPROACH TO COMPARISON

B.1 EXHAUSTIVENESS PRINCIPLE

The experiments’ guiding principle is to ensure that the evolutionary process is as exhaustive as pos-
sible, thereby enabling the comparison of architectural properties rather than random initializations
of evolutionary processes.

20

Published as a conference paper at MathAI 2025

Figure 16: Distribution histogram of parameter shares in convolutional layers for KAN on EuroSAT

Figure 17: Distribution histogram of parameter shares in convolutional layers for denseConvKAN
on EuroSAT

The following measures have been adopted to implement this principle:

• The search space is narrowed by introducing inductive biases specific to each type of struc-
ture (CNN, KAN, CNN+KAN).

• Smaller models are discovered to save computational resources, allowing for more trials.
Another benefit of smaller models is the more straightforward exploration of a graph space
with orders of magnitude smaller than larger models.

• Easier benchmark datasets are selected to suit small models’ evaluation better. The princi-
ple here is that the tried range of model sizes should correspond to a dataset in a way that
covers the full quality improvement interval. This interval typically falls within the set of
smaller models for simpler datasets.

While limiting model size reduces computational cost, it may also restrict the discovery of high-
performing architectures. We mitigate this by allowing broader kernel size variations and flexible
layer depths.

B.2 ACCOUNTING COMPLEXITY METRIC

As KAN layers are typically drop-in replacements of their NN analogs, a straightforward approach
to comparison is to compare the initial NN model with its KAN counterpart with the replaced lay-
ers. However, this approach is unfair since KAN layers typically contain more parameters than the
replaced ones and require more computation volume and time for both learning and inference.

21

Published as a conference paper at MathAI 2025

Popular approaches compare the quality metrics of MLPs and their KAN alternatives with a similar
complexity metric, such as the number of parameters or their computational volume, which could
be measured in FLOPs.

However, the appropriateness of the comparison technique remains debatable. Judging an architec-
ture solely by its computational volume required for training/inference is not particularly appropriate
because models’ performance in real-world scenarios is usually constrained more by data availabil-
ity than by computational resources. A large model can easily learn the training set, but the crucial
question is whether it generalizes well, for which fewer parameters are preferred.

Comparing generalization by the number of parameters across different architectures is also flawed
because of the different ways how parameters affect the transformations. Furthermore, neural net-
works are known to be over-parameterized to facilitate better optimization landscapes Zhang et al.
(2017).

An alternative approach is comparing single best architectures without complexity constraints, as
long as they generalize well on the dataset (which is already verified through the evaluation on the
test dataset).

Nevertheless, examining the entire Pareto front can be informative, and this metric is helpful for
multi-objective optimization. Additionally, a few parameters might indicate better generalization
for different feature space distributions close to the training distribution, a property not verified by
the validation procedure.

Given the ambiguity in determining the correct approach, we conducted multi-objective optimization
based on the number of parameters, and the best models found for the dataset were also compared
across different architectures.

B.3 PARAMS-TO-FLOPS RATIO

Despite a typically low parameter number share of convolutional layers in ConvKAN’s geometry
(sparse geometry), the number of computations of convolutional layers (more than for linear layers)
is comparable with their CNN counterparts. The reason is a higher computations-to-parameter ratio.

To illustrate this observation, consider a setup where a convolutional layer has an input dimension
of c channels and an output dimension of cn channels, with a kernel size of k and an input/output
matrix size of w × h.

computations
parameters

(denseConv) = const

#output channels︷︸︸︷
cn ·

#elements affecting output pixel︷︸︸︷
ck2 ·

elements in each feature map channel︷︸︸︷
wh

k2︸︷︷︸
kernel elements

nc2︸︷︷︸
#kernels

= const·wh

computations
parameters

(sparseConv) = const

#output channels︷︸︸︷
cn ·

#elements affecting output pixel︷︸︸︷
k2 ·

elements in each feature map channel︷︸︸︷
wh

k2︸︷︷︸
kernel elements

n︸︷︷︸
#kernels

= const·c·wh

The computation-to-parameter ratio is c times higher for sparse geometry. It grows linearly with
the number of input channels, which may be high in the last layers of the network, while the ratio
remains constant for dense cases.

Such discrepancy suggests that CNNs may accumulate more information per computation volume
unit.

This is demonstrated by examining the convolution part of a ConvNet (big), a CNN from ConvKAN,
and an analogous sparse KAN network. The convolutional parts consist of two convolution layers
with 32 output channels, followed by pooling and two convolution layers with 64 output channels.
Tab 18 and Tab 19 list the columns needed to verify this claim for all four convolutional layers of
CNN and KAN correspondingly.

22

Published as a conference paper at MathAI 2025

Layer FLOPs Parameters FLOPs/Parameters FLOPs/Parameters/Pixel
conv1 627.2k 832 753.846 0.962
conv2 20.1M 25.6k 783.021 0.999
conv3 3.6M 18.5k 195.322 0.997
conv4 7.2M 36.9k 195.66 0.998

Figure 18: Parameter-to-flops ratio for ConvNet (big) from ConvKAN paper

Layer FLOPs Parameters FLOPs/Parameters FLOPs/Parameters/Pixel
conv1 5.6M 8.0k 705.6 0.9
conv2 5.6M 250 22579.2 28.8
conv3 1.0M 180 5644.8 28.8
conv4 1.0M 90 11289.6 57.6

Figure 19: Parameter-to-flops ratio for analogous KAN

The FLOPs/Parameters/Pixel ratio remains constant in CNN but raises with the layer depth in KAN.

B.4 END-TO-END VS TAILORED SEARCH SPACE

Ideally, a unified search space encompassing appropriate ranges for both KAN CNN would be de-
veloped as part of an end-to-end approach. However, as evident from the space encoding, the current
algorithm cannot automatically narrow down and focus on specific subspaces pertinent to each ar-
chitecture.

Therefore, an end-to-end approach proves computationally infeasible. Instead, distinct search spaces
are designed for CNN and KAN, ensuring that the maximum number of parameters and computa-
tional resources are equal. Exact equality is infeasible and unnecessary since the limits are not
reached in the resultant Pareto fronts.

The search space is chosen based on the alignment of parameter counts across CNN and KAN
models. It covers a sufficiently wide complexity range, as demonstrated by the resultant Pareto
fronts: the smallest models achieve low accuracy values, which decline rapidly with size reduction,
whereas the larger models exhibit a slow increase in accuracy with size growth.

This indicates that the selected subset of model parameter sizes corresponds appropriately to the
dataset complexity.

23

	Introduction
	Background
	Convolution KAN Layer Geometries
	NAS at a glance

	Used NAS Approach
	Experimental Setup
	Approach to comparison
	Datasets
	Experimental Parameters
	CNN Setup
	KAN Setup

	Time series forecasting

	Experimental Results
	Discussion
	Conclusion
	Evolutionary NAS
	Evolutionary encoding of networks
	Genetic Operators and Validation Rules
	Genetic operators
	Validation rules
	Search space connectedness

	BatchNorm
	Supplementary Operations in a Node
	MultiObjective
	Computational Volume Constraint
	Statistical evaluation
	Convergency, diversity and space coverage test

	Approach to comparison
	Exhaustiveness Principle
	Accounting Complexity Metric
	Params-To-Flops ratio
	End-to-End vs Tailored Search Space

