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Abstract

The remarkable success of Large Language Models (LLMs) across diverse tasks1

has driven the research community to extend their capabilities to molecular appli-2

cations, leading to the development of molecular LLMs. However, most molecular3

LLMs employ adapter-based architectures that do not treat molecule and text4

modalities equally and lack a supervision signal for the molecule modality. To5

address these issues, we introduce UniMoT, a unified molecule-text LLM adopting6

a tokenizer-based architecture that expands the vocabulary of LLM with molecule7

tokens. Specifically, we introduce a Vector Quantization-driven tokenizer that8

incorporates a Q-Former to bridge the modality gap between molecule and text.9

This tokenizer transforms molecules into sequences of molecule tokens with causal10

dependency, encapsulating high-level molecular and textual information. Equipped11

with this tokenizer, UniMoT can unify molecule and text modalities under a shared12

token representation and an autoregressive training paradigm, enabling it to in-13

terpret molecules as a foreign language and generate them as text. Following a14

four-stage training scheme, UniMoT emerges as a multi-modal generalist capable15

of performing both molecule-to-text and text-to-molecule tasks. Extensive exper-16

iments demonstrate that UniMoT achieves state-of-the-art performance across a17

wide range of molecule comprehension and generation tasks.18

1 Introduction19

The incredible capabilities of Large Language Models (LLMs) [5, 44] have led to their widespread20

use as versatile tools for completing diverse real-world tasks. This success has sparked interest in21

Multi-modal LLMs [59, 52], which aim to enhance LLMs by enabling them to process multi-modal22

inputs and outputs. Prior research efforts [26, 41, 12, 6, 33, 35, 25] have focused on adapting LLMs23

to molecular tasks, resulting in the development of molecular LLMs. These molecular LLMs can24

analyze molecule structures [35, 33, 6], address drug-related inquiries [26, 41], assist in synthesis25

and retrosynthesis planning [12], support drug design [12], and more.26

Prevalent molecular LLMs commonly employ adapter-based architectures, adopting either a linear27

projection [26, 41, 6] or a Q-Former [33, 25] as an adapter to translate molecule features into the28

semantic space of LLM, as illustrated in Figure 1a and Figure 1b. Despite demonstrating initial29

capabilities in molecular comprehension and yielding promising results in molecule-to-text generation30

tasks, they still lack molecule generation abilities. The critical issue within these methods is their31

unequal treatment of molecules and text, resulting in a lack of supervision for the molecule modality.32

This limitation significantly constrains model capacity and effectiveness. Due to limitations imposed33

by the training paradigm, they are unable to perform text-to-molecule generation tasks.34

Discretizing continuous molecule features into discrete molecule tokens offers a promising solution35

for conducting both molecule-to-text and text-to-molecule generation tasks. By treating tokens from36
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Figure 1: Comparisons among different molecular LLMs. 1a and 1b are adapter-based architectures
that do not treat molecule and text modalities equally and lack a supervision signal for the molecule
modality. 1c is our proposed tokenizer-based architecture, where molecules are presented in the same
discrete token representation as that of text. Molecules and text can be optimized under a unified
next-token-prediction objective.

different modalities equally, we can predict the next molecule or text token in an autoregressive37

manner. However, directly discretizing molecule features poses several challenges: (i) This approach38

results in long sequences, with lengths equivalent to the number of atoms in a batch. LLMs typically39

experience a quadratic increase in computational complexity with sequence length [46]. (ii) Molecule40

tokens derived from molecule features lack left-to-right causal dependency, which conflicts with41

the unidirectional attention mechanism in LLMs. (iii) Molecule features lack textual information,42

hindering effective molecule-text interactions and alignment.43

To this end, we present UniMoT, a unified molecule-text LLM that adopts a tokenizer-based architec-44

ture, integrating molecule comprehension and generation, as depicted in Figure 1c. A pivotal aspect45

of UniMoT’s architecture is the molecule tokenizer for transforming molecules into molecule tokens.46

We introduce a Vector Quantization-driven [45] tokenizer, incorporating a Q-Former [23] to bridge47

the modality gap between molecule and text. Specifically, we incorporate causal masks for the queries,48

enabling the Causal Q-Former to generate a causal sequence of query embeddings compatible with49

the unidirectional attention in LLMs. The sequence of query embeddings is subsequently quantized50

into a sequence of molecule tokens using a learnable codebook. The molecule tokens encapsulate51

high-level molecular and textual information, which are then aligned with the latent space of a52

generative model via an MLP adapter, enabling the generation of desired molecules.53

Pretrained LLMs can integrate the molecule tokenizer by treating molecule tokens as new words and54

constructing a molecule vocabulary through mapping the learned codebook. We adopt the unified55

discrete token representation for molecules and text, coupled with the unified next-token-prediction56

training paradigm of LLM. This unification of representation and training paradigm enhances LLMs’57

ability to understand molecule-text interactions and alignment. UniMoT interprets molecules akin to58

understanding a foreign language, and generates them as if they were text. Following a four-stage59

training scheme, UniMoT serves as a multi-modal generalist capable of performing both molecule60

comprehension and generation tasks.61

Our contributions can be summarized as follows:62

• We introduce a molecule tokenizer specifically designed for LLMs, enabling the tokenization63

of molecules into short sequences of molecule tokens with causal dependency. These tokens64

encapsulate high-level molecular and textual information and can be decoded into desired65

molecules during inference.66

• We present UniMoT, a unified molecule-text LLM that adopts a tokenizer-based architecture67

instead of traditional adapter-based architectures. UniMoT unifies the modalities of molecule68

and text under a shared token representation and an autoregressive training paradigm.69

• UniMoT exhibits remarkable capabilities in multi-modal comprehension and generation. Exten-70

sive experiments demonstrate that UniMoT achieves state-of-the-art performance across a wide71

spectrum of molecule comprehension tasks and molecule generation tasks.72
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2 Related Works73

Molecular Large Language Models. The recent emergence of Vision Large Language Models74

(VLLMs) [24, 23, 28] has catalyzed advancements in Molecular LLMs, which encompass both75

single modality and multi-modality approaches. In the single modality domain, researchers are76

exploring diverse molecule representations, such as 1D sequences like SMILES strings [47, 8, 17],77

2D molecule graphs [15, 56], 3D geometric conformations [56, 32], and textual information from78

the literature [43, 2, 21]. In the multiple modalities domain, various innovative approaches are being79

employed. MolT5 [11], a T5-based [38] model, is designed for SMILES-to-text and text-to-SMILES80

translations. Other works, such as MoMu [39], MoleculeSTM [31], MolFM [34], and GIT-Mol [29],81

leverage cross-modal contrastive learning to align the representation spaces of molecules and text.82

Additionally, some studies use multi-modal learning architectures to develop molecular LLMs,83

which often adopt adapter-based architectures. For instance, InstructMol [6], GraphGPT [41], and84

DrugChat [26] employ a simple projection layer to map molecule features to LLM’s input space.85

MolCA [33] and 3D-MoLM [25] utilize a Q-Former [23] to bridge the modality gap between86

molecules and text. However, these methods do not treat molecule and text modalities equally and87

lack a supervision signal for the molecule modality, limiting model capacity and effectiveness.88

Vector Quantization. Vector Quantization (VQ) [13] is a widely used technique in generative89

models. VQ-VAE [45] converts an image into a set of discrete codes within a learnable discrete90

latent space by learning to reconstruct the original image. VQ-GAN [57] enhances the generation91

quality by leveraging adversarial and perceptual objectives. In the context of molecules, VQ has92

been effectively applied to quantize molecule representations. For example, DGAE [4] introduces93

a VQ model specifically for molecular graphs, where molecular graphs are encoded into discrete94

latent codes. Mole-BERT [54] uses VQ to rethink the pre-training of GNNs for molecular tasks.95

IMoLD [60] proposes using VQ to enhance invariant molecule representations, and VQSynergy [51]96

demonstrates the use of VQ for drug discovery.97

3 Method98

Our objective is to leverage the reasoning and generation capabilities of LLMs to enhance the99

comprehension and generation of molecule and text data. To achieve this, we focus on representing100

these modalities uniformly within the token representation, utilizing the next-token-prediction training101

paradigm of LLMs. As illustrated in Figure 2, we introduce a molecule tokenizer (Section 3.1)102

designed to transform molecules into molecule tokens by learning to reconstruct the input molecule.103

The molecule sequence can then be concatenated with the text sequence to form a multi-modal104

sequence, which is subsequently fed into an LLM for autoregressive pretraining (Section 3.2), as105

illustrated in Figure 3. The LLM vocabulary is expanded with molecule codes mapped from the106

learned codebook. We introduce a four-stage training scheme for UniMoT (Section 3.3) comprising107

Causal Q-Former pretraining, molecule tokenizer pretraining, unified molecule-text pretraining, and108

task-specific instruction tuning. UniMoT is capable of performing both molecular comprehension109

and generation tasks following the training scheme.110

3.1 Molecule Tokenizer for LLMs111

Molecule encoder. We represent the structural information of a molecule as a graph, denoted by112

G = (V, E), where V is the set of atoms and |V| = N is the number of atoms. The task of the113

molecule encoder is to extract node representations that are context-aware and encompass diverse114

local neighborhood structural information. By employing a molecule encoder, we obtain molecule115

features X ∈ RN×F , where each atom representation contains context-aware structural information.116

Causal Q-Former. We employ a Q-Former model introduced by BLIP-2 [23] to generate query117

embeddings Z = {zi}Mi=1 ∈ RM×d containing high-level molecular and textual information, where118

M represents the number of queries and d denotes the dimension of query embeddings. Specifically,119

we incorporate causal masks into the queries, ensuring that they only interact with preceding queries.120

This ensures the sequence of query embeddings maintains a causal dependency, aligning with the121

requirements of LLMs operating on text sequence. Details regarding the Causal Q-Former can be122

found in Appendix A.123
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Figure 2: Illustration of our proposed molecule tokenizer. The tokenizer generates discrete molecule
tokens, which can be fed into LLMs for downstream tasks. The generated molecule tokens can be
decoded into molecules using the adapter and the SMILES decoder during inference.

Vector Quantization. The Causal Q-Former converts molecule and text features into a causal124

sequence of query embeddings. Subsequently, we aim to quantize these query embeddings into125

molecule tokens using a variant of VQ-VAE [45]. These discrete molecule tokens can then be126

integrated with text tokens to form a multi-modal sequence suitable for feeding into LLMs. The127

causal sequence of query embeddings {zi}Mi=1 is quantized into a causal sequence of molecule128

tokens {si}Mi=1 by identifying the closest neighbor in a learnable codebook C = {ci}Ki=1, where K129

represents the size of the codebook. The codebook is randomly initialized and optimized during130

pretraining. Specifically, token si is determined as follows:131

si = argminj∈{1,··· ,K} ∥zi − cj∥2 , for i = 1, 2, · · · ,M. (1)

Intuitively, the query embedding zi is quantized to the closest neighbor csi in the codebook. As the132

vector quantization process is non-differentiable, we adopt the straight-through estimator [3] to train133

the Causal Q-Former by copying the gradient from the molecule tokens to the query embeddings,134

as shown in Figure 2. The resulting embeddings of molecule tokens, denoted as C = {csi}Mi=1, are135

subsequently utilized for reconstructing molecules.136

Molecule Reconstruction. An adapter needs to be trained to align the discrete latent space of137

molecule tokens with the continuous latent space of a molecular generative model for molecule138

reconstruction. The embeddings of molecule tokens C can be aligned with the latent space of139

the generative model via an MLP adapter ψ, represented as XR = ψ(C), where XR denotes the140

embeddings for reconstruction. Subsequently, we can reconstruct the molecule from XR using the141

pretrained SMILES decoder To achieve alignment, we minimize the Mean Squared Error (MSE) loss142

between XR and the SMILES [50] embeddings XS produced by the pretrained SMILES encoder.143

The training loss of the tokenizer is expressed as follows:144

LTokenizer = ∥XR −XS∥22 +
1

M

M∑
i=1

∥sg [zi]− csi∥
2
2 +

β

M

M∑
i=1

∥sg [csi ]− zi∥22 . (2)

Here, the first term represents the alignment loss, the second term is a codebook loss aimed at145

updating the codebook embeddings, and the third term is a commitment loss that encourages the146

query embedding to stay close to the chosen codebook embedding. sg[·] denotes the stop-gradient147

operator, and the hyperparameter β is set to 0.25.148
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Figure 3: Illustration of the multi-modal autoregressive pretraining on molecule-text datasets. Uni-
MoT excels in multi-modal comprehension and generation tasks, enabled by the unified LM objective.
T represents the size of the text vocabulary.

3.2 Unified Molecule-Text Language Model149

Expanding Vocabulary. Employing the molecule tokenizer, a molecule can be tokenized into a150

molecule sequence {si}Mi=1 with causal dependency. The molecule sequence can be concatenated with151

the text sequence to form a multi-modal sequence {ui}Li=1, where L is the length of the multi-modal152

sequence. To facilitate the representation of the multi-modal sequence, we construct the molecule153

vocabulary Vm = {vm
i }Ki=1, which maintains the order of the molecule codebook C = {ci}Ki=1.154

Additionally, Vm includes several special tokens such as boundary indicators, e.g., [MOL] and155

[/MOL], to mark the beginning and end of the molecule sequence. Next, we merge the original text156

vocabulary Vt = {vt
i}Ti=1 with the molecule vocabulary Vm. The unified molecule-text vocabulary157

V = {Vm,Vt} facilitates joint learning from molecules and text under a unified next-token-prediction158

objective. As the vocabulary is expanded, the corresponding embeddings and prediction layers also159

need to be extended, with the newly introduced parameters initialized randomly.160

Unified Molecule-text Modeling. The multi-modal sequence {ui}Li=1 is fed into the pretrained161

LLM for performing multi-modal autoregression. UniMoT adopts the general Language Modeling162

(LM) objective to directly maximize the log-likelihood of the data distribution:163

LLM = −
∑
u∈D

∑
i∈I

log p (ui | u1, · · · , ui−1; θ) , (3)

where D represents the dataset, I represents the set of indices of the generation target, and θ denotes164

the parameters of the LLM. The unification of representation and training paradigm for molecules and165

text enhances the abilities of LLMs to understand molecule-text interactions and alignment. UniMoT166

can interpret molecules similar to understanding a foreign language, and generate them as if they167

were text. We conduct autoregressive pretraining on molecule-to-text and text-to-molecule tasks to168

enhance the molecule comprehension and generation capabilities.169

Molecule-to-Text Autoregression. While structural information is embedded in molecule features170

and captured by the molecule tokens through the tokenizer, we also aim to incorporate sequential171

information of molecules for better comprehension. Therefore, we concatenate the molecule sequence172

{si}Mi=1 with the SMILES [50] sequence and a prompt to form the multi-modal input sequence173

{ui}Li=1, as illustrated in Figure 3a. The text sequence of the corresponding molecule caption is used174

as the generation target.175

Text-to-Molecule Autoregression. For molecule generation, a prompt and the molecule caption176

are concatenated, with a [MOL] token appended to signify the beginning of the molecule sequence,177

as illustrated in Figure 3b. The molecule sequence {si}Mi=1 produced by the tokenizer is used as the178
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generation target. During inference, given a prompt and the molecule caption, the output molecule179

sequence can be decoded into the desired molecule by the pretrained adapter and SMILES decoder.180

3.3 Training Strategy181

The training strategy for UniMoT is structured across four stages. Stage-1 focuses on Causal Q-182

Former pretraining with tailored objectives. In Stage-2, the molecule tokenizer is optimized using the183

frozen encoders and decoder. Stage-3 integrates the tokenizer with a language model for multi-modal184

comprehension and generation. Finally, Stage-4 fine-tunes UniMoT for specific tasks, aligning it with185

human instructions and optimizing performance for various molecular applications. More details186

regarding the training process can be found in Appendix C.187

Stage-1: Causal Q-Former Pretraining. We connect the molecule encoder and Causal Q-Former,188

leveraging the pretrained MoleculeSTM molecule encoder [31]. The molecule encoder remains189

frozen while only the Causal Q-Former is updated. Both queries and text inputs are used, while190

only queries serve as input in subsequent stages. In our experiments, we utilize 16 queries. We191

employ three tailored objectives MTC, MTM, and MTG for the pretraining of the Causal Q-Former,192

as detailed in Appendix A.193

Stage-2: Molecule Tokenizer Pretraining. We connect the Causal Q-Former with subsequent194

blocks and use the objective defined in Equation (2). We employ the pretrained ChemFormer [17] as195

the generative model. Specifically, we leverage the SMILES encoder and SMILES decoder provided196

by ChemFormer. The molecule codebook size is set to K = 2048. As shown in Figure 2, we keep197

the molecule encoder, SMILES encoder, and SMILES decoder frozen, while updating the Causal198

Q-Former, codebook, and adapter.199

Stage-3: Unified Molecule-Text Pretraining. We integrate the molecule tokenizer with the LLM200

using the unified vocabulary of molecule tokens and text tokens. We employ the LM objective201

defined in Equation (3) to pretrain the LLM. Pretraining involves molecule-to-text autoregression202

and text-to-molecule autoregression, aimed at enhancing UniMoT’s multi-modal comprehension and203

generation capabilities. To enhance efficiency, we train the LLM using LoRA tuning [14].204

Stage-4: Task-Specific Instruction Tuning. UniMoT is fine-tuned on seven comprehension and205

generation tasks: molecular property prediction, molecule captioning, molecule-text retrieval, caption-206

guided molecule generation, reagent prediction, forward reaction prediction, and retrosynthesis. We207

also utilize LoRA tuning to improve efficiency. This stage ensures UniMoT can accurately interpret208

and respond to human instructions, making it versatile and effective for molecular tasks.209

4 Experiments210

4.1 Molecule Comprehension Tasks211

Molecular Property Prediction Task. The goal of molecular property prediction is to forecast212

a molecule’s intrinsic physical and chemical properties. For the classification task, we incorporate213

eight binary classification datasets from MoleculeNet [53]. Models are tasked with generating214

a single prediction (“yes” or “no”). We compare UniMoT with the following baselines: KV-215

PLM [58], AttrMask [16], InfoGraph [40], MolCLR [48], GraphMVP [30], MoleculeSTM [31],216

and InstructMol [6]. The ROC-AUC (%) results on the MoleculeNet datasets are shown in Table 1.217

The performance of the regression task of molecular property prediction is provided in Appendix D.218

Compared to traditional graph learning methods and molecular LLMs like InstructMol, UniMoT219

demonstrates consistent improvements across the eight datasets, indicating its robust molecule220

comprehension abilities.221

Molecule Captioning Task. The molecule captioning task involves generating a comprehensive222

description of a molecule. We compare UniMoT with several baselines: MolT5 [11], MoMu [39],223

InstructMol [6], MolCA [33], and 3D-MoLM [25]. BLEU [37], ROUGE [27], and METEOR [1] are224

adopted as evaluation metrics. UniMoT is evaluated for molecule captioning on the PubChem and225
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Table 1: ROC-AUC (%) of molecular property prediction task (classification) on the MoleculeNet
datasets. Bold indicates the best performance and underline indicates the second best performance.

Model BBBP↑ Tox21↑ ToxCast↑ Sider↑ ClinTox↑ MUV↑ HIV↑ BACE↑
KV-PLM [58] 70.50 72.12 55.03 59.83 89.17 54.63 65.40 78.50
AttrMask [16] 67.79 75.00 63.57 58.05 75.44 73.76 75.44 80.28
InfoGraph [40] 64.84 76.24 62.68 59.15 76.51 72.97 70.20 77.64
MolCLR [48] 67.79 75.55 64.58 58.66 84.22 72.76 75.88 71.14
GraphMVP [30] 68.11 77.06 65.11 60.64 84.46 74.38 77.74 80.48
MoleculeSTM [31] 69.98 76.91 65.05 60.96 92.53 73.40 76.93 80.77
InstructMol (Vicuna-7B) [6] 70.00 74.67 64.29 57.80 91.48 74.62 68.90 82.30

UniMoT (LLaMA2-7B) 71.37 76.43 65.78 59.79 92.89 75.97 78.49 83.69

Table 2: Performance (%) of molecule captioning task on the PubChem dataset. Bold indicates the
best performance and underline indicates the second best performance.

Model BLEU-2↑ BLEU-4↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ METEOR↑
MolT5-Small (T5-Small) [11] 22.5 15.2 30.4 13.5 20.3 24.0
MolT5-Base (T5-Base) [11] 24.5 16.6 32.2 14.0 21.4 26.1
MolT5-Large (T5-Large) [11] 25.9 17.3 34.1 16.4 23.4 28.0
MoMu-Small (T5-Small) [39] 22.9 16.0 31.0 13.7 20.8 24.4
MoMu-Base (T5-Base) [39] 24.7 16.8 32.5 14.6 22.1 27.2
MoMu-Large (T5-Large) [39] 26.3 18.0 34.8 16.9 24.8 28.7
InstructMol (Vicuna-7B) [6] 18.9 11.7 27.3 11.8 17.8 21.3
MolCA (OPT-125M) [33] 25.9 17.5 34.4 16.6 23.9 28.5
MolCA (OPT-1.3B) [33] 28.6 21.3 36.2 21.4 29.7 32.6
3D-MoLM (LLaMA2-7B) [25] 30.3 22.5 36.8 22.3 31.2 33.1

UniMoT (LLaMA2-7B) 31.3 23.8 37.5 23.7 33.6 34.8

CheBI-20 datasets. Performance on the PubChem dataset is shown in Table 2, while the performance226

on the CheBI-20 dataset and some concrete examples are presented in Appendix D.227

From Table 2, we observe that UniMoT consistently outperforms the baselines by a significant margin.228

This task is more complex than classification or regression, providing a robust measure of the model’s229

molecule comprehension abilities. Notably, our proposed tokenizer-based architecture surpasses the230

projection-based architecture (such as InstructMol), Q-Former-based architecture (such as MolCA231

and 3D-MoLM), and models trained with contrastive learning strategies (such as MoMu). The results232

demonstrate that the molecule tokenizer can generate molecule tokens with high-level molecular and233

textual information, enhancing molecule comprehension abilities.234

Molecule-Text Retrieval Task. The molecule-text retrieval task involves using a molecule to235

retrieve text (M2T) and using text to retrieve a molecule (T2M). We compare UniMoT with several236

baselines: Sci-BERT [2], KV-PLM [58], MoMu [39], MoleculeSTM [31], MolCA [33], and 3D-237

MoLM [25]. We report the performance of retrieval using a batch of 64 random samples and the entire238

test set, evaluated with the metrics of Accuracy and Recall@20. We use the checkpoint from Stage-1239

of pretraining. UniMoT is evaluated on the datasets of PubChem, PCdes, and MoMu. Performance240

on the PubChem dataset is shown in Table 3, while performance on the PCdes and MoMu datasets is241

presented in Appendix D. UniMoT can understand complex molecule-text interactions through the242

introduction of the Causal Q-Former. From Table 3, UniMoT demonstrates superior performance over243

the baselines on molecule-text retrieval, particularly in molecule-to-text retrieval. This underscores244

UniMoT’s capability in learning fine-grained alignment between molecules and text.245

4.2 Molecule Generation Tasks246

We employ molecule generation tasks, which encompass caption-guided molecule generation, reagent247

prediction, forward reaction prediction, and retrosynthesis. Caption-guided molecule generation248

involves generating molecular structures based on textual descriptions. Reagent prediction entails249

determining suitable reagents given reactants and products. Forward reaction prediction involves250

predicting probable products given specific reactants and reagents. Retrosynthesis involves decon-251

structing a target molecule into simpler starting materials. We compare UniMoT with the following252
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Table 3: Performance (%) of molecule-text retrieval task on the PubChem dataset. Bold indicates the
best performance and underline indicates the second best performance.

Model

Retrieval in batch Retrieval in test set
M2T (%) T2M (%) M2T (%) T2M (%)

Acc↑ R@20↑ Acc↑ R@20↑ Acc↑ R@20↑ Acc↑ R@20↑
Sci-BERT [2] 85.3 98.7 84.2 98.4 41.7 87.3 40.2 86.8
KV-PLM [58] 86.1 98.6 85.2 98.5 42.8 88.5 41.7 87.8
MoMu (Sci-BERT) [39] 87.6 99.2 86.4 99.4 47.3 90.8 48.1 89.9
MoMu (KV-PLM) [39] 88.2 99.4 87.3 99.4 48.5 91.6 49.5 90.7
MoleculeSTM [31] 90.5 99.6 88.6 99.5 52.7 92.9 53.2 92.5
MolCA (OPT-1.3B) [33] 92.6 99.8 91.3 99.5 67.9 94.4 68.6 93.3
3D-MoLM (LLaMA2-7B) [25] 93.5 100.0 92.9 99.6 69.1 95.9 70.1 94.9

UniMoT (LLaMA2-7B) 93.6 100.0 92.7 99.4 69.5 96.3 69.8 94.4

Table 4: Performance of molecule generation tasks on the Mol-Instructions dataset, including caption-
guided molecule generation, reagent prediction, forward reaction prediction, and retrosynthesis. Bold
indicates the best performance, and underline indicates the second best performance.

Model Exact↑ BLEU↑ Levenshtein↓ RDK FTS↑ MACCS FTS↑ Morgan FTS↑ Validity↑

Caption-guided Molecule Generation
LLaMA [44] 0.000 0.003 59.864 0.005 0.000 0.000 0.003
Vicuna [7] 0.000 0.006 60.356 0.006 0.001 0.000 0.001
Mol-Instructions [12] 0.002 0.345 41.367 0.231 0.412 0.147 1.000
MolT5 [11] 0.112 0.546 38.276 0.400 0.538 0.295 0.773

UniMoT 0.237 0.698 27.782 0.543 0.651 0.411 1.000

Reagent Prediction
LLaMA [44] 0.000 0.003 28.040 0.037 0.001 0.001 0.001
Vicuna [7] 0.000 0.010 27.948 0.038 0.002 0.001 0.007
Mol-Instructions [12] 0.044 0.224 23.167 0.237 0.364 0.213 1.000
InstructMol [6] 0.129 0.610 19.664 0.444 0.539 0.400 1.000

UniMoT 0.167 0.728 14.588 0.549 0.621 0.507 1.000

Forward Reaction Prediction
LLaMA [44] 0.000 0.020 42.002 0.001 0.002 0.001 0.039
Vicuna [7] 0.000 0.057 41.690 0.007 0.016 0.006 0.059
Mol-Instructions [12] 0.045 0.654 27.262 0.313 0.509 0.262 1.000
InstructMol [6] 0.536 0.967 10.851 0.776 0.878 0.741 1.000

UniMoT 0.611 0.980 8.297 0.836 0.911 0.807 1.000

Retrosynthesis
LLaMA [44] 0.000 0.036 46.844 0.018 0.029 0.017 0.010
Vicuna [7] 0.000 0.057 46.877 0.025 0.030 0.021 0.017
Mol-Instructions [12] 0.009 0.705 31.227 0.283 0.487 0.230 1.000
InstructMol [6] 0.407 0.941 13.967 0.753 0.852 0.714 1.000

UniMoT 0.478 0.974 11.634 0.810 0.909 0.771 1.000

baselines: LLaMA [44], Vicuna [7], Mol-Instructions [12], and InstructMol [6]. The metrics used253

to evaluate molecule generation tasks include Exact Match, BLEU [37], Levenshtein Distance [22],254

RDKit Fingerprint Similarity [20], MACCS Fingerprint Similarity [10], and Morgan Fingerprint255

Similarity [36]. These metrics evaluate structural similarity between generated and target molecules,256

along with Validity [19], which assesses the proportion of chemically valid molecules generated. We257

utilize the Mol-Instructions dataset to evaluate the generation capabilities of UniMoT, and the results258

are presented in Table 4.259

As the baselines generate SMILES strings and then convert them to molecules, UniMoT directly260

leverages the generated molecule tokens and obtains their embeddings from the learned codebook.261

These embeddings can be decoded to desired molecules through the pretrained adapter and SMILES262

decoder. Regarding the results in Table 4, UniMoT exhibits the capability to generate valid molecules263

with a higher degree of similarity to the target molecules compared to the baselines. UniMoT can264

generate molecules as if they were text, demonstrating strong generation capabilities and providing a265

new perspective to molecule generation tasks.266
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Table 5: Ablation study on the projector and representation form for the molecule captioning task
using the PubChem dataset.

Projector Input to LLM BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

Projection Layer Molecule Emb. 19.3 12.1 27.9 12.3 18.1 21.5
Q-Former Query Emb. 28.6 21.3 36.2 21.4 29.7 32.6
Causal Q-Former Causal Emb. 32.8 25.2 39.2 24.8 35.3 36.5
Causal Q-Former Causal Tokens 31.3 23.8 37.5 23.7 33.6 34.8

Table 6: Ablation study on the model size and tuning strategy for the molecule captioning task using
the PubChem dataset.

Model Size Tuning BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

LLaMA2-7B LoRA Tuning 31.3 23.8 37.5 23.7 33.6 34.8
LLaMA2-7B Fully Tuning 32.0 24.6 38.3 24.3 34.7 35.6
LLaMA2-13B LoRA Tuning 31.8 24.3 38.0 24.1 34.4 35.3

4.3 Ablation Studies267

Cross-Modal Projector. We conducted an ablation study on the cross-modal projector, with the268

results on the molecule captioning task shown in Table 5. The linear projection demonstrated the worst269

performance, indicating that the molecule features lack textual information, thus hindering effective270

molecule-text interactions and alignment. Additionally, we compared the performance of a Q-Former271

with bidirectional self-attention to a Causal Q-Former with causal self-attention. The results show272

that query embeddings with causal dependency outperform those with bidirectional dependency. This273

demonstrates that input with left-to-right causal dependency aligns with the unidirectional attention274

mechanism in LLMs, leading to improved performance.275

Discrete vs. Continuous Representation. We compare the performance of continuous causal query276

embeddings and discrete tokens quantized from causal embeddings as inputs to LLMs. As shown in277

Table 5, continuous embeddings demonstrate better performance than discrete tokens in understanding278

molecules. This result is reasonable since the quantization process causes information loss in discrete279

tokens. However, we still use discrete token representation to facilitate the autoregressive training280

paradigm of LLMs, which supports the unification of comprehension and generation tasks. To achieve281

this unification, we unavoidably sacrifice some performance in comprehension tasks.282

Model Size and Tuning Stategy. We conducted a comparison of molecule captioning performance283

across various model sizes and tuning strategies, as illustrated in Table 6. Our findings indicate that284

scaling up the LLM to 13B or adopting a fully tuning strategy yields only marginal improvements285

in performance compared to using LLaMA2-7B with LoRA tuning. While larger models and fully286

tuning strategies might offer slight gains in performance, they come at a significant cost in terms of287

efficiency. Considering the trade-off between achieving high performance and maintaining efficiency,288

we have chosen to utilize LLaMA2-7B with LoRA tuning in our experiments. This ensures that our289

model remains both powerful and practical.290

5 Conclusion291

This work introduces UniMoT, an innovation in the field of molecular-textual understanding and292

generation, which has successfully unified these two distinct modalities under a single, coherent293

framework. By integrating a Vector Quantization-driven tokenizer with a Causal Q-Former, UniMoT294

overcomes previous architectural limitations where molecule and text modalities were not treated295

equally, lacking a dedicated supervision signal for the molecular domain. This unique tokenizer296

transforms molecules into sequences of discrete tokens, embedding high-level molecular and textual297

information cohesively. Moreover, by employing a four-stage training scheme, UniMoT has emerged298

as a versatile multi-modal LLM, adept at handling molecule-to-text and text-to-molecule tasks.299

Extensive empirical evaluations demonstrate that UniMoT attains state-of-the-art performance across300

a diverse array of molecule comprehension and generation tasks.301
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A Details of Causal Q-Former448

The Q-Former operates as a query-based transformer that utilizes learnable query vectors to interact449

with molecule features extracted by a frozen encoder. These queries are essential for extracting rele-450

vant information from the molecule features. The Q-Former comprises both a molecule transformer451

and a text transformer, sharing self-attention layers. The text transformer architecture is based on452

BERT [9], while the molecule transformer incorporates cross-attention layers between self-attention453

and feed-forward layers. Q-Former employs a cross-attention mechanism where the query vectors454

selectively attend to different aspects of the molecule features, allowing the model to capture critical455

details necessary for understanding and generating textual descriptions of molecular properties.456

Specifically, we incorporate causal masks into the queries, ensuring that they only interact with457

preceding queries. This ensures the sequence of query embeddings maintains a causal dependency,458

aligning with the requirements of LLMs operating on text sequence. The Causal Q-Former is459

illustrated in Figure 4. We employ the Causal Q-Former to generate causal query embeddings460

Z = {zi}Mi=1 ∈ RM×d containing high-level molecular and textual information, where M represents461

the number of queries and d denotes the dimension of query embeddings. Next, we introduce three462

tailored objectives MTC, MTM, and MTG for the pretraining of the Causal Q-Former.463

Molecule
Encoder

Input
Molecule

“The molecule is an 
indole phytoalexin 
that …”

Learnable Queries Molecule Caption

Self Attention

Cross Attention

Feed Forward

Molecule-Text
Matching

Self Attention

Feed Forward

Molecule-Grounded
Text Generation

Molecule-Text
Contrastive

Learning

Every
Block

Causal Self-
Attention Mask

Different Masking
Strategies for
Different Tasks

Figure 4: Illustration of our proposed Causal Q-Former. The Causal Q-Former provides causal query
embeddings for subsequent blocks.

Molecule-Text Contrastive Learning (MTC) aims to align molecule and text features by maximizing464

their mutual information. This is achieved by maximizing the molecule-text similarity of positive465

pairs against that of negative pairs. We utilize the last query embedding zM of the query sequence466

{zi}Mi=1 as the query representation, since the output query sequence is causal and the last embedding467

contains global information from the queries. For text representation, we use the output embedding468

of the [CLS] token, denoted as y. The contrastive learning loss is expressed as follows:469

LMTC = − 1

B

B∑
i=1

log
exp((zi

M )Tyi/τ)∑B
j=1 exp((z

i
M )Tyj/τ)

− 1

B

B∑
i=1

log
exp((yi)Tzi

M/τ)∑B
j=1 exp((y

i)Tzj
M/τ)

, (4)

where B denotes the batch size, and τ represents the temperature parameter. Here, zi
M and yi refer470

to the i-th query and text representations in a batch, respectively.471

Molecule-Text Matching (MTM) focuses on learning fine-grained alignment between molecule and472

text features. As query embeddings Z = {zi}Mi=1 capture both molecular and textual information473

through cross-attention and self-attention layers respectively, we utilize the last query embedding zM474

as input to a binary classifier. This classifier predicts whether a given molecule-text pair is matched475

or unmatched. The corresponding loss function is formulated as follows:476

LMTM = − 1

B

B∑
i=1

log
exp(ϕ(zM | Xi, ti))∑B

j=1 exp(ϕ(zM | Xi, tj)) +
∑B

j=1 exp(ϕ(zM | Xj , ti))
, (5)
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where ϕ represents a binary classifier, and Xi and ti denote the i-th input molecule features and input477

text in a batch, respectively.478

Molecule-grounded Text Generation (MTG) focuses on generating textual descriptions given479

a molecule input. In this task, causal masks for queries are not applied since only textual output480

is required. However, causal masks are applied for text, allowing each text token to attend to its481

preceding text tokens and all queries, but not subsequent tokens. The Language Modeling (LM)482

loss function is applied to model the generation of text ti conditioned on the molecule input Xi,483

formulated as:484

LMTG = − 1

B

B∑
i=1

L∑
j=1

log p
(
tij | ti1, · · · , tij−1,X

i
)
, (6)

where tij represents the j-th token in the text sequence ti. Here, Xi and ti denote the i-th input485

molecule features and generated text in a batch, respectively.486

The total loss for training the Q-Former encompasses the three aforementioned objectives:487

LQ-Former = LMTC + LMTM + LMTG. (7)

B Details of Datasets488

This section provides detailed information about the datasets used in evaluating the performance of489

UniMoT across various tasks. The datasets are utilized for molecular property prediction, molecule490

captioning, molecule-text retrieval, and molecule generation tasks. Each dataset serves a unique491

purpose in assessing different capabilities of the model.492

We present the details of the Molecular Property Prediction Datasets below:493

• BBBP [53]: The Blood-Brain Barrier Penetration dataset predicts the ability of molecules to494

penetrate the blood-brain barrier.495

• Tox21 [53]: This dataset is part of the Toxicology in the 21st Century initiative, used for toxicity496

prediction.497

• ToxCast [53]: Another toxicity prediction dataset with a broader range of biological assays.498

• Sider [53]: Side Effect Resource database, used for predicting drug side effects.499

• ClinTox [53]: Clinical Toxicity dataset for predicting clinical trial toxicity outcomes.500

• MUV [53]: Maximum Unbiased Validation dataset for virtual screening.501

• HIV [53]: Human Immunodeficiency Virus dataset for predicting anti-HIV activities.502

• BACE [53]: Beta-Secretase 1 dataset for predicting inhibitors of the BACE-1 enzyme, relevant503

for Alzheimer’s research.504

• QM9 [12]: The quantum mechanics properties dataset, where the objective is to predict key505

quantum mechanics properties of a given molecule, such as HUMO, LUMO, and the HUMO-506

LUMO gap.507

We present the details of the Molecule Captioning Datasets below:508

• PubChem [18]: A large dataset of chemical molecules used for generating textual descriptions509

of molecular structures.510

• ChEBI-20 [11]: A subset of the Chemical Entities of Biological Interest database, provides511

structured and detailed descriptions of molecules, enhancing the model’s ability to generate512

accurate captions.513

We present the details of the Molecule-Text Retrieval Datasets below:514

• PubChem [18]: Used for both molecule-to-text (M2T) and text-to-molecule (T2M) retrieval515

tasks.516

• PCdes [58]: Another dataset for evaluating M2T and T2M retrieval accuracy.517

• MoMu [39]: Dataset specifically designed for molecule-text interactions and retrieval tasks.518
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Table 7: Summary of datasets, their types, tasks, descriptions, URLs, and licenses used for evaluating
UniMoT.

Dataset Type Tasks Description URL License

BBBP Classification Molecular Prop-
erty Prediction

Predicts blood-brain
barrier penetration
ability.

BBBP URL CC-BY 4.0

Tox21 Classification Molecular Prop-
erty Prediction

Toxicity prediction us-
ing the Tox21 initiative
data.

Tox21 URL Public Do-
main

ToxCast Classification Molecular Prop-
erty Prediction

Broad toxicity predic-
tion with various biolog-
ical assays.

ToxCast URL Public Do-
main

Sider Classification Molecular Prop-
erty Prediction

Predicts drug side ef-
fects.

Sider URL CC-BY 4.0

ClinTox Classification Molecular Prop-
erty Prediction

Clinical trial toxicity
prediction.

ClinTox URL Public Do-
main

MUV Classification Molecular Prop-
erty Prediction

Virtual screening for un-
biased validation.

MUV URL CC-BY 4.0

HIV Classification Molecular Prop-
erty Prediction

Predicts anti-HIV activ-
ity of molecules.

HIV URL Public Do-
main

BACE Classification Molecular Prop-
erty Prediction

Predicts inhibitors of
the BACE-1 enzyme.

BACE URL Public Do-
main

QM9 Regression Molecular Prop-
erty Prediction

Predicts various molec-
ular properties such
as atomization energy,
dipole moment, etc.

QM9 URL CC-BY 4.0

PubChem Captioning,
Retrieval

Molecule
Captioning,
Molecule-Text
Retrieval

Generates descrip-
tions and retrieves
text/molecules based on
input molecules/text.

PubChem URL Public Do-
main

ChEBI-
20

Captioning Molecule Cap-
tioning

Generates detailed de-
scriptions of molecular
structures.

ChEBI-20 URL CC-BY 4.0

PCdes Retrieval Molecule-Text
Retrieval

Used for evaluating ac-
curacy in molecule-text
retrieval tasks.

PCdes URL CC-BY 4.0

MoMu Retrieval Molecule-Text
Retrieval

Dataset for molecule-
text interaction and re-
trieval evaluation.

MoMu URL CC-BY 4.0

Mol-
Instructions

Generation Molecule Gen-
eration

Includes tasks such as
molecule generation
from descriptions,
reagent prediction, etc.

Mol-
Instructions
URL

CC-BY 4.0
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We present the details of the Molecule Generation Datasets below:519

• Mol-Instructions [12]: This dataset includes tasks such as caption-guided molecule generation,520

reagent prediction, forward reaction prediction, and retrosynthesis. It is used to evaluate the521

model’s ability to generate molecular structures based on textual descriptions and other related522

tasks.523

We summarize the datasets used for evaluating UniMoT in Table 7. It encompasses various types524

of datasets, including those for classification, regression, captioning, retrieval, and generation tasks.525

Each dataset is described in terms of its type, tasks it supports, a brief description of its content, its526

URL for access, and the license under which it is distributed. The licenses vary, with some datasets527

being in the public domain and others under CC-BY 4.0 license.528

C Details of Training529

Stage-1: Causal Q-Former Pretraining. During Stage-1, we only connect the molecule encoder530

and the Causal Q-Former, leaving out other blocks. We leverage the pretrained molecule encoder from531

MoleculeSTM [31], which has undergone extensive contrastive learning with molecule-text pairs.532

We utilize the PubChem dataset [18] for pretraining, keeping the molecule encoder frozen while533

updating only the Causal Q-Former. Both queries and text serve as input to the Causal Q-Former,534

while only queries serve as input in subsequent stages. Inspired by BLIP-2 [23], we employ three535

tailored objectives – Molecule-Text Contrastive Learning (MTC), Molecule-Text Matching (MTM),536

and Molecule-grounded Text Generation (MTG) – for the pretraining of the Causal Q-Former, as537

detailed in Appendix A.538

The dimension of molecule features is set to 300. We use 16 queries, each with a dimension of 768.539

The size of Z (16× 768) is much smaller than the size of molecule features X (e.g., 150× 300). The540

Q-former is pretrained for 50 epochs. We adopt the AdamW optimizer with a weight decay of 0.05,541

and a cosine decay learning rate scheduler, with a minimal learning rate of 1e-5. The batch size is set542

to 64. The computational overhead for this pretraining is 20 GPU hours on 4 NVIDIA A100 GPUs.543

Stage-2: Molecule Tokenizer Pretraining. We connect the Causal Q-Former with the subsequent544

blocks and train the molecule tokenizer using the objective defined in Equation (2). Following545

the approach of RetMol [49], we utilize SMILES strings [50] to represent molecules, and employ546

the pretrained ChemFormer [17] as the generative model. Specifically, we leverage the SMILES547

encoder and SMILES decoder components provided by ChemFormer. We utilize PubChem [18]548

and CheBI-20 [11] datasets, keeping the molecule encoder, SMILES encoder, and SMILES decoder549

frozen, while updating the Causal Q-Former, codebook, and adapter. Once optimized, the molecule550

tokenizer remains unchanged throughout the subsequent stages.551

The molecule codebook size is set to K = 2048, and the dimension of codebook embedding is 768.552

The tokenizer is pretrained for 50 epochs. We adopt the AdamW optimizer with a weight decay of553

0.05, and a cosine decay learning rate scheduler, with a minimal learning rate of 1e-5. The batch size554

is set to 64. The computational overhead for this pretraining is 40 GPU hours on 4 NVIDIA A100555

GPUs.556

Stage-3: Unified Molecule-Text Pretraining. We connect the molecule tokenizer with the LLM557

and employ the LM objective defined in Equation (3) to pretrain the LLM. We utilize LLaMA [44] as558

the default LLM. To construct the unified molecule-text vocabulary, we merge 2048 molecule codes559

with the original text vocabulary. Pretraining the LLM involves molecule-to-text autoregression560

and text-to-molecule autoregression, aimed at enhancing UniMoT’s multi-modal comprehension561

and generation capabilities. We utilize datasets PubChem [18], CheBI-20 [11], PCdes [58], and562

MoMu [39] for this purpose. To enhance efficiency, we train the LLM using LoRA tuning [14].563

The multi-modal LLM is pretrained for 10 epochs. We adopt the AdamW optimizer with a weight564

decay of 0.05, and a cosine decay learning rate scheduler, with a minimal learning rate of 1e-5. The565

batch size is set to 32. The computational overhead for this pretraining is 50 GPU hours on 4 NVIDIA566

A100 GPUs. To reduce CUDA memory usage, we integrate LoRA with the parameters set to r = 8,567

α = 32, and dropout = 0.1. This integration is applied to the k_proj, v_proj, q_proj, and o_proj568

modules.569
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Table 8: Instruction samples for comprehension and generation tasks: molecular property prediction,
molecule captioning, molecule-text retrieval, caption-guided molecule generation, reagent prediction,
forward reaction prediction, and retrosynthesis.

Task Instruction

Molecular Property Predic-
tion (Regression)

Instruction: Could you give me the LUMO energy value of this molecule?
(Optional: The SMILES sequence is: SMILES)
Output: 0.0576.

Molecular Property Predic-
tion (Classification)

Instruction: Evaluate whether the given molecule is able to enter the blood-brain barrier.
(Optional: The SMILES sequence is: SMILES)
Output: Yes.

Molecule Captioning Instruction: Could you give me a brief overview of this molecule?
(Optional: The SMILES sequence is: SMILES)
Output: The molecule is an indole phytoalexin that ...

Molecule-Text Retrieval Instruction: Retrieve relevant text for the given molecule.
(Optional: The SMILES sequence is: SMILES)
Output: The molecule is associated with ...

Caption-Guided Molecule
Generation

Instruction: Create a molecule with the structure as described: The molecule is a primary
arylamine that ...
Output: SMILES of the molecule.

Reagent Prediction Instruction: Please provide possible reagents based on the following chemical reaction.
<REACTANT A> <REACTANT B> ... » <PRODUCTs>
Output: SMILES of the reagents.

Forward Reaction Predic-
tion

Instruction: With the provided reactants and reagents, propose a potential product:
<REACTANT A> <REACTANT B> ... <REAGENT A> <REAGENT B> ...
Output: SMILES of the products.

Retrosynthesis Instruction: Please suggest potential reactants used in the synthesis of the product:
<PRODUCTs>
Output: SMILES of the reactants and reagents.

Stage-4: Task-Specific Instruction Tuning. We perform instruction tuning to align UniMoT with570

human instructions through supervised fine-tuning on seven tasks: molecular property prediction,571

molecule captioning, molecule-text retrieval, caption-guided molecule generation, reagent prediction,572

forward reaction prediction, and retrosynthesis. For the molecular property prediction task, we573

utilize the quantum mechanics properties dataset [12] for regression prediction and the MoleculeNet574

datasets [53] for property classification. For the molecule captioning and molecule-text retrieval575

tasks, we employ datasets PubChem [18], CheBI-20 [11], PCdes [58], and MoMu [39]. For the576

remaining tasks, we utilize the Mol-Instructions dataset [12] to conduct instruction tuning. We577

fine-tune UniMoT for 10 epochs on each task using the same optimizer, learning rate scheduler, and578

LoRA configurations as in Stage-3 pretraining. Instruction samples for comprehension and generation579

tasks are shown in Table 8.580

We have summarized the detailed training hyperparameters of UniMoT in Table 9.581

D Details and More Results of Experiments582

Molecular Property Prediction Task. Property prediction aims to anticipate a molecule’s intrinsic583

physical and chemical properties based on its structural or sequential characteristics. In the regression584

task, we conduct experiments on the quantum mechanics properties dataset QM9 [12], where the585

objective is to predict key quantum mechanics properties of a given molecule, such as HUMO, LUMO,586

and the HUMO-LUMO gap. We compare UniMoT against several baselines, including Alpaca [42],587

Baize [55], LLaMA2-7B [44], Vicuna-13B [7], Mol-Instructions [12], and InstructMol [6]. Mean588

Absolute Error (MAE) serves as our evaluation metric. The performance of the regression task on the589

QM9 dataset is presented in Table 10. Compared to previous single-modal instruction-tuned LLMs590

and molecular LLMs, UniMoT exhibits further improvement on the regression task, showcasing its591

fundamental comprehension abilities in molecular contexts.592

Molecule Captioning Task. The molecule captioning task involves generating a comprehensive593

description of a molecule. For this task, we compare UniMoT with several baselines: MolT5 [11],594
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Table 9: The detailed training hyperparameters of UniMoT.
Configuration Q-Former Pretraining Tokenizer Pretraining LLM Pretraining

Molecule Encoder MoleculeSTM MoleculeSTM MoleculeSTM
SMILES Encoder - ChemFormer ChemFormer
SMILES Decoder - ChemFormer ChemFormer

LLM Base - - LLaMA2-7B
Epoch 50 50 10

Optimizer AdamW AdamW AdamW
Codebook Size 2048 2048 2048

Number of Queries 16 16 16
Query Embedding Dim. 768 768 768

Molecule Embedding Dim. 300 300 300
Batch Size 64 64 32

Minimal Learning Rate 1e-5 1e-5 1e-5
Learning Rate Scheduler Cosine Cosine Cosine

Warm-up Steps 1000 1000 1000
Weight Decay 0.05 0.05 0.05
LoRA Config - - r = 8, α = 32, dropout = 0.1

Precision bfloat16 bfloat16 bfloat16
GPU Usage 4 NVIDIA A100 4 NVIDIA A100 4 NVIDIA A100

Training Time 20 GPU hours 40 GPU hours 50 GPU hours

Table 10: Mean Absolute Error (MAE) of molecular property prediction task (regression) on the QM9
dataset. Bold indicates the best performance and underline indicates the second best performance.
∆ϵ is the HOMO-LUMO energy gap.

Model HOMO↓ LUMO↓ ∆ϵ ↓ AVG↓
Alpaca (LLaMA-7B) [42] - - - 322.109
Baize (LLaMA-7B) [55] - - - 261.343
LLaMA2-7B [44] 0.7367 0.8641 0.5152 0.7510
Vicuna-13B [7] 0.7135 3.6807 1.5407 1.9783
Mol-Instructions (LLaMA-7B) [12] 0.0210 0.0210 0.0203 0.0210
InstructMol (Vicuna-7B) [6] 0.0048 0.0050 0.0061 0.0050

UniMoT (LLaMA2-7B) 0.0042 0.0047 0.0055 0.0049

MoMu [39], InstructMol [6], MolCA [33], and 3D-MoLM [25]. We adopt BLEU [37], ROUGE [27],595

and METEOR [1] as the evaluation metrics. The performance of UniMoT in the molecule captioning596

task on the CheBI-20 dataset is presented in Table 11. Some concrete examples of molecule captioning597

task are presented in Table 12. From the results, it is evident that UniMoT consistently outperforms598

the baselines by a significant margin. These results underscore the effectiveness of the molecule599

tokenizer in providing molecule tokens with high-level molecular and textual information, thus600

enhancing molecule comprehension.601

Molecule-Text Retrieval Task. The molecule-text retrieval task involves using a molecule to602

retrieve text (M2T) and using text to retrieve a molecule (T2M). We compare UniMoT with several603

baselines: Sci-BERT [2], KV-PLM [58], MoMu [39], MoleculeSTM [31], MolCA [33], and 3D-604

MoLM [25]. We report the performance of retrieval using a batch of 64 random samples and the605

entire test set, evaluated with the metrics of Accuracy and Recall@20. We use the checkpoint606

from Stage-1 of pretraining. Performance on the PCdes and MoMu datasets is shown in Table 13.607

UniMoT demonstrates superior performance over the baselines on molecule-text retrieval, particularly608

in molecule-to-text retrieval. This demonstrates that UniMoT has learned fine-grained alignment609

between molecules and text, and it can understand molecule-text interactions through the introduction610

of the Causal Q-Former.611

Molecule Generation Tasks. Molecule generation tasks include caption-guided molecule genera-612

tion, reagent prediction, forward reaction prediction, and retrosynthesis.613
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Table 11: Performance (%) of molecule captioning task on the CheBI-20 dataset. Bold indicates the
best performance and underline indicates the second best performance.

Model BLEU-2↑ BLEU-4↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ METEOR↑
T5-Small [38] 50.1 41.5 60.2 44.6 54.5 53.2
T5-Base [38] 51.1 42.3 60.7 45.1 55.0 53.9
T5-Large [38] 55.8 46.7 63.0 47.8 56.9 58.6
MolT5-Small (T5-Small) [11] 51.9 43.6 62.0 46.9 56.3 55.1
MolT5-Base (T5-Base) [11] 54.0 45.7 63.4 48.5 57.8 56.9
MolT5-Large (T5-Large) [11] 59.4 50.8 65.4 51.0 59.4 61.4
MoMu-Small (T5-Small) [39] 53.2 44.5 - - 56.4 55.7
MoMu-Base (T5-Base) [39] 54.9 46.2 - - 57.5 57.6
MoMu-Large (T5-Large) [39] 59.9 51.5 - - 59.3 59.7
InstructMol (Vicuna-7B) [6] 47.5 37.1 56.6 39.4 50.2 50.9
MolCA (OPT-125M) [33] 61.6 52.9 67.4 53.3 61.5 63.9
MolCA (OPT-1.3B) [33] 63.9 55.5 69.7 55.8 63.6 66.9

UniMoT (LLaMA2-7B) 66.4 58.3 72.2 58.4 66.4 70.3

• Caption-guided molecule generation involves creating molecular structures from textual descrip-614

tions, leveraging NLP and cheminformatics to interpret and translate descriptions into chemical615

structures.616

• Reagent prediction focuses on identifying suitable reagents for given reactants and desired617

products, optimizing synthetic routes.618

• Forward reaction prediction forecasts probable products from specific reactants and reagents,619

using knowledge of chemical reactivity.620

• Retrosynthesis deconstructs target molecules into simpler starting materials.621

In molecule generation tasks, evaluating the quality of generated molecules involves several metrics622

that measure different aspects of similarity and validity.623

• Exact Match checks if the generated molecule is identical to the target molecule, offering a624

stringent criterion for precise replication but potentially overlooking chemically similar variants.625

• The BLEU score [37], adapted from machine translation, measures the overlap of n-grams (short626

sequences of atoms or bonds) between generated and target molecules, thus assessing partial627

similarities.628

• Levenshtein Distance [22] evaluates the minimum number of edits needed to transform the629

generated molecule into the target, providing insight into structural changes required.630

• RDKit [20], MACCS [10], and Morgan [36] Fingerprint Similarities compare the generated and631

target molecules based on various molecular fingerprinting methods, which capture different632

aspects of molecular structure and properties.633

• The Validity [19] metric assesses the proportion of chemically valid molecules generated,634

ensuring that the output consists of plausible chemical structures.635

Together, these metrics offer a comprehensive evaluation framework, balancing exact matches with636

structural and chemical validity.637

E Limitations638

While UniMoT demonstrates considerable advancements in unifying molecule and text modalities639

for comprehensive understanding and generation tasks, several limitations must be acknowledged.640

Although UniMoT exhibits strong performance in molecule-to-text and text-to-molecule tasks, it has641

not been extensively tested on more complex molecule generation tasks such as molecule editing,642

which require precise modifications to molecular structures. Future work could explore extending643

UniMoT’s capabilities to handle such sophisticated molecular manipulations.644

Due to the scarcity of annotated data in the molecular field, the training of UniMoT is less extensive645

compared to fields like computer vision. This limitation restricts the model’s ability to fully learn and646

generalize from diverse molecular structures and properties. In contrast, the visual domain benefits647
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Table 12: Examples of molecule captioning task on the ChEBI-20 dataset. We highlight in blue the
text that accurately describes the molecule structures in the generated caption, ensuring alignment
with the ground truth.

Molecule Generated Molecule Caption Ground Truth

The molecule is an optically active
form of phenylalaninate having D-
configuration. It is a conjugate base
of a D-phenylalanine. It is an enan-
tiomer of a L-phenylalaninate.

The molecule is the D-enantiomer
of phenylalaninate. It is a conjugate
base of a D-phenylalanine. It is an
enantiomer of a L-phenylalaninate.

The molecule is an ammonium ion
that is the conjugate acid of 2-
phenylpropylamine arising from pro-
tonation of the primary amino func-
tion; major species at pH 7.3. It
has a role as a human metabolite,
an Escherichia coli metabolite and a
mouse metabolite. It is a conjugate
acid of a 2-phenylpropylamine.

The molecule is the cation obtained
by protonation of the amino group
of 2-phenylethylamine. It has a role
as a human metabolite and an Es-
cherichia coli metabolite. It is a con-
jugate acid of a 2-phenylethylamine.

The molecule is an enamide ob-
tained by the carboxy group of
trans-cinnamic acid with the sec-
ondary amino group of (2S,5R)-
1,2,5-trimethylpiperazine. It has a
role as an Aspergillus metabolite. It
is an alkaloid, a N-acylpiperazine,
an enamide and a tertiary carboxam-
ide. It derives from a trans-cinnamic
acid.

The molecule is an enamide ob-
tained by formal condensation
of the carboxy group of trans-
cinnamic acid with the secondary
amino group of (2R,5R)-1,2,5-
trimethylpiperazine. It has a role as
an Aspergillus metabolite. It is a N-
acylpiperazine, a N-alkylpiperazine,
an alkaloid, an enamide and a ter-
tiary carboxamide. It derives from a
trans-cinnamic acid.

The molecule is an (omega-1)-
hydroxy fatty acid ascaroside ob-
tained by formal condensation of the
alcoholic hydroxy group of (10R)-
10-hydroxylauric acid with ascary-
lopyranose (the alpha anomer). It
is a metabolite of the nematode
Caenorhabditis elegans. It has a role
as a Caenorhabditis elegans metabo-
lite. It is a monocarboxylic acid and
an (omega-1)-hydroxy fatty acid as-
caroside. It derives from an (11R)-
11-hydroxylauric acid. It is a conju-
gate acid of an ascr18(1-).

The molecule is an (omega-1)-
hydroxy fatty acid ascaroside ob-
tained by formal condensation of the
alcoholic hydroxy group of (10R)-
10-hydroxyundecanoic acid with as-
carylopyranose (the alpha anomer).
It is a metabolite of the nema-
tode Caenorhabditis elegans. It
is a monocarboxylic acid and an
(omega-1)-hydroxy fatty acid as-
caroside. It derives from a (10R)-
10-hydroxyundecanoic acid. It is a
conjugate acid of an ascrblue18(1-).

The molecule is a 2-oxo monocar-
boxylic acid that is pyruvic acid in
which one of the methyl hydrogens
is substituted by a 4-vinylcyclohex-
2-en-1-yl group. It has a role as a
plant metabolite. It derives from a
pyruvic acid. It is a conjugate acid
of a 4-[(1E)-4-vinylcyclohex-2-en-
1-yl]pyruvate.

The molecule is a 2-oxo monocar-
boxylic acid that is pyruvic acid in
which one of the methyl hydrogens
has been replaced by a methylenecy-
clopropyl group. It has a role as a rat
metabolite and a xenobiotic metabo-
lite. It is a 2-oxo monocarboxylic
acid, a member of cyclopropanes
and an olefinic compound. It derives
from a pyruvic acid.
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Table 13: Accuracy (%) of molecule-text retrieval task on the PCdes and MoMu datasets. Bold
indicates the best performance and underline indicates the second best performance. We report the
performance of retrieval using a batch of 64 random samples and the entire test set.

(a) Accuracy (%) of molecule-text retrieval task on the PCdes dataset.

Model
Retrieval in batch Retrieval in test set

M2T (%) T2M (%) M2T (%) T2M (%)

Sci-BERT [2] 62.6 61.8 60.7 60.8
KV-PLM [58] 77.9 65.0 75.9 64.3
MoMu (Sci-BERT) [39] 80.6 77.0 79.1 75.5
MoMu (KV-PLM) [39] 81.1 80.2 80.2 79.0
MoleculeSTM [31] 86.2 83.9 84.6 85.1
MolCA (OPT-1.3B) [33] 91.4 88.4 90.5 87.6
3D-MoLM (LLaMA2-7B) [25] 92.3 89.6 91.2 88.5

UniMoT (LLaMA2-7B) 92.6 89.4 91.6 88.3

(b) Accuracy (%) of molecule-text retrieval task on the MoMu dataset.

Model
Retrieval in batch Retrieval in test set

M2T (%) T2M (%) M2T (%) T2M (%)

Sci-BERT [2] 1.4 1.6 0.3 0.3
KV-PLM [58] 1.5 1.3 0.5 0.3
MoMu (Sci-BERT) [39] 45.7 40.0 43.3 43.4
MoMu (KV-PLM) [39] 46.2 38.5 43.7 43.5
MoleculeSTM [31] 81.8 81.9 75.8 74.5
MolCA (OPT-1.3B) [33] 83.7 84.3 88.6 87.3
3D-MoLM (LLaMA2-7B) [25] 84.9 85.4 89.9 88.7

UniMoT (LLaMA2-7B) 85.4 85.6 90.3 89.0

from abundant labeled datasets, allowing for more comprehensive training and better performance.648

Addressing this data scarcity in the molecular domain is crucial for improving UniMoT’s training649

effectiveness and overall capabilities.650

The current empirical evaluations, though extensive, are primarily conducted on standard datasets651

and benchmarks; expanding the evaluation to a broader array of datasets and real-world scenarios652

will provide a more comprehensive understanding of the model’s robustness and generalizability.653

F Broader Impacts654

The development of UniMoT, a unified model for molecule and text modalities, has significant655

potential to positively impact various fields. UniMoT can streamline the drug discovery process by656

enabling efficient molecule generation and optimization based on textual descriptions. In material657

science, it can aid in discovering new materials with desirable properties. Additionally, UniMoT658

can enhance research collaboration between chemists, biologists, and data scientists by integrating659

molecular and textual data, leading to comprehensive research insights and innovative solutions.660

This paper does not pose any ethical concerns. The study does not involve human subjects and follows661

proper procedures for data set releases. There are no potentially harmful insights, methodologies, or662

applications. Additionally, there are no conflicts of interest or sponsorship concerns. Discrimination,663

bias, and fairness issues are not applicable. Privacy and security matters have been appropriately664

addressed, legal compliance has been maintained, and research integrity has been upheld.665
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NeurIPS Paper Checklist666

1. Claims667

Question: Do the main claims made in the abstract and introduction accurately reflect the668

paper’s contributions and scope?669

Answer: [Yes]670

Justification: We conduct extensive experiments to verify our claims.671

Guidelines:672

• The answer NA means that the abstract and introduction do not include the claims673

made in the paper.674

• The abstract and/or introduction should clearly state the claims made, including the675

contributions made in the paper and important assumptions and limitations. A No or676

NA answer to this question will not be perceived well by the reviewers.677

• The claims made should match theoretical and experimental results, and reflect how678

much the results can be expected to generalize to other settings.679

• It is fine to include aspirational goals as motivation as long as it is clear that these goals680

are not attained by the paper.681

2. Limitations682

Question: Does the paper discuss the limitations of the work performed by the authors?683

Answer: [Yes]684

Justification: We discuss the limitations in Appendix E.685

Guidelines:686

• The answer NA means that the paper has no limitation while the answer No means that687

the paper has limitations, but those are not discussed in the paper.688

• The authors are encouraged to create a separate "Limitations" section in their paper.689

• The paper should point out any strong assumptions and how robust the results are to690

violations of these assumptions (e.g., independence assumptions, noiseless settings,691

model well-specification, asymptotic approximations only holding locally). The authors692

should reflect on how these assumptions might be violated in practice and what the693

implications would be.694

• The authors should reflect on the scope of the claims made, e.g., if the approach was695

only tested on a few datasets or with a few runs. In general, empirical results often696

depend on implicit assumptions, which should be articulated.697

• The authors should reflect on the factors that influence the performance of the approach.698

For example, a facial recognition algorithm may perform poorly when image resolution699

is low or images are taken in low lighting. Or a speech-to-text system might not be700

used reliably to provide closed captions for online lectures because it fails to handle701

technical jargon.702

• The authors should discuss the computational efficiency of the proposed algorithms703

and how they scale with dataset size.704

• If applicable, the authors should discuss possible limitations of their approach to705

address problems of privacy and fairness.706

• While the authors might fear that complete honesty about limitations might be used by707

reviewers as grounds for rejection, a worse outcome might be that reviewers discover708

limitations that aren’t acknowledged in the paper. The authors should use their best709

judgment and recognize that individual actions in favor of transparency play an impor-710

tant role in developing norms that preserve the integrity of the community. Reviewers711

will be specifically instructed to not penalize honesty concerning limitations.712

3. Theory Assumptions and Proofs713

Question: For each theoretical result, does the paper provide the full set of assumptions and714

a complete (and correct) proof?715

Answer: [NA]716
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Justification: The paper does not include theoretical results.717

Guidelines:718

• The answer NA means that the paper does not include theoretical results.719

• All the theorems, formulas, and proofs in the paper should be numbered and cross-720

referenced.721

• All assumptions should be clearly stated or referenced in the statement of any theorems.722

• The proofs can either appear in the main paper or the supplemental material, but if723

they appear in the supplemental material, the authors are encouraged to provide a short724

proof sketch to provide intuition.725

• Inversely, any informal proof provided in the core of the paper should be complemented726

by formal proofs provided in appendix or supplemental material.727

• Theorems and Lemmas that the proof relies upon should be properly referenced.728

4. Experimental Result Reproducibility729

Question: Does the paper fully disclose all the information needed to reproduce the main ex-730

perimental results of the paper to the extent that it affects the main claims and/or conclusions731

of the paper (regardless of whether the code and data are provided or not)?732

Answer: [Yes]733

Justification: We disclose all the information to reproduce the experimental results in734

Section 4, Appendix C, and Appendix D.735

Guidelines:736

• The answer NA means that the paper does not include experiments.737

• If the paper includes experiments, a No answer to this question will not be perceived738

well by the reviewers: Making the paper reproducible is important, regardless of739

whether the code and data are provided or not.740

• If the contribution is a dataset and/or model, the authors should describe the steps taken741

to make their results reproducible or verifiable.742

• Depending on the contribution, reproducibility can be accomplished in various ways.743

For example, if the contribution is a novel architecture, describing the architecture fully744

might suffice, or if the contribution is a specific model and empirical evaluation, it may745

be necessary to either make it possible for others to replicate the model with the same746

dataset, or provide access to the model. In general. releasing code and data is often747

one good way to accomplish this, but reproducibility can also be provided via detailed748

instructions for how to replicate the results, access to a hosted model (e.g., in the case749

of a large language model), releasing of a model checkpoint, or other means that are750

appropriate to the research performed.751

• While NeurIPS does not require releasing code, the conference does require all submis-752

sions to provide some reasonable avenue for reproducibility, which may depend on the753

nature of the contribution. For example754

(a) If the contribution is primarily a new algorithm, the paper should make it clear how755

to reproduce that algorithm.756

(b) If the contribution is primarily a new model architecture, the paper should describe757

the architecture clearly and fully.758

(c) If the contribution is a new model (e.g., a large language model), then there should759

either be a way to access this model for reproducing the results or a way to reproduce760

the model (e.g., with an open-source dataset or instructions for how to construct761

the dataset).762

(d) We recognize that reproducibility may be tricky in some cases, in which case763

authors are welcome to describe the particular way they provide for reproducibility.764

In the case of closed-source models, it may be that access to the model is limited in765

some way (e.g., to registered users), but it should be possible for other researchers766

to have some path to reproducing or verifying the results.767

5. Open access to data and code768

Question: Does the paper provide open access to the data and code, with sufficient instruc-769

tions to faithfully reproduce the main experimental results, as described in supplemental770

material?771
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Answer: [No]772

Justification: Once our paper is accepted, we will make the code openly accessible.773

Guidelines:774

• The answer NA means that paper does not include experiments requiring code.775

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/776

public/guides/CodeSubmissionPolicy) for more details.777

• While we encourage the release of code and data, we understand that this might not be778

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not779

including code, unless this is central to the contribution (e.g., for a new open-source780

benchmark).781

• The instructions should contain the exact command and environment needed to run to782

reproduce the results. See the NeurIPS code and data submission guidelines (https:783

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.784

• The authors should provide instructions on data access and preparation, including how785

to access the raw data, preprocessed data, intermediate data, and generated data, etc.786

• The authors should provide scripts to reproduce all experimental results for the new787

proposed method and baselines. If only a subset of experiments are reproducible, they788

should state which ones are omitted from the script and why.789

• At submission time, to preserve anonymity, the authors should release anonymized790

versions (if applicable).791

• Providing as much information as possible in supplemental material (appended to the792

paper) is recommended, but including URLs to data and code is permitted.793

6. Experimental Setting/Details794

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-795

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the796

results?797

Answer: [Yes]798

Justification: We disclose all the details of our experiments in Appendix C and Appendix D.799

Guidelines:800

• The answer NA means that the paper does not include experiments.801

• The experimental setting should be presented in the core of the paper to a level of detail802

that is necessary to appreciate the results and make sense of them.803

• The full details can be provided either with the code, in appendix, or as supplemental804

material.805

7. Experiment Statistical Significance806

Question: Does the paper report error bars suitably and correctly defined or other appropriate807

information about the statistical significance of the experiments?808

Answer: [No]809

Justification: Given the considerable computational resources required for experiments with810

LLMs, we adhere to the common practice in the community.811

Guidelines:812

• The answer NA means that the paper does not include experiments.813

• The authors should answer "Yes" if the results are accompanied by error bars, confi-814

dence intervals, or statistical significance tests, at least for the experiments that support815

the main claims of the paper.816

• The factors of variability that the error bars are capturing should be clearly stated (for817

example, train/test split, initialization, random drawing of some parameter, or overall818

run with given experimental conditions).819

• The method for calculating the error bars should be explained (closed form formula,820

call to a library function, bootstrap, etc.)821

• The assumptions made should be given (e.g., Normally distributed errors).822
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• It should be clear whether the error bar is the standard deviation or the standard error823

of the mean.824

• It is OK to report 1-sigma error bars, but one should state it. The authors should825

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis826

of Normality of errors is not verified.827

• For asymmetric distributions, the authors should be careful not to show in tables or828

figures symmetric error bars that would yield results that are out of range (e.g. negative829

error rates).830

• If error bars are reported in tables or plots, The authors should explain in the text how831

they were calculated and reference the corresponding figures or tables in the text.832

8. Experiments Compute Resources833

Question: For each experiment, does the paper provide sufficient information on the com-834

puter resources (type of compute workers, memory, time of execution) needed to reproduce835

the experiments?836

Answer: [Yes]837

Justification: The information regarding compute resources is provided in Appendix C.838

Guidelines:839

• The answer NA means that the paper does not include experiments.840

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,841

or cloud provider, including relevant memory and storage.842

• The paper should provide the amount of compute required for each of the individual843

experimental runs as well as estimate the total compute.844

• The paper should disclose whether the full research project required more compute845

than the experiments reported in the paper (e.g., preliminary or failed experiments that846

didn’t make it into the paper).847

9. Code Of Ethics848

Question: Does the research conducted in the paper conform, in every respect, with the849

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?850

Answer: [Yes]851

Justification: We have carefully reviewed the code of ethics to ensure strict adherence to the852

guidelines.853

Guidelines:854

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.855

• If the authors answer No, they should explain the special circumstances that require a856

deviation from the Code of Ethics.857

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-858

eration due to laws or regulations in their jurisdiction).859

10. Broader Impacts860

Question: Does the paper discuss both potential positive societal impacts and negative861

societal impacts of the work performed?862

Answer: [Yes]863

Justification: We discuss the broader impacts in Appendix F.864

Guidelines:865

• The answer NA means that there is no societal impact of the work performed.866

• If the authors answer NA or No, they should explain why their work has no societal867

impact or why the paper does not address societal impact.868

• Examples of negative societal impacts include potential malicious or unintended uses869

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations870

(e.g., deployment of technologies that could make decisions that unfairly impact specific871

groups), privacy considerations, and security considerations.872
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• The conference expects that many papers will be foundational research and not tied873

to particular applications, let alone deployments. However, if there is a direct path to874

any negative applications, the authors should point it out. For example, it is legitimate875

to point out that an improvement in the quality of generative models could be used to876

generate deepfakes for disinformation. On the other hand, it is not needed to point out877

that a generic algorithm for optimizing neural networks could enable people to train878

models that generate Deepfakes faster.879

• The authors should consider possible harms that could arise when the technology is880

being used as intended and functioning correctly, harms that could arise when the881

technology is being used as intended but gives incorrect results, and harms following882

from (intentional or unintentional) misuse of the technology.883

• If there are negative societal impacts, the authors could also discuss possible mitigation884

strategies (e.g., gated release of models, providing defenses in addition to attacks,885

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from886

feedback over time, improving the efficiency and accessibility of ML).887

11. Safeguards888

Question: Does the paper describe safeguards that have been put in place for responsible889

release of data or models that have a high risk for misuse (e.g., pretrained language models,890

image generators, or scraped datasets)?891

Answer: [NA]892

Justification: The paper poses no such risks.893

Guidelines:894

• The answer NA means that the paper poses no such risks.895

• Released models that have a high risk for misuse or dual-use should be released with896

necessary safeguards to allow for controlled use of the model, for example by requiring897

that users adhere to usage guidelines or restrictions to access the model or implementing898

safety filters.899

• Datasets that have been scraped from the Internet could pose safety risks. The authors900

should describe how they avoided releasing unsafe images.901

• We recognize that providing effective safeguards is challenging, and many papers do902

not require this, but we encourage authors to take this into account and make a best903

faith effort.904

12. Licenses for existing assets905

Question: Are the creators or original owners of assets (e.g., code, data, models), used in906

the paper, properly credited and are the license and terms of use explicitly mentioned and907

properly respected?908

Answer: [Yes]909

Justification: The licenses for existing assets are provided in Appendix B.910

Guidelines:911

• The answer NA means that the paper does not use existing assets.912

• The authors should cite the original paper that produced the code package or dataset.913

• The authors should state which version of the asset is used and, if possible, include a914

URL.915

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.916

• For scraped data from a particular source (e.g., website), the copyright and terms of917

service of that source should be provided.918

• If assets are released, the license, copyright information, and terms of use in the919

package should be provided. For popular datasets, paperswithcode.com/datasets920

has curated licenses for some datasets. Their licensing guide can help determine the921

license of a dataset.922

• For existing datasets that are re-packaged, both the original license and the license of923

the derived asset (if it has changed) should be provided.924
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• If this information is not available online, the authors are encouraged to reach out to925

the asset’s creators.926

13. New Assets927

Question: Are new assets introduced in the paper well documented and is the documentation928

provided alongside the assets?929

Answer: [NA]930

Justification: The paper does not release new assets.931

Guidelines:932

• The answer NA means that the paper does not release new assets.933

• Researchers should communicate the details of the dataset/code/model as part of their934

submissions via structured templates. This includes details about training, license,935

limitations, etc.936

• The paper should discuss whether and how consent was obtained from people whose937

asset is used.938

• At submission time, remember to anonymize your assets (if applicable). You can either939

create an anonymized URL or include an anonymized zip file.940

14. Crowdsourcing and Research with Human Subjects941

Question: For crowdsourcing experiments and research with human subjects, does the paper942

include the full text of instructions given to participants and screenshots, if applicable, as943

well as details about compensation (if any)?944

Answer: [NA]945

Justification: The paper does not involve crowdsourcing nor research with human subjects.946

Guidelines:947

• The answer NA means that the paper does not involve crowdsourcing nor research with948

human subjects.949

• Including this information in the supplemental material is fine, but if the main contribu-950

tion of the paper involves human subjects, then as much detail as possible should be951

included in the main paper.952

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,953

or other labor should be paid at least the minimum wage in the country of the data954

collector.955

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human956

Subjects957

Question: Does the paper describe potential risks incurred by study participants, whether958

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)959

approvals (or an equivalent approval/review based on the requirements of your country or960

institution) were obtained?961

Answer: [NA]962

Justification: The paper does not involve crowdsourcing nor research with human subjects.963

Guidelines:964

• The answer NA means that the paper does not involve crowdsourcing nor research with965

human subjects.966

• Depending on the country in which research is conducted, IRB approval (or equivalent)967

may be required for any human subjects research. If you obtained IRB approval, you968

should clearly state this in the paper.969

• We recognize that the procedures for this may vary significantly between institutions970

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the971

guidelines for their institution.972

• For initial submissions, do not include any information that would break anonymity (if973

applicable), such as the institution conducting the review.974
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