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Abstract

State-of-the-art models for 3D molecular generation are based on significant inductive biases:
SE(3) equivariance, permutation invariance and graph message-passing networks to capture
local chemistry, yet the generated molecules struggle with physical plausibility. We introduce
TABASCO which relaxes these assumptions: The model has a standard non-equivariant
transformer architecture, treats atoms in a molecule as sequences and does not explicitly
model bonds. The absence of equivariant layers and message passing allows us to sim-
plify the model architecture and scale data throughput. On the GEOM-Drugs and QM9
benchmarks TABASCO achieves state-of-the-art POSEBUSTERS validity and delivers infer-
ence roughly 10x faster than the strongest baseline, while exhibiting emergent rotational
equivariance without hard-coded symmetry. Our work offers a blueprint for training mini-
malist, high-throughput, unconditional generative models and the resulting architecture is
readily extensible to future conditional tasks. We provide a link to our implementation at
https://github.com/carlosinator/tabasco.

1 Introduction 1.0

TABASCO epicy
In recent years, there has been growing interest in us- -hot

ing diffusion models as generative methods for molec-
ular design (Du et al.| [2024; |Schneuing et al., |2022;
Hoogeboom et al.| 2022} [Vignac et al.l [2023} [Dunn &
Koes!| [2024; Irwin et al., [2025). Much of the literature
converges on design principles believed to be essential
for high-quality molecular generation. First, models
are typically SE(3)-equivariant, a symmetry prior
that serves as a strong inductive bias (Hoogeboom
et al.l |2022)). Second, message-passing graph neural @ FlowMol

networks (GNNs) are widely used to capture many- 06 S —

hop, context-dependent interactions between atoms 10M 100M
(Hoogeboom et al., 2022} [Schneuing et al.l[2022; Trwin! # Params.

et all 2025; |Dunn & Koes| 2024; |Schneuing et al.),

making them permutation-invariant. Third, recent Figure 1: PoseBusters on GEOM-Drugs. We show
work emphasises flow-matching objectives that rely the trade-off between model size and POSEBUSTERS
performance for TABASCO and baselines.
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on coupled optimal transport (OT) (Tong et al., 2023|) or incorporate heavily structured, domain-informed
priors (Dunn & Koes, [2024; Irwin et al.l |2025). Despite incorporating these inductive biases, current models
continue to struggle with physical plausibility, often failing to produce chemically coherent structures or
accurately recover fundamental features of protein-ligand binding (Buttenschoen et all 2024; [Harris et al.,
2023)).

In parallel, a growing body of work explores scaling up simpler model architectures, most notably Transformers
(Vaswani et al., 2017, across adjacent domains. A prominent example is AlphaFold3 (Abramson et all 2024),
which achieves strong performance on physical plausibility benchmarks (Buttenschoen et al., 2024) despite
omitting many of the conventional inductive biases, including equivariance. Similarly, recent generative models
for protein backbone design have demonstrated competitive results with minimal architectural complexity,
provided they are scaled appropriately (Geflner et al., 2025|). Simplification of model architecture and removal
of inductive biases for conformer generation has also proven successful (Wang et al., 2024)). In parallel to this
work, (Joshi et al.l 2025]) explore using non-equivariant latent diffusion for generating small molecules.

In this work, we aim to distill the core components of diffusion-based molecular generation and ask: Which
concepts are necessary to build high-performing models? We introduce TABASCO (Transformer-based
Atomistic Bondless Scalable Conformer Output), a scalable model that achieves state-of-the-art performance
on unconditional molecular generation benchmarks. Our contributions are as follows:

(i) State-of-the-art physical quality on GEOM-Drugs and QM9. TABASCO surpasses previous
models in POSEBUSTERS validity, and achieves a 10x speed-up during sampling (Sections and .

(ii) Greatly streamlined approach. Our model omits both explicit bond modelling, equivariant layers
and permutational invariance, and instead utilizes a standard Transformer, sinusoid encodings, and
random rotations of data points (Section [3]).

(iii) Study of model behaviour without explicit symmetry. Under this new approach, we study the
behaviour of the model with respect to permutational invariance and SE(3) equivariance.

(a) We find evidence that breaking permutational invariance with positional encodings significantly
improves performance by helping distinguish atoms during early denoising (Section 4.5)).

(b) We find that completely removing random rotations and SE(3) equivariance constraints has a
negligible impact on performance (Section 4.6)).

(iv) Physically-constrained last-mile guidance. We introduce an separate distance-bounds guidance
algorithm that further improves POSEBUSTERS validity without requiring force-field-based relaxation
or additional parameters (Section [5).

2 Background and Related Work

2.1 Flow-Matching Models

Flow-matching (FM) is a generative modelling framework that learns to transport samples from a source
distribution (e.g., noise) to a target distribution (e.g., data) by directly estimating the time-dependent velocity
field of a probability flow (Lipman et al., |2023; |Albergo & Vanden-Eijnden, [2022).

Given a pair of samples (xg,x1) from source and target distributions, one defines a continuous interpolation
x; = (1 — t)xo + tx1, and a target velocity uy = x1 — Xo. A neural field vg(x¢, ) is then trained to match this
velocity using the mean squared error:

Len = Ep (g x0) [||vo(xe:8) — wel[3] - (1)

Flow-matching enables efficient generation via deterministic integration (e.g., using an ODE solver), and has
been shown to improve sampling speed and stability over score-based diffusion models (Dunn & Koes| [2024;
Irwin et al., 2025).
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Figure 2: Top: Interpolation between noise and data. Bottom: TABASCO model architecture. x
and a denote coordinates and atom types, respectively.

2.2 Generative Models for 3D Molecule Design

Early works used standard continuous diffusion processes on coordinate and atomic features, where bond
connectivity was determined by chemoinformatics software (Hoogeboom et al. [2022; [Schneuing et al.| [2022]).
This process often resulted in low-quality conformers that were not fully-connected or violated atomic valences.
MiDi (Vignac et all, 2023) improved on this by applying discrete diffusion to both the atom types as well
as generated a full bond matrix end-to-end, which significantly increased stabilty and bond connectivity.
EQGAT-diff explored the design space of equivariant diffusion models, creating a custom
attention-based equivariant architecture to allow for interaction between continuous and discrete features.
Further work introduced more advanced model architectures (Morehead & Cheng), [2024}; [Hua et al., [2024),
additional losses (Xu et al [2024), alternative transport strategies (Song et al., [2023)), and geometric latent
diffusion (Xu et all |2023; Joshi et all [2025). FlowMol (Dunn & Koes, 2024) and SemlaFlow
use flow-matching for generation of coordinates, atom types and bonds. Both methods proposed new
architectures and showed great improvements in speed versus diffusion based approaches.

3 TABASCO: Fast, Simple, and High-Quality Molecule Generation

Overview and Motivation Our goal in this work is to identify the simplest possible model architecture
that can generate physically realistic small molecules at scale. Our motivation stems from the observation
that recent progress in protein structure generation has demonstrated the surprising power of non-equivariant
Transformer architectures when scaled appropriately (Abramson et al.| 2024} |Geffner et al., 2025; Wang et al.,
2024). Based on these results, we began our experiments with a deliberately stripped-down, non-equivariant
Transformer backbone for molecular generation. We also chose to exclude explicit bond information from
the model. While many existing models treat bonds as a distinct modality (Irwin et al., [2025; Dunn &]
[Koes|, 2024; |Vignac et al., [2023)), in line with earlier work (Schneuing et al., 2022)) we hypothesised that if
coordinate generation is sufficiently accurate, bond information can be successfully imputed with standard
chemoinformatics tools. This perspective allowed us to further simplify the architecture while focusing on
improving conformer quality. Physical realism, as measured by POSEBUSTERS validity, was the primary
metric guiding design decisions. Modules and heuristics in the approach that did not contribute to this
metric were pruned, resulting in a lean, fast, and extensible model that maintains strong performance without
relying on specialised architectural components.
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3.1 Model Architecture

In contrast to most prior work in unconditional molecular generation, we adopt a simplified non-equivariant
Transformer architecture (see Figure [2]) without self-conditioning. Atom coordinates and types are jointly
embedded along with time and sequence encodings and are passed through a stack of Transformer blocks. We
add a single cross-attention layer for each domain and process these outputs in MLP heads for atom types
and coordinates. We report resulting performance and model ablations in Section [£:3]

3.2 Training Objective

We optimize coordinates with Euclidean conditional flow-matching (CFM) (Tong et al., 2023} |Albergo &
Vanden-Eijnden, 2022)) and atom types with discrete CFM which is parametrized based on the Discrete
Flow Models (DFM) framework (Campbell et all |2024). Concretely, consider a molecule with N atoms,
ground-truth coordinates x; and atom types a;. Coordinates are partially noised with x¢ =¢-x3 + (1 —1) - €,
where the noise is distributed with ¢ ~ N(0, ). Noisy atom types a; are obtained by interpolating between
atom type probabilities and sampling from a categorical distribution a; ~ Cat (t 0(a)+ (1 —1)- %), where
0(+) creates a one-hot encoding (Campbell et al.| |2024). During training the model takes x¢ and a; and learns
to predict the endpoint of the trajectory. The continuous coordinate objective becomes

1
Eninic() = B | 11800 = 3] 2

The discrete atom type objective is the cross-entropy loss

Laiscrete (a) =E;

—> " a;log(a (ar, t))] : (3)
We combine these into a multi-objective formulation with weighing factor Agiscrete € (0, 1], as

Ltotal(xa Cl) = Lmetric (X) + Adiscrete * Ldiscrete (a) . (4)

During training we sample from ¢ ~ Beta(a, 1), where « is a hyperparameter we ablate in Appendix
As t — 1 the model’s behaviour approaches the identity function, due to the chosen endpoint formulation.
Inspired by |[Le et al| (2023); |Salimans & Ho| (2022)) and to ensure the model can still learn precise atom
placement even as losses approach zero as t — 1, we weigh the loss with 5(¢) - Liotal (X¢, a;) based on the
sampled time ¢, with

B(t) = min {100, (11t)2} . (5)

3.3 Sampling

We generate molecules with TABASCO by simulating a system of coupled stochastic differential equations:

dx; = v (xe, ar)dt + g(t) s7 (%, ar)dt + \/2g(t)y dW;
Opr = Ru(xe,a) " py (6)

X1 —X¢

1—t
from the models endpoint prediction X; at time ¢, and the score with s; = t"f%fxt We refer the reader to

Geflner et al.| (2025)) and |Campbell et al.| (2024]) on which we base our coordinate and atom type sampling
strategies, for more in-detail discussions of this approach. To improve sample quality, we apply a logarithmic
discretization scheme on ¢ € [0, 1] with more fine-grained steps near the end of denoising. We also scale the
score sy and the Gaussian noise component dW; by g(t), setting it to zero as t — 1 (see Appendix [B].

where p; describes the probability of each atom type at time t. We estimate the velocity with v, =
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Figure 3: Sampled molecules from TABASCO.

3.4 Ordering Atoms as Sequences

Transformers operate in a bag-of-tokens fashion unless provided with additional information about the
absolute or relative positions of those tokens. Unlike text or protein sequences, small molecules lack a natural
linear ordering that reflects their 3D structure. While formats such as SMILES and InChlI offer consistent
ways to linearise molecular graphs, the ordering in these representations does not strictly correspond to
spatial proximity. However, the SMILES ordering is deterministically derived, typically via a depth-first
traversal starting from a canonical root atom (Weininger et al., |1989), which still imparts some semantic
structure onto the linearized sequence. In practice, many neighbouring atoms in the SMILES string are also
spatially or chemically proximate in the molecule. Accordingly, we include sinusoidal positional encodings
based on the atom indices in the SMILES sequence. We hypothesise that this implicit locality helps the
model distinguish atoms during denoising when atom coordinates contain limited information and thus create
molecules with higher physical validity. We ablate the effect of the positional encodings in Section

4 Experiments

4.1 Training Setup

We train TABASCO on GEOM-Drugs (Axelrod & Gomez-Bombarelli, 2022), a dataset of 1M high-quality
conformers of drug-like molecules. We use the splits from [Vignac et al| (2023) and, following
(2025)), we discard molecules with more than 72 heavy atoms from the training dataset, accounting for 1%
of the data. During testing, we sample the number of atoms from the distribution of molecule sizes in the
test set, which was left unchanged. We separately train and evaluate our model on QM9
2014), which is an enumeration of all physically plausible molecules with up to nine atoms. Since the
molecules in QM9 are small in size and GEOM-Drugs is considered to be a significantly more challenging
dataset, most results are reported for models trained on GEOM-Drugs, except for Table [3]

We train three TABASCO models at three sizes: Both TABASCO-mild (3.7M params.) and TABASCO-hot
(15M params.) were trained on two 80GB A100 GPUs for 36 hours at a learning rate of 0.001. TABASCO-
spicy (59M params.) was trained on the same resources for 72 hours with a learning rate of 0.0005 (see
Appendix@[). During training, we augment each batch with 8 random rotations of the same molecules to
improve equivariance. We apply an Exponential Moving Averaging (EMA) with decay strength 0.999 to
the model weights, which we ablate in Section We compare our models against EQGAT-diff
2023), FlowMol (Dunn & Koes| [2024)), SemlaFlow (Irwin et all [2025), and ADiT (Joshi et al., [2025) (see

Appendix E[)
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Table 1: Physical validity results for all models. A molecule is only POSEBUSTERS-valid overall if it
passes all subtests. Higher is better on all metrics. “Due to computational constraints, we evaluate statistics
on GEOM-Drugs on a random subset of 20K training molecules.

Model Overall Connected Bond Lengths Bond Angles No Clashes Rings Flat Double Bonds Flat Internal Energy
GEOM-Drugs® 0.94 1.0 1.0 1.0 0.94 1.0 1.0 1.0
EQGAT-diff 0.84 0.91 0.94 0.94 0.91 0.94 0.93 0.90
FlowMol 0.64 0.68 0.81 0.81 0.78 0.81 0.80 0.80
SemlaFlow 0.88 0.91 0.94 0.94 0.92 0.94 0.94 0.94
ADiIT 0.87 0.96 0.95 0.95 0.94 0.98 0.98 0.95
TABASCO-mild 0.85 0.96 0.94 0.94 0.87 0.96 0.96 0.94
TABASCO-hot 0.91 0.98 0.98 0.98 0.92 0.98 0.98 0.97
TABASCO-spicy 0.92 0.97 0.97 0.97 0.92 0.97 0.97 0.97

4.2 Evaluation Metrics

We employ POSEBUSTERS as our main metric for measuring conformer quality, as its array of tests are
designed to test for physical plausibility (Buttenschoen et al.,|2024). A molecule is POSEBUSTERS-valid only if
it passes an array of tests, including: all atoms are connected, valid bond lengths, valid bond angles, no steric
clashes, flat aromatic rings, flat double bonds, and the internal energy is comparable to reference conformers.
This stricter evaluation is necessary, since in existing generative models for 3D molecule generation, most
other metrics have been saturated (Irwin et al. 2025)).

We further evaluate generated molecules on several well established metrics: (i) Validity: Whether a
molecule can be sanitized with RDKIT, (ii) Novelty: Whether the canonical SMILES of the molecule is not
present in the training set, (iii) Diversity: Tanimoto similarity of molecule fingerprints, (iv) Strain Energy
(Harris et al., 2023): Energy of the molecule compared to low energy conformers, (v) Root Mean Square
Deviation (RMSD): The averaged distance between the atoms of two molecules when comparing molecules
in our guidance experiment, (vi) Jensen-Shannon Divergence (JSD): We extract several features from
generated molecules and reference molecules and test how much the features distribution deviates from the
reference distribution. The extracted features are: bond lengths, bond angles, dihedral angles, frequency of a
given bond pair or triplet, average bonds per atom type, number of rings per molecule, and bond type (see

Appendix .

4.3 TABASCO Results Across Metrics

Results on Physical Validity. Our physical validity results are shown in Table [I} and generated example
molecules are shown in Figure [3] TABASCO-spicy (59M) and TABASCO-hot (15M), surpass all prior methods
in physical plausibility, raising the POSEBUSTERS validity from the previous state-of-the-art of 0.88 to 0.92
(see Figure . Interestingly, most of the gain is achieved by the 15M parameter TABASCO-hot variant, with
only modest improvements from further scaling to 59M, suggesting diminishing returns beyond this point.
This may be explained by the fact that in GEOM-Drugs only 94% of molecules are POSEBUSTERS-valid.
Alternatively, we also highlight that increasing returns to scale might become more apparent with an larger
training budget. Earlier models such as FlowMol, which perform well on traditional metrics (see Table ,
show significantly lower physical validity (0.64), further highlighting the need for domain-aware evaluation
such as POSEBUSTERS.

The tests contained in POSEBUSTERS also reveal in which ways TABASCO improves physical validity of
generated molecules compared to previous methods: Notably, in contrast to most previous methods, TABASCO
does not explicitly model bonds, but improves connectivity, bond length and bond angle validity. This
indicates that sufficiently precise coordinate modelling can suffice to accurately impute bonds post-hoc. We
also observe that ADiT and TABASCO, the only non-equivariant models, achieve significantly higher validity
scores for steric clashes, flat aromatic rings, and flat double bonds compared to the equivariant models.

Results on Traditional Metrics. Table |2 shows a summary of results on traditional generation metrics.
We observe that all variants of TABASCO maintain strong molecular diversity and novelty (~ 0.89), indicating
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Table 2: Results on established metrics for GEOM-Drugs. We generate 3K molecules for each method.
*Due to computational constraints, we evaluate statistics on GEOM-Drugs on a random subset of 20K
training molecules.

Method # Params. ValidityT Noveltyt Diversityt Strain Energy| Time/ (s)
GEOM-Drugs® - 1.0 0.0 0.90 - -
EQGAT-diff 12M 0.94 0.94 0.90 360.19 4310.94
FlowMol 4.3M 0.81 0.81 0.91 34.20 362.22
SemlaFlow 22M 0.93 0.93 0.91 18.20 201.22
ADiIT 150M 0.98 0.97 0.91 46.36 521.21
TABASCO-mild 3.7M 0.95 0.93 0.89 21.32 5.9
TABASCO-hot 15M 0.98 0.93 0.88 14.16 10.67
TABASCO-spicy 59M 0.97 0.90 0.89 15.07 19.77
TABASCO-spicy w/ guidance 59M 0.97 0.92 0.89 19.23 131.80

that performance improvements do not compromise sampling breadth and generalisation. We note that,
inline with previous works, for all evaluated methods Novelty and Diversity are computed over all molecules,
including molecules that do not pass physical validity, which may lead to invalid molecules distorting the
scores in both methods. Table [2] also shows that that the time required to sample from TABASCO is at least
10x lower than for any previous method, and up to 100x faster than some prior baselines, offering a practical
advantage for large-scale or iterative workflows. In Appendix [C] we additionally compare the JSD of several
features of generated molecules and GEOM-Drugs molecules for TABASCO-hot (15M) and three baselines.

4.4 Performance Comparison on QM9

We further train and evaluate our model on the benchmark dataset QM9 (Ramakrishnan et al., 2014]) and
compare the performance to previous methods in Table[3] We observe that TABASCO achieves state-of-the-art
POSEBUSTERS scores, although showing low novelty scores on QM9.

Table 3: Results on the QM9 Dataset.

Method # Params. Validity! Novelty{ Diversity? PoseBusters{ Strain Energy|
EQGAT-diff 12M 0.99 0.99 0.89 0.94 9.10
FlowMol 4.3M 0.97 0.97 0.92 0.92 17.81
SemlaFlow 22M 0.99 0.99 0.89 0.95 4.69
TABASCO-mild 3.7TM 0.98 0.31 0.91 0.98 2.31
TABASCO-hot 15M 0.99 0.32 0.92 0.99 3.32

w/o pos. encodings 15M 1.00 0.34 0.93 0.93 17.10

4.5 Breaking Permutational Invariance

In Figure [4] (right) we observe that introducing sequence positional encodings yields higher quality molecules
compared to treating atoms in a bag-of-words fashion. In Table 3] we observe that this performance gap is much
smaller for models trained on QM9 compared to TABASCO on GEOM-Drugs (see Figure [4] right). A possible
explanation for this is that the much smaller number of atoms per molecule compared to GEOM-Drugs
makes it easier to distinguish atoms and place them with respect to each other even without positional
encodings. Additionally, in Figure [5] we show examples of failure modes we observed repeatedly in models
without positional encodings.

Disentangling the Effect of Positional Encodings We hypothesize that the difference in generative
quality when adding positional encodings may stem from early steps in molecule denoising, when the atomic
coordinates are very noisy and positional encodings can provide a signal about the relative positions of
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Figure 4: Left: 15M parameter model with/without positional encodings, POSEBUSTERS when starting
denoising from different noise levels on test molecules from GEOM-Drugs. Right: Model performance across
parameter scales with/without positional encodings when trained on GEOM-Drugs.
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Figure 5: Importance of atom ordering in TABASCO. Molecules from SMILES-ordered atoms with
sinusoidal encodings (left) are coherent and valid, while random ordering (right) produces fragmented,
implausible structures, showing SMILES’ inductive bias for local structure during early denoising

atoms in a molecule. To test this, we sample from two 15M parameter TABASCO-models, one trained with
sinusoid encodings and one without any encodings. We partially noise molecules to different ¢t € [1,1) and
denoise these molecules using the models starting from that point. Figure [d] shows how as 7 increases, the
performance difference of the models decreases and switches near the end of denoising. This suggests that the
sampling trajectories in the model with positional encodings differ from those the model is trained on (see
Appendix . Furthermore, the higher POSEBUSTERS validity of the positional-encoding-free model towards
the end of denoising suggests that in later stages of denoising its sampling trajectory is well aligned with
training trajectories. Figure [4] also indicates that the permutationally invariant model is able to create high
quality molecules when the final atom positions become apparent from its noisy coordinates. This implies
that positional encodings may be especially important in helping distinguish atoms at high noise levels when
coordinates contain little information.

Table 4: Ablation study on TABASCO models trained on GEOM-Drugs showing impact of training without
postional encodings, batch augmentations or random rotations.

Configuration Validity T Noveltyt Diversity{ PoseBusters?
TABASCO-hot (15M) 0.98 0.93 0.89 0.91
w /o positional encoding 0.93 0.93 0.91 0.70
w/o batch augmentations 0.98 0.94 0.88 0.89
w/o random rotations 0.98 0.94 0.89 0.90
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Figure 6: Relative equivariance error across noise levels for TABASCO-hot (15M) when trained without
positional encodings, batch augmentations or random rotations.

4.6 Analyzing Equivariant Behaviour

Quantifying the Equivariance Error. We evaluate the quality of TABASCO’s equivariance, as this
is not encoded into the architecture. Similarly to previous work, we measure the deviation of the models
prediction under random rotations (Karras et al.| [2021; Bouchacourt et al., [2021]). To control for numerical
inaccuracies during sampling, rather than measuring the equivariance of fully denoised molecules, we measure
the equivariance of the endpoint predictions of the model by partially noising molecules to different ¢ € [0, 1].
Given noisy coordinates x; at time ¢, a random rotation R, and a function that at any timestep predicts
the endpoint X1 = f(xy,t), we randomly rotate the input and apply the inverse rotation to the output, i.e.
Z(x4,t, R) = RT f(Rx;,t). We estimate the relative equivariance error with
Z(Xta t7 R)

i = Vo | 7| "
We normalize the endpoint prediction per atom within random rotations of the same molecule to account for
changes in scale during the sampling process and differing vector magnitudes. In an equivariant model one
would have Z(x,t,R) = f(x¢,t), which would trivially yield €equiv = 0.

Ablating the Equivariance Error. During standard model training we approximately enforce equivariance
by randomly rotating the input data and further augmenting the training batch with additional rotations of
the same samples. We study the equivariant behaviour of the model by training four 15M TABASCO-hot
models with slight modifications: (i) Standard model training, (ii) We train the model without positional
encodings, (iii) We apply independent random rotations to all molecules in the batch, but do not augment it
with additional random rotations of the same data, (iv) We train the model without any random rotations,
i.e. the model always sees the same coordinates for the same molecule. We train the models with the same
compute budget as previously allotted: two A100 GPUs over 36 hours.

We compare the observed performance in Table [] and visualize the equivariance error over time in Figure [6]
The results show how in the standard configuration, the model approximates an equivariant function with an
error of less than 1% for most ¢, and as denoising progresses the model further reduces the equivariance error
of its predictions. The positional encoding-free model approximates equivariance similarly well, however,
we observe differences of up to an order of magnitude compared the standard model at certain noise scales.
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Simultaneously, randomly rotating data, but omitting intra-batch augmentations with further random
rotations, does not worsen the equivariance error, but slightly hurts POSEBUSTERS performance. From this
we conclude that intra-batch augmentations do not improve model equivariance, but may improve training,
possibly because of higher-quality gradient steps induced by the random rotations.

Finally, Figure [6] and Table [f] show how completely omitting any random rotations during training leads to
a model with a high POSEBUSTERS score that has a significantly higher equivariance error than all other
models, often larger than 10%. From this we conclude that, while (approximate) equivariance is often a
desirable property, our generative model does not require any notion equivariance to generate physically
plausible molecules.

5 Physically Constrained Last-Mile Pose Guidance

Existing 3D molecule generators yield globally sound conformations but struggle with local stereochemical
checks such as POSEBUSTERS. Most violations stem from coordinate drifts near the end of the sampling
trajectory (t—1). We therefore frame pose refinement as a last-mile problem and introduce a lightweight,
differentiable guidance step that enforces simple physical distance bounds without force-field evaluation or
relaxation.

Distance—bounds matrix. For every atom pair we pre-compute lower and upper bounds [Lij, Uij] over
1-5 bond separations, analogously to how POSEBUSTERS computes bounds on valid bond lengths and angles
using RDKIT:

o Lower bound L;;: sum of van-der-Waals radii minus 0.1 A,

« Upper bound U;;: cumulative covalent bond lengths along the shortest path in the molecular
graph.

These numbers match the Universal Force Field (UFF) limits but are looked up from a static table. Here no
UFF energy computation is performed.

Two-phase sampling with distance-bounds guidance.

1. Free denoising. Run the standard sampler until ¢ = 0.99, obtaining noised conformation (x¢.99,ag.99)-

2. Guided refinement. In each remaining denoising step, convert the endpoint predicted coordinates to an
RDKIT conformer and look up the physical bounds on atom pair distances [L;;, U;;| for each distance
pair d;j = ||x¢; — X¢,;||. The loss on physical constraints is computed with

(dij — Uz")27 dij > Usj,
Lpnys(xt) = Z (dij — Lij)Q; dij < Lij,
i<j

0, otherwise .

We back-propagate through the network and apply one gradient step to the inputs:
Xt < Xt — Qphys

If the molecule decoded at t = 0.99 is not RDKIT-valid, no guidance is applied to the sample.

5.1 Effect of Physically-Constrained Guidance

In the last row of Table [2] we compare TABASCO with guidance to all evaluated baseline models. In Table
we compare physically-constrained guidance to UFF relaxation of unguided molecules: In all experiments

10



Published in Transactions on Machine Learning Research (02/2026)

Table 5: Effect of distance-bounds guidance on POSEBUSTERS validity and runtime (single A100) on
TABASCO-hot (15M) for 1000 molecules. RMSD is evaluated with respect to the unguided baseline. YUFF
calculations were performed on an M3 MacBook Pro.

Method POSEBUSTERST  Strain Energy | Diversity © RMSD Runtime |
Baseline 0.91 14.16 0.88 - 10.67
w/ UFF? 0.94 4.74 0.88 0.226 14.21
w/ Constr. UFF? 0.93 11.15 0.88 0.084 23.42
w/ guidance 0.94 19.23 0.89 0.132 75.65

the same molecules are denoised identically up to t = 0.99. In one experiment we allow for unconstrained
relaxation and in another introduce a movement constraint of 0.1A on each atoms original location. We
choose apnys = 0.01 in all experiments. Table [5|shows how distance-bounds guidance improves POSEBUSTERS
validity, while preserving diversity and slightly increasing strain energy. Although distance-bounds guidance
increases sampling time due to sequential bound computation and backpropagation, overall sampling remains
faster than in prior approaches. The method also largely preserves atom positions compared to unguided
baselines and preserves diversity, since the molecular hypothesis is mostly fixed by ¢t = 0.99 and the model is
only guided to create a more physically plausible conformer of the same molecule. We highlight that in practice,
our last-mile guidance and UFF target different objectives — physical plausibility vs. energy minimization —
and that guidance is superior in that it yields better POSEBUSTERS validity while better retaining the model’s
predicted conformation. In Appendix [E] we provide a more extensive comparison of model performance across
parameter scales with and without guidance. The approach is model-agnostic and applies to any diffusion- or
flow-based 3D generator that exposes gradients with respect to atom coordinates. Unlike force-conditioned
samplers such as DiffForce (Kulyté et al., [2024)), which require full molecular-mechanics gradients at every
reverse step, our method uses pre-tabulated distance bounds and needs no energy evaluation or additional
learnable parameters.

6 Discussion

Our findings align with recent trends toward simpler architectures: Although SE(3) equivariance is often
considered essential, our non-equivariant model learns equivariant representations up to small errors and
achieves state-of-the-art performance on physical plausibility benchmarks, suggesting that enforced symmetries
may be restrictive for some generation tasks. Our theoretical understanding of the approximate equivariance
remains limited, but we are able to verify that empirically the model exhibits very low equivariance error.
Our stripped-down architecture is easily extensible and only models coordinates and atom types explicitly
and encodes atoms with sequential positional encodings. Conversely, omitting explicitly modelled bonds
can limit conditioning when aiming to enforce valences or bond types (Peng et al. [2024]), and encoding
molecules with SMILES-based positional encodings may introduce systemic biases. Simultaneously, our model
yields a ten-fold speed improvement compared to previous methods, potentially making practical applications
like large-scale virtual screening more feasible in the future. We also observe that only minor performance
improvements emerge at scale unlike for previous work on other molecular modalities (Abramson et al., 2024;
Geffner et al} [2025)), which may point to the necessity of larger training budgets or may indicate the model is
close to saturating the training dataset POSEBUSTERS-validity of 0.94. Physically-constrained guidance is
shown to be effective for improving physical plausibility with minimal modifications, however compared to
traditional methods like UFF Relaxation, it is based on chemoinformatics heuristics, remains more expensive
and converges to higher strain energies.

We provide a more detailed analysis of the models limitations in Appendix [G]
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7 Conclusion

In this work we present TABASCO, a non-equivariant generative model for 3D small molecule design that
exhibits enhanced scalability and performance on physical plausibility compared to baselines. We study the
importance of positional encodings for small molecules, investigate the emergent equivariant properties of our
model and the effects of scaling the model to large sizes. We hope that our model serves as a compelling
example of how minimalist architectures can be effectively applied to molecular design and that our code
base acts as an extensible tool for integration in drug-discovery workflows, for example through conditioned
generation on relevant modalities or RL-based property optimization.
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A Comparison to Previous Work

For all compared baselines we sample 1000 molecules with three random seeds on an A100 GPU. We report
averages over the three runs.

EQGAT-diff We evaluated EQGAT-diff using the official codebase on GitHulﬂ and the checkpoints linked
there. We used the example evaluation script, which we edited to save molecules as outputted from reverse
sampling, without any post-processing.

FlowMol We used the official implementation for FlowMol and the linked checkpoints on GitHuHﬂ and
sampled molecules using the default script. For both GEOME| and QM9 (Ramakrishnan et al., [2014) we
benchmarked againts the CTMC-based models.

Semla Flow We evaluated SemlaFlow using the sampling script and model checkpoints from GitHukﬁ We
modified the sampling script to save all outputs from the model, as opposed to only valid molecules.

ADIT We benchmark ADIT by evaluating the molecules provided in the paper’s GitHub repository, accessed
on June 28th 202@ When directly generating molecules from the ADiT model checkpoimﬂ we observed
worse values on all metrics. A likely explanation for this is taht the publicly available checkpoints are from
an independent reproduction and do not correspond to the reported values in the paper, as stated in the
public repository. As a result, we opt for the metrics computed from the publicly available molecules.

B Ablations

Time Distribution During Training. Based on success in previous works, we choose the Beta-distribution
for sampling the time ¢ during training (Irwin et al., [2025; |Geffner et al., 2025). We investigate the effect of
different « values for the training time distribution Beta(a, 1) and ablate three values in Table @ We observe
significant changes in performance at sampling time when shifting the probability weight assigned to different
times ¢ € [0, 1] during training, and empirically find that Beta(1.8,1) yields the best results for our purpose.

Stochasticity Ablation. We investigate several choices for g(t) in Eq. |§| based on the approach in |Geffner,
et al.| (2025)). Throughout this work, except when explicitly stated otherwise, we set g(t) to zero for ¢ > 0.9
to allow for precise placement of atoms towards the end of sampling. Table [7] compares the effect of four
possible stochasticity functions. We observe that except for g(t) = 0 performance is very similar across all
metrics. We trace the contrast between g(t) = 0 and the other parameterizations to a difference in sampling
trajectories and show a comparison in Figure lﬂ In contrast to the trajectory of g(t) = 0 which is consistent

Thttps://github.com/jule-c/eqgat_diff/, MIT License

?https://github.com/Dunni3/FlowMol/tree/8f777£d57c9eldecc4f9ef6a76b366dac874c838, MIT License

3Axelrod, Simon, et al. “GEOM, energy-annotated molecular conformations for property prediction and molecular generation”
Sci Data 9, 185 (2022). Available under CCO 1.0.

4https://github.com/rssrwn/semla-flow/, MIT License

Shttps://github.com/facebookresearch /all-atom-diffusion-transformer

Shttps://huggingface.co/chaitjo/all-atom-diffusion-transformer
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Table 6: Ablation of « in the training time ¢ distribution Beta(a, 1) on TABASCO-hot (15M) trained on
GEOM-Drugs.

« Validity T Novelty ! Diversity{ PoseBusters?

1.5 0.96 0.92 0.89 0.84
1.8 0.98 0.93 0.88 0.91
2.0 0.97 0.93 0.88 0.89

Table 7: Effect of four possible g(t) parameterizations on TABASCO trained on GEOM-Drugs. For all ¢ > 0.9
we set ¢g(t) = 0 and use € = 0.01.

g(t) Validityt Noveltyt Diversity! PoseBusters?
0 0.96 0.95 0.90 0.83

= 0.98 0.93 0.88 0.91

Pt 0.97 0.93 0.89 0.91

L 0.98 0.94 0.89 0.89

w/o positional encodings

0.94 0.93 0.91 0.69

0
tJ%e 0.89 0.87 0.91 0.26

with the training trajectory, the rest of the g(t) functions have very large magnitudes close to ¢t = 0, which
empirically leads first to an explosion and then to a collapse of the atom vector magnitudes. In the collapsed
state atoms are roughly arranged in a sequence and slowly grow into the finished molecule as ¢t — 1 (see
Figure . This sudden rearrangement and growing into the finished molecule appears to yield better final
molecules compared to when following the training trajectories more closely. This may also help explain
the dip in POSEBUSTERS validity during partial molecule noising of TABASCO with positional encodings in
Figure 4l In contrast to this, we observe in Table [7| that this explosion and collapse behaviour leads to much
worse molecules when positional encodings are not added to the model, possibly because in the collapsed state
atom coordinates are almost identical and become very hard to distinguish without positional encodings.

Number of Steps at Sampling. We investigate the effect of reducing the number of sampling steps on
molecule quality and ablate over several choices in Table[8] We observe that as little as 40 steps are necessary
for TABASCO-hot to outperform previous methods on POSEBUSTERS. We further observe that additional
steps have no effect on molecular quality.

Table 8: Number of steps at sampling for TABASCO-hot (15M) trained on GEOM-Drugs. We additionally
evaluate connectivity, which denotes the fraction of fully connected molecules.

# Steps ValidityT Noveltyt Connectivity?T PoseBusters

10 0.99 0.98 0.00 0.00
20 1.00 0.99 0.00 0.00
30 0.98 0.97 0.99 0.81
40 0.98 0.94 0.99 0.91
50 0.99 0.95 1.00 0.91
100 0.98 0.94 1.00 0.91
200 0.98 0.93 1.00 0.89
500 0.98 0.94 1.00 0.91
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Figure 7: Snapshots of the sampling trajectories for two different molecules sampled from TABASCO-hot
(156M) trained on GEOM-Drugs. The upper trajectory is sampled with g(¢) = 0 and the lower one with

!
g(t) = t+0.01

PoseBusters Validity
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Figure 8: Comparison of POSEBUSTERS-validity across noise scales v with different g(¢). In contrast to all
other comparisons we set g(t) = 0 only beyond ¢ > 0.95 to further augment the effect of adding noise.

Noise Scaling. We investigate several values for v to ablate the effect of noise scaling. In Figure |8 we
compare POSEBUSTERs-validity for different noise scales and different ¢(t) parameterizations. We observe
that molecular quality remains high over several noise scales, and then collapses for g(t) = t%ﬁ

Training Components. We ablate three training components in Table [J] for the 15M-parameter TABASCO-
hot model on GEOM-Drugs. Removing weight-EMA has almost no effect: all headline metrics change by
< 0.01 and diversity rises slightly. This shows that the model does not rely on EMA for chemical or
geometric correctness. Performance is more sensitive to the coordination between input and output coordinate
features. Eliminating the single cross-attention block lowers validity and novelty by ~0.04 and, critically,
drops POSEBUSTERS validity to 0.80. This indicates that coupling atom-type and coordinate information is
necessary to resolve physical validity constraints such as steric clashes and strain at this parameter scale.
Positional encodings also prove critical, as investigated in Section Without them, raw validity remains
high (0.93) but POSEBUSTERS validity collapses to 0.70, revealing widespread geometric artifacts. The model

16



Published in Transactions on Machine Learning Research (02/2026)

can still generate chemically plausible graphs, yet struggles to arrange them in physically realistic 3D space
(see Figure [5)).

Table 9: Ablation study of model performance when removing components. Layer counts are adjusted to
match model size where needed. Higher values are better.

Method Validity Novelty Diversity PoseBusters
TABASCO-hot 0.98 0.93 0.88 0.91
w/o EMA 0.98 0.93 0.89 0.91
w/o cross-attention 0.94 0.89 0.89 0.80
w /o positional encoding 0.93 0.93 0.91 0.70

C Jensen-Shannon Divergence Comparison

Table 10: Jensen-Shannon Divergence on several extracted molecule features. For each method 3,000 molecules
were tested on GEOM-Drugs. Lower is better on all metrics.

Model Bond Length Bond Angle Dihedral Freq. Bond Pair Freq. Bond Triplet Bonds per Atom Num. Rings Bond Type
SemlaFlow 0.4085 0.1502 0.0673 0.0677 0.0664 0.1044 0.1135 0.0384
EQGAT-diff 0.2334 0.1178 0.0924 0.0440 0.0507 0.0728 0.0677 0.0124
FlowMol 0.3060 0.1697 0.1399 0.1233 0.1202 0.1709 0.1350 0.0889
TABASCO-hot 0.3589 0.1538 0.0892 0.0614 0.0737 0.0713 0.0803 0.0419

In Table we evaluate the JSD of several molecule features between the generated and GEOM-Drugs
molecules for TABASCO-hot (15M) and three baselines. We observe only minor differences in the JSD
of features between all tested methods. EQGAT-diff most closely matches the molecule distribution of
GEOM-Drugs on the evaluated features, however, improvements in JSD do not appear clearly to correlate
with performance improvements in physical validity (Table [1) or other metrics (Table [2). This may indicate
that the JSD estimate is too noisy or the distance to the GEOM-Drugs distribution is too large across all
features for improvements to give meaningful insights on the quality of generated molecules.

D Extended Details on Models

In this section we further elaborate on model architecture (Figure [2]), give concrete values for relevant
hyperparameters in Table [TI] and describe the unconditional sampling algorithm in detail in Algorithm [I]
Atom coordinates are encoded with a bias-free linear layer that scales to the model’s hidden size. Discrete
atom types are encoded through an embedding layer, where we model Carbon, Nitrogen, Oxygen, Fluorine,
Sulfur, Chlorine, Bromine, Iodine and a miscellaneous "+" atom, for all elements in the training set not
contained within the previous list. We encode the time ¢ € [0,1] through a Fourier encoding, and each
atoms location within the molecules’s SMILES sequence through a standard sinusoid encoding. We tried
concatenating these four vectors and creating a combined hidden representation with an MLP mapping from
R4 > hidden dim _, hidden dim byt ghserved no difference in practice to simply adding the vector representations,
and thus opted for this approach. Each transformer block applies layer-norm to the activations, then PyTorch
multi-head attention, another layer-norm and a transition layer, where we include residual connections between
the first two and second two components. This output is processed by two parallel PyTorch cross-attention
layers one for atom types and for coordinates. Each consists of a self-attention block, a multi-head attention
block, where the original combined hidden representation is used as key and value, and a feed-forward block.
Both outputs are subsequently processed through domain-specific MLPs where the output atom coordinate
MLP is also bias-free.
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Table 11: Model hyperparameters across different model sizes

Hyperparam. TABASCO-mild TABASCO-hot TABASCO-spicy
# Params. 3.711.369 14.795.529 59.082.249
Hidden size 128 256 512

# Transformer blocks 16 16 16

# Attn. heads 8 8 8
Train ¢ distribution Beta(1.8,1) Beta(1.8,1) Beta(1.8,1)
Adiscrete 0.1 0.1 0.1
Learning rate 0.001 0.001 0.0005
Optimizer Adam Adam Adam
EMA-weight 0.999 0.999 0.999
Batch size 256 256 128

# Rotation Augs. 8 8 8
Effective batch size 2048 2048 1024

# GPUs 2 2 2
Training Duration 36h 36h 72h

# Sampling Steps 100 100 100
g(t) t+é.01 t+é.01 t+é.01

v 0.01 0.01 0.01

Table 12: Comparison POSEBUSTERS validity when adding physically-constrained guidance. Evaluated on
1000 molecules on a single A100 GPU.

Method # Params. Validityt Novelty? Diversity? PoseBusters? Strain Energy| Time] (s)
TABASCO-mild 3.7TM 0.95 0.93 0.89 0.85 21.32 5.9
w/ guidance 0.96 0.95 0.89 0.91 26.53 60.86
TABASCO-hot 15M 0.98 0.93 0.88 0.91 14.16 10.67
w/ guidance 0.97 0.94 0.89 0.94 19.23 75.66
TABASCO-spicy 59M 0.97 0.90 0.89 0.92 15.07 19.77
w/ guidance 0.97 0.93 0.89 0.94 17.01 131.80

E Further Analysis on Physical Guidance

We provide a detailed description of our physically constrained guidance procedure in Algorithm [2] and
provide full results on all model sizes in Table [I2] We observe the largest improvement in POSEBUSTERS
for TABASCO-small, and minor improvements in novelty for all model sizes. Simultaneously we consistently
observe an increase in strain energy when applying physical guidance.

F Failure Case Analysis

We study common physical validity failure modes of generated molecules using TABASCO-hot (15M).
Figure [10] shows the phi coefficient matrix, quantifying pairwise correlation between subtest failures. Table
shows the absolute failure rate of each subtest. Unsurprisingly, bond length and bond angle violations are
strongly correlated, since when local geometry is implausible, both properties tend to be affected. These
geometric failures also correlate with internal energy violations, likely because distorted bonds and angles
lead to higher strain. The most frequent failure mode is steric clashes (Table , however, this does not
correlate strongly with other tests. We hypothesize this is because clashing atom pairs are not bonded, so for
example bond-specific tests do not apply to them.
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Figure 9: Twenty generated molecules chosen at random that do not satisfy physical plausibility, each labeled
with the failed subtest.
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Connected 0.04 -0.00 -0.00 0.19 1.0
Bond Lengths A -0.00 0.02 0.22
- 0.5
Bond Angles - 0.10 -0.00 0.02 0.34 e
9]
O
No Clashes - 0.04 0.09 -0.01 0.07 - 0.0 %
S
Rings Flat 4-0.00 -0.00 -0.00 -0.00 -
- —0.5
Double Bonds Flat 4-0.00 0.02 0.02 -0.01
Internal Energy 1 0.19 0.22 0.34 0.07 -1.0

(‘,&6 NG &‘?f" e Q\é' o
& O P F o o E
IR Z ¥ LY ©
® o S o S P o
& )P A @ Q}Q
N AN

Figure 10: Phi coefficient matrix of physical validity subtests.

In Figure [9] we show a random subset of failing molecules along with the test that failed. We observe that as
shown in Table [l steric clashes are by far the most common failure mode. We also note that while several
molecules are visibly flawed, in some cases the violation of physical validity is not immediately apparent.
This further highlights the need for rigorous physical plausibility tests such as POSEBUSTERS.

G Limitations

The approach described in this work retains several limitations. SMILES-derived positional encodings
improve performance but can theoretically introduce systemic biases, that may limit the model when faced
with unusual bond patterns or non-standard chemical structures. Furthermore, omitting explicit bond
modeling creates a leaner model and simpler training objective, but limits control over valences and bond
orders when sampling the model. While TABASCO exhibits emergent equivariance, in some areas such
as molecular dynamics, where even small equivariance errors can prove problematic, this approximate
equivariance may still be insufficient.

We also observe a scaling plateau: performance improvements diminish significantly beyond the 15M
parameter scale, with only modest gains observed when scaling to 59M parameters. This suggests that further
scaling benefits may require increasingly larger training compute budgets. Alternatively, this plateau may be
partially by the training dataset imposing a glass ceiling on physical validity which is almost saturated by
the 15M parameter model (see Table . Understanding the precise factors underlying this plateau remains
an open question.

While we demonstrate that TABASCO learns approximately equivariant representations through data
augmentation alone, our mechanistic understanding of this emergent equivariance remains limited. We
quantify the equivariance error empirically (Section , but do not provide a theoretical characterization of
how the model internally represents rotational symmetry or why certain training configurations yield lower
equivariance error than others. Further investigation into the learned representations could yield insights for
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designing more principled non-equivariant architectures.

The validation presented in this work focuses exclusively on unconditional molecular generation. While the
architecture is designed to be readily extensible to conditional tasks such as property-guided generation or
structure-based drug design, we have not empirically validated performance in these settings. The benefits
observed for unconditional generation may not directly transfer to conditional scenarios, which often require
different architectural considerations and evaluation protocols.

The physically-constrained guidance algorithm serves as a proof-of-concept for boosting the physical plausibility
of molecules during sampling without requiring any modifications to training data, model architecture or
parameter scale. Still, this approach is based on optimizing chemoinformatics heuristics for high-quality
molecules and it dramatically increases sampling times.

Furthermore, while useful to quantify physical plausibility of 3D molecules, POSEBUSTERS cannot capture all
aspects of molecular quality, and does not quantify additional very relevant metrics of interest: TABASCO
does not address improvements in drug-likeness of molecules or synthetic accessibility.

Algorithm 1 Unconditional Sampling Algorithm

procedure EUCLIDEANSTEP (x¢, X1, t, At, g(-),7)
Vi — %_t(fil — Xt)

s < g(t) ™=

dW; + /27 g(t) N(0,1)
Xt (v +s¢ + dWy) At
return x;

end procedure

procedure DISCRETEFLOWSTEP (ay, p1, t, At) > All indexed ops without loops are vectorized
ri(i,) = £Lp1 (i) > Py consists of softmax-normalized model logits
r(i,a0(1)) < = X2 2a, () Te (0, ) > Make r; zero mean

Pt at(is §) < La,iy)=j + re(i, 7)
at(i) « Categorical(p+a¢ (7))
return a;

end procedure

procedure SAMPLEMOLECULE(f, {t;} )
x < N(0,1)
a + Categorical (6(%))
fori=1to N do
At +— ti —ti_1
(%1, 1) < EndpointPrediction(f, (x,a), t;)
x < EUCLIDEANSTEP(xy, X1, t;, At)
a < DISCRETEFLOWSTEP (a¢, p1, t;, At)
end for
return (x,a)
end procedure

SAMPLINGSTEP
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Algorithm 2 Flow Matching with Physical Guidance

> Calls RDKIT GetBoundsMatrix ()

if d;; < bounds;;" then > Can also regress towards the interval centre

1: procedure PHYSICALGUIDANCE(f, (X, at),t, @)

2: X1, p1 + EndpointPrediction(f, (x¢, at), t)

5 (i) = argmax; py (i, j)

4 bounds < GetPhysicalConstraints(Xy, a1 )

5: for each atom pair (x;;,%; ;) in x; do > This nested loop is vectorized in practice
6 dij < ||%ei — X513

7

8 L+ L+ (dij — bounds}}™)?

9: else if d;; > bounds;;** then
10: L L+ (dij — bounds;™)?
11: end if
12: end for
13: Xt < Xt — o - sign(Vy, £) > The sign-op slightly stabilizes updates in practice
14: return x;

15: end procedure

16: procedure GUIDEDSAMPLING(f, (X0, a0), {ti}~ o, tguidance)

17: (X7 a) — (Xo, CL())

18: for i =1to N do

19: At ti —ti_1

20: if ¢, > tguidance then

21: x < PHYSICALGUIDANCE(f, (x, a), t;, @)
22: end if

23: (x,a) < SAMPLINGSTEP(f, (x, a),t;, At)

24: end for

25: return (x,a)

26: end procedure
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