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Abstract

Existing group robustness approaches have appar-
ently improved robust accuracy, but in fact these
performance gains mainly come from trade-offs
at the expense of average accuracy. To address the
limitation, we first propose a simple class-specific
scaling strategy to control the trade-off between
robust and average accuracies flexibly and effi-
ciently, which is directly applicable to existing
debiasing algorithms without additional training.
We also develop an instance-wise adaptive scal-
ing technique for overcoming the trade-off and
improving the performance even further in terms
of both accuracies. Our approach reveals that a
naı̈ve ERM baseline matches or even outperforms
the recent debiasing methods by only adopting
the class-specific scaling. Then, we employ this
technique to evaluate the performance of existing
algorithms in a comprehensive manner by intro-
ducing a novel unified metric that summarizes the
trade-off between the two accuracies as a scalar
value. By considering the inherent trade-off and
providing a performance landscape, our approach
delivers meaningful insights in existing robust
methods beyond comparing only the robust accu-
racy. We verify the effectiveness on the datasets in
computer vision and natural language processing
domains.

1. Introduction
Machine learning models have achieved remarkable per-
formance in various tasks via empirical risk minimization
(ERM). However, they often suffer from spurious corre-
lation and dataset bias, failing to learn proper knowledge
about minority groups despite their high overall accuracies.
Since it is well-known that spurious correlation leads to
poor generalization performance in minority groups, group
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Figure 1: The scatter plots that illustrate trade-off between
robust and average accuracies of existing algorithms on the
CelebA dataset using ResNet-18. We visualize the results
from multiple runs of each algorithm and present the rela-
tionship between the two accuracies. The lines denote the
linear regression results of individual algorithms and r in
the legend indicates the Pearson coefficient correlation.

distributionally robust optimization (Sagawa et al., 2020)
has been widely used to mitigate algorithmic bias. Numer-
ous approaches (Huang et al., 2016; Sagawa et al., 2020;
Seo et al., 2022; Nam et al., 2020; Liu et al., 2021) have
presented high robust accuracies such as worst-group or
unbiased accuracies in a variety of tasks and datasets, but,
although they clearly sacrifice the average accuracy, com-
prehensive evaluation jointly with average accuracy has not
been explored actively. Refer to Figure 1 about the existing
trade-offs of algorithms.

This paper addresses the limitations of the current research
trends and starts with introducing a simple post-processing
technique, robust scaling, which efficiently performs class-
specific scaling on prediction scores and conveniently con-
trols the trade-off between robust and average accuracies at
test time. It allows us to identify any desired performance
points, e.g., ones in terms of average accuracy, unbiased ac-
curacy, worst-group accuracy, or balanced accuracy, on the
accuracy trade-off curve obtained from a single model with
marginal computational overhead. The proposed robust-
scaling method can be easily plugged into various existing
debiasing algorithms to improve the desired target objec-
tives within the trade-off. One interesting observation is
that, by adopting the proposed robust scaling, even the ERM
baseline accomplishes competitive performance compared
to the recent group distributionally robust optimization ap-



Group Robustness via Adaptive Class-Specific Scaling

75 80 85 90 95
Average Acc. (%)

30

40

50

60

70

80

90

W
or

st
-g

ro
up

 A
cc

. (
%

) ERM + RS
ERM + IRS
ERM
LfF
JTT
EIIL
BPA
CVaR DRO
Group DRO*
DFR
LWBC

Figure 2: Comparison between the baseline ERM and exist-
ing debiasing approaches on CelebA dataset using ResNet-
50. Existing works have achieved meaningful improvements
in robust accuracy over ERM, but our robust scaling strate-
gies (RS, IRS) enable ERM to catch up with or even outper-
form them without any training.

proaches (Liu et al., 2021; Nam et al., 2020; Sagawa et al.,
2020; Kim et al., 2022; Seo et al., 2022; Creager et al., 2021;
Levy et al., 2020; Kirichenko et al., 2022; Zhang et al., 2022)
without extra training, as illustrated in Figure 2. We will
present the results from other debiasing algorithms in the
experiment section.

By taking advantage of the robust scaling technique, we
develop a novel comprehensive evaluation metric that con-
solidates the trade-off of the algorithms for group robustness,
leading to a unique perspective of group distributionally ro-
bust optimization. To this end, we first argue that comparing
the robust accuracy without considering the average accu-
racy is incomplete and a unified evaluation of debiasing
algorithms is required. For a comprehensive performance
evaluation, we introduce a convenient measurement referred
to as robust coverage, which considers the trade-off between
average and robust accuracies from the Pareto optimal per-
spective and summarizes the performance of each algorithm
with a scalar value. Furthermore, we propose a more ad-
vanced robust scaling algorithm applicable to each example
adaptively based on its cluster membership at test time to
maximize performance. Our instance-wise adaptive scal-
ing strategy is effective to overcome the trade-off itself and
achieve further performance gains for both accuracies.

Contribution We present a simple but effective approach
for group robustness by analyzing trade-off between robust
and average accuracies. Our framework captures the full
landscape of robust-average accuracy trade-offs, facilitates
understanding the behavior of existing debiasing techniques,
and provides a way for optimizing the arbitrary objectives
along the trade-off without extra training. Our main contri-
butions are summarized as follows.

• We propose a training-free class-specific scaling strat-
egy to capture and control the trade-off between ro-
bust and average accuracy with marginal computational

cost. This approach allows us to optimize a debiasing
algorithm for arbitrary objectives within the trade-off
on top of any existing models.

• We introduce a novel comprehensive performance eval-
uation metric via the robust scaling that summarizes
the trade-off as a scalar value from the Pareto optimal
perspective.

• We develop an instance-wise robust scaling algorithm
by extending the original class-specific scaling with
joint consideration of feature clusters. This technique
is effective to overcome the trade-off and improve both
robust and average accuracy further.

2. Framework
2.1. Problem Setup

Consider a triplet (x, y, a) with an input feature x ∈ X , a
target label y ∈ Y , and an attribute a ∈ A. We construct a
group based on a pair of a target label and an attribute, g :=
(y, a) ∈ Y × A =: G. We are given n training examples
without attribute annotations, e.g., {(x1, y1), ..., (xn, yn)},
while m validation examples have group annotations for
model selection, e.g., {(x1, y1, a1), ..., (xm, ym, am)}.

Our goal is to learn a model fθ(·) : X → Y that is robust to
group distribution shifts. To measure the group robustness,
we typically refer to the robust accuracy such as unbiased
accuracy (UA) and worst-group accuracy (WA). The defini-
tions of UA and WA require the group-wise accuracy (GA),
which is formally given by

GA(r) :=

∑
i 1(fθ(xi) = yi, gi = r)∑

i 1(gi = r)
, (1)

where 1(·) denotes an indicator function and GA(r) is the
accuracy of the rth group samples. Then, the robust accura-
cies are defined by

UA :=
1

|G|
∑
r∈G

GA(r) and WA := min
r∈G

GA(r). (2)

2.2. Class-Specific Robust Scaling

As shown in Figure 1, there exists a clear trade-off between
robust and average accuracies for each algorithm. To under-
stand its exact behavior, we design a simple non-uniform
class-specific scaling of the scores corresponding to indi-
vidual classes. This strategy may change the final decision
of the classifier; if we upweight the prediction scores of
minority classes, the samples will have more chances to be
classified into minority classes, thus worst-group accuracy
increases at the expense of average accuracy, resulting in
a desirable trade-off for group robustness. Formally, the
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Figure 3: The relation between the robust and average accu-
racies obtained by varying the class-specific scaling factor s
with ERM model on CelebA. The black marker denotes the
original point, where the uniform scaling is applied.

prediction with the class-specific scaling is given by

argmax
c

(s� ŷ)c, (3)

where ŷ ∈ RC is a prediction score vector over C classes,
s ∈ RC is a C-dimensional scaling coefficient vector, and
� denotes the element-wise product operator.

Based on the ERM model, we obtain a set of the average and
robust accuracy pairs using a wide range of the class-specific
scaling factors and illustrate their relations in Figure 3. The
black markers indicate the point with a uniform scaling, i.e.,
s = (1, . . . , 1) ∈ RC . The graphs show that a simple class-
specific scaling effectively captures the landscape of the
trade-off of the two accuracies. This validates that we can
identify the desired Pareto optimal points between robust
and average accuracies in the test set by following a simple
strategy: 1) finding the optimal class-specific scaling factors
that maximize the target objective in the validation set, and
2) apply the scaling factors to the test set. We refer to this
scaling strategy for robust prediction as robust scaling.

To identify the optimal scaling factor s, we adopt a greedy
search1 and the entire process takes less than a second. Note
that the robust scaling is a post-processing method, so it can
be easily applied to any kinds of existing robust optimization
methods without extra training. Moreover, our method can
find any desired performance points on the trade-off envelop
using a single model. For example, there may be scenarios
in which multiple objectives are required to solve a problem,
but our robust scaling is flexible enough to handle the situ-
ation as we only need to apply a robust scaling optimized
for each target metric to a single model. Meanwhile, other
robust optimization methods have limited flexibility and
require training of separate models for each target objective.

1We search for the scaling factor of each class in a greedy
manner. Specifically, we first find the best scaling factor for a class
and then determine the optimal factors of the remaining classes
sequentially conditioned on the previously estimated ones.

2.3. Instance-wise Robust Scaling

The optimal scaling factor can be applied adaptively to each
test example and the instance-specific scaling has the poten-
tial to overcome the trade-off and improve accuracy even
further. Previous approaches (Seo et al., 2022; Sohoni et al.,
2020) have shown the capability to identify hidden spurious
attributes via clustering on the feature space for debiased
representation learning. Likewise, we take advantage of
feature clustering for adaptive robust scaling; we obtain
the optimal class-specific scaling factors based on the clus-
ter membership for each sample. The overall algorithm of
instance-wise robust scaling (IRS) is described as follows.

1. Perform clustering with validation data on the feature
space and store the cluster centroids.

2. Find the optimal scaling factor for each cluster.

3. Apply the estimated scaling factor to the test example
based on its cluster membership.

In step 1, we use a simple K-means clustering algorithm,
where the number of clusters K is set to the value that gives
the highest robust coverage in the validation set. Empiri-
cally, numbers larger than 10, i.e., K > 10, yield stable
and superior results, compared to the original class-specific
scaling.

2.4. Robust Coverage

Although the robust scaling identifies the desired perfor-
mance point on the trade-off curve, from the perspective of
performance evaluation, it still reflects only a single point on
the trade-off curve while ignoring all other possible Pareto
optima. For a more comprehensive evaluation of an algo-
rithm, we propose a convenient evaluation metric that yields
a scalar summary of the robust-average accuracy trade-off.
Formally, we define the robust coverage as

Coverage :=

∫ 1

c=0

max
s

{
WAs|AAs ≥ c

}
dc (4)

where WAs and AAs denote the worst-group and average
accuracies given by the scaled prediction using (3) with the
scaling factor s. The robust coverage measures the area
under the Pareto frontier of the robust-average accuracy
trade-off curve, where the maximum operation in (4) finds
the Pareto optimum for each threshold. We can use either
WA or UA as the target objective of robust coverage in (3).

3. Experiments
3.1. Results

CelebA Table 1 presents the experimental results of our
robust scaling methods (RS, IRS) on top of the existing
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Table 1: Experimental results of the robust scaling (RS) and instance-wise robust scaling (IRS) on the CelebA dataset using
ResNet-18 with the average of three runs (standard deviations in parenthesis), where RS and IRS are applied to maximize
each target metric independently. RS can maximize all target metrics consistently and IRS further boosts the performance.

Group Robust Coverage Accuracy (%)
Method Supervision Worst-group Unbiased Worst-group (Gain) Unbiased (Gain) Average (Gain)
ERM - - 34.5 (6.1) - 77.7 (1.8) - 95.5 (0.4) -
ERM + RS 83.0 (0.8) 88.1 (0.6) 82.8 (3.3) +47.7 (7.8) 91.2 (0.5) +13.3 (2.0) 95.8 (0.2) +0.4 (0.2)
ERM + IRS 83.4 (0.1) 88.4 (0.4) 87.2 (2.0) +52.7 (3.3) 91.7 (0.2) +13.8 (1.6) 95.8 (0.1) +0.4 (0.3)
JTT (Liu et al., 2021) - - 75.1 (3.6) - 85.9 (1.4) - 89.8 (0.8) -
JTT + RS 77.3 (0.7) 81.9 (0.7) 82.9 (2.3) +7.8 (3.0) 87.6 (0.5) +1.7 (0.4) 90.3 (1.3) +0.6 (0.1)
JTT + IRS 78.9 (2.1) 82.1 (1.5) 84.9 (4.5) +9.8 (3.7) 88.5 (0.8) +2.5 (0.8) 91.0 (1.8) +1.2 (0.5)
GR

X
- - 88.6 (1.9) - 92.0 (0.4) - 92.9 (0.8) -

GR + RS 86.9 (0.4) 88.4 (0.2) 90.0 (1.6) +1.4 (1.1) 92.4 (0.5) +0.5 (0.4) 93.8 (0.4) +0.8 (0.5)
GR + IRS 87.0 (0.2) 88.6 (0.2) 90.0 (2.3) +1.4 (1.8) 92.6 (0.6) +0.6 (0.4) 94.2 (0.3) +1.3 (1.0)
SUBG (Idrissi et al., 2022)

X
- - - 87.8 (1.2) - 90.4 (1.2) - 91.9 (0.3) -

SUBG + RS 83.6 (1.6) 87.5 (0.7) 88.3 (0.7) +0.5 (0.4) 90.9 (0.5) +0.5 (0.5) 93.9 (0.2) +1.9 (0.6)
SUBG + IRS 84.5 (0.8) 87.9 (0.1) 88.7 (0.6) +0.8 (0.7) 91.0 (0.3) +0.6 (0.9) 94.0 (0.2) +2.1 (1.0)
Group DRO (Sagawa et al., 2020)

X
- - 88.4 (2.3) - 92.0 (0.4) - 93.2 (0.8) -

Group DRO + RS 87.3 (0.2) 88.3 (0.2) 89.7 (1.2) +1.4 (1.0) 92.3 (0.1) +0.4 (0.2) 93.9 (0.3) +0.7 (0.5)
Group DRO + IRS 87.5 (0.4) 88.4 (0.2) 90.0 (2.3) +2.6 (1.8) 92.6 (0.6) +0.6 (0.4) 94.7 (0.3) +1.5 (1.1)

Table 2: Experimental results of RS and IRS on the Waterbirds dataset using ResNet-50.

Group Robust Coverage Accuracy (%)
Method Supervision Worst-group Unbiased Worst-group (Gain) Unbiased (Gain) Average (Gain)
ERM - - 76.3 (0.8) - 89.4 (0.6) - 97.2 (0.2) -
ERM + RS 76.1 (1.4) 82.6 (1.3) 81.6 (1.9) +5.3 (1.3) 89.8 (0.5) +0.4 (0.4) 97.5 (0.1) +0.4 (0.2)
ERM + IRS 83.4 (1.1) 86.9 (0.4) 89.3 (0.5) +13.0 (0.9) 92.7 (0.4) +3.3 (0.7) 97.5 (0.3) +0.3 (0.4)
GR

X
- - 86.1 (1.3) - 89.3 (0.9) - 95.1 (1.3) -

GR + RS 83.7 (0.3) 86.8 (0.7) 89.3 (1.3) +3.2 (2.0) 92.0 (0.7) +2.7 (1.3) 95.4 (1.3) +0.4 (0.2)
GR + IRS 84.8 (1.7) 87.4 (0.4) 89.1 (0.8) +3.0 (1.6) 92.2 (1.0) +2.9 (1.6) 95.6 (0.8) +0.6 (0.3)
SUBG

X
- - 86.5 (0.9) - 88.2 (1.2) - 87.3 (1.1) -

SUBG + RS 80.6 (2.0) 82.3 (2.0) 87.1 (0.7) +0.6 (0.5) 88.5 (1.2) +0.3 (0.3) 91.3 (0.4) +4.0 (0.9)
SUBG + IRS 82.2 (0.8) 84.1 (0.8) 87.3 (1.3) +0.8 (0.6) 88.2 (1.2) +0.0 (0.2) 93.5 (0.4) +6.2 (1.5)
Group DRO

X
- - 88.0 (1.0) - 92.5 (0.9) - 95.8 (1.8) -

Group DRO + RS 83.4 (1.1) 87.4 (1.4) 89.1 (1.7) +1.1 (0.8) 92.7 (0.8) +0.2 (0.1) 96.4 (1.5) +0.5 (0.5)
Group DRO + IRS 86.3 (2.3) 90.1 (2.6) 90.8 (1.3) +2.8 (1.5) 93.9 (0.2) +1.4 (0.9) 97.1 (0.4) +1.2 (0.8)

approaches (JTT, Group DRO, GR, SUBG) on the CelebA
dataset. In this table, RS and IRS are applied to maximize
each target metric (e.g. worst-group acc) independently. We
ran the experiments three times and reported the average
with the standard deviation of the results from each algo-
rithm. Group supervision indicates that the method requires
training examples with group supervision. As shown in the
tables, no matter what the backbone method is, our robust
scaling strategy consistently improves the performance for
all target metrics. Based on the robust coverage and ro-
bust accuracy after scaling, JTT is not superior to ERM on
the CelebA dataset, though their initial robust accuracies
without scaling are much higher than ERM. On the other
hand, the methods that leverage group supervision (Group
DRO, GR) achieve better robust coverage results than the
others, which verifies that group supervision helps to im-
prove the trade-off itself. For the group-supervised methods,
our scaling technique provides relatively small performance
gains in robust accuracy, as the gaps between robust and
average accuracies are already small and the original results
are already close to the optimal for robust accuracy.

Waterbirds Table 2 demonstrates that our frameworks
achieve outstanding performance with all baselines on the
Waterbirds dataset consistently. Among the compared al-
gorithms, GR and SUBG are reweighting and subsampling
baselines based on group frequency, respectively. Although
the two baseline approaches achieve competitive robust ac-
curacy, the average accuracy of SUBG is far below than
GR. This is mainly because SUBG drops a large portion of
training samples (95.3%) to make all groups have the same
size, resulting in significant performance degradation in av-
erage accuracy. Although subsampling generally helps to
achieve high initial robust accuracy, it degrades the overall
trade-off as well as the average accuracy and consequently
hinders the benefits of robust scaling. Note that GR out-
performs SUBG in terms of all worst-group, unbiased, and
average accuracies after adopting RS or IRS. This consis-
tently demonstrates the effectiveness of our framework and
supports our main claim; considering only the robust accu-
racy is incomplete and comprehensive evaluation is needed
to understand the exact behavior.
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