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ABSTRACT

Recent advancements in task planning using large language models (LLMs) have
made remarkable progress. However, most existing methods, such as ReAct, face
limitations when handling complex, long-horizon tasks due to inefficiencies in
processing entire tasks through a single sequential decision-making process. To
address these challenges, we propose ReAcTree, a hierarchical task planning
method that automatically decomposes complex tasks into manageable subgoals
within a tree structure. This tree consists of control flow nodes, which manage
the execution order of agent nodes, and agent nodes that reason, act, and expand
nodes into subgoals to achieve their goals. To further enhance performance, we
introduce memory systems: each agent node retrieves goal-specific, agent-level
experiences from episodic memory to use as in-context examples, and all agent
nodes share and recall information obtained during task execution via working
memory. Experiments on the WAH-NL dataset demonstrate that ReAcTree con-
sistently outperforms ReAct across various LLMs and model sizes. For example,
when using Qwen2.5 72B, ReAcTree achieves a goal success rate of 63%, signif-
icantly surpassing ReAct’s 24%.

1 INTRODUCTION

In recent years, large language models (LLMs) have emerged as powerful tools for task planning, ex-
tending the capabilities of traditional approaches such as task and motion planning and hierarchical
reinforcement learning. Early works, including Zero-Shot Planner (Huang et al., [2022a) and Say-
Can (Ahn et al.,2022), demonstrated the potential of pre-trained LLMs to generate executable skill
sequences from natural language instructions without the need for parameter updates. These meth-
ods leverage the general procedural knowledge encoded during pre-training, along with in-context
examples, to generate contextually appropriate skill sequences. Further advancements introduced
feedback mechanisms, wherein LLMs receive textual observations from the environment following
skill execution, enabling more adaptive planning (Huang et al., 2022b). Building on these develop-
ments, ReAct (Yao et al.| [2023) incorporated reasoning capabilities into LLM-based task planners,
significantly improving their overall planning performance.

Despite recent advancements, most existing LLM-based methods, including ReAct, still struggle
with complex, long-horizon tasks. One key inefficiency stems from attempting to solve entire tasks
using a single sequential decision-making process.|Zhou et al.[(2023) has shown that LLMs perform
more effectively when breaking down complex problems into a series of simpler subproblems. Sev-
eral LLM-based task planning methods have adopted such decomposition strategies (Wang et al.,
2023} |Sun et al., [2023; (Chen et al.| [2024; Wang et al.| 2024aj Wong et al.| [2023). However, many of
these approaches either limit the hierarchy to only two stages or are effective only within predefined
domains. Another significant inefficiency arises from the accumulation of long text trajectories en-
compassing reasoning, actions, and observations. Although providing relevant in-context examples
has been shown to significantly enhance performance (Wang et al.l 2024bj Rubin et al., 2022), as
text trajectories grow, it becomes increasingly difficult to include diverse and detailed examples.

In this paper, we propose ReAcTree, a hierarchical task planning method designed to automatically
decompose complex tasks into manageable subgoals. ReAcTree constructs a tree structure with two
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Figure 1: Anillustrative example of how ReAcTree generates a tree structure for the natural language
instruction: Please bring one pudding and one juice to the coffee table. The left side shows the tree
structure with agent nodes represented as circles and control flow nodes as squares. Each agent node
is annotated with its corresponding natural language goal and execution sequence. The right side
presents the text trajectory generated by agent node 3, which includes reasoning, acting, expanding,
and retrieval of in-context examples from episodic memory, as well as access to working memory.

primary components: control flow nodes and agent nodes. Control flow nodes, inspired by behavior
trees (Colledanchise et al., [2018]), are responsible for selecting which agent node to execute at each
step. Agent nodes, each functioning as an LLM-based task planner, handle reasoning, acting, and
expanding—where expanding involves decomposing goals into subgoals and extending the node
into a subtree that includes one control flow node and new agent nodes, each assigned a specific
subgoal. To further enhance planning capabilities of ReAcTree, we introduce a memory system.
Each agent node retrieves relevant experiences from episodic memory, where past task planning
experiences—segmented at the agent level—are stored. This enables the retrieval of experiences
closely aligned with the agent node’s current goal. Additionally, all agent nodes utilize working
memory to update and recall observations during task execution. By sharing observations across
all agent nodes, ReAcTree enables more efficient task planning. Figure [I] illustrates an example
outcome produced by ReAcTree.

To evaluate the effectiveness of ReAcTree, we conducted extensive experiments using the WAH-
NL dataset (Choi et al., 2024; |Puig et al., 2021). The WAH-NL dataset involves solving tasks via
natural language commands in household environments, each consisting of multiple rooms and long-
horizon tasks composed of several subgoals. We implemented a partially observable setting within
the VirtualHome simulator (Puig et al.l [2018]), where agents operate with limited perceptual in-
formation, simulating real-world conditions. Our experimental results demonstrate that ReAcTree
consistently outperforms the ReAct baseline across various LLMs. Specifically, ReAcTree attains
a 53% goal success rate (GSR) with the LLaMA-3.1 70B model, significantly surpassing ReAct’s
20%. Furthermore, even with the smaller LLaMA-3.1 8B model, ReAcTree achieves a GSR of 30%,
outperforming ReAct on the larger LLaMA-3.1 70B model. These results highlight ReAcTree’s su-
perior ability to handle complex tasks through its hierarchical task decomposition. Additionally, our
analysis confirms the effectiveness of ReAcTree’s memory systems, with both episodic memory and
working memory contributing substantially to the observed performance improvements.

In summary, this paper presents the following contributions: (1) We propose ReAcTree, a novel
hierarchical task planning algorithm that automatically decomposes complex tasks into manage-
able subgoals using a tree structure. Each subgoal is handled by an agent node, which performs
LLM-based task planning through reasoning, acting, and expanding—decomposing tasks further
into smaller subgoals. (2) We introduce memory systems, including episodic memory and working
memory, to enhance the performance of ReAcTree by enabling the retrieval of relevant agent-level
experiences and facilitating the sharing of information across agent nodes during task execution. (3)
We conduct extensive experiments in a partially observable setting to demonstrate the superiority of
ReAcTree over the baseline model, ReAct. Additionally, we will release our code to support future
research (anonymous code for review is available at figshare.com/s/97dd86282bd050f66d11)).
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2 RELATED WORKS

LLM-based Task Planning. Since the inception of LLMs, researchers have continuously explored
their emerging capabilities. In particular, their reasoning abilities have recently been applied to
decision-making processes for embodied agents, such as robots. [Huang et al.| (2022a) were among
the first to demonstrate that LLMs can infer task procedures for embodied agents without requiring
additional training, while SayCan (Ahn et al., [2022) introduced more robust planning by integrat-
ing visual affordances from a robot’s perspective. Following these foundational studies, various
approaches have evolved. For example, Inner Monologue (Huang et al., [2022b) enhanced procedu-
ral inference by allowing agents to revise plans based on textual feedback, such as the success of
individual steps, object detection results, and Q&A with humans. Additionally, ReAct (Yao et al.,
2023) adopted Chain-of-Thought prompting (Wei et al., 2022), enabling agents to explicitly reason
through tasks, leading to improved planning performance.

Hierarchical Task Planning with LLMs. Recently, research has increasingly focused on hierarchi-
cal task planning with LLMs to address complex, long-horizon tasks. These approaches often utilize
bi-level hierarchies, where an overall plan is refined through next-step decisions, as demonstrated
in DEPS (Wang et al., 2023)) and AdaPlanner (Sun et al, [2023). Classical planning integrated with
LLMs, such as in Ada (Chen et al.| [2024)), offers flexibility but remains constrained by predefined
environments. While these methods enable interactive and adaptive planning, they are limited in
hierarchical depth, unlike ReAcTree, which employs a deeper structure that allows for dynamic sub-
goal decomposition. MOSAIC (Wang et al.,|2024a)) proposed a task planner for robots collaborating
with humans in cooking. This planner organizes reasoning into a tree structure with LLM agents,
where nodes determine whether to define subtasks or seek clarification from the human. However,
this study relies on a manually designed structure specific to cooking tasks and lacks generalizability
to other domains. In contrast, our approach dynamically generates behavior trees for various tasks
in household environments.

Tree Search-Based Planning with LLMs. Another line of research explores tree search-based
methods. These approaches construct action/thought trees to look ahead and evaluate multiple future
paths to select the best next step. Tree of Thoughts (Yao et al.| 2024) and Graph of Thoughts (Besta
et al., [2024) demonstrate how systematic tree search improves decision-making by exploring and
evaluating reasoning paths. LLM-MCTS (Zhao et al., [2024) extends these ideas to task planning by
constructing action trees and applying Monte Carlo Tree Search but relies on ground-truth transition
functions, limiting its applicability to real-world scenarios. Tree-Planner (Hu et al.,|2023)) constructs
action trees, executes actions, and observes outcomes, avoiding explicit state prediction. However,
it assumes reversible actions (e.g., pick—place), which are not feasible for irreversible actions like
slicing. While these methods focus on constructing action or thought trees to search for the best
trajectory, ReAcTree takes a fundamentally different approach by building an LLM agent tree. It
divides complex goals into manageable subgoals, dynamically assigns specialized agent nodes, and
determines their execution order using control flow strategies such as sequence and fallback nodes.

3 PRELIMINARIES

Problem Formulation. We consider the task planning problem as a sequential decision-making
problem aimed at achieving a goal g expressed in natural language. At each time step ¢, the agent
has access the context ¢; = (01, a1,09,as2, -+ ,at—1,0¢), Where o; and a; represent the observation
and action at each previous time step ¢, respectively. The objective of agent is to generate the next
appropriate action a; based on the context c;, with the aim of eventually achieving the goal g.

ReAct (Yao et al.,[2023). ReAct is a representative method that leverages a pre-trained LLM, pr 1 s,
to solve the task planning problem by interleaving reasoning and action execution. The LLM defines
the action policy as follows: a; ~ prra(-|P, g,ct), where P = (Psys, Pjc) is the initial prompt,
composed of a system prompt, P, s, and in-context examples, P;.. The key idea of ReAct is to use
the augmented action space, /lt = A; U L, where A; is the set of executable skills available at
time ¢, and £ is the language space representing reasoning steps or thoughts. If a; € A;, the agent
executes the action and obtains a text observation from the environment. If a; € £, it is called a
thought or reasoning trace, which aids in the logical inference of the LLM. In this case, the agent
does not receive a new observation from the environment, i.e., 0,41 = ¢.
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Figure 2: Illustration of control flow node execution and agent node execution in ReAcTree.

4 REACTREE

In this section, we introduce ReAcTree, a hierarchical task planning algorithm designed to effi-
ciently manage complex tasks by decomposing them into subgoals using a tree structure. The tree is
composed of two types of nodes: control flow nodes and agent nodes. Control flow nodes determine
which agent node should be executed next. Each agent node operates as an LLM-based task planner,
with its goal expressed in natural language. A key feature of ReAcTree is the augmentation of each
agent node’s action space to include not only reasoning and acting but also expanding, which allows
the decomposition of its goal into subgoals and the creation of a subtree. This subtree consists of
a child control flow node and grandchild agent nodes, each assigned a specific subgoal. Figure [2]
illustrates the node execution process for both control flow nodes and agent nodes. The details are
described in Section 4.1l

We introduce a memory system designed to enhance the performance of ReAcTree. Episodic mem-
ory is employed to construct in-context examples for each agent node. Each node retrieves relevant,
agent-level experiences from episodic memory. Additionally, working memory stores information
gathered by agent nodes through their interactions with the environment during task execution. This
working memory is shared among all agent nodes, enabling them to access and utilize the stored
information as needed. Further details are provided in Section 4.2

4.1 REACTREE ALGORITHM

ReAcTree is an LLM-based hierarchical task planning algorithm that generates a tree structure 7',
composed of control flow nodes and agent nodes, to achieve a task goal g expressed in natural
language. In the following, we offer a detailed explanation of the execution process for both control
flow nodes and agent nodes, as well as the overall ReAcTree algorithm.

Control Flow Nodes. Control flow nodes, inspired by behavior trees (Colledanchise et al., [2018]),
manage the selection and execution of agent nodes within the tree. Each control flow node has child
nodes, which are agent nodes assigned specific natural language goals. Executing a control flow
node involves executing its child nodes sequentially. Each child node reports its execution status
(success or failure) to its parent, the control flow node. Based on the status of its child nodes, the
control flow node decides whether to proceed with the next child node or to return its own status to
its parent node. The specific behavior of the control flow node depends on its type.

ReAcTree employs three types of control flow nodes. The first is the sequence node (—), which
executes its child nodes in order. It returns success if all child nodes succeed; however, if any child
node fails, the sequence node returns failure. The second type is the fallback node (7), which also
executes its child nodes sequentially but returns success as soon as any child node succeeds. If none
of the child nodes succeed, it returns failure. The third type is the parallel node (=), a variation
of the traditional parallel node concept. While the traditional definition of a parallel node involves
executing child nodes simultaneously, in ReAcTree, simultaneous execution is not possible. Instead,
the parallel node executes its child nodes independently, regardless of their individual success or
failure. After all nodes are executed, the outcomes are aggregated according to a predefined policy
to determine the overall success or failure. This node is particularly useful in tasks such as household
chores, where multiple subgoals, like picking and placing objects, need to be executed sequentially
without interruption, yet their success or failure does not immediately halt the overall task.
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Agent Nodes. Each agent node operates as an LLM-based task planner with a specific natural lan-
guage goal, responsible for making sequential decisions to achieve that goal. These decisions include
acting, reasoning, and expanding. Similar to the ReAct framework, acting refers to executing actions
and receiving feedback in the form of textual observations, while reasoning enables logical infer-
ence. Additionally, expanding decomposes the agent node’s current goal into subgoals and combines
them with a specific control flow strategy to further expand the tree structure.

An agent node n is first initialized with a goal g™. Executing the agent node involves sequential
decision-making, where the agent returns its status (whether the goal was achieved) after execution.
More specifically, when executing an agent node, an initial prompt P™ = (P, P[?) is constructed,
where P, is the system prompt, and P}, consists of in-context examples specific to agent node n.
At each time step ¢, the agent node accesses its context ¢’ = (o}, al, 05,a%,...,al 4,0} ), where
oy and a} represent the observation and action at each previous time step . The action policy is then
defined using the pre-trained LLM, P s, as: a; ~ proa (-|P™, g™, ci'). A key feature of ReAcTree

is its extended action space, /l? = A} U L UE, where A} represents the set of executable skills at
time ¢ (e.g., move, pick, turn on); L is the language space, used for generating self-reasoning text and
specifying subgoals in natural language; and £ = F x L is the expand space, where F represents
the set of control flow types.

If the action a} € A} or a}’ € L, the agent operates as in the ReAct framework, either performing
actions or engaging in reasoning. However, if o € &, the agent expands the tree structure by
adding a control flow node and handing over execution to it. In this case, the action is represented
as ay = (f™, [g7,--.,9%]), where f™ is the control flow type and g7* are the subgoals expressed
in natural language. A control flow node n s, with type f", is added as a child of node n, and agent
nodes n; are initialized with their corresponding subgoals gi* and added as children of ny. The
agent then waits for n ¢ to complete execution. The agent node terminates when one of the following
occurs: generating the action done (resulting in success), generating action failure or reaching the
maximum decision count (both resulting in failure), or completing the execution of the control flow
node (returning success or failure based on its result).

Overall Algorithm. The overall process of Re- - -
AcTree is outlined in Algorithm [T} It begins by Algorithm 1 ReAcTree Algorithm
initializing the root agent node n with the goal Input: Natural language goal g

g (line 1). The agent node is then executed un-  1: n < INITAGENTNODE(g)

til meets a termination condition 7'C' (line 2). TC + EXECAGENTNODE(n)

If TC is done, it indicates that the agent has if T'C is done then

successfully achieved the goal, and the agent return Success

node returns Success status (lines 3-4). If T'C' else if T'C is failure or max decision then
is failure or the maximum decision count is return Failure

A A S ol

reached, it indicates failure, and the agent node else if 7'C' is Expand then

returns Failure status (lines 5-6). If TC' is Ex- (f", g%, . gk]) + EXPANDINFO
pand, the agent has decided to decompose the  9: ny < INITCTRLFLOWNODE(f™)
goal into subgoals. The expansion information 10: ADDCHILD(n, ny)

(f™ (g}, ,9%]) is retrieved (line 8), where 11: fori =1to K do

f™ is the control flow type and g* are the sub- 12 n; <— INITAGENTNODE(g}")
goals. A control flow node n ¢ is initialized (line  13: ADDCHILD(ny, n;)

9) and added as a child of the current agent node  14: end for

n (line 10). For each subgoal, a new agent node 15: return EXECCTRLFLOWNODE(n ¢)

n; is initialized (line 12) and added as a child 16: end if
of the control flow node n s (line 13). The con-
trol flow node 7y is then executed (line 15), where it selects one of its child agent nodes based on
its control flow strategy. The selected agent node is then executed, and its status is returned to the
control flow node. This process repeats until the control flow node completes execution, after which
it returns its resulting status (success or failure).

4.2 MEMORY SYSTEMS

To enhance the performance of ReAcTree, we introduce two complementary memory systems:
episodic memory and working memory. Episodic memory is used to retrieve relevant past agent-
level experiences and incorporate them as in-context examples before each agent node begins its
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decision-making process. On the other hand, working memory is designed to share key observa-
tions, such as the latest location of movable objects, across agent nodes during task execution. In
the following, we provide a detailed explanation of how each memory is utilized and integrated with
agent nodes of ReAcTree.

Episodic Memory. Episodic memory, M., stores the agent-level experiences of all ReAcTree
agent nodes involve in successfully completing tasks. The agent-level experience of an agent
node e, with a goal sentence ¢° and a final time step is 7, is defined as (t¢,v°,s®). Here,
t¢ = (¢°0%,a,...,0%,a%) represents the full text trajectory, where of and af denote the ob-
servation and action at each time step ¢. The vector v¢ = f,(g¢) is the goal embedding generated
using the sentence embedding model f.,. Finally, s¢ indicates the termination state of the agent
node, categorized as success, failure, or expand.

Before an agent node begins its decision-making process, it retrieves in-context examples by com-
paring its goal ¢g" to the stored goals in episodic memory using cosine similarity. Specifically,
the agent embeds its goal as v = fn(g") and computes the similarity with stored embeddings:
sim(v™,v°) = v™ - v°/(Jv"||v°]), Vv € M,)p. Based on the similarity scores, the system retrieves
the top k examples until a predefined token limit is reached. To handle cases where multiple stored
experiences yield identical similarity scores, the termination state s is used to break ties. When sim-
ilarity scores are tied, examples are sampled uniformly across termination states, success, failure, or
expand. This mechanism promotes diversity in the retrieved in-context examples.

Since ReAcTree is designed to decompose complex goals into manageable subgoals, it generates
concise trajectories tailored to specific tasks, unlike the monolithic trajectories used by ReAct. For
instance, while ReAct stores a single trajectory for Bring one pudding and onne juice to the coffee
table, ReAcTree breaks this down into subgoals like find and pick up pudding in kitchen, producing
shorter and more specific examples. This enables ReAcTree to retrieve highly relevant and focused
trajectories from episodic memory, enhancing its task-planning effectiveness.

Working Memory. Working memory serves as a shared repository for storing and recalling key
observations during task execution. In this paper, working memory focuses on tracking the latest
locations of movable objects to minimize redundant interactions with the environment and mitigate
potential hallucinations by providing accurate, environment-specific data.

Working memory is integrated into agent nodes of ReAcTree through two key mechanisms. First, the
executable skill set A} is augmented with special actions like recall location of <movable object>,
which are predefined for all movable objects in the environment, enabling agents to retrieve stored
object locations directly from working memory instead of interacting with the environment. Second,
working memory is automatically updated whenever an agent interacts with the environment and
detects movable objects. For instance, if an agent opens a fridge and observes juice, working memory
updates the location of juice as near fridge for future use. Such interactions can also be viewed as an
extension of how tool usage is integrated into language models, as discussed in (Schick et al.}[2024)).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and Simulators. We primarily evaluate LLM-based task planning using the WAH-NL
dataset within the VirtualHome simulator, as introduced in LoTa-Bench [2024). The
WAH-NL dataset, derived from the Watch-and-Help dataset 2021), was originally de-
signed for human-agent collaboration. It has been adapted for autonomous agents, with natural lan-
guage commands collected via crowdsourcing. Each data instance comprises a natural language
instruction, an initial environment setup, and a goal condition. The dataset includes 250 tasks in the
training set and 100 tasks in the test set, covering five task categories: Setup a dinner table, Put
groceries, Prepare a meal, Wash dishes, and Prepare snacks. Each task involves multiple subgoals,
making WAH-NL well-suited for evaluating task planning in complex, long-horizon scenarios.

All experiments are conducted in the VirtualHome simulator, which provides a simulated household
environment where agents can perform various actions such as pick up, open, close, turn on, put
down, and go to. Unlike the fully observable setting in LoTa-Bench, we implement a partially ob-
servable setting in VirtualHome to simulate real-world conditions. In this configuration, the agent
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has access to limited observations. Specifically, objects are identified by both their class name and
instance (e.g., cup 1, cup 2). After executing an action, the agent receives a text-based observation
reflecting its surroundings. For instance, after performing a go fo room action, the agent can observe
all receptacles (e.g., tables, shelves) within the room. If the action is go fo object, the agent observes
nearby visible objects, provided they are not inside closed receptacles. For actions like pick up or
open, the agent receives feedback indicating whether the action was successful or not. A more de-
tailed implementation of the partially observable setting is described in Appendix [A] and we will
release our code and modified simulator for reproducibility (anonymous code for review is available
at ffigshare.com/s/97dd86282bd050f66d11).

Evaluations. To assess the effectiveness of ReAcTree, we compare it against ReAct, with both
utilizing the same underlying LLMs. We evaluate performance using the goal success rate (GSR),
defined as the percentage of tasks in which the agent successfully achieves the given task goal, and
the subgoal success rate (SSR), which is the ratio of successfully completed subgoals to the total
number of subgoals. Both methods were evaluated under the same maximum decision count, set
to a sufficiently large value of 199 for all experiments, ensuring fair comparisons. All results are
averaged across the entire test set.

Episodic Memory Construction. To construct the episodic memory, we first collect human-
annotated text trajectories for WAH-NL in both ReAct and ReAcTree formats. Specifically, one
random task from each task category is selected for trajectory collection, resulting in five tasks for
WAH-NL. Subsequently, we run both ReAct and ReAcTree on the training set using the LLaMA-3
70B model (Dubey et al.| [2024). Only the trajectories of tasks that are successfully completed are
added to the episodic memory. To encode the agent’s goals, we use Sentence BERT (Reimers &
Gurevych, 2019)for sentence embeddings.

5.2 MAIN RESULTS

Table [T] summarizes the comparison between ReAcTree and ReAct across various LLMs, including
LLaMA 3, LLaMA 3.1 (Dubey et al.l [2024), Qwen2, Qwen2.5 (Yang et al., 2024), Mistral (Jiang
et al.,2023)), Gemma (Team et al.|[2024), and GPT-4o (see AppendixE]for the complete list). Perfor-
mance was evaluated using GSR and SSR metrics, with the primary results presented in Table[I]and
additional results provided in Appendix [D] Since direct access to log probabilities is not available
for GPT-4o, its implementation was slightly modified. These details are in Appendix [C]

Overall, ReAcTree consistently outperforms ReAct across all model types and sizes. For instance,
with the Qwen2.5 72B model, ReAcTree achieves a GSR of 63.00%, compared to ReAct’s GSR of
24.00%. This consistent performance improvement highlights the effectiveness of ReAcTree’s task
decomposition approach. The results clearly demonstrate the advantage of breaking tasks into man-
ageable subgoals, enabling more efficient task completion, particularly in complex, long-horizon
tasks. In terms of computational cost with this model, ReAcTree incurs a higher average decision
steps (75.00) compared to ReAct (58.08) for tasks where both methods succeed. However, its hier-
archical design resets the input prompt for each agent node, mitigating computational overhead.

Table 1: Performance comparison of ReAct and ReAcTree across different models and sizes. WM
(v') indicates the use of working memory for task planning, while (X) denotes its absence.

Metric Method WM  LLaMA 3.1 Qwen2.5 Mistral GPT-4o0
8B 70B 7B 72B 7B

10.00 23.00 6.00 20.00 3.00 -
15.00 20.00 13.00 24.00 6.00 33.00

17.00 30.00 12.00 51.00 10.00 -
30.00 53.00 35.00 63.00 20.00 46.00

2945 4935 2455 4513  21.72 -
4227 52.87 3577 4843 31.03 57.30

5328 62.83 4243 7095 3743 -
60.60 7343 58.80 79.37 43.83 62.77

GSR (%) ReAct

ReAcTree

SSR (%) ReAct

AX[SAX | SXx|NX%

ReAcTree
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Figure 3: Success case of ReAcTree on the WAH-NL dataset using LLaMA 3 70B.

Moreover, the results suggest that ReAcTree with smaller models can perform even better than larger
models running ReAct. For instance, ReAcTree using the LLaMA 3.1 8B model achieves a GSR of
30.00%, outperforming ReAct’s GSR of 20.00% when using the significantly larger LLaMA 3.1 70B
model. This performance improvement can be attributed to ReAcTree’s ability to decompose tasks
into simpler subproblems, allowing smaller models to efficiently manage less complex components
while retrieving more relevant in-context examples. By focusing on these smaller, more manageable
tasks, ReAcTree effectively compensates for the limitations of smaller models.

We also present qualitative results comparing failed trajectories in ReAct with successful ones in
ReAcTree using the LLaMA 3 70B model. The natural language instruction for the task is, Put the
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Figure 4: (a) GSR for retrieve methods and (b) Working memory average decision length.

apple, pancake, cupcake, and juice on the kitchen table, which requires locating and moving multiple
objects. ReAcTree breaks down the instruction into specific subgoals, such as move the apple to the
kitchen table, move the pancake to the kitchen table, move the cupcake to the kitchen table, and
move the juice to the kitchen table, using a persistent sequence node. Notably, during the search
for the pancake, ReAcTree utilizes a fallback node to explore different rooms. In contrast, ReAct
struggles to locate the pancake, as it only searches the initial room, the kitchen. Furthermore, ReAct
misidentifies a pudding as the pancake, and redundantly moves an already relocated apple. Figure 3]
illustrates the successful trajectories from ReAcTree, while Figure [5]in Appendix shows the
failed trajectories from ReAct. The full text trajectories for both ReAcTree and ReAct are provided
in List [TT] and List [I2] in Appendix [H.T] respectively. For a more detailed analysis of ReAcTree’s
failure cases, including examples and common error patterns, please refer to Appendix [E]

5.3 EPISODIC MEMORY

In this section, we investigate the impact of episodic memory on the performance of ReAcTree. Re-
AcTree utilizes episodic memory by retrieving similar past experiences at the agent level, providing
in-context examples to each agent. This allows agents to reference relevant trajectories. To evaluate
the effectiveness of this approach, we compare it with task-level example retrieval.

In the agent-level retrieval method, each agent independently retrieves the most contextually similar
experiences from episodic memory, irrespective of the task. This enables each agent to draw from
a diverse set of agent-specific experiences. In contrast, task-level retrieval selects the most similar
past task and uses the entire sequence of trajectories from all agents involved in solving that task as
the in-context example. This approach gives the agent access to a complete set of trajectories used
to solve a previous task that closely resembles the current one.

The performance results are shown in Figure da] Our findings demonstrate that agent-level retrieval
yields better performance, especially as model size decreases. Smaller models benefit more from
decomposing complex tasks into simpler subgoals and retrieving contextually similar examples for
each subgoal, resulting in more efficient problem-solving. By contrast, task-level retrieval, which
provides a broader set of trajectories, may offer a wider contextual understanding but can be less
effective for fine-tuned decision-making at the subgoal level.

5.4 WORKING MEMORY

In this section, we analyze the impact of the working memory component on the performance of both
ReAcTree and ReAct models. As shown in Table [T} incorporating working memory consistently
leads to performance improvements across various LLMs and model sizes. This enhancement is
observed not only in ReAcTree but also in the ReAct baseline. In most cases, the performance
improvement occurs because the agent retrieves stored object locations from working memory using
the recall location of action, rather than generating locations through text. This finding aligns with
previous research on tool usage in LLMs (Schick et al., [2024), which also demonstrated similar
benefits.

In ReAcTree, working memory additionally contributes to efficiency improvements through infor-
mation sharing between agent nodes. When one agent node identifies the location of an object or
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gathers relevant information, it updates this data in the working memory. Other agent nodes can then
access this information, eliminating redundant searches and actions. This inter-node communication
streamlines decision-making and accelerates task completion.

To quantify the efficiency gains provided by working memory, Figure [4b] illustrates the average
number of decision-making steps required to complete tasks that are commonly solved both with
and without working memory. The figure shows that across all models, using working memory
significantly reduces the number of steps needed to achieve task success. This reduction indicates
that agents can plan more efficiently and execute tasks with fewer unnecessary actions by leveraging
the shared information stored in working memory.

5.5 EXPERIMENTS ON ALFRED

Datasets and Simulators. We further extended our experiments to include the ALFRED
dataset (Shridhar et al., [2020), which, similar to WAH-NL, involves task planning based on LLM
in a household environment setting. This dataset provides NL instructions, an initial state of the
environment, and a goal condition related to various household tasks. The task types in this experi-
ment are similar to those used in LoTa-Bench (Choi et al., 2024). We used the AI2-THOR simulator,
which corresponds to the ALFRED dataset.

Evaluations. The ALFRED is consists of three sets: train, valid-seen, valid-unseen. The planning
performance of both ReAct and ReAcTree models was evaluated using the valid-seen set. We evalu-
ated using only 30% of the valid-seen set, which consists of 208 task trajectories. We measured plan-
ning performance using the goal success rate (GSR) for ALFRED. GSR is determined by whether
the goal condition of the dataset matches the final state of the simulator after completing the plan-
ning.

Experimental Results. Table [2] summarizes Taple 2: Goal success rate comparison of ReAct

the comparison between ReAct and ReAcTree 4nd ReAcTree on ALFRED with working memory.
across different LLM models. The proposed

ReAcTree' method demonstrates a 2.88% per- Method LLaMA 3 Qwen2
formance improvement over ReAct in both the SB 70B 7B 798
LLaMA 3 70B and Qwen2 72B models. For

smaller models, ReAcTree also outperforms ReAct 577 1635 7.73 14.90
ReAct by 2.93% in the LLaMA 3 8B model. ReAcTree 870 1923 433 19.71

However, in the Qwen2 7B model, ReAct sur-
passes ReAcTree with a 3.4% advantage. Overall, except for the Qwen2 7B model, ReAcTree con-
sistently improves task planning performance. Visualizations and full text trajectories for a specific
ALFRED task where ReAcTree succeeds and ReAct fails are provided in Appendix [G.2] and [H.2}
respectively. Please refer to Appendix [F|for details on the experiments with the ALFRED.

6 CONCLUSION

In this paper, we presented ReAcTree, a hierarchical task planning method that automatically de-
composes complex tasks into subgoals. Our approach uses a tree structure that integrates control
flow nodes for managing tasks and agent nodes to perform sequential decision-making through an
extended action space, which includes not only reasoning and acting, but also expanding. Addition-
ally, we introduced memory systems, with episodic memory retrieving agent-level experiences and
working memory sharing observations between nodes. Our experiments on the WAH-NL dataset
show that ReAcTree consistently outperforms the ReAct baseline, achieving 35% and 63% success
rates with Qwen2.5 7B and 72B, respectively, compared to 24% with ReAct using Qwen2.5 72B.
We also demonstrated the effectiveness of our memory systems.

One limitation of our approach is that the observations obtained after executing actions rely on
ground truth from a simulator, with pre-specified formats for certain action types. These observa-
tions may not always be optimal for solving the current subgoal. Additionally, while ReAcTree
shows significant improvement with smaller models, further enhancements are still needed. For fu-
ture work, we will explore methods to gather more relevant observations from the environment after
action execution. We will also focus on improving the performance of ReAcTree with smaller mod-
els.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 17682—-17690, 2024.

Xinglin Chen, Yishuai Cai, Yunxin Mao, Minglong Li, Wenjing Yang, Weixia Xu, and Ji Wang.
Integrating intent understanding and optimal behavior planning for behavior tree generation from
human instructions. arXiv preprint arXiv:2405.07474, 2024.

Jae-Woo Choi, Youngwoo Yoon, Hyobin Ong, Jachong Kim, and Minsu Jang. Lota-bench: Bench-
marking language-oriented task planners for embodied agents. In The Twelfth International Con-
ference on Learning Representations, 2024.

Michele Colledanchise, Ramviyas Parasuraman, and Petter Ogren. Learning of behavior trees for
autonomous agents. IEEE Transactions on Games, 11(2):183-189, 2018.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Mengkang Hu, Yao Mu, Xinmiao Yu, Mingyu Ding, Shiguang Wu, Wengqi Shao, Qiguang Chen,
Bin Wang, Yu Qiao, and Ping Luo. Tree-planner: Efficient close-loop task planning with large
language models. arXiv preprint arXiv:2310.08582, 2023.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International conference on
machine learning, pp. 9118-9147. PMLR, 2022a.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint arXiv:2207.05608, 2022b.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Tor-
ralba. Virtualhome: Simulating household activities via programs. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 8494-8502, 2018.

Xavier Puig, Tianmin Shu, Shuang Li, Zilin Wang, Yuan-Hong Liao, Joshua B. Tenenbaum, Sanja
Fidler, and Antonio Torralba. Watch-and-help: A challenge for social perception and human-ai
collaboration. In International Conference on Learning Representations, 2021.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing, 11 2019.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, pp. 2655-2671, 2022.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke

Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

11



Under review as a conference paper at ICLR 2025

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions
for everyday tasks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 10740-10749, 2020.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: adaptive plan-
ning from feedback with language models. In Proceedings of the 37th International Conference
on Neural Information Processing Systems, pp. 58202-58245, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Huaxiaoyue Wang, Kushal Kedia, Juntao Ren, Rahma Abdullah, Atiksh Bhardwaj, Angela Chao,
Kelly Y Chen, Nathaniel Chin, Prithwish Dan, Xinyi Fan, Gonzalo Gonzalez-Pumariega, Aditya
Kompella, Maximus Adrian Pace, Yash Sharma, Xiangwan Sun, Neha Sunkara, and Sanjiban
Choudhury. Mosaic: A modular system for assistive and interactive cooking, 2024a.

Liang Wang, Nan Yang, and Furu Wei. Learning to retrieve in-context examples for large language
models. In Proceedings of the 18th Conference of the European Chapter of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1752-1767, 2024b.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, Yitao Liang, and Team Craft-
Jarvis. Describe, explain, plan and select: interactive planning with large language models enables
open-world multi-task agents. In Proceedings of the 37th International Conference on Neural In-
formation Processing Systems, pp. 34153-34189, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Lionel Wong, Jiayuan Mao, Pratyusha Sharma, Zachary S Siegel, Jiahai Feng, Noa Korneev,
Joshua B Tenenbaum, and Jacob Andreas. Learning adaptive planning representations with natu-
ral language guidance. arXiv preprint arXiv:2312.08566, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Advances
in Neural Information Processing Systems, 36, 2024.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
large-scale task planning. Advances in Neural Information Processing Systems, 36, 2024.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc V Le, et al. Least-to-most prompting enables complex
reasoning in large language models. In The Eleventh International Conference on Learning Rep-
resentations, 2023.

12



Under review as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS FOR PARTIALLY OBSERVABLE SETTINGS

As outlined in Section [5} we adapt LoTa-bench (Choi et al.l [2024) to support partial observability.
Oracle-generated partial observation feedback signals are incorporated into the context information
provided to the LLM. Tables [3]and ] present detailed example trajectories for each action type under
partial observation. In this setup, the agent is aware only of the receptacles in the current room and
can only see the objects visible within its ego-centric view. VirtualHome is a multi-room apartment
simulator, so it has a “go fo room” action type. On the other hand, AI2-THOR is a single-room
studio apartment simulator, so it does not use the “go to room” action type because there is no need
to move between rooms. Table [3] illustrates an example of partial observation feedback from the
VirtualHome simulator, while Table [4] provides a similar example from the AI2-THOR simulator.

Table 3: Action types and sample text observations in the VirtualHome simulator.

Action Type

Action

Text Observation

initialization

go to room

go to receptacle

pick up object
put down object

open receptacle

close receptacle

turn on receptacle

go to kitchen 1

go to kitchen table 1

pick up juice 1
put down apple 1
open fridge 1

close dishwasher 1

turn on dishwasher 1

You are in the house, and there are 4 rooms: bathroom (1), bed-
room (1), kitchen (1), living room (1). You are in the middle of
a bathroom (1). Looking quickly around the room, you see bath-
room cabinet (1), bathroom counter (1), faucet (1), sink (1), toilet
(1), towel rack (1), washing machine (1).

You move to the kitchen (1). Looking quickly around the room,
you see chair (1, 2, 3, 4), dishwasher (1), faucet (1), fridge (1),
kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 3),
kitchen table (1), microwave oven (1), nightstand (1, 2), sink (1),
sofa (1), stove (1), toaster (1).

You arrive at the kitchen table (1). You see apple (2), book (1),
bowl (2, 3), cereal (1), chair (1, 2, 3, 4), chocolate syrup (1),
condiment bottle (1, 2), condiment shaker (1, 2), cupcake (1, 2),
cutlery fork (2, 3, 4), cutlery knife (3, 5, 6), juice (1), kitchen ta-
ble (1), pancake (1), pear (1), plate (2, 3, 4, 5), pudding (2), water
glass (1,2, 4)

You pick up juice. You hold juice (1).

You put down apple on coffee table.

You open fridge. You see bench (1), cupcake (1), fridge (1, 2),
juice (1).

You close dishwasher.

You turn on dishwasher.

13
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Table 4: Action types and sample text observations in the AI2-THOR simulator.

Action Type

Action

Text Observation

initialization

go to receptacle

pick up object

put down object

open receptacle

drop object
close receptacle

turn on receptacle

turn off receptacle

go to BathtubBasin (1)

pick up SoapBar (2)

put down SoapBar (2)

open Microwave (1)

put down DishSponge (1)

close Microwave (1)

turn on Microwave (1)

turn off Microwave (1)

You are in the house, and you arrive at the bathroom, Look-
ing quickly around the room, you see TowelHolder (1), Toilet
(1), ToiletPaperHanger (1), Sink (1), SinkBasin (1), Shelf (1,
2, 3), HandTowelHolder (1), GarbageCan (1), BathtubBasin
(D).

You arrive at BathtubBasin (1). You see SoapBar (2), Cloth
(1), Bathtub (1), BathtubBasin (1).

You pick up SoapBar (2). You see SoapBar (2), Cloth (1),
Bathtub (1), BathtubBasin (1). I am holding SoapBar (2)
now.

You put SoapBar (2) on Shelf (1). You see SoapBar (1, 2, 3),
Shelf (1), Candle (2).

You open Microwave (1). You see StoveKnob (1, 2, 3, 4),
StoveBurner (3), Potato (1), Pan (1, 2), Microwave (1), Bowl
3).

You put down failed, drop it. You see SoapBar (3), Sink (1),
SinkBasin (1), HandTowel (1), Faucet (2), DishSponge (1).
You close Microwave (1). You see StoveKnob (1, 2, 3, 4),
StoveBurner (3), Pan (1, 2), Microwave (1).

You turn on Microwave (1). You see Microwave (1), Drawer
(5, 6), Cabinet (7, 8, 10).
You turn off Microwave (1). You see Microwave (1), Drawer
(5, 6), Cabinet (7, 8, 10).

14
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B LANGUAGE MODELS

Table [3]lists the exact language model names used in the experiments.

Table 5: List of language models used in the experiments. Model names are either from HuggingFace
model hub or OpenAl API.

Class Model name Model size
meta-llama/Meta-Llama-3-8B 8B

LLaMA 3 fa-llama/Meta-Llama-3-70B  70B
meta-llama/LLlama-3.1-8B 8B
LLaMA 3.1 meta-llama/Llama-3.1-70B 70B
Qwen/Qwen2-7B 7B
Qwen2 Qwen/Qwen2-72B 72B
Qwen/Qwen2.5-7B 7B
Qwen2.5  wen/Qwen2.5-72B 72B
Mistral mistralai/Mistral-7B-v0.3 7B
Gemma google/gemma-7b 7B
GPT-40 gpt-40-2024-05-13 -

C GPT-40 IMPLEMENTATION DETAILS

GPT-40 was implemented slightly differently due to the lack of access to log probabilities. At each
time step t, the next action a; was generated using the OpenAl APL If a, was a reasoning action, it
was handled in the same way as with other models. For acting actions, we first checked if a; was a
valid skill in A;. If it was valid, it was processed as usual. If not, the following corrective observation
was provided to GPT-4o:

You should only output sentences that begin with Think, Act, or Expand. If you output Act, you
should use one of actions of this list: [go to, pick up, put down, open, close, turn on, recall location
of, done, failure].

Similarly, for expanding actions, if a, was valid, it proceeded as normal. If not, the same correc-
tive observation was added, prompting GPT-4o0 to refine its decision. This method ensured GPT-40
remained consistent with the task’s action space, despite the lack of log probability access.
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D EXTENDED RESULTS

Table 6: Performance comparison of ReAct and ReAcTree on WaH dataset. GSR and SSR represent
goal success rate and subgoal success rate, respectively. WM represents the use of the working
memory.

Metric Method WM LLaMA 3 Qwen2 Gemma
8B 70B 7B 72B 7B

3.00 17.00 9.00 20.00 2.00
8.00 23.00 13.13 23.00 8.00

13.00 53.00 16.00 58.00 10.00
27.00 59.00 28.00 61.00 36.00

26.82 45.83 26.60 48.02 22.20
3422 51.25 3298 47.58  28.48

50.32 7838 4273 77.08  43.52
61.53 77.08 5480 77.28 59.83

GSR (%) ReAct

ReAcTree

SSR (%) ReAct

ReAcTree

x| Ax | AUx| A%

We compare ReAct and ReAcTree on WaH using various recent LLMs. Table [6] presents results
for additional LLMs not included in Table[I] Across both large-scale and lighter models, ReAcTree
consistently outperforms ReAct, with or without working memory. This indicates that the ReAcTree
structure consistently enhances task planning performance by adaptively breaking down complex
tasks into solvable agent-level tasks with control flow, allowing the same LLM to handle tasks more
effectively and easily. We used Llama 3, Qwen 2, and Gemma 2 as off-the-shelf LLMs. The strong
performance of the proposed ReAcTree without working memory further emphasizes its robustness,
making it an effective approach for both lightweight and large-scale language model.

D.1 WITH WORKING MEMORY RESULTS

For the lightweight models, in the case of the LLaMA 3 8B model, ReAcTree shows significant im-
provements over ReAct, with a 19% increase in GSR and a 27.31% increase in SSR. Similarly, in the
Qwen 2 7B model, ReAcTree achieves a 14.87% improvement in GSR and a 21.82% improvement
in SSR compared to ReAct. In the Gemma 2 7B model, ReAcTree demonstrates the most impressive
gains in lightweight model, with a 28% increase in GSR and a 31.35% increase in SSR.

For large-scale models such as LLaMA 3 70B and Qwen2 72B, ReAcTree also significantly out-
performs ReAct. In the LLaMA 3 70B model, ReAcTree outperforms ReAct by 36% in GSR and
by 25.83% in SSR. In the Qwen 2 72B model, ReAcTree shows a 38% improvement in GSR and a
29.06% improvement in SSR over ReAct.

D.2 WITHOUT WORKING MEMORY RESULTS

Even without working memory, ReAcTree surpasses ReAct by a significant margin. In lightweight
models, ReAcTree shows notable improvements over ReAct, with a 10% increase in GSR and a
23.5% increase in SSR. Similar trends are observed in the Qwen 2 7B and Gemma 2 7B models,
where ReAcTree consistently outperforms ReAct in both GSR and SSR.

For large-scale models, ReAcTree continues to outperform ReAct. In the LLaMA 3 70B model, Re-
AcTree achieves a 36% improvement in GSR and a 32.55% increase in SSR over ReAct. Similarly,
in the Qwen 2 72B model, ReAcTree surpasses ReAct by 38% in GSR and 29.06% in SSR, even
without working memory.
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E FAILURE ANALYSIS

E.1 FAILURE TYPES

In this section, we categorize the failure cases of the proposed ReAcTree on the WAH-NL results
using QWEN-2.5 72B model. The failure cases are classified into four types: Expand-level, Agent-
level, Constraints, and Instruction errors. Table|2| summarizes these failure types.

First, Expand-level failures occur during the expand procedure of ReAcTree. These failures are cate-
gorized Task decomposition, Control-flow selection, and Expand-level infinite loop failures. Second,
Agent-level failures arises during the planning process within individual agent nodes. These include
Navigation & search, Agent-level planning, Agent-level infinite loop, and Termination reasoning
failures. Third Constraints failures happen when tasks could be completed with more relaxed limits
but fail due to the current thresholds. This category includes Max step failures, where the maximum
number of decision steps is exceeded. Finally, Instruction error stems from issues in task instruc-
tions of WAH-NL test set. These are divided into Incorrect instructions, where the instruction differs
from the goal, and Ambiguous instructions, where the instructions are unclear.

Table 7: Failure types observed in the WAH-NL results of the proposed ReAcTree using the QWEN-
2.5 72B model.

Hierarchy Failiure Type Details

Failure to break down instructions
into agent-level sub-goals
Incorrect selection of control flow
within expand-level decomposition

Task decomposition

Expand-level Control-flow selection

Expand-level infinite loop Infinite loop in expand-level decomposition

Failure in object search & navigation

Navigation & search under partial observability

Agent-level Agent-level planning Failure in sub-goal planning

Agent-level infinite loop Infinite loop in agent-level decomposition

Termination condition check failure

in reasoning

Exceeded the maximum

allowable number of steps

When the goal stated in the instructions
differs from the actual goal

When the goal state cannot be determined
solely from the instructions

Termination reasoning

Constraints Max step

Instruction error Incorrect Instruction

Ambiguous Instruction

E.2 FAILURE ANALYSIS

In this section, we analyze the failure cases of ReAcTree using the QWEN-2.5 72B model, both
with and without working memory. ReAcTree without working memory exhibited a total of 41
failure cases, categorized into Expand-level (9 cases), Agent-level (30 cases), Constraints (I case),
and Instruction error failures (9 cases). In contrast, ReAcTree with WM showed fewer failures,
with a total of 37 cases distributed as Expand-level (6 cases), Agent-level (22 cases), Constraints (0
cases), and Instruction error failures (9 cases). In both settings, Agent-level failures were the most
prevalent.
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Table 8: Comparison of failure cases with and without the proposed working memory. We analyze
the failure cases from a test set of 100 samples on the WAH-NL benchmark. A failure is defined
as any instance where at least one sub-goal remains unsatisfied. The table also report the average
sub-goal success rate (SSR). In the table, "WM” denotes working memory, and “diff.” represents
the difference in SSR between cases with and without working memory.

Failure Type Number of failures Avg. SSR
w.o. WM w.WM wo.WM w.WM diff.

Task decomposition 6 5(-1) 58.33 66.67 +8.34
Control-flow selection 2 1(-1) 16.67 66.67  +50.00
Expand-level infinite loop 1 0(-1) 0 100 +100
Navigation & search 4 5(+1) 72.08 70.42 -1.66
Agent-level planning 14 9 (-5) 57.70 73.73  +16.03
Agent-level infinite loop 3 4 (+1) 39.72 41.67 +1.95
Termination reasoning 9 4 (-5) 29.24 57.73 +28.49
Max step 1 01 60 100 +40
Incorrect Instruction 4 4 37.50 37.50 0
Ambiguous Instruction 5 5 40.56 39.17 -1.39

To further understand the impact of working memory, we measured the average subgoal success rate
(SSR) for each failure type across tasks that failed in either configuration. Table[§] summarizes these
results, reporting the number of failures and the corresponding average SSR for each failure type.
For example, in the case of Task decomposition failures, the total number of unique tasks used to
compute SSR was 9. These tasks included task IDs 3, 10, 12, 23, 37, 38, and 62 from the without
working memory configuration, and task IDs 12, 23, 37, 38, 47, and 77 from the with working
memory setting. The union of these task sets is {3, 10,12, 23,37, 38, 47,62, 77}. We calculated the
average SSR for both configurations using this union set of failure cases.

The following sections provide a detailed analysis of the major failure types to gain deeper insights
into ReAcTree’s performance.

Task decomposition is working well. In the expanding process of ReAcTree, the agent node selects
a control flow and breaks down its goal sentence into multiple subgoals. Task decomposition failure
occurs when this process generates incorrect subgoals. In our experiments on the WAH-NL test set,
ReAcTree encountered these failures in 6 sample cases (6%) without utilizing working memory.
However, with the integration of the proposed working memory, this number was reduced to 5 cases
(5%), as shown in Table[8] Furthermore, the adoption of working memory significantly improved the
average SSR (Avg. SSR in Table[8), with an increase of 8.34% point, from 58.33% to 66.67%. This
demonstrates that the proposed working memory enhances subgoal success rates, ensuring partial
success even when expand-level task decomposition is not entirely successful.

Working memory enhance Agent-level planning performance. The proposed working memory
significantly reduce the number of Agent-level planning failures. As demonstrated in Table 8, incor-
porating the proposed working memory reduces the number of Agent-level planning failure cases
from 14 to 9, while improving the average SSR by 16.03%. By recalling the locations from previous
observations, the context length is shortened, and the number of nodes is reduced, enabling the LLM
to generate more accurate plans. This improvement effectively minimizes Agent-level planning fail-
ures.

Working memory improves step efficiency in long-horizon task. The proposed working memory
reduces the number of search steps required in partially observable environments. In max step failure
cases, ReAcTree achieves an average SSR of 60.00% without working memory. However, with the
adoption of working memory, these cases are resolved without reaching the maximum step limit.

Limitations. While the proposed ReAcTree and its memory mechanisms enhance embodied task
planning capabilities, certain limitations persist. First, ReAcTree faces challenges in searching for
target objects in partially observable environments. Unlike previous work [Choi et al|(2024), which
assumes a fully observable environment, ReAcTree operates in settings with partial observability,
adding significant complexity. As a result, 5% of the evaluation samples fail due to navigation and
search failures, with an average SSR of 70.42%.
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Second, there is a risk of error propagation. While expand-level decomposition failures occur in only
5% of the evaluation samples, with an average SSR of 66.67%, such errors in expand-level planning
can propagate and potentially disrupt the entire process. This limitation could be mitigated in future
work by introducing an additional verification step for expand-level planning

Third, unpredictable errors, such as infinite loops in agent-level planning and termination reasoning
failures, remain significant challenges. In our experiments, infinite loops in agent-level planning ac-
counted for 4% of the evaluation set, with an average SSR of 41.67%, while termination reasoning
failures also made up 4%, with an average SSR of 57.73%. Although this work focuses on designing
an efficient architecture for agent nodes and implementing effective memory mechanisms, further
improvements to the agent node itself are essential. To address these issues, a robust verification
process is needed, where each node evaluates the current progress of the task. While this evalua-
tion is weakly performed in the “Think stage” of ReAct, additional verification mechanisms could
significantly mitigate these problems.

E.3 DETAILED DESCRIPTIONS OF THE FAILURE TYPES

E.3.1 TASK DECOMPOSITION FAILURE

Listing 1: The example of the task decomposition failure.

### Agent Node 1
Your task is to: Home service robot, input 1 cutlery fork, 1 wine glass and 1
plate into the dishwasher. When complete then turn the dishwasher on.

Think: To solve the task, I need to accomplish 4 subgoals independently. Find and
open the dishwasher, move the cutlery fork in the dishwasher, move the wine
glass in the dishwasher, and close and turn on the dishwasher.

Expand: {’control_flow’: ’'parallel’, ’'conditions’: ’find and open the dishwasher,
move the cutlery fork in the dishwasher, move the wine glass in the dishwasher
, close and turn on the dishwasher’}

Task decomposition failure occurs when the system initially generates an incorrect sequence of
sub-goal instructions to address the given instruction. For instance, in Listing 1, the agent fails to
decompose one of the sub-goals during the expand-level task decomposition process.

E.3.2 CONTROL-FLOW SELECTION FAILURE

Listing 2: The example of the control-flow selection failure.

### Agent Node 1
Your task is to: Please serve a water glass on the kitchen table

Think: To solve the task, I need to accomplish 2 subgoals sequentially. Find and
pick up the water glass, and find the kitchen table and put down the water
glass.

Expand: {’control_flow’: ’sequence’, ’'conditions’: ’'find and pick up the water
glass, find the kitchen table and put down the water glass’}

### Agent Node 2
Your primary goal is to: Please serve a water glass on the kitchen table
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To achieve this, you should perform your sibling tasks in sequence. At this level,
your sibling tasks are: find and pick up the water glass, and find the
kitchen table and put down the water glass.

Your task is to: find and pick up the water glass

You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1l). You are in the middle of a bathroom (1). Looking quickly
around the room, you see

Think: To solve the task, I need to recall the location of the water glass.

Act: recall location of water glass

You have not seen water glass before.

Think: Now, I need to find and pick up the water glass in one of the rooms. The
water glass is more likely to appear in kitchen 1, living room 1, or bedroom
1. I can check each room one by one until I find and pick up the water glass.

Expand: {’control_flow’: ’"fallback’, ’conditions’: ’find and pick up the water
glass in kitchen 1, find and pick up the water glass in living room 1, find
and pick up the water glass in bedroom 1’}

### Agent Node 3

Your primary goal is to: find and pick up the water glass

To achieve this, you should perform your sibling tasks using a fallback strategy.
At this level, your sibling tasks are: find and pick up the water glass in
kitchen 1, find and pick up the water glass in living room 1, and find and
pick up the water glass in bedroom 1.

Your task is to: find and pick up the water glass in kitchen 1

You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1). You are in the middle of a bathroom (1). Looking quickly
around the room, you see

Think: I am in bathroom 1. Now, I need to find the water glass. The water glass is
more likely to appear on bathroom counter (1), or in bathroom cabinet (1). I
can check each place one by one, starting from bathroom counter 1, until I
find the water glass.

Act: go to bathroom counter 1

Think: I cannot find the water glass in bathroom 1.
Act: failure

### Agent Node 4

Your primary goal is to: find and pick up the water glass

To achieve this, you should perform your sibling tasks using a fallback strategy.
At this level, your sibling tasks are: find and pick up the water glass in
kitchen 1, find and pick up the water glass in living room 1, and find and
pick up the water glass in bedroom 1.

Your task is to: find and pick up the water glass in living room 1

You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1l). You are in the middle of a bathroom (1). Looking quickly
around the room, you see

Think: I am in bathroom 1. Now, I need to go to living room 1.

Act: go to living room 1

Think: I cannot find the water glass in living room 1.
Act: failure

### Agent Node 5

Your primary goal is to: find and pick up the water glass

To achieve this, you should perform your sibling tasks using a fallback strategy.
At this level, your sibling tasks are: find and pick up the water glass in
kitchen 1, find and pick up the water glass in living room 1, and find and
pick up the water glass in bedroom 1.

Your task is to: find and pick up the water glass in bedroom 1

You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1l). You are in the middle of a living room (1). Looking
quickly around the room, you see

Think: I am in living room 1. Now, I need to go to bedroom 1.

Act: go to bedroom 1
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Think: I cannot find the water glass in bedroom 1.
Act: failure

[The parent sequence node terminates because the fallback node returns a failure.]

Control-flow selection failure arises from selecting an inappropriate control flow, often involving
cases where a “fallback” node is used for object searching. If the parent node of the fallback”
node is not a “parallel” node but a ’sequence” node, and all child nodes of the “fallback™ fail, the
“sequence” node does not fully execute and terminates prematurely. An example is summarized in
Listing 2.

E.3.3 EXPAND-LEVEL INFINITE LOOP

Listing 3: The example of the expand-level infinite loop failure

Your task is to: move the wine in the fridge

Expand: {’control_flow’: ’"sequence’, ’'conditions’: ’find and pick up the wine,
find the fridge and put down the wine’}

### find and pick up the wine

Your task is to: find and pick up the wine

é;éand: {’control_flow’: ’'fallback’, ’'conditions’: ’find and pick up the wine in
kitchen 1, find and pick up the wine in living room 1, find and pick up the
wine in bedroom 1’}

Your task is to: find and pick up the wine in kitchen 1

Aéé: failure

Your task is to: find and pick up the wine in living room 1

Aéé: failure

Your task is to: find and pick up the wine in bedroom 1

Aéé: done

### find the fridge and put down the wine

[The agent start the infinite loop]
Your task is to: find the fridge and put down the wine

Expand: {’control_flow’: ’'sequence’, ’'conditions’: ’find and pick up the wine,
find the fridge and put down the wine’}

### find and pick up the wine

Your task is to: find and pick up the wine

Expand: {’control_flow’: ’fallback’, ’'conditions’: ’'find and pick up the wine in
kitchen 1, find and pick up the wine in living room 1, find and pick up the
wine in bedroom 1’}

Your task is to: find and pick up the wine in kitchen 1

Act: failure

Your task is to: find and pick up the wine in living room 1
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Act: failure

Your task is to: find and pick up the wine in bedroom 1

Act: done

### find the fridge and put down the wine

Your task is to: find the fridge and put down the wine

Expand: {’control_flow’: ’"sequence’, ’‘conditions’: ’find and pick up the wine,
find the fridge and put down the wine’}

[The agent try to find the wine again already found]

### find and pick up the wine

Your task is to: find and pick up the wine

Expand: {’control_flow’: ’fallback’, ’‘conditions’: ’'find and pick up the wine in

kitchen 1, find and pick up the wine in living room 1, find and pick up the
wine in bedroom 1’}

Lastly, an expand-level infinite loop occurs when the expand-level decomposition succeeds, but a
repetitive sub-goal sequence is endlessly generated, causing the tree structure to expand infinitely.
While this issue arises in only one sample with ReAcTree without working memory and is com-
pletely absent when working memory is employed, it represents a critical failure type. In such cases,
the system is unable to execute actions correctly and continues to expand indefinitely, making the
goal impossible to achieve.

E.3.4 NAVIGATION & SEARCH FAILURE

Listing 4: The example of the navigation & search failure.

Your primary goal is to: move the glass of water in the dishwasher
To achieve this, you should perform your sibling tasks in sequence. At this level,
your sibling tasks are: find and pick up the glass of water, and find the
dishwasher and put down the glass of water.
Your task is to: find and pick up the glass of water
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see chair (1, 2, 3, 4), dishwasher (1), faucet (1),
fridge (1), kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2),
kitchen table (1), microwave oven (1), nightstand (1, 2), sink (1), sofa (1),
stove (1), toaster (1).
Think: To solve the task, I need to recall the location of the glass of water.
Act: recall location of glasses
You have not seen glasses before.
Think: Now, I need to find and pick up the glass of water in one of the rooms. The
glass of water is more likely to appear in kitchen 1, living room 1, or
bedroom 1. I can check each room one by one until I find and pick up the glass
of water.
Expand: {’control_flow’: ’fallback’, ’‘conditions’: ’find and pick up the glass of
water in kitchen 1, find and pick up the glass of water in living room 1, find
and pick up the glass of water in bedroom 1’}

[Starting search for the water glass.]

Your primary goal is to: find and pick up the glass of water

To achieve this, you should perform your sibling tasks using a fallback strategy.
At this level, your sibling tasks are: find and pick up the glass of water in
kitchen 1, find and pick up the glass of water in living room 1, and find and
pick up the glass of water in bedroom 1.
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Your task is to: find and pick up the glass of water in kitchen 1

Think: I cannot find the glass of water in kitchen 1.
Act: failure

Your primary goal is to: find and pick up the glass of water

To achieve this, you should perform your sibling tasks using a fallback strategy.
At this level, your sibling tasks are: find and pick up the glass of water in
kitchen 1, find and pick up the glass of water in living room 1, and find and
pick up the glass of water in bedroom 1.

Your task is to: find and pick up the glass of water in living room 1

Think: I cannot find the glass of water in living room 1.
Act: failure

Your primary goal is to: find and pick up the glass of water

To achieve this, you should perform your sibling tasks using a fallback strategy.
At this level, your sibling tasks are: find and pick up the glass of water in
kitchen 1, find and pick up the glass of water in living room 1, and find and
pick up the glass of water in bedroom 1.

Your task is to: find and pick up the glass of water in bedroom 1

Think: I cannot find the glass of water in bedroom 1.
Act: failure

[Unable to find the water glass, proceeding to the next parallel node]

Your primary goal is to: Please put a cutlery fork and a glass of water in the
dishwasher, then turn the diswasher on.

To achieve this, you should perform your sibling tasks in parallel. At this level,
your sibling tasks are: find and open the dishwasher, move the cutlery fork
in the dishwasher, move the glass of water in the dishwasher, and close and
turn on the dishwasher.

Your task is to: close and turn on the dishwasher

Navigation & search failure occurs when the agent is unable to find the target object despite exe-
cuting the entire generated search action sequence(commonly associated with the fallback” node
in ReAcTree). Object navigation is particularly challenging due to partial observability, which can
prevent the task from being completed even if the expand-level plan is successfully generated.

E.3.5 AGENT-LEVEL PLANNING FAILURE

Listing 5: The example of the agent-level planning failure.

Your primary goal is to: find and pick up the cake
To achieve this, you should perform your sibling tasks using a fallback strategy.
At this level, your sibling tasks are: find and pick up the cake in kitchen 1,
find and pick up the cake in living room 1, and find and pick up the cake in
bedroom 1.
Your task is to: find and pick up the cake in bedroom 1

Think: I am in living room 1. Now, I need to go to bedroom 1.
Act: go to bedroom 1

You move to the bedroom (1). Looking quickly around the room, you see
Think: Now, I need to find the cake. The cake is more likely to appear on coffee
table (2), desk (2, 3), or in cabinet (1). I can check each place one by one,

starting from coffee table 2, until I find the cake.

You open cabinet. You see apple (2), cabinet (1), computer (2), desk (2), light
switch (4), pound cake (1), sundae (1)

Think: I find pound cake 1. Now, I need to pick it up.

Act: pick up pound cake 1
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You pick up pound cake. You hold pound cake (1).
Think: Now I accomplish the goal.
Act: done

Agent-level planning failure occurs when the agent generates an incorrect or meaningless action
sequence within action-performing nodes. This can happen when the action sequence is misaligned
with the provided sub-goal instructions or when the actions executed do not align with the previous
reasoning outcomes. For example, in Listing 5, the sub-goal is "Find and pick up the cake in bed-
room 1.” The agent reasons correctly, stating: ”Think: Now I need to find the cake. The cake is more
likely to be on coffee table (2), desk (2, 3), or in cabinet (1). I can check each place one by one,
starting from coffee table 2, until I find the cake.” However, instead of picking up the cake, the agent
mistakenly picks up a pound cake.

E.3.6 AGENT-LEVEL INFINITE LOOP

Listing 6: The example of the agent-level infinite loop.

Your task is to: go find a bottle of win and a pudding there on the coffee table.

[Starting to search a wine and pudding]

Think: I need to find a bottle of wine and a pudding. The wine is more likely to
appear in kitchen 1, and the pudding is more likely to appear in living room
1.

Think: I can see fridge 1. I need to open fridge 1 to find the wine.

Act: go to fridge 1

You arrive at the fridge (1). The fridge (1) is closed. You see fridge (1), mug
(3)

Think: I need to open fridge 1.

Act: open fridge 1

You open fridge. You see apple (1), fridge (1), mug (3), sofa (1)

[Picked up an apple instead of wine]

Think: I can see apple 1. I need to pick up apple 1.
Act: pick up apple 1

You pick up apple. You hold apple (1).

[Search the pudding]
Think: Now, I need to find the pudding. The pudding is more likely to appear in
living room 1.

Think: I can see coffee table 1. I need to go to coffee table 1 to find the
pudding.
Act: go to coffee table 1
You arrive at the coffee table (1). You see apple (1), coffee table (1), sofa (2),
tv (1) You hold apple (1).

[Put down applel

Think: I can see apple 1. I need to put down apple 1.

Act: put down apple 1

You put down apple on coffee table

Think: Now, I need to find the pudding. The pudding is more likely to appear in
living room 1.

Act: go to living room 1

You move to the living room (1). Looking quickly around the room, you see
Think: I can see coffee table 1. I need to go to coffee table 1 to find the
pudding.
Act: go to coffee table 1
You arrive at the coffee table (1). You see apple (1), coffee table (1), sofa (2),
tv (1)

[Pick up apple again]
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Think: I can see apple 1. I need to pick up apple 1.

Act: pick up apple 1

You pick up apple. You hold apple (1).

Think: Now, I need to find the pudding. The pudding is more likely to appear in
living room 1.

Act: go to living room 1

You move to the living room (1). Looking quickly around the room, you see
bookshelf (2, 3), chair (6), closet (1), coffee table (1), computer (1), desk
(2), nightstand (4), sofa (2, 3), tv (1). You hold apple (1).

Think: I can see coffee table 1. I need to go to coffee table 1 to find the
pudding.

Act: go to coffee table 1

You arrive at the coffee table (1). You see apple (1), coffee table (1), sofa (2),
tv (1) You hold apple (1).

[Put down apple]

Think: I can see apple 1. I need to put down apple 1.
Act: put down apple 1

You put down apple on coffee table

[Search the pudding]

Think: Now, I need to find the pudding. The pudding is more likely to appear in
living room 1.

Act: go to living room 1

You move to the living room (1l). Looking quickly around the room, you see
bookshelf (2, 3), chair (6), closet (1), coffee table (1), computer (1), desk
(2), nightstand (4), sofa (2, 3), tv (1).

Think: I can see coffee table 1. I need to go to coffee table 1 to find the
pudding.

Act: go to coffee table 1

You arrive at the coffee table (1). You see apple (1), coffee table (1), sofa (2),
tv (1)

Think: I can see apple 1. I need to pick up apple 1.

An agent-level infinite loop occurs when the agent gets trapped in a continuous cycle of actions
during its execution and cannot break free. Unlike the previous planning failure, where the agent
could transition to the next node, this failure is more severe as it causes the agent’s performance to
stall at a specific node. For example, as shown in Listing 6, the agent repeatedly picks up and puts
down an apple in a loop, an action unrelated to achieving the task’s sub-goal.

E.3.7 TERMINATION REASONING FAILURE

Listing 7: The example of the termination reasoning failure.

Your primary goal is to: find and pick up the juice
To achieve this, you should perform your sibling tasks using a fallback strategy.
At this level, your sibling tasks are: find and pick up the juice in kitchen
1, find and pick up the juice in living room 1, and find and pick up the juice
in bedroom 1.

Your task is to: find and pick up the juice in kitchen 1

You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see chair (1, 2, 3, 4), dishwasher (1), faucet (1),
fridge (1), kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 3),
kitchen table (1), microwave oven (1), nightstand (1, 2), sink (1), sofa (1),
stove (1), toaster (1).

Think: I am in kitchen 1. Now, I need to find the juice. The juice is more likely
to appear on kitchen counter (1, 3), kitchen table (1), or in fridge (1),
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kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8). I can check each place one by one,
starting from kitchen counter 1, until I find the Jjuice.
Act: go to kitchen counter 1

Think: I cannot find the juice. Now, I need to go to living room 1.

[The agent fail to terminate the node]

Act: go to living room 1

You move to the living room (1). Looking quickly around the room, you see
bookshelf (2, 3), chair (6), closet (1), coffee table (1), computer (1), desk
(2), nightstand (4), sofa (2, 3), tv (1).

Think: I am in living room 1. Now, I need to find the juice. The juice is more
likely to appear on coffee table (1), desk (2), or in nightstand (4). I can
check each place one by one, starting from coffee table 1, until I find the
juice.

Act: go to coffee table 1

[The agent fail to terminate the node]
Think: I cannot find the juice. Now, I need to go to kitchen 1.
Act: go to kitchen 1

[The agent fail to terminate the node]
Think: I cannot find the juice. Now, I need to go to living room 1.
Act: go to living room 1

[The agent fail to terminate the node]
Think: I cannot find the juice. Now, I need to go to bedroom 1.
Act: go to bedroom 1

[The agent fail to terminate the node]
Think: I cannot find the juice. Now, I need to go to kitchen 1.
Act: go to kitchen 1

Max steps

A termination reasoning failure occurs when the agent either fails to recognize that the necessary
actions have been completed and cannot decide to terminate the node or prematurely terminates the
node before fully executing the planned action sequence. Unlike the agent-level infinite loop, where
the agent endlessly repeats actions that are unrelated or only partially related to task completion, a
termination reasoning failure arises when the agent fails to identify task completion or failure and re-
peats the process, even after executing the entire action sequence derived from sub-goal instructions
and reasoning processes.
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E.3.8 MAX STEP

Listing 8: The example of the Max Step failure.

### Generated ReAcTree
Instruction : Put a wine a Jjuice a pound cake
a pudding and an apple on the kitchen table.

[al]rootnode (parallel)

[a2]lmove the wine on the kitchen table (sequence)
[a3]find and pick up the wine (fallback)
[a4]find and pick up the wine in kitchen 1 [S]
find and pick up the wine in living room 1
find and pick up the wine in bedroom 1

[a5]find the kitchen table and put down the wine [S]

[a6]lmove the juice on the kitchen table (sequence)
[a7]find and pick up the juice (fallback)
[a8]find and pick up the juice in kitchen 1 [F]
[a9]find and pick up the juice in living room 1 [S]
find and pick up the juice in bedroom 1

[al0]find the kitchen table and put down the juice [S]

[all]lmove the pound cake on the kitchen table (sequence)
[al2]find and pick up the pound cake (sequence)
[al3]find and pick up the pound cake in kitchen 1 [S]
find and pick up the pound cake in living room 1
find and pick up the pound cake in bedroom 1

[al4]find the kitchen table and put down the pound cake [S]

[al5]move the pudding on the kitchen table (sequence)
[al6]find and pick up the pudding (fallback)
[al7]1find and pick up the pudding in kitchen 1 [F]
[al8]find and pick up the pudding in living room 1 [S]
find and pick up the pudding in bedroom 1

[al9]find the kitchen table and put down the pudding [S]

[a20]move the apple on the kitchen table (sequence)
[a21]find and pick up the apple (fallbackl)
[a22]find and pick up the apple in kitchen 1 [MSE]
find and pick up the apple in living room 1 [MSE]
find and pick up the apple in bedroom 1 [MSE]

find the kitchen table and put down the apple [MSE]
[S] : Success, [F] : Failure, [MSE] : Max Step Error
[An] : n-th agent

### Agent 22

Your primary goal is to: find and pick up the apple

To achieve this, you should perform your sibling tasks using a fallback strategy.
At this level, your sibling tasks are: find and pick up the apple in kitchen
1, find and pick up the apple in living room 1, and find and pick up the apple
in bedroom 1.

Your task is to: find and pick up the apple in kitchen 1

You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
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(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave
oven (1), sink (2), stove (1), toaster (1).

Think: I am in kitchen 1. Now, I need to find the apple. The apple is more likely
to appear on kitchen counter (1, 2), kitchen table (1), or in fridge (1, 2),
kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8). I can check each place one by one,
starting from kitchen counter 1, until I find the apple.

Act: go to kitchen counter 1

You arrive at the kitchen counter (1). You see bowl (1, 2, 3, 4, 5), chair (2),
chicken (1), cutlets (1), dishwashing liquid (1), faucet (2), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1), plate (1, 2, 3, 4), sink (2),
washing sponge (1), wine (2)

Act: go to kitchen counter 2

You arrive at the kitchen counter (2). You see chair (1, 2), kitchen cabinet (3,
5, 6, 7, 8), kitchen counter (1, 2), light switch (2), plate (1, 2, 3, 4),
wine (2)

Act: go to kitchen table 1

You arrive at the kitchen table (1). You see bench (2), book (1), bowl (6), coffee

pot (1), condiment shaker (1, 2), juice (1), kitchen table (1), pound cake
(1), pudding (2), wine (1)
Act: go to fridge 1

You arrive at the fridge (1). The fridge (1) is open. You see bench (1), fridge
(1)

Act: go to fridge 2

You arrive at the fridge (2). The fridge (2) is open. You see bench (1), fridge

(1, 2), pancake (1)

Act: go to kitchen cabinet 1

You arrive at the kitchen cabinet (1). The kitchen cabinet (1) is open. You see
chicken (1), cooking pot (1), cutlery knife (1, 2), cutlets (1), dishwashing
liquid (1), faucet (2), frying pan (1), garbage can (1), kitchen cabinet (1,

4), kitchen counter (1), sink (2), stove (1)
Act: go to kitchen cabinet 2
You arrive at the kitchen cabinet (2). The kitchen cabinet (2) is open. You see

bowl (1, 2, 3, 4, 5), chair (2), chicken (1), cutlery knife (1, 2), cutlets
(1), dishwashing liquid (1), faucet (2), kitchen cabinet (1, 2, 3, 4, 5, 6, 7)

, kitchen counter (1), plate (1, 2, 3, 4), sink (2), washing sponge (1)
Act: go to kitchen cabinet 3
You arrive at the kitchen cabinet (3). The kitchen cabinet (3) is open. You see

bowl (1, 2, 3, 4, 5), chair (1, 2), dishwashing liquid (1), faucet (2),
kitchen cabinet (2, 3, 4, 5, 6, 7), kitchen counter (1, 2), plate (1, 2, 3, 4)

, sink (2), washing sponge (1), wine (2)
Act: go to kitchen cabinet 4
You arrive at the kitchen cabinet (4). The kitchen cabinet (4) is open. You see

bowl (1, 2, 3, 4, 5), chicken (1), cooking pot (1), cutlery knife (1, 2),
cutlets (1), dishwashing liquid (1), faucet (2) garbage can (1), kitchen

cabinet (1, 2, 4), kitchen counter (1), sink (2), washing sponge (1)
Act: go to kitchen cabinet 5
You arrive at the kitchen cabinet (5). The kitchen cabinet (5) is open. You see

bowl (1, 2, 3, 4, 5), chair (1, 2), cutlets (1), dishwashing liquid (1),
faucet (2), kitchen cabinet (2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2),
plate (1, 2, 3, 4), sink (2), washing sponge (1), wine (2)

Max steps

A max step error occurs when the agent successfully generates a valid agent tree and executes the
plans correctly but is forced to terminate upon reaching the maximum step limit. This type of failure
is likely solvable if the agent is given a higher step limit. An example of this case is presented
in Listing 8, with the generated agent tree structure. Here, five sub-goals are correctly managed
within the expand-level and agent-level instruction tree and executed properly by the agent until
the maximum step limit is reached. The SSR achieved in this case is 60.00% as described in Table
[B] However, the proposed working memory significantly enhances step efficiency in such cases,
enabling all sub-goals to be resolved within the given step limit.
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E.3.9 INCORRECT INSTRUCTION

Listing 9: The example of the incorrect instruction.

### Instruction
Please, put 1 wine glass, 1 water glass, and 1 plate on the
table

### Goal condition
"on_plate_kitchentable": 1,
"on_waterglass_kitchentable": 1,
"on_wineglass_kitchentable": 1,
"on_cutleryfork_kitchentable": 1

Incorrect instructions occur when the instructions fail to specify all the required sub-goals. In such
cases, no task planning agent can complete the task due to insufficient information. For example,
as shown in Listing 9, there are four sub-goals, but the instruction specifies only three, omitting the
step of placing a cutlery fork on the kitchen table. Additionally, the instruction is ambiguous, as
it does not clarify which type of table is the intended target receptacle. Despite this incorrectness,
ReAcTree successfully completes the three specified sub-goals in Listing. 9, but achieving an SSR
of 75.00%.

E.3.10 AMBIGUOUS INSTRUCTION

Listing 10: The example of the ambiguous instruction.

[Case 1]
### Instruction
give me an apple, a pudding and serve a glass of wine

### Goal condition
"on_wine_coffeetable": 1,
"on_pudding_coffeetable": 1,
"on_apple_coffeetable": 1

[Case 2]

### Instruction

Always get a glass of water first before anything else,
before food on the table with a cutlery fork and knife

### Goal condition
"on_plate_kitchentable": 1,
"on_waterglass_kitchentable": 1,
"on_cutleryfork_kitchentable": 1

The WAH-NL dataset also contains ambiguous instructions. In such cases, the instructions fail to
explicitly describe the goal condition, use unclear object names, or refer to objects with high-level
conceptual nouns. This ambiguity can confuse the LLM when reasoning about the goal state, leading
to the generation of incorrect plans.
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F EXPERIMENTS DETAILS OF ALFRED DATASET

F.1 AI2THOR SIMLUATOR AND ALFRED DATASET

99 ¢ 9 99

AI2THOR simulator supports 9 interaction actions: “pick up,” “open,” “close,” “turn on,” “turn off,”
“slice,” and “put down,” “drop,” and one navigation action “go to.” ALFRED dataset consists of 7
task types: simple pick & place, pick & place with movable receptacle, cool & place, heat & place,
pick two object & place, clean & place, and look object in light. Following previous work (Choi et al.}
2024), the pick two object and place is excluded. In LoTa-Bench, the AI2THOR simulation used the
“find” for navigation action, but since it wasn’t a partially observable settings, once “find [object]”
was selected as an action, the agent moved directly to the object without considering whether it
was inside a receptacle or an unobserved object. However, in this experiment, we improved this
limitation by applying a partially observable settings, changing the navigation action name from
“find” to “go to” directing the agent to either the object or its receptacle.

99 .

F.2 MEMORY CONSTRUCTION

To construct the episodic memory, we began by randomly selecting three task trajectories for each
task type from the ALFRED training set. Then, we collected human-annotated text trajectories
with working memory applied for both the ReAct and ReAcTree models. Next, while running the
LLaMa 3 70B model on the training set, we embedded the human-annotated text trajectories as in-
context examples. Due to the large size of the ALFRED dataset, we sampled 5% of the training set.
Only the trajectories from successfully completed tasks were added to the episodic memory, with no
more than five per task type. Finally, we combined these human-annotated text trajectories with the
successfully completed task trajectories to form the episodic memory for both ReAct and ReAcTree.

F.3 QUALATATIVE RESULTS

Figures [] and [7] show the qualitative results comparing a failed trajectory in ReAct and a successful
trajectory in ReAcTree for the heat & place task type using the LLaMA 3 70B model. The NL in-
struction for the task is “put the cooked tomato slice on the kitchen island”, which requires slicing
and moving the object. there are a challenge with the ALFRED dataset, where ambiguous NL in-
structions complicate task resolution. For example, in this task, the instruction ambiguously states to
place the item on the “kitchen island,” yet the agent placed it on the countertop since the simulator
does not provide a receptacle explicitly labeled “kitchen island.” Such ambiguity can hinder accurate
task interpretation and execution.

ReAcTree successfully expands and executes the instruction using sequence control flow with eight
subtask sqeuence, such as: “find and pick up the knife, find and slice and then pick up the tomato,
find and open the microwave, find the microwave and put down the tomato, find and close and turn
on the microwave, find and turn off and open microwave, find and pick up tomato in microwave, and
find a countertop and put down the tomato on the countertop.” In contrast, ReAct failed by initially
navigating to SinkBasin (1) and picking up the tomato before the knife, causing the task to fail as the
knife should have been picked up and used to slice the tomato first. Meanwhile, ReAcTree correctly
searched through CounterTop (1) and CounterTop (2) to locate the knife, leading to the successful
completion of the task. Please refer to Appendix |H|for detailed text trajectories.
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G EXAMPLE OF PLANNING RESULTS

G.1 WAH-NL EXAMPLE CASES

Put the apple, pancake, cupcake, and juice on the kitchen table.
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Figure 5: Failure case of ReAct on the WAH-NL dataset using LLaMA 3 70B.
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G.2 ALFRED EXAMPLE CASES

Instruction: Put the cooked tomato slice on the kitchen island

. /4

: | |
/ go to MicrouBve. (1) open Microw (1)

[| T .

= )

[
_——
-
R 7
L D

_—

— S

= [ — —
\ S ————
put down Tom&Io. (9) » go to .MicrmEe (1) l

= 3 =
— . - — . -
w

w
go to .MicrO\Ee (1) [uk up TomE (9)

, ’
go to MicrouBve. (1)

/7 T

= e W
__d

turn on MicrBwave
(ll) E

/Fa 7V Fd

Figure 6: Success case of ReAcTree on the ALFRED dataset using LLaMA 3 70B.
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Instruction: Put the cooked tomato slice on the kitchen island

recall location of
Knife

Figure 7: Failure case of ReAct on the ALFRED dataset using LLaMA 3 70B.

H EXAMPLE OF TEXT TRAJECTORIES
H.1 WAH-NL EXAMPLE CASES

Listing 11: Success trajectory of ReAcTree on the WAH-NL dataset using LLaMA 3 70B.

### Agent Node 1

Your task is to: Put the apple, pancake, cupcake, and juice on the kitchen table.

You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1l). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave

oven (1), sink (2), stove (1), toaster (1).

Think: To solve the task, I need to accomplish 4 subgoals independently. Move the
apple on the kitchen table, move the pancake on the kitchen table, move the
cupcake on the kitchen table, and move the juice on the kitchen table.

Expand:

— control flow: parallel

- subgoals: move the apple on the kitchen table, move the pancake on the kitchen
table, move the cupcake on the kitchen table, move the Jjuice on the kitchen
table

### Agent Node 2
Your primary goal is to: Put the apple, pancake, cupcake, and juice on the kitchen
table.
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To achieve this, you should perform your sibling tasks in parallel. At this level,
your sibling tasks are: move the apple on the kitchen table, move the pancake
on the kitchen table, move the cupcake on the kitchen table, and move the
juice on the kitchen table.

Your task is to: move the apple on the kitchen table

You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave

oven (1), sink (2), stove (1), toaster (1).

Think: To solve the task, I need to accomplish 2 subgoals sequentially. Find and
pick up the apple, and find the kitchen table and put down the apple.
Expand
- control flow: sequence
- subgoals: find and pick up the apple, find the kitchen table and put down the
apple

### Agent Node 3

Your primary goal is to: move the apple on the kitchen table

To achieve this, you should perform your sibling tasks in sequence. At this level,
your sibling tasks are: find and pick up the apple, and find the kitchen
table and put down the apple.

Your task is to: find and pick up the apple

You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave

oven (1), sink (2), stove (1), toaster (1).

Think: To solve the task, I need to recall the location of the apple.
Act: recall location of apple
You have not seen apple before.
Think: Now, I need to find and pick up the apple in one of the rooms. The apple is
more likely to appear in kitchen 1, living room 1, or bedroom 1. I can check
each room one by one until I find and pick up the apple.
Expand:
- control flow: fallback
- subgoals: find and pick up the apple in kitchen 1, find and pick up the apple
in living room 1, find and pick up the apple in bedroom 1

### Agent Node 4

Your primary goal is to: find and pick up the apple

To achieve this, you should perform your sibling tasks using a fallback strategy.
At this level, your sibling tasks are: find and pick up the apple in kitchen
1, find and pick up the apple in living room 1, and find and pick up the apple

in bedroom 1.

Your task is to: find and pick up the apple in kitchen 1

You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave

oven (1), sink (2), stove (1), toaster (1).

Think: I am in kitchen 1. Now, I need to find the apple. The apple is more likely
to appear on kitchen counter (1, 2), kitchen table (1), or in fridge (1, 2),
kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8). I can check each place one by one,
starting from kitchen counter 1, until I find the apple.

Act: go to kitchen counter 1

You arrive at the kitchen counter (1). You see bowl (1, 2, 3, 4, 5), chair (2),
chicken (1), cutlets (1), dishwashing liquid (1), faucet (2), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7), kitchen counter (1), plate (1, 2, 3, 4), sink (2),
washing sponge (1)
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Act: go to kitchen counter 2

You arrive at the kitchen counter (2). You see chair (1, 2), kitchen cabinet (5,
6, 7, 8), kitchen counter (1, 2), light switch (2), plate (1, 2, 3, 4)

Act: go to kitchen table 1

You arrive at the kitchen table (1). You see bench (2), book (1), bowl (6),
condiment shaker (1, 2), kitchen table (1)

Act: go to fridge 1

You arrive at the fridge (1). The fridge (1) is closed. You see bench (1), fridge
(1)

Act: open fridge 1

You open fridge. You see bench (1), cupcake (1), fridge (1), pudding (3)

Act: go to fridge 2

You arrive at the fridge (2). The fridge (2) is closed. You see bench (1), cupcake

(1), fridge (1, 2), pudding (3)
Act: open fridge 2
You open fridge. You see apple (2), bench (1), cupcake (1), fridge (1, 2), pudding
(3)

Think: I find apple 2. Now, I need to pick it up.

Act: pick up apple 2

You pick up apple. You hold apple (2).

Think: Now I accomplish the goal.

Act: done

### Agent Node 5

Your primary goal is to: move the apple on the kitchen table

To achieve this, you should perform your sibling tasks in sequence. At this level,
your sibling tasks are: find and pick up the apple, and find the kitchen
table and put down the apple.

Your task is to: find the kitchen table and put down the apple

You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave
oven (1), sink (2), stove (1), toaster (1l). You hold apple (2).

Think: I hold apple 2. Now, I need to find the kitchen table. I can see kitchen
table 1.

Act: go to kitchen table 1

You arrive at the kitchen table (1). You see apple (2), bench (2), book (1), bowl
(6), condiment shaker (1, 2), kitchen table (1) You hold apple (2).

Think: Now, I need to put down apple 2.

Act: put down apple 2

You put down apple on kitchen table

Think: Now I accomplish the goal.

Act: done

### Agent Node 6

Your primary goal is to: Put the apple, pancake, cupcake, and juice on the kitchen
table.

To achieve this, you should perform your sibling tasks in parallel. At this level,
your sibling tasks are: move the apple on the kitchen table, move the pancake
on the kitchen table, move the cupcake on the kitchen table, and move the

juice on the kitchen table.

Your task is to: move the pancake on the kitchen table

You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave

oven (1), sink (2), stove (1), toaster (1).

Think: To solve the task, I need to accomplish 2 subgoals sequentially. Find and
pick up the pancake, and find the kitchen table and put down the pancake.
Expand:
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- control flow: sequence
- subgoals: find and pick up the pancake, find the kitchen table and put down the
pancake

### Agent Node 7

Your primary goal is to: move the pancake on the kitchen table

To achieve this, you should perform your sibling tasks in sequence. At this level,
your sibling tasks are: find and pick up the pancake, and find the kitchen
table and put down the pancake.

Your task is to: find and pick up the pancake

You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave

oven (1), sink (2), stove (1), toaster (1).

Think: To solve the task, I need to recall the location of the pancake

Act: recall location of pancake

You have not seen pancake before.

Think: Now, I need to find and pick up the pancake in one of the rooms. The
pancake is more likely to appear in kitchen 1, living room 1, or bedroom 1. I
can check each room one by one until I find and pick up the pancake.

Expand

- control flow: fallback
- subgoals: find and pick up the pancake in kitchen 1, find and pick up the
pancake in living room 1, find and pick up the pancake in bedroom 1

### Agent Node 8

Your primary goal is to: find and pick up the pancake

To achieve this, you should perform your sibling tasks using a fallback strategy.
At this level, your sibling tasks are: find and pick up the pancake in kitchen
1, find and pick up the pancake in living room 1, and find and pick up the
pancake in bedroom 1.

Your task is to: find and pick up the pancake in kitchen 1

You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave
oven (1), sink (2), stove (1), toaster (1).

Think: I am in kitchen 1. Now, I need to find the pancake. The pancake is more
likely to appear on kitchen counter (1, 2), kitchen table (1), or in fridge
(1, 2), kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8). I can check each place one
by one, starting from kitchen counter 1, until I find the pancake.

Act: go to kitchen counter 1

You arrive at the kitchen counter (1). You see bowl (1, 2, 3, 4, 5), chair (2),
chicken (1), cutlets (1), dishwashing liquid (1), faucet (2), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7), kitchen counter (1), plate (1, 2, 3, 4), sink (2),
washing sponge (1)

Act: go to kitchen counter 2

You arrive at the kitchen counter (2). You see chair (1, 2), kitchen cabinet (5,
6, 7, 8), kitchen counter (1, 2), light switch (2), plate (1, 2, 3, 4)

Act: go to kitchen table 1

You arrive at the kitchen table (1). You see apple (2), bench (2), book (1), bowl
(6), condiment shaker (1, 2), kitchen table (1)

Act: go to fridge 1

You arrive at the fridge (1). The fridge (1) is open. You see bench (1), cupcake
(1), fridge (1), pudding (3)

Act: go to fridge 2

You arrive at the fridge (2). The fridge (2) 1is open. You see bench (1), cupcake
(1), fridge (1, 2), pudding (3)

Act: go to kitchen cabinet 1
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You arrive at the kitchen cabinet (1). The kitchen cabinet (1) is closed. You see
chicken (1), cooking pot (1), cutlery knife (1, 2), cutlets (1), dishwashing
liquid (1), faucet (2), frying pan (1), garbage can (1), kitchen cabinet (1,

4), kitchen counter (1), sink (2), stove (1)
Act: go to kitchen cabinet 2
You arrive at the kitchen cabinet (2). The kitchen cabinet (2) is closed. You see

bowl (1, 2, 3, 4, 5), chair (2), chicken (1), cutlery knife (1, 2), cutlets
(1), dishwashing liquid (1), faucet (2), kitchen cabinet (1, 2, 3, 4, 5, 6),
kitchen counter (1), plate (1, 2, 3, 4), sink (2), washing sponge (1)

Act: go to kitchen cabinet 3

You arrive at the kitchen cabinet (3). The kitchen cabinet (3) is closed. You see
bowl (1, 2, 3, 4, 5), chair (1, 2), dishwashing liquid (1), faucet (2),
kitchen cabinet (2, 3, 4, 5, 6, 7), kitchen counter (1, 2), plate (1, 2, 3, 4)
, sink (2), washing sponge (1)

Act: go to kitchen cabinet 4

You arrive at the kitchen cabinet (4). The kitchen cabinet (4) is closed. You see
bowl (1, 2, 3, 4, 5), chicken (1), cooking pot (1), cutlery knife (1, 2),

cutlets (1), dishwashing liquid (1), faucet (2), garbage can (1), kitchen
cabinet (1, 2, 4), kitchen counter (1), sink (2), washing sponge (1)

Act: go to kitchen cabinet 5

You arrive at the kitchen cabinet (5). The kitchen cabinet (5) is closed. You see

bowl (1, 2, 3, 4, 5), chair (1, 2), cutlets (1), dishwashing liquid (1),
faucet (2), kitchen cabinet (2, 3, 4, 5, 6, 7), kitchen counter (1, 2), plate
(1, 2, 3, 4), sink (2), washing sponge (1)

Act: go to kitchen cabinet 6

You arrive at the kitchen cabinet (6). The kitchen cabinet (6) is closed. You see
bowl (1, 2, 3, 4, 5), chair (1, 2), dishwashing liquid (1), faucet (2),
kitchen cabinet (2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), plate (1, 2, 3,

)

4), sink (2), washing sponge (1
Act: go to kitchen cabinet 7
You arrive at the kitchen cabinet (7). The kitchen cabinet (7) is closed. You see

bowl (1, 2, 3, 4, 5), chair (1, 2), kitchen cabinet (2, 5, 6, 7, 8), kitchen
counter (1), light switch (2), plate (1, 2, 3, 4), sink (2)

Act: go to kitchen cabinet 8

You arrive at the kitchen cabinet (8). The kitchen cabinet (8) is closed. You see
bench (2), chair (1, 2), kitchen cabinet (5, 6, 7, 8), light switch (2)

Think: I cannot find the pancake in kitchen 1.

Act: failure

### Agent Node 9
Your primary goal is to: find and pick up the pancake
To achieve this, you should perform your sibling tasks using a fallback strategy.
At this level, your sibling tasks are: find and pick up the pancake in kitchen
1, find and pick up the pancake in living room 1, and find and pick up the
pancake in bedroom 1.
Your task is to: find and pick up the pancake in living room 1

You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave

oven (1), sink (2), stove (1), toaster (1).

Think: I am in kitchen 1. Now, I need to go to living room 1.

Act: go to living room 1

You move to the living room (1). Looking quickly around the room, you see
bookshelf (3), chair (3), closet (1), coffee table (1), computer (1), desk (1)
, garbage can (2), nightstand (1), sofa (1), tv (1).

Think: Now, I need to find the pancake. The pancake is more likely to appear on
coffee table (1), desk (1), or in closet (1). I can check each place one by
one, starting from coffee table 1, until I find the pancake.

Act: go to coffee table 1

You arrive at the coffee table (l1). You see alcohol (2), bananas (1), book (3, 6),

bowl (7), cell phone (1, 2), coffee table (1), juice (1), lime (1), mug (1),
plum (1, 2), sofa (1)
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Act: go to desk 1

You arrive at the desk (1). You see book (7), chair (3), computer (1), desk (1),
nightstand (1), water glass (2)

Act: go to closet 1

You arrive at the closet (1). The closet (1) is closed. You see closet (1), light
switch (3)

Act: open closet 1

You open closet. You see closet (1), light switch (3)

Think: I cannot find the pancake in living room 1.

Act: failure

### Agent Node 10

Your primary goal is to: find and pick up the pancake

To achieve this, you should perform your sibling tasks using a fallback strategy.
At this level, your sibling tasks are: find and pick up the pancake in kitchen

1, find and pick up the pancake in living room 1, and find and pick up the
pancake in bedroom 1.

Your task is to: find and pick up the pancake in bedroom 1

You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1l). You are in the middle of a living room (1). Looking
quickly around the room, you see bookshelf (3), chair (3), closet (1), coffee
table (1), computer (1), desk (1), garbage can (2), nightstand (1), sofa (1),
tv (1).

Think: I am in living room 1. Now, I need to go to bedroom 1.

Act: go to bedroom 1

You move to the bedroom (1). Looking quickly around the room, you see bed (1),
bookshelf (4), cabinet (1), chair (4), closet (2), coffee table (2), computer
(2), desk (2, 3), garbage can (3).

Think: Now, I need to find the pancake. The pancake is more likely to appear on
bed (1), coffee table (2), desk (2, 3), or in cabinet (1). I can check each
place one by one, starting from bed 1, until I find the pancake.

Act: go to bed 1

You arrive at the bed (1). You see bed (1), candy bar (1), coffee table (2),
pancake (2)

Think: I find pancake 2. Now, I need to pick it up.

Act: pick up pancake 2

You pick up pancake. You hold pancake (2).

Think: Now I accomplish the goal.

Act: done

### Agent Node 11

Your primary goal is to: move the pancake on the kitchen table

To achieve this, you should perform your sibling tasks in sequence. At this level,
your sibling tasks are: find and pick up the pancake, and find the kitchen
table and put down the pancake.

Your task is to: find the kitchen table and put down the pancake

You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1). You are in the middle of a bedroom (1). Looking quickly
around the room, you see bed (1), bookshelf (4), cabinet (1), chair (4),
closet (2), coffee table (2), computer (2), desk (2, 3), garbage can (3). You
hold pancake (2).

Think: I hold pancake 2. Now, I need to find the kitchen table. The kitchen table
is more likely to appear in kitchen 1.

Act: go to kitchen 1

You move to the kitchen (1). Looking quickly around the room, you see bench (1, 2)
, bookshelf (1, 2), chair (1, 2), dishwasher (1), faucet (2), fridge (1, 2),
garbage can (1), kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1,
2), kitchen table (1), microwave oven (1), sink (2), stove (1), toaster (1).
You hold pancake (2).

Think: I can see kitchen table 1.

Act: go to kitchen table 1
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You arrive at the kitchen table (1). You see apple (2), bench (2), book (1), bowl
(6), condiment shaker (1, 2), kitchen table (1), pancake (2) You hold pancake
(2) .

Think: Now, I need to put down pancake 2.

Act: put down pancake 2

You put down pancake on kitchen table

Think: Now I accomplish the goal.

Act: done

### Agent Node 11

Your primary goal is to: Put the apple, pancake, cupcake, and juice on the kitchen
table.

To achieve this, you should perform your sibling tasks in parallel. At this level,
your sibling tasks are: move the apple on the kitchen table, move the pancake
on the kitchen table, move the cupcake on the kitchen table, and move the

juice on the kitchen table.

Your task is to: move the cupcake on the kitchen table

You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave

oven (1), sink (2), stove (1), toaster (1).

Think: To solve the task, I need to accomplish 2 subgoals sequentially. Find and
pick up the cupcake, and find the kitchen table and put down the cupcake.
Expand:
- control flow: sequence
- subgoals: find and pick up the cupcake, find the kitchen table and put down the
cupcake

### Agent Node 12

Your primary goal is to: move the cupcake on the kitchen table

To achieve this, you should perform your sibling tasks in sequence. At this level,
your sibling tasks are: find and pick up the cupcake, and find the kitchen
table and put down the cupcake.

Your task is to: find and pick up the cupcake

You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave

oven (1), sink (2), stove (1), toaster (1).

Think: To solve the task, I need to recall the location of the cupcake

Act: recall location of cupcake

You saw cupcake 1 near fridge 2 in kitchen 1.

Think: Now, I need to go to fridge 2.

Act: go to fridge 2

You arrive at the fridge (2). The fridge (2) is open. You see bench (1), cupcake
(1), fridge (1, 2), pudding (3)

Think: I find cupcake 1. Now, I need to pick it up.

Act: pick up cupcake 1

You pick up cupcake. You hold cupcake (1).

Think: Now I accomplish the goal.

Act: done

### Agent Node 13

Your primary goal is to: move the cupcake on the kitchen table

To achieve this, you should perform your sibling tasks in sequence. At this level,
your sibling tasks are: find and pick up the cupcake, and find the kitchen
table and put down the cupcake.

Your task is to: find the kitchen table and put down the cupcake
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You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave

oven (1), sink (2), stove (1), toaster (l). You hold cupcake (1).

Think: I hold cupcake 1. Now, I need to find the kitchen table. I can see kitchen

table 1.

Act: go to kitchen table 1

You arrive at the kitchen table (1). You see apple (2), bench (2), book (1), bowl
(6), condiment shaker (1, 2), cupcake (1), kitchen table (1), pancake (2) You
hold cupcake (1).

Think: Now, I need to put down cupcake 1.

Act: put down cupcake 1

You put down cupcake on kitchen table

Think: Now I accomplish the goal.

Act: done

### Agent Node 14

Your primary goal is to: Put the apple, pancake, cupcake, and juice on the kitchen
table.

To achieve this, you should perform your sibling tasks in parallel. At this level,
your sibling tasks are: move the apple on the kitchen table, move the pancake
on the kitchen table, move the cupcake on the kitchen table, and move the

juice on the kitchen table.

Your task is to: move the juice on the kitchen table

You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave

oven (1), sink (2), stove (1), toaster (1).

Think: To solve the task, I need to accomplish 2 subgoals sequentially. Find and
pick up the juice, and find the kitchen table and put down the juice.
Expand:
- control flow sequence
- subgoals: find and pick up the juice, find the kitchen table and put down the
juice

### Agent Node 15

Your primary goal is to: move the juice on the kitchen table

To achieve this, you should perform your sibling tasks in sequence. At this level,
your sibling tasks are: find and pick up the juice, and find the kitchen
table and put down the juice.

Your task is to: find and pick up the juice

You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave

oven (1), sink (2), stove (1), toaster (1).

Think: To solve the task, I need to recall the location of the juice.

Act: recall location of juice

You saw juice 1 near coffee table 1 in living room 1.

Think: I can find juice 1 near coffee table 1.

Act: go to living room 1

You move to the living room (1). Looking quickly around the room, you see
bookshelf (3), chair (3), closet (1), coffee table (1), computer (1), desk (1)
, garbage can (2), nightstand (1), sofa (1), tv (1).

Act: go to coffee table 1

You arrive at the coffee table (l1). You see alcohol (2), bananas (1), book (3, 6),
bowl (7), cell phone (1, 2), coffee table (1), juice (1), lime (1), mug (1),
plum (1, 2), sofa (1)
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Think: I find juice 1. Now I need to pick it up.
Act: pick up juice 1

You pick up juice. You hold juice (1).

Think: Now I accomplish the goal.

Act: done

### Agent 16

Your primary goal is to: move the juice on the kitchen table

To achieve this, you should perform your sibling tasks in sequence. At this level,
your sibling tasks are: find and pick up the juice, and find the kitchen
table and put down the Jjuice.

Your task is to: find the kitchen table and put down the juice

You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1l). You are in the middle of a living room (1). Looking
quickly around the room, you see bookshelf (3), chair (3), closet (1), coffee

table (1), computer (1), desk (1), garbage can (2), nightstand (1), sofa (1),
tv (1). You hold juice (1).

Think: I hold juice 1. Now, I need to find the kitchen table. The kitchen table is
more likely to appear in kitchen 1.

Act: go to kitchen 1

You move to the kitchen (1). Looking quickly around the room, you see bench (1, 2)
, bookshelf (1, 2), chair (1, 2), dishwasher (1), faucet (2), fridge (1, 2),
garbage can (1), kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1,
2), kitchen table (1), microwave oven (1), sink (2), stove (1), toaster (1).
You hold juice (1).

Think: I can see kitchen table 1.

Act: go to kitchen table 1

You arrive at the kitchen table (1). You see apple (2), bench (2), book (1), bowl
(6), condiment shaker (1, 2), cupcake (1), Jjuice (1), kitchen table (1),
pancake (2) You hold juice (1).

Think: Now, I need to put down juice 1.

Act: put down juice 1

You put down Jjuice on kitchen table

Think: Now I accomplish the goal.

Act: done

Listing 12: Failure trajectory of ReAct on the WAH-NL dataset using LLaMA 3 70B.

Your task is to: Put the apple, pancake, cupcake, and juice on the kitchen table.

You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),

dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave
oven (1), sink (2), stove (1), toaster (1).

Think: To solve the task, I need to find and pick up the apple, then put it on the
kitchen table. And I need to find and pick up the pancake, then put it on the
kitchen table. And I need to find and pick up the cupcake, then put it on the
kitchen table. And I need to find and pick up the juice, then put it on the

kitchen table.

Think: First, I need to find the apple. The apple is more likely to appear in

kitchen 1.

Act: go to kitchen 1

You move to the kitchen (1). Looking quickly around the room, you see bench (1, 2)
, bookshelf (1, 2), chair (1, 2), dishwasher (1), faucet (2), fridge (1, 2),

garbage can (1), kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1,
2), kitchen table (1), microwave oven (1), sink (2), stove (1), toaster (1).
Think: Now, I need to find the apple. The apple is more likely to appear on
kitchen conter (1, 2), kitchen table (1), or in fridge (1, 2), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8). I can check each place one by one, starting from
kitchen counter 1, until I find the apple.

Act: go to kitchen counter 1

You arrive at the kitchen counter (1). You see bowl (1, 2, 3, 4, 5), chair (2),

chicken (1), cutlets (1), dishwashing liquid (1), faucet (2), kitchen cabinet
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(1, 2, 3, 4, 5, 6, 7), kitchen counter (1), plate (1, 2, 3, 4), sink (2),
washing sponge (1)

Act: go to kitchen counter 2

You arrive at the kitchen counter (2). You see chair (1, 2), kitchen cabinet (5,
6, 7, 8), kitchen counter (1, 2), light switch (2), plate (1, 2, 3, 4)

Act: go to kitchen table 1

You arrive at the kitchen table (1). You see bench (2), book (1), bowl (6),
condiment shaker (1, 2), kitchen table (1)

Act: go to fridge 1

You arrive at the fridge (1). The fridge (1) is closed. You see bench (1), fridge

(1)
Act: open fridge 1
You open fridge. You see bench (1), cupcake (1), fridge (1), pudding (3)
Think: I find cupcake 1. Now, I need to pick it up.
Act: pick up cupcake 1
You pick up cupcake. You hold cupcake (1).
Think: I hold cupcake 1. Now, I need to put it on the kitchen table.
Act: go to kitchen table 1
You arrive at the kitchen table (1). You see bench (2), book (1), bowl (6),

condiment shaker (1, 2), cupcake (1), kitchen table (1) You hold cupcake (1).

Think: Now, I need to put down cupcake 1.
Act: put down cupcake 1
You put down cupcake on kitchen table

Think: I put down cupcake 1 on kitchen table 1. Now, I need to recall the location

of the pancake.

Act: recall location of pancake

You have not seen pancake before.

Think: Now, I need to find the pancake. The pancake is more likely to appear in
kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8). I can check each place one by one,
starting from kitchen cabinet 1, until I find the pancake.

Act: go to kitchen cabinet 1

You arrive at the kitchen cabinet (1). The kitchen cabinet (1) is closed. You see

chicken (1), cooking pot (1), cutlery knife (1, 2), cutlets (1), dishwashing
liquid (1), faucet (2), frying pan (1), garbage can (1), kitchen cabinet (1,
4), kitchen counter (1), sink (2), stove (1)

Act: open kitchen cabinet 1

You open kitchen cabinet. You see chicken (1), cooking pot (1), cutlery knife (1,

2), cutlets (1), dishwashing liquid (1), faucet (2), frying pan (1), garbage
can (1), kitchen cabinet (1, 4), kitchen counter (1), sink (2), stove (1)
Act: go to kitchen cabinet 2

You arrive at the kitchen cabinet (2). The kitchen cabinet (2) is closed. You see

bowl (1, 2, 3, 4, 5), chair (2), chicken (1), cutlery knife (1, 2), cutlets
(1), dishwashing liquid (1), faucet (2), kitchen cabinet (1, 2, 3, 4, 5, 6),
kitchen counter (1), plate (1, 2, 3, 4), sink (2), washing sponge (1)

Act: open kitchen cabinet 2

You open kitchen cabinet. You see bowl (1, 2, 3, 4, 5), chair (2), chicken (1),

cutlery knife (1, 2), cutlets (1), dishwashing liquid (1), faucet (2), kitchen

cabinet (1, 2, 3, 4, 5, 6), kitchen counter (1), plate (1, 2, 3, 4), sink
, washing sponge (1)
Act: go to kitchen cabinet 3

You arrive at the kitchen cabinet (3). The kitchen cabinet (3) is closed. You see

bowl (1, 2, 3, 4, 5), chair (1, 2), dishwashing liquid (1), faucet (2),
kitchen cabinet (2, 3, 4, 5, 6, 7), kitchen counter (1, 2), plate (1, 2, 3,
, sink (2), washing sponge (1)

Act: open kitchen cabinet 3

You open kitchen cabinet. You see bowl (1, 2, 3, 4, 5), chair (1, 2), dishwashing

liquid (1), faucet (2), kitchen cabinet (2, 3, 4, 5, 6, 7), kitchen counter
(1, 2), plate (1, 2, 3, 4), sink (2), washing sponge (1)
Act: go to kitchen cabinet 4

You arrive at the kitchen cabinet (4). The kitchen cabinet (4) is closed. You see

bowl (1, 2, 3, 4, 5), chicken (1), cooking pot (1), cutlery knife (1, 2),
cutlets (1), dishwashing liquid (1), faucet (2), garbage can (1), kitchen
cabinet (1, 2, 4), kitchen counter (1), sink (2), washing sponge (1)

Act: open kitchen cabinet 4
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You open kitchen cabinet. You see bowl (1, 2, 3, 4, 5), chicken (1), cooking pot
(1), cutlery knife (1, 2), cutlets (1), dishwashing ligquid (1), faucet (2),
garbage can (1), kitchen cabinet (1, 2, 4), kitchen counter (1), sink (2),

washing sponge (1)

Act: go to kitchen cabinet 5

You arrive at the kitchen cabinet (5). The kitchen cabinet (5) is closed. You see
bowl (1, 2, 3, 4, 5), chair (1, 2), cutlets (1), dishwashing liquid (1),
faucet (2), kitchen cabinet (2, 3, 4, 5, 6, 7), kitchen counter (1, 2), plate
(1, 2, 3, 4), sink (2), washing sponge (1)

Act: open kitchen cabinet 5

You open kitchen cabinet. You see bowl (1, 2, 3, 4, 5), chair (1, 2), cutlets (1),
dishwashing liquid (1), faucet (2), kitchen cabinet (2, 3, 4, 5, 6, 7),
kitchen counter (1, 2), plate (1, 2, 3, 4), pudding (2), sink (2), washing
sponge (1)

Think: I find pudding 2. Now, I need to pick it up.

Act: pick up pudding 2

You pick up pudding. You hold pudding (2).

Think: I hold pudding 2. Now, I need to put it on the kitchen table.

Act: go to kitchen table 1

You arrive at the kitchen table (1). You see bench (2), book (1), bowl (6),
condiment shaker (1, 2), cupcake (1), kitchen table (1), pudding (2) You hold
pudding (2) .

Think: Now, I need to put down pudding 2.

Act: put down pudding 2

You put down pudding on kitchen table

Think: I put down pudding 2 on kitchen table 1. Now, I need to recall the location

of the juice.

Act: recall location of juice

You have not seen juice before.

Think: Now, I need to find the juice. The juice is more likely to appear in
kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8). I can check each place one by one,
starting from kitchen cabinet 1, until I find the juice.

Act: go to kitchen cabinet 6

You arrive at the kitchen cabinet (6). The kitchen cabinet (6) is closed. You see
bowl (1, 2, 3, 4, 5), chair (1, 2), dishwashing liquid (1), faucet (2),
kitchen cabinet (2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), plate (1, 2, 3,

)

4), sink (2), washing sponge (1
Act: open kitchen cabinet 6
You open kitchen cabinet. You see bowl (1, 2, 3, 4, 5), chair (1, 2), dishwashing

liquid (1), faucet (2), kitchen cabinet (2, 3, 4, 5, 6, 7, 8), kitchen counter
(1, 2), plate (1, 2, 3, 4), sink (2), washing sponge (1)

Act: go to kitchen cabinet 7

You arrive at the kitchen cabinet (7). The kitchen cabinet (7) is closed. You see
bowl (1, 2, 3, 4, 5), chair (1, 2), kitchen cabinet (2, 3, 4, 5, 6, 7, 8),
kitchen counter (1), light switch (2), plate (1, 2, 3, 4), sink (2)

Act: open kitchen cabinet 7

You open kitchen cabinet. You see apple (1), bowl (1, 2, 3, 4, 5), chair (1, 2),
kitchen cabinet (2, 3, 4, 5, 6, 7, 8), kitchen counter (1), light switch (2),
pancake (1), plate (1, 2, 3, 4), sink (2)

Think: I find apple 1. Now, I need to pick it up.

Act: pick up apple 1

You pick up apple. You hold apple (1).

Think: I hold apple 1. Now, I need to put it on the kitchen table.

Act: go to kitchen table 1

You arrive at the kitchen table (1). You see apple (1), bench (2), book (1), bowl
(6), condiment shaker (1, 2), cupcake (1), kitchen table (1), pudding (2) You
hold apple (1).

Think: Now, I need to put down apple 1.

Act: put down apple 1

You put down apple on kitchen table

Think: I put down apple 1 on kitchen table 1. Now, I need to recall the location
of the pancake.

Act: recall location of pancake

You saw pancake 1 near kitchen cabinet 7 in kitchen 1.

Act: go to kitchen cabinet 7
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You arrive at the kitchen cabinet (7). The kitchen cabinet (7) is open. You see
bowl (1, 2, 3, 4, 5), chair (1, 2), kitchen cabinet (2, 3, 4, 5, 6, 7, 8),
kitchen counter (1), light switch (2), pancake (1), plate (1, 2, 3, 4), sink
(2)

Think: I find pancake 1. Now, I need to pick it up.

Act: pick up pancake 1

You pick up pancake. You hold pancake (1).

Think: I hold pancake 1. Now, I need to put it on the kitchen table.

Act: go to kitchen table 1

You arrive at the kitchen table (1). You see apple (1), bench (2), book (1), bowl
(6), condiment shaker (1, 2), cupcake (1), kitchen table (1), pancake (1),
pudding (2) You hold pancake (1).

Think: Now, I need to put down pancake 1.

Act: put down pancake 1

You put down pancake on kitchen table

Think: I put down pancake 1 on kitchen table 1. Now, I need to recall the location

of the juice.

Act: recall location of juice

You have not seen juice before.

Think: Now, I need to find the juice. The juice is more likely to appear in
kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8). I can check each place one by one,
starting from kitchen cabinet 1, until I find the juice.

Act: go to kitchen cabinet 8

You arrive at the kitchen cabinet (8). The kitchen cabinet (8) is closed. You see
bench (2), chair (1, 2), kitchen cabinet (5, 6, 7, 8), light switch (2)

Act: open kitchen cabinet 8

You open kitchen cabinet. You see bench (2), chair (1, 2), kitchen cabinet (5, 6,
7, 8), light switch (2)

Think: I cannot find juice in kitchen 1. The juice is more likely to appear in
fridge 1, 2.

Act: go to fridge 1

You arrive at the fridge (1). The fridge (1) is open. You see bench (1), fridge
(1), pudding (3)

Act: go to fridge 2

You arrive at the fridge (2). The fridge (2) is closed. You see bench (1), fridge
(1, 2), pudding (3)

Act: open fridge 2

You open fridge. You see apple (2), bench (1), fridge (1, 2), pudding (3)

Think: I find apple 2. Now, I need to pick it up.

Act: pick up apple 2

You pick up apple. You hold apple (2).

Think: I hold apple 2. Now, I need to put it on the kitchen table.

Act: go to kitchen table 1

You arrive at the kitchen table (1). You see apple (1, 2), bench (2), book (1),
bowl (6), condiment shaker (1, 2), cupcake (1), kitchen table (1), pancake (1)
, pudding (2) You hold apple (2).

Think: Now, I need to put down apple 2.

Act: put down apple 2

You put down apple on kitchen table

Think: I put down apple 2 on kitchen table 1. Now, I need to recall the location
of the juice.

Act: recall location of juice

You have not seen juice before.

Failure: maximum context window size of 8192

H.2 ALFRED EXAMPLE CASES

Listing 13: Success trajectory of ReAcTree on the ALFRED dataset using LLaMA 3 70B.

### Agent Node 1

Your task is to: Put the cooked tomato slice on the kitchen island

You are in the house, and you arrive at the kitchen, Looking quickly around the
room, you see Toaster (1), StoveBurner (1, 2, 3, 4, 5, 6), SinkBasin (1),
Microwave (1), GarbageCan (1), Fridge (1), Drawer (1, 2, 3, 4, 5, 6, 7, 8, 9,
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10, 11, 12, 13), CounterTop (1, 2), CoffeeMachine (1), Cabinet (1, 2, 3, 4, 5,
6, 7, 8, 9).

Think: To solve the task, I need to accomplish 8 subgoals sequentially. find and
pick up the knife, find and slice and then pick up the tomato, find and open
the microwave, find the microwave and put down the tomato, find and close and
turn on the microwave, find and turn off and open microwave, find and pick up
tomato in microwave, and find a countertop and put down the tomato on the
countertop.

Expand:

- control flow: sequence

- subgoals: find and pick up the knife, find and slice and then pick up the tomato
, find and open the microwave, find the microwave and put down the tomato,
find and close and turn on the microwave, find and turn off and open microwave
, find and pick up tomato in microwave, and find a countertop and put down the

tomato on the countertop.

### Agent Node 2

Your primary goal is to: Put the cooked tomato slice on the kitchen island

To achieve this, you should perform your sibling tasks in sequence. At this level,
your sibling tasks are: find and pick up the knife, find and slice and then
pick up the tomato, find and open the microwave, find the microwave and put
down the tomato, find and close and turn on the microwave, find and turn off
and open microwave, find and pick up tomato in microwave, and and find a
countertop and put down the tomato on the countertop.

Your task is to: find and pick up the knife

You are in the house, and you arrive at the kitchen, Looking quickly around the
room, you see Toaster (1), StoveBurner (1, 2, 3, 4, 5, 6), SinkBasin (1),
Microwave (1), GarbageCan (1), Fridge (1), Drawer (1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13), CounterTop (1, 2), CoffeeMachine (1), Cabinet (1, 2, 3, 4, 5,

6, 7, 8, 9).

Think: To solve the task, I need to recall location of knife.

Think: Now I need to find Knife. A knife is more likely to appear in CounterTop
(1-2), SinkBasin (1), Cabinet (1-9). I can check one by one, starting with
CounterTop (1).

Act: go to CounterTop (1)

You arrive at CounterTop (1). You see Window (2), Tomato (1), Sink (1), SinkBasin
(1), Lettuce (2), Fork (1), Faucet (1), Egg (2), DishSponge (1), CounterTop
(1), Cabinet (1, 8).

Act: go to CounterTop (2)

You arrive at CounterTop (2). You see Tomato (2), SoapBottle (2), Pot (1),
PepperShaker (2), Mug (2), Knife (1, 2), Kettle (2), CounterTop (1, 2),
CellPhone (2), Bread (1, 2).

Think: Now I find Knife (1, 2). Next, I need to pick it up.

Act: pick up Knife (1)

You pick up Knife (1). You see Tomato (2), SoapBottle (2), Pot (1), PepperShaker
(2), Mug (2), Knife (1, 2), Kettle (2), CounterTop (1, 2), CellPhone (2),
Bread (1, 2). I am holding Knife (1) now.

Think: Now I find and pick up Knife (1)

Act: done

### Agent Node 3

Your primary goal is to: Put the cooked tomato slice on the kitchen island

To achieve this, you should perform your sibling tasks in sequence. At this level,
your sibling tasks are: find and pick up the knife, find and slice and then
pick up the tomato, find and open the microwave, find the microwave and put
down the tomato, find and close and turn on the microwave, find and turn off
and open microwave, find and pick up tomato in microwave, and and find a
countertop and put down the tomato on the countertop.

Your task is to: find and slice and then pick up the tomato

You are in the house, and you arrive at the kitchen, Looking quickly around the
room, you see Toaster (1), StoveBurner (1, 2, 3, 4, 5, 6), SinkBasin (1),
Microwave (1), GarbageCan (1), Fridge (1), Drawer (1, 2, 3, 4, 5, 6, 7, 8, 9,
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10, 11, 12, 13), CounterTop (1, 2), CoffeeMachine (1), Cabinet (1, 2, 3, 4, 5,
6, 7, 8, 9). I am holding Knife (1) now.
Think: To solve the task, I need to recall location of tomato.
Think: I saw Tomato (1) near SinkBasin (1). I need to go to SinkBasin (1), then
slice the Tomato (1).
Act: go to SinkBasin (1)

You arrive at SinkBasin (1). You see Tomato (1), Sink (1), SinkBasin (1), Lettuce
(2), Knife (1), Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1),
CounterTop (1), Cabinet (1, 8). I am holding Knife (1) now.

Think: Now I find a part of the Tomato (1). I need to go in front of the Tomato
(1) to see the whole thing.

Act: go to Tomato (1)

You see Tomato (1), Sink (1), SinkBasin (1), Lettuce (2), Knife (1), Fork (1),
Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1), CounterTop (1), Cabinet

(1, 8). I am holding Knife (1) now.
Act: slice Tomato (1)
You slice Tomato (1). You see Tomato (9, 10), Sink (1), SinkBasin (1), Lettuce (2)

, Knife (1), Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1),
CounterTop (1), Cabinet (1, 8). I am holding Knife (1) now.

Think: Now I slice the Tomato (1), and I do not need to hold Knife (1). I need to
drop the Knife (1).

Act: put down Knife (1)

You put down failed, drop it. You see Tomato (9, 10), Sink (1), SinkBasin (1),
Lettuce (2), Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1),
CounterTop (1), Cabinet (1, 8).

Think: Now I put down Knife (1). Next, I need to pick up the Tomato (9).

Act: pick up Tomato (9)

You pick up Tomato (9). You see Tomato (7, 8, 9, 10), Sink (1), SinkBasin (1),
Lettuce (2), Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1),
CounterTop (1), Cabinet (1, 8). I am holding Tomato (9) now.

Think: Now I pick up Tomato (9).

Act: done

### Agent Node 4

Your primary goal is to: Put the cooked tomato slice on the kitchen island

To achieve this, you should perform your sibling tasks in sequence. At this level,

your sibling tasks are: find and pick up the knife, find and slice and then
pick up the tomato, find and open the microwave, find the microwave and put
down the tomato, find and close and turn on the microwave, find and turn off
and open microwave, find and pick up tomato in microwave, and and find a
countertop and put down the tomato on the countertop.

Your task is to: find and open the microwave

You are in the house, and you arrive at the kitchen, Looking quickly around the
room, you see Toaster (1), StoveBurner (1, 2, 3, 4, 5, 6), SinkBasin (1),
Microwave (1), GarbageCan (1), Fridge (1), Drawer (1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13), CounterTop (1, 2), CoffeeMachine (1), Cabinet (1, 2, 3, 4, 5,

6, 7, 8, 9). I am holding Tomato (9) now.

Act: go to Microwave (1)

You arrive at Microwave (1). You see Window (1), Tomato (9), Toaster (1),
Microwave (1), Drawer (4), CounterTop (1l). Microwave (1) is closed. I am
holding Tomato (9) now.

Act: open Microwave (1)

You open Microwave (1l). You see Window (1), Tomato (9), Toaster (1), Microwave (1)
, Egg (1), Drawer (4), CounterTop (l1). I am holding Tomato (9) now.

Think: Now I find and open the Microwave (1).

Act: done

### Agent Node 5
Your primary goal is to: Put the cooked tomato slice on the kitchen island
To achieve this, you should perform your sibling tasks in sequence. At this level,
your sibling tasks are: find and pick up the knife, find and slice and then
pick up the tomato, find and open the microwave, find the microwave and put
down the tomato, find and close and turn on the microwave, find and turn off
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and open microwave, find and pick up tomato in microwave, and and find a
countertop and put down the tomato on the countertop.

Your task is to: find the microwave and put down the tomato

You are in the house, and you arrive at the kitchen, Looking quickly around the
room, you see Toaster (1), StoveBurner (1, 2, 3, 4, 5, 6), SinkBasin (1),
Microwave (1), GarbageCan (1), Fridge (1), Drawer (1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13), CounterTop (1, 2), CoffeeMachine (1), Cabinet (1, 2, 3, 4, 5,

6, 7, 8, 9). I am holding Tomato (9) now.
Think: To solve the task, I need to go to Microwave (1) and put down the Tomato

(9) .

Act: go to Microwave (1)

You arrive at Microwave (1). You see Window (1), Tomato (9), Toaster (1),
Microwave (1), Egg (1), Drawer (4), CounterTop (1). Microwave (1) is open. I

am holding Tomato (9) now.

Think: Now I find a Microwave (1). The Microwave (1) is already open, so I need to
put the Tomato (9) down.

Act: put down Tomato (9)

You put Tomato (9) on Microwave (1). You see Window (1), Tomato (9), Toaster (1),
Microwave (1), Egg (1), Drawer (4), CounterTop (1).

Think: Now I put down Tomato (9) in the Microwave (1).

Act: done

### Agent Node 6

Your primary goal is to: Put the cooked tomato slice on the kitchen island

To achieve this, you should perform your sibling tasks in sequence. At this level,
your sibling tasks are: find and pick up the knife, find and slice and then
pick up the tomato, find and open the microwave, find the microwave and put
down the tomato, find and close and turn on the microwave, find and turn off
and open microwave, find and pick up tomato in microwave, and and find a
countertop and put down the tomato on the countertop.

Your task is to: find and close and turn on the microwave

You are in the house, and you arrive at the kitchen, Looking quickly around the
room, you see Toaster (1), StoveBurner (1, 2, 3, 4, 5, 6), SinkBasin (1),
Microwave (1), GarbageCan (1), Fridge (1), Drawer (1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13), CounterTop (1, 2), CoffeeMachine (1), Cabinet (1, 2, 3, 4, 5,

6, 7, 8, 9).

Think: To solve the task, I need to go to Microwave (1), close the Microwave (1)
and turn on the Microwave (1).

Act: go to Microwave (1)

You arrive at Microwave (1l). You see Window (1), Tomato (9), Toaster (1),
Microwave (1), Egg (1), Drawer (4), CounterTop (1). Microwave (1) is open.

Think: The Microwave (1) is already open and I need to close the Microwave (1).

Act: close Microwave (1)

You close Microwave (1). You see Window (1), Toaster (1), Microwave (1), Drawer
(4), CounterTop (1).

Act: turn on Microwave (1)

You turn on Microwave (1). You see Window (1), Toaster (1), Microwave (1), Drawer
(4), CounterTop (1).

Think: Now I find and close and turn on the Microwave (1).

Act: done

### Agent Node 7

Your primary goal is to: Put the cooked tomato slice on the kitchen island

To achieve this, you should perform your sibling tasks in sequence. At this level,
your sibling tasks are: find and pick up the knife, find and slice and then
pick up the tomato, find and open the microwave, find the microwave and put
down the tomato, find and close and turn on the microwave, find and turn off
and open microwave, find and pick up tomato in microwave, and and find a
countertop and put down the tomato on the countertop.

Your task is to: find and turn off and open microwave

You are in the house, and you arrive at the kitchen, Looking quickly around the
room, you see Toaster (1), StoveBurner (1, 2, 3, 4, 5, 6), SinkBasin (1),
Microwave (1), GarbageCan (1), Fridge (1), Drawer (1, 2, 3, 4, 5, 6, 7, 8, 9,
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10, 11, 12, 13), CounterTop (1, 2), CoffeeMachine (1), Cabinet (1, 2, 3, 4, 5,
6, 7, 8, 9).

Think: To solve the task, I need to go to Microwave (1), turn off and open the
Microwave (1).

Act: go to Microwave (1)

You arrive at Microwave (1l). You see Window (1), Toaster (1), Microwave (1),
Drawer (4), CounterTop (1l). Microwave (1) is closed. Microwave (1) is already
turned on.

Think: Now I find a Microwave (1). The Microwave (1) is already turned on, so I
need to turn off the Microwave (1).

Act: turn off Microwave (1)

You turn off Microwave (1l). You see Window (1), Toaster (1), Microwave (1), Drawer

(4), CounterTop (1).

Act: open Microwave (1)

You open Microwave (1l). You see Window (1), Tomato (9), Toaster (1), Microwave (1)
, Egg (1), Drawer (4), CounterTop (1).

Think: Now I turn off and open the Microwave (1).

Act: done

### Agent Node 8
Your primary goal is to: Put the cooked tomato slice on the kitchen island
To achieve this, you should perform your sibling tasks in sequence. At this level,
your sibling tasks are: find and pick up the knife, find and slice and then
pick up the tomato, find and open the microwave, find the microwave and put
down the tomato, find and close and turn on the microwave, find and turn off
and open microwave, find and pick up tomato in microwave, and and find a
countertop and put down the tomato on the countertop.
Your task is to: find and pick up tomato in microwave
You are in the house, and you arrive at the kitchen, Looking quickly around the
room, you see Toaster (1), StoveBurner (1, 2, 3, 4, 5, 6), SinkBasin (1),
Microwave (1), GarbageCan (1), Fridge (1), Drawer (1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13), CounterTop (1, 2), CoffeeMachine (1), Cabinet (1, 2, 3, 4, 5,
6, 7, 8, 9).
Think: To solve the task, I need to recall the location of tomato.
Think: I saw Tomato (2) near Microwave (l1). I need to go to Microwave (1), then
pick up Tomato (2).
Act: go to Microwave (1)

You arrive at Microwave (1). You see Window (1), Tomato (9), Toaster (1),
Microwave (1), Egg (1), Drawer (4), CounterTop (1). Microwave (1) is open.
Think: Now, I find a Microwave (1). The Microwave (1) is already open, so I need

to pick up Tomato (2).

Act: pick up Tomato (9)

You pick up Tomato (9). You see Window (1), Tomato (9), Toaster (1), Microwave (1)
, Egg (1), Drawer (4), CounterTop (l). I am holding Tomato (9) now.

Think: Now I find and pick up the Tomato (9) in Microwave (1).

Act: done

### Agent Node 9
Your primary goal is to: Put the cooked tomato slice on the kitchen island
To achieve this, you should perform your sibling tasks in sequence. At this level,
your sibling tasks are: find and pick up the knife, find and slice and then
pick up the tomato, find and open the microwave, find the microwave and put
down the tomato, find and close and turn on the microwave, find and turn off
and open microwave, find and pick up tomato in microwave, and and find a
countertop and put down the tomato on the countertop.
Your task is to: and find a countertop and put down the tomato on the countertop.
You are in the house, and you arrive at the kitchen, Looking quickly around the
room, you see Toaster (1), StoveBurner (1, 2, 3, 4, 5, 6), SinkBasin (1),
Microwave (1), GarbageCan (1), Fridge (1), Drawer (1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13), CounterTop (1, 2), CoffeeMachine (1), Cabinet (1, 2, 3, 4, 5,
6, 7, 8, 9). I am holding Tomato (9) now.
Think: To solve the task, I need to go to CounterTop (1) and put down the Tomato
(9) on the CounterTop (1).
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Act: go to CounterTop (1)

You arrive at CounterTop (1). You see Window (2), Tomato (7, 8, 9, 10), Sink (1),
SinkBasin (1), Lettuce (2), Fork (1), Faucet (1), Egg (2), DishSponge (1),
CounterTop (1), Cabinet (1, 8). I am holding Tomato (9) now.

Act: put down Tomato (9)

You put Tomato (9) on CounterTop (1). You see Window (2), Tomato (7, 8, 9, 10),

Sink (1), SinkBasin (1), Lettuce (2), Fork (1), Faucet (1), Egg (2),
DishSponge (1), CounterTop (1), Cabinet (1, 8).

Think: Now I put Tomato (9) on the CounterTop (1).

Act: done

Listing 14: Failure trajectory of ReAct on the ALFRED dataset using LLaMA 3 70B.

Your task is to : Put the cooked tomato slice on the kitchen island

You are in the house, and you arrive at the kitchen, Looking quickly around the
room, you see Toaster (1), StoveBurner (1, 2, 3, 4, 5, 6), SinkBasin (1),
Microwave (1), GarbageCan (1), Fridge (1), Drawer (1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13), CounterTop (1, 2), CoffeeMachine (1), Cabinet (1, 2, 3, 4, 5,

6, 7, 8, 9).

Think: To solve the task, I need to find and pick up knife, then find and slice
tomato and then pick up tomato, then find plate and put tomato on plte, then
find and pick up plate, then find fridge and put plate on fridge

Think: First, I need to recall location of knife

Act: recall location of Knife

You have not seen Knife before.

Think: Now I need to find and pick up knife. A knife is more likely to appear in
SinkBasin (1), Sink (1), DiningTable (1), CounterTop (1-3), Cabinet (1-2),

Drawer (1-6). I can check one by one, starting with SinkBasin (1).
Act: go to SinkBasin (1)
You arrive at SinkBasin (1). You see Tomato (1), Sink (1), SinkBasin (1), Lettuce

(2), Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1), CounterTop
(1), Cabinet (1, 8).

Think: Now I find Knife (1). Next, I need to pick it up.

Act: pick up Tomato (1)

You pick up Tomato (1). You see Tomato (1), Sink (1), SinkBasin (1), Lettuce (2),
Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1), CounterTop (1),
Cabinet (1, 8). I am holding Tomato (1) now.

Think: Now I find and pick up Knife (1).

Think: Next, I need to recall location of tomato

Act: recall location of Tomato

You are holding Tomato (1).

Think: I saw Tomato (3) near SinkBasin (1)

Act: go to SinkBasin (1)

You arrive at SinkBasin (1). You see Tomato (1), Sink (1), SinkBasin (1), Lettuce
(2), Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1), CounterTop
(1), Cabinet (1, 8). I am holding Tomato (1) now.

Think: Now I find Tomato (3). Next, I need to slice it

Act: slice Tomato (1)

The Tomato (1) slice failed. I am holding Tomato (1) now.

Think: Now I slice Tomato (3). Next, I need to drop Knife (1) because I do not
need to hold it now.

Act: go to SinkBasin (1)

You arrive at SinkBasin (1). You see Tomato (1), Sink (1), SinkBasin (1), Lettuce
(2), Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1), CounterTop
(1), Cabinet (1, 8). I am holding Tomato (1) now.

Think: Next, I need to pick up Tomato (5)

Act: pick up Tomato (1)

You are currently holding Tomato (1). I am holding Tomato (1) now.
Think: Now I find and slice Tomato (3), then pick up Tomato (5)
Think: Next, I need to recall location of plate.

Act: recall location of Plate

You have not seen Plate before.

Think: I saw Plate (1) near SinkBasin (1).

Act: go to SinkBasin (1)
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You arrive at SinkBasin (1). You see Tomato (1), Sink (1), SinkBasin (1), Lettuce
(2), Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1), CounterTop
(1), Cabinet (1, 8). I am holding Tomato (1) now.

Think: I need to go to Plate (1), then put Tomato (5) on Plate (1)

Act: go to SinkBasin (1)

You arrive at SinkBasin (1). You see Tomato (1), Sink (1), SinkBasin (1), Lettuce
(2), Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1), CounterTop
(1), Cabinet (1, 8). I am holding Tomato (1) now.

Act: put down Tomato (1)

You put Tomato (1) on SinkBasin (1). You see Tomato (1), Sink (1), SinkBasin (1),

Lettuce (2), Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1),
CounterTop (1), Cabinet (1, 8).

Think: Now I find Plate (1), then put Tomato (5) on Plate (1)

Think: Next, I need to pick up Plate (1) again.

Act: pick up Tomato (1)

You pick up Tomato (1). You see Tomato (1), Sink (1), SinkBasin (1), Lettuce (2),
Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1), CounterTop (1),
Cabinet (1, 8). I am holding Tomato (1) now.

Think: Now I find and pick up Plate (1). Next, I need to find fridge, then put
plate on fridge.

Act: go to SinkBasin (1)

You arrive at SinkBasin (1). You see Tomato (1), Sink (1), SinkBasin (1), Lettuce
(2), Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1), CounterTop
(1), Cabinet (1, 8). I am holding Tomato (1) now.

Act: open Fridge (1)

The Fridge (1) is not close to you. I am holding Tomato (1) now.

Act: put down Tomato (1)

You put Tomato (1) on SinkBasin (1). You see Tomato (1), Sink (1), SinkBasin (1),
Lettuce (2), Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1),
CounterTop (1), Cabinet (1, 8).

Think: Now I put Plate (1) on Fridge (1).

Act: done
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