
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REACTREE: HIERARCHICAL TASK PLANNING WITH
DYNAMIC TREE EXPANSION USING LLM AGENT
NODES

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in task planning using large language models (LLMs) have
made remarkable progress. However, most existing methods, such as ReAct, face
limitations when handling complex, long-horizon tasks due to inefficiencies in
processing entire tasks through a single sequential decision-making process. To
address these challenges, we propose ReAcTree, a hierarchical task planning
method that automatically decomposes complex tasks into manageable subgoals
within a tree structure. This tree consists of control flow nodes, which manage
the execution order of agent nodes, and agent nodes that reason, act, and expand
nodes into subgoals to achieve their goals. To further enhance performance, we
introduce memory systems: each agent node retrieves goal-specific, agent-level
experiences from episodic memory to use as in-context examples, and all agent
nodes share and recall information obtained during task execution via working
memory. Experiments on the WAH-NL dataset demonstrate that ReAcTree con-
sistently outperforms ReAct across various LLMs and model sizes. For example,
when using Qwen2.5 72B, ReAcTree achieves a goal success rate of 63%, signif-
icantly surpassing ReAct’s 24%.

1 INTRODUCTION

In recent years, large language models (LLMs) have emerged as powerful tools for task planning, ex-
tending the capabilities of traditional approaches such as task and motion planning and hierarchical
reinforcement learning. Early works, including Zero-Shot Planner (Huang et al., 2022a) and Say-
Can (Ahn et al., 2022), demonstrated the potential of pre-trained LLMs to generate executable skill
sequences from natural language instructions without the need for parameter updates. These meth-
ods leverage the general procedural knowledge encoded during pre-training, along with in-context
examples, to generate contextually appropriate skill sequences. Further advancements introduced
feedback mechanisms, wherein LLMs receive textual observations from the environment following
skill execution, enabling more adaptive planning (Huang et al., 2022b). Building on these develop-
ments, ReAct (Yao et al., 2023) incorporated reasoning capabilities into LLM-based task planners,
significantly improving their overall planning performance.

Despite recent advancements, most existing LLM-based methods, including ReAct, still struggle
with complex, long-horizon tasks. One key inefficiency stems from attempting to solve entire tasks
using a single sequential decision-making process. Zhou et al. (2023) has shown that LLMs perform
more effectively when breaking down complex problems into a series of simpler subproblems. Sev-
eral LLM-based task planning methods have adopted such decomposition strategies (Wang et al.,
2023; Sun et al., 2023; Chen et al., 2024; Wang et al., 2024a; Wong et al., 2023). However, many of
these approaches either limit the hierarchy to only two stages or are effective only within predefined
domains. Another significant inefficiency arises from the accumulation of long text trajectories en-
compassing reasoning, actions, and observations. Although providing relevant in-context examples
has been shown to significantly enhance performance (Wang et al., 2024b; Rubin et al., 2022), as
text trajectories grow, it becomes increasingly difficult to include diverse and detailed examples.

In this paper, we propose ReAcTree, a hierarchical task planning method designed to automatically
decompose complex tasks into manageable subgoals. ReAcTree constructs a tree structure with two

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Please bring one pudding and

one juice on the coffee table

1

Move pudding

on coffee table

2

Move juice

on coffee table

7

Find and pick

up pudding

3
Find coffee table and

put down pudding

6

Find and pick

up juice

8

Find coffee table

and put down juice

9

?

Find and pick up

pudding in living room

5
Find and pick up

pudding in kitchen

4

Agent Node 3: Find and pick up pudding

Goal: Find and pick up pudding

Obs: You are in the house, and there are 4 rooms: kitchen (1), living room (1), …

Think: To solve the task, I need to recall the location of the pudding.

Act: recall location of pudding

Obs: You have not seen pudding before.

Think: Now, I need to find and pick up the pudding in one of the rooms. The cupcake

is more likely to appear in kitchen 1 or living room 1. I can check each room one by

one until I find and pick up the cupcake.

Expand:

- Control flow: fallback

- Subgoals: find and pick up pudding in kitchen 1, find and pick up pudding in living

room 1

Goal: Find and pick up cupcake

Obs: You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), …

Think: To solve the task, I need to recall the location of the cupcake.

Act: recall location of cupcake

Obs: You saw cupcake 1 near fridge 2 in kitchen 1.

Think: I can find cupcake 1 near fridge 2.

Act: go to kitchen 1

Obs: You move to the kitchen (1). Looking quickly around the room, you see bench

(1, 2), bookshelf (1, 2), chair (1, 2), dishwasher (1), fridge (1, 2), …

Act: go to fridge 2

…

Retrieved In-Context Examples (Top-1 Example)

Generated Trajectory

Episodic

Memory

Environment

Working

Memory

Retrieve

Observe

Act

Recall

Update

Figure 1: An illustrative example of how ReAcTree generates a tree structure for the natural language
instruction: Please bring one pudding and one juice to the coffee table. The left side shows the tree
structure with agent nodes represented as circles and control flow nodes as squares. Each agent node
is annotated with its corresponding natural language goal and execution sequence. The right side
presents the text trajectory generated by agent node 3, which includes reasoning, acting, expanding,
and retrieval of in-context examples from episodic memory, as well as access to working memory.

primary components: control flow nodes and agent nodes. Control flow nodes, inspired by behavior
trees (Colledanchise et al., 2018), are responsible for selecting which agent node to execute at each
step. Agent nodes, each functioning as an LLM-based task planner, handle reasoning, acting, and
expanding—where expanding involves decomposing goals into subgoals and extending the node
into a subtree that includes one control flow node and new agent nodes, each assigned a specific
subgoal. To further enhance planning capabilities of ReAcTree, we introduce a memory system.
Each agent node retrieves relevant experiences from episodic memory, where past task planning
experiences—segmented at the agent level—are stored. This enables the retrieval of experiences
closely aligned with the agent node’s current goal. Additionally, all agent nodes utilize working
memory to update and recall observations during task execution. By sharing observations across
all agent nodes, ReAcTree enables more efficient task planning. Figure 1 illustrates an example
outcome produced by ReAcTree.

To evaluate the effectiveness of ReAcTree, we conducted extensive experiments using the WAH-
NL dataset (Choi et al., 2024; Puig et al., 2021). The WAH-NL dataset involves solving tasks via
natural language commands in household environments, each consisting of multiple rooms and long-
horizon tasks composed of several subgoals. We implemented a partially observable setting within
the VirtualHome simulator (Puig et al., 2018), where agents operate with limited perceptual in-
formation, simulating real-world conditions. Our experimental results demonstrate that ReAcTree
consistently outperforms the ReAct baseline across various LLMs. Specifically, ReAcTree attains
a 53% goal success rate (GSR) with the LLaMA-3.1 70B model, significantly surpassing ReAct’s
20%. Furthermore, even with the smaller LLaMA-3.1 8B model, ReAcTree achieves a GSR of 30%,
outperforming ReAct on the larger LLaMA-3.1 70B model. These results highlight ReAcTree’s su-
perior ability to handle complex tasks through its hierarchical task decomposition. Additionally, our
analysis confirms the effectiveness of ReAcTree’s memory systems, with both episodic memory and
working memory contributing substantially to the observed performance improvements.

In summary, this paper presents the following contributions: (1) We propose ReAcTree, a novel
hierarchical task planning algorithm that automatically decomposes complex tasks into manage-
able subgoals using a tree structure. Each subgoal is handled by an agent node, which performs
LLM-based task planning through reasoning, acting, and expanding—decomposing tasks further
into smaller subgoals. (2) We introduce memory systems, including episodic memory and working
memory, to enhance the performance of ReAcTree by enabling the retrieval of relevant agent-level
experiences and facilitating the sharing of information across agent nodes during task execution. (3)
We conduct extensive experiments in a partially observable setting to demonstrate the superiority of
ReAcTree over the baseline model, ReAct. Additionally, we will release our code to support future
research (anonymous code for review is available at figshare.com/s/97dd86282bd050f66d11).

2

https://figshare.com/s/97dd86282bd050f66d11

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORKS

LLM-based Task Planning. Since the inception of LLMs, researchers have continuously explored
their emerging capabilities. In particular, their reasoning abilities have recently been applied to
decision-making processes for embodied agents, such as robots. Huang et al. (2022a) were among
the first to demonstrate that LLMs can infer task procedures for embodied agents without requiring
additional training, while SayCan (Ahn et al., 2022) introduced more robust planning by integrat-
ing visual affordances from a robot’s perspective. Following these foundational studies, various
approaches have evolved. For example, Inner Monologue (Huang et al., 2022b) enhanced procedu-
ral inference by allowing agents to revise plans based on textual feedback, such as the success of
individual steps, object detection results, and Q&A with humans. Additionally, ReAct (Yao et al.,
2023) adopted Chain-of-Thought prompting (Wei et al., 2022), enabling agents to explicitly reason
through tasks, leading to improved planning performance.

Hierarchical Task Planning with LLMs. Recently, research has increasingly focused on hierarchi-
cal task planning with LLMs to address complex, long-horizon tasks. These approaches often utilize
bi-level hierarchies, where an overall plan is refined through next-step decisions, as demonstrated
in DEPS (Wang et al., 2023) and AdaPlanner (Sun et al., 2023). Classical planning integrated with
LLMs, such as in Ada (Chen et al., 2024), offers flexibility but remains constrained by predefined
environments. While these methods enable interactive and adaptive planning, they are limited in
hierarchical depth, unlike ReAcTree, which employs a deeper structure that allows for dynamic sub-
goal decomposition. MOSAIC (Wang et al., 2024a) proposed a task planner for robots collaborating
with humans in cooking. This planner organizes reasoning into a tree structure with LLM agents,
where nodes determine whether to define subtasks or seek clarification from the human. However,
this study relies on a manually designed structure specific to cooking tasks and lacks generalizability
to other domains. In contrast, our approach dynamically generates behavior trees for various tasks
in household environments.

Tree Search-Based Planning with LLMs. Another line of research explores tree search-based
methods. These approaches construct action/thought trees to look ahead and evaluate multiple future
paths to select the best next step. Tree of Thoughts (Yao et al., 2024) and Graph of Thoughts (Besta
et al., 2024) demonstrate how systematic tree search improves decision-making by exploring and
evaluating reasoning paths. LLM-MCTS (Zhao et al., 2024) extends these ideas to task planning by
constructing action trees and applying Monte Carlo Tree Search but relies on ground-truth transition
functions, limiting its applicability to real-world scenarios. Tree-Planner (Hu et al., 2023) constructs
action trees, executes actions, and observes outcomes, avoiding explicit state prediction. However,
it assumes reversible actions (e.g., pick–place), which are not feasible for irreversible actions like
slicing. While these methods focus on constructing action or thought trees to search for the best
trajectory, ReAcTree takes a fundamentally different approach by building an LLM agent tree. It
divides complex goals into manageable subgoals, dynamically assigns specialized agent nodes, and
determines their execution order using control flow strategies such as sequence and fallback nodes.

3 PRELIMINARIES

Problem Formulation. We consider the task planning problem as a sequential decision-making
problem aimed at achieving a goal g expressed in natural language. At each time step t, the agent
has access the context ct = (o1, a1, o2, a2, · · · , at−1, ot), where oi and ai represent the observation
and action at each previous time step i, respectively. The objective of agent is to generate the next
appropriate action at based on the context ct, with the aim of eventually achieving the goal g.

ReAct (Yao et al., 2023). ReAct is a representative method that leverages a pre-trained LLM, pLLM ,
to solve the task planning problem by interleaving reasoning and action execution. The LLM defines
the action policy as follows: at ∼ pLLM (·|P, g, ct), where P = (Psys, Pic) is the initial prompt,
composed of a system prompt, Psys, and in-context examples, Pic. The key idea of ReAct is to use
the augmented action space, Ât = At ∪ L, where At is the set of executable skills available at
time t, and L is the language space representing reasoning steps or thoughts. If at ∈ At, the agent
executes the action and obtains a text observation from the environment. If at ∈ L, it is called a
thought or reasoning trace, which aids in the logical inference of the LLM. In this case, the agent
does not receive a new observation from the environment, i.e., ot+1 = ϕ.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

?

Sequence

Fallback

Parallel

∙∙∙

Agent Node Selection

Agent Node Execution

Decision-Making

∙∙∙

Environment

𝑎𝑡
𝑛 𝑜𝑡+1

𝑛

Acting

Reasoning Expanding

∙∙∙

𝑓𝑛

𝑔1
𝑛 𝑔2

𝑛 𝑔𝐾
𝑛

𝑐𝑡+1
𝑛

Control Flow Node Execution Agent Node Execution

Tree Expansion

𝑎𝑡
𝑛~𝑝𝐿𝐿𝑀(𝑃

𝑛, 𝑔𝑛, 𝑐𝑡
𝑛)

𝑎𝑡
𝑛

Control Flow Node

Execution

Figure 2: Illustration of control flow node execution and agent node execution in ReAcTree.

4 REACTREE

In this section, we introduce ReAcTree, a hierarchical task planning algorithm designed to effi-
ciently manage complex tasks by decomposing them into subgoals using a tree structure. The tree is
composed of two types of nodes: control flow nodes and agent nodes. Control flow nodes determine
which agent node should be executed next. Each agent node operates as an LLM-based task planner,
with its goal expressed in natural language. A key feature of ReAcTree is the augmentation of each
agent node’s action space to include not only reasoning and acting but also expanding, which allows
the decomposition of its goal into subgoals and the creation of a subtree. This subtree consists of
a child control flow node and grandchild agent nodes, each assigned a specific subgoal. Figure 2
illustrates the node execution process for both control flow nodes and agent nodes. The details are
described in Section 4.1.

We introduce a memory system designed to enhance the performance of ReAcTree. Episodic mem-
ory is employed to construct in-context examples for each agent node. Each node retrieves relevant,
agent-level experiences from episodic memory. Additionally, working memory stores information
gathered by agent nodes through their interactions with the environment during task execution. This
working memory is shared among all agent nodes, enabling them to access and utilize the stored
information as needed. Further details are provided in Section 4.2.

4.1 REACTREE ALGORITHM

ReAcTree is an LLM-based hierarchical task planning algorithm that generates a tree structure T ,
composed of control flow nodes and agent nodes, to achieve a task goal g expressed in natural
language. In the following, we offer a detailed explanation of the execution process for both control
flow nodes and agent nodes, as well as the overall ReAcTree algorithm.

Control Flow Nodes. Control flow nodes, inspired by behavior trees (Colledanchise et al., 2018),
manage the selection and execution of agent nodes within the tree. Each control flow node has child
nodes, which are agent nodes assigned specific natural language goals. Executing a control flow
node involves executing its child nodes sequentially. Each child node reports its execution status
(success or failure) to its parent, the control flow node. Based on the status of its child nodes, the
control flow node decides whether to proceed with the next child node or to return its own status to
its parent node. The specific behavior of the control flow node depends on its type.

ReAcTree employs three types of control flow nodes. The first is the sequence node (→), which
executes its child nodes in order. It returns success if all child nodes succeed; however, if any child
node fails, the sequence node returns failure. The second type is the fallback node (?), which also
executes its child nodes sequentially but returns success as soon as any child node succeeds. If none
of the child nodes succeed, it returns failure. The third type is the parallel node (⇒), a variation
of the traditional parallel node concept. While the traditional definition of a parallel node involves
executing child nodes simultaneously, in ReAcTree, simultaneous execution is not possible. Instead,
the parallel node executes its child nodes independently, regardless of their individual success or
failure. After all nodes are executed, the outcomes are aggregated according to a predefined policy
to determine the overall success or failure. This node is particularly useful in tasks such as household
chores, where multiple subgoals, like picking and placing objects, need to be executed sequentially
without interruption, yet their success or failure does not immediately halt the overall task.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Agent Nodes. Each agent node operates as an LLM-based task planner with a specific natural lan-
guage goal, responsible for making sequential decisions to achieve that goal. These decisions include
acting, reasoning, and expanding. Similar to the ReAct framework, acting refers to executing actions
and receiving feedback in the form of textual observations, while reasoning enables logical infer-
ence. Additionally, expanding decomposes the agent node’s current goal into subgoals and combines
them with a specific control flow strategy to further expand the tree structure.

An agent node n is first initialized with a goal gn. Executing the agent node involves sequential
decision-making, where the agent returns its status (whether the goal was achieved) after execution.
More specifically, when executing an agent node, an initial prompt Pn = (Psys, P

n
ic) is constructed,

where Psys is the system prompt, and Pn
ic consists of in-context examples specific to agent node n.

At each time step t, the agent node accesses its context cnt = (on1 , a
n
1 , o

n
2 , a

n
2 , . . . , a

n
t−1, o

n
t), where

oni and ani represent the observation and action at each previous time step i. The action policy is then
defined using the pre-trained LLM, PLLM , as: at ∼ pLLM (·|Pn, gn, cnt). A key feature of ReAcTree
is its extended action space, Ân

t = An
t ∪ L ∪ E , where An

t represents the set of executable skills at
time t (e.g., move, pick, turn on); L is the language space, used for generating self-reasoning text and
specifying subgoals in natural language; and E = F × L is the expand space, where F represents
the set of control flow types.

If the action ant ∈ An
t or ant ∈ L, the agent operates as in the ReAct framework, either performing

actions or engaging in reasoning. However, if ant ∈ E , the agent expands the tree structure by
adding a control flow node and handing over execution to it. In this case, the action is represented
as ant = (fn, [gn1 , . . . , g

n
K]), where fn is the control flow type and gni are the subgoals expressed

in natural language. A control flow node nf , with type fn, is added as a child of node n, and agent
nodes ni are initialized with their corresponding subgoals gni and added as children of nf . The
agent then waits for nf to complete execution. The agent node terminates when one of the following
occurs: generating the action done (resulting in success), generating action failure or reaching the
maximum decision count (both resulting in failure), or completing the execution of the control flow
node (returning success or failure based on its result).

Algorithm 1 ReAcTree Algorithm
Input: Natural language goal g

1: n← INITAGENTNODE(g)
2: TC ← EXECAGENTNODE(n)
3: if TC is done then
4: return Success
5: else if TC is failure or max decision then
6: return Failure
7: else if TC is Expand then
8: (fn, [gn1 , · · · , gnK])← EXPANDINFO
9: nf ← INITCTRLFLOWNODE(fn)

10: ADDCHILD(n, nf)
11: for i = 1 to K do
12: ni ← INITAGENTNODE(gni)
13: ADDCHILD(nf , ni)
14: end for
15: return EXECCTRLFLOWNODE(nf)
16: end if

Overall Algorithm. The overall process of Re-
AcTree is outlined in Algorithm 1. It begins by
initializing the root agent node n with the goal
g (line 1). The agent node is then executed un-
til meets a termination condition TC (line 2).
If TC is done, it indicates that the agent has
successfully achieved the goal, and the agent
node returns Success status (lines 3-4). If TC
is failure or the maximum decision count is
reached, it indicates failure, and the agent node
returns Failure status (lines 5-6). If TC is Ex-
pand, the agent has decided to decompose the
goal into subgoals. The expansion information
(fn, [gn1 , · · · , gnK]) is retrieved (line 8), where
fn is the control flow type and gni are the sub-
goals. A control flow node nf is initialized (line
9) and added as a child of the current agent node
n (line 10). For each subgoal, a new agent node
ni is initialized (line 12) and added as a child
of the control flow node nf (line 13). The con-
trol flow node nf is then executed (line 15), where it selects one of its child agent nodes based on
its control flow strategy. The selected agent node is then executed, and its status is returned to the
control flow node. This process repeats until the control flow node completes execution, after which
it returns its resulting status (success or failure).

4.2 MEMORY SYSTEMS

To enhance the performance of ReAcTree, we introduce two complementary memory systems:
episodic memory and working memory. Episodic memory is used to retrieve relevant past agent-
level experiences and incorporate them as in-context examples before each agent node begins its

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

decision-making process. On the other hand, working memory is designed to share key observa-
tions, such as the latest location of movable objects, across agent nodes during task execution. In
the following, we provide a detailed explanation of how each memory is utilized and integrated with
agent nodes of ReAcTree.

Episodic Memory. Episodic memory, Mep, stores the agent-level experiences of all ReAcTree
agent nodes involve in successfully completing tasks. The agent-level experience of an agent
node e, with a goal sentence ge and a final time step is T , is defined as (te, ve, se). Here,
te = (ge, oe1, a

e
1, . . . , o

e
T , a

e
T) represents the full text trajectory, where oet and aet denote the ob-

servation and action at each time step t. The vector ve = fsen(g
e) is the goal embedding generated

using the sentence embedding model fsen. Finally, se indicates the termination state of the agent
node, categorized as success, failure, or expand.

Before an agent node begins its decision-making process, it retrieves in-context examples by com-
paring its goal gn to the stored goals in episodic memory using cosine similarity. Specifically,
the agent embeds its goal as vn = fsen(g

n) and computes the similarity with stored embeddings:
sim(vn, ve) = vn · ve/(|vn||ve|),∀ve ∈ Mep. Based on the similarity scores, the system retrieves
the top k examples until a predefined token limit is reached. To handle cases where multiple stored
experiences yield identical similarity scores, the termination state s is used to break ties. When sim-
ilarity scores are tied, examples are sampled uniformly across termination states, success, failure, or
expand. This mechanism promotes diversity in the retrieved in-context examples.

Since ReAcTree is designed to decompose complex goals into manageable subgoals, it generates
concise trajectories tailored to specific tasks, unlike the monolithic trajectories used by ReAct. For
instance, while ReAct stores a single trajectory for Bring one pudding and onne juice to the coffee
table, ReAcTree breaks this down into subgoals like find and pick up pudding in kitchen, producing
shorter and more specific examples. This enables ReAcTree to retrieve highly relevant and focused
trajectories from episodic memory, enhancing its task-planning effectiveness.

Working Memory. Working memory serves as a shared repository for storing and recalling key
observations during task execution. In this paper, working memory focuses on tracking the latest
locations of movable objects to minimize redundant interactions with the environment and mitigate
potential hallucinations by providing accurate, environment-specific data.

Working memory is integrated into agent nodes of ReAcTree through two key mechanisms. First, the
executable skill set An

t is augmented with special actions like recall location of <movable object>,
which are predefined for all movable objects in the environment, enabling agents to retrieve stored
object locations directly from working memory instead of interacting with the environment. Second,
working memory is automatically updated whenever an agent interacts with the environment and
detects movable objects. For instance, if an agent opens a fridge and observes juice, working memory
updates the location of juice as near fridge for future use. Such interactions can also be viewed as an
extension of how tool usage is integrated into language models, as discussed in (Schick et al., 2024).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and Simulators. We primarily evaluate LLM-based task planning using the WAH-NL
dataset within the VirtualHome simulator, as introduced in LoTa-Bench (Choi et al., 2024). The
WAH-NL dataset, derived from the Watch-and-Help dataset (Puig et al., 2021), was originally de-
signed for human-agent collaboration. It has been adapted for autonomous agents, with natural lan-
guage commands collected via crowdsourcing. Each data instance comprises a natural language
instruction, an initial environment setup, and a goal condition. The dataset includes 250 tasks in the
training set and 100 tasks in the test set, covering five task categories: Setup a dinner table, Put
groceries, Prepare a meal, Wash dishes, and Prepare snacks. Each task involves multiple subgoals,
making WAH-NL well-suited for evaluating task planning in complex, long-horizon scenarios.

All experiments are conducted in the VirtualHome simulator, which provides a simulated household
environment where agents can perform various actions such as pick up, open, close, turn on, put
down, and go to. Unlike the fully observable setting in LoTa-Bench, we implement a partially ob-
servable setting in VirtualHome to simulate real-world conditions. In this configuration, the agent

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

has access to limited observations. Specifically, objects are identified by both their class name and
instance (e.g., cup 1, cup 2). After executing an action, the agent receives a text-based observation
reflecting its surroundings. For instance, after performing a go to room action, the agent can observe
all receptacles (e.g., tables, shelves) within the room. If the action is go to object, the agent observes
nearby visible objects, provided they are not inside closed receptacles. For actions like pick up or
open, the agent receives feedback indicating whether the action was successful or not. A more de-
tailed implementation of the partially observable setting is described in Appendix A, and we will
release our code and modified simulator for reproducibility (anonymous code for review is available
at figshare.com/s/97dd86282bd050f66d11).

Evaluations. To assess the effectiveness of ReAcTree, we compare it against ReAct, with both
utilizing the same underlying LLMs. We evaluate performance using the goal success rate (GSR),
defined as the percentage of tasks in which the agent successfully achieves the given task goal, and
the subgoal success rate (SSR), which is the ratio of successfully completed subgoals to the total
number of subgoals. Both methods were evaluated under the same maximum decision count, set
to a sufficiently large value of 199 for all experiments, ensuring fair comparisons. All results are
averaged across the entire test set.

Episodic Memory Construction. To construct the episodic memory, we first collect human-
annotated text trajectories for WAH-NL in both ReAct and ReAcTree formats. Specifically, one
random task from each task category is selected for trajectory collection, resulting in five tasks for
WAH-NL. Subsequently, we run both ReAct and ReAcTree on the training set using the LLaMA-3
70B model (Dubey et al., 2024). Only the trajectories of tasks that are successfully completed are
added to the episodic memory. To encode the agent’s goals, we use Sentence BERT (Reimers &
Gurevych, 2019)for sentence embeddings.

5.2 MAIN RESULTS

Table 1 summarizes the comparison between ReAcTree and ReAct across various LLMs, including
LLaMA 3, LLaMA 3.1 (Dubey et al., 2024), Qwen2, Qwen2.5 (Yang et al., 2024), Mistral (Jiang
et al., 2023), Gemma (Team et al., 2024), and GPT-4o (see Appendix B for the complete list). Perfor-
mance was evaluated using GSR and SSR metrics, with the primary results presented in Table 1 and
additional results provided in Appendix D. Since direct access to log probabilities is not available
for GPT-4o, its implementation was slightly modified. These details are in Appendix C.

Overall, ReAcTree consistently outperforms ReAct across all model types and sizes. For instance,
with the Qwen2.5 72B model, ReAcTree achieves a GSR of 63.00%, compared to ReAct’s GSR of
24.00%. This consistent performance improvement highlights the effectiveness of ReAcTree’s task
decomposition approach. The results clearly demonstrate the advantage of breaking tasks into man-
ageable subgoals, enabling more efficient task completion, particularly in complex, long-horizon
tasks. In terms of computational cost with this model, ReAcTree incurs a higher average decision
steps (75.00) compared to ReAct (58.08) for tasks where both methods succeed. However, its hier-
archical design resets the input prompt for each agent node, mitigating computational overhead.

Table 1: Performance comparison of ReAct and ReAcTree across different models and sizes. WM
(✓) indicates the use of working memory for task planning, while (✗) denotes its absence.

Metric Method WM LLaMA 3.1 Qwen2.5 Mistral GPT-4o
8B 70B 7B 72B 7B

GSR (%) ReAct ✗ 10.00 23.00 6.00 20.00 3.00 -
✓ 15.00 20.00 13.00 24.00 6.00 33.00

ReAcTree ✗ 17.00 30.00 12.00 51.00 10.00 -
✓ 30.00 53.00 35.00 63.00 20.00 46.00

SSR (%) ReAct ✗ 29.45 49.35 24.55 45.13 21.72 -
✓ 42.27 52.87 35.77 48.43 31.03 57.30

ReAcTree ✗ 53.28 62.83 42.43 70.95 37.43 -
✓ 60.60 73.43 58.80 79.37 43.83 62.77

7

https://figshare.com/s/97dd86282bd050f66d11

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Success case of ReAcTree on the WAH-NL dataset using LLaMA 3 70B.

Moreover, the results suggest that ReAcTree with smaller models can perform even better than larger
models running ReAct. For instance, ReAcTree using the LLaMA 3.1 8B model achieves a GSR of
30.00%, outperforming ReAct’s GSR of 20.00% when using the significantly larger LLaMA 3.1 70B
model. This performance improvement can be attributed to ReAcTree’s ability to decompose tasks
into simpler subproblems, allowing smaller models to efficiently manage less complex components
while retrieving more relevant in-context examples. By focusing on these smaller, more manageable
tasks, ReAcTree effectively compensates for the limitations of smaller models.

We also present qualitative results comparing failed trajectories in ReAct with successful ones in
ReAcTree using the LLaMA 3 70B model. The natural language instruction for the task is, Put the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

LLaMA 3 8B LLaMA 3 70B LLaMA 3.1 8B LLaMA 3.1 70B
Models

0

10

20

30

40

50

60

GS
R

(%
)

GSR Comparison
Agent-Level Retrieve
Task-Level Retrieve

(a)

LLaMA 3.1 8B LLaMA 3.1 70B Qwen 2 7B Qwen 2 72B
Models

0

20

40

60

80

100

Av
er

ag
e

Le
ng

th

Average Length Comparison with WM On and Off
WM On
WM Off

(b)
Figure 4: (a) GSR for retrieve methods and (b) Working memory average decision length.

apple, pancake, cupcake, and juice on the kitchen table, which requires locating and moving multiple
objects. ReAcTree breaks down the instruction into specific subgoals, such as move the apple to the
kitchen table, move the pancake to the kitchen table, move the cupcake to the kitchen table, and
move the juice to the kitchen table, using a persistent sequence node. Notably, during the search
for the pancake, ReAcTree utilizes a fallback node to explore different rooms. In contrast, ReAct
struggles to locate the pancake, as it only searches the initial room, the kitchen. Furthermore, ReAct
misidentifies a pudding as the pancake, and redundantly moves an already relocated apple. Figure 3
illustrates the successful trajectories from ReAcTree, while Figure 5 in Appendix G.1 shows the
failed trajectories from ReAct. The full text trajectories for both ReAcTree and ReAct are provided
in List 11 and List 12 in Appendix H.1, respectively. For a more detailed analysis of ReAcTree’s
failure cases, including examples and common error patterns, please refer to Appendix E.

5.3 EPISODIC MEMORY

In this section, we investigate the impact of episodic memory on the performance of ReAcTree. Re-
AcTree utilizes episodic memory by retrieving similar past experiences at the agent level, providing
in-context examples to each agent. This allows agents to reference relevant trajectories. To evaluate
the effectiveness of this approach, we compare it with task-level example retrieval.

In the agent-level retrieval method, each agent independently retrieves the most contextually similar
experiences from episodic memory, irrespective of the task. This enables each agent to draw from
a diverse set of agent-specific experiences. In contrast, task-level retrieval selects the most similar
past task and uses the entire sequence of trajectories from all agents involved in solving that task as
the in-context example. This approach gives the agent access to a complete set of trajectories used
to solve a previous task that closely resembles the current one.

The performance results are shown in Figure 4a. Our findings demonstrate that agent-level retrieval
yields better performance, especially as model size decreases. Smaller models benefit more from
decomposing complex tasks into simpler subgoals and retrieving contextually similar examples for
each subgoal, resulting in more efficient problem-solving. By contrast, task-level retrieval, which
provides a broader set of trajectories, may offer a wider contextual understanding but can be less
effective for fine-tuned decision-making at the subgoal level.

5.4 WORKING MEMORY

In this section, we analyze the impact of the working memory component on the performance of both
ReAcTree and ReAct models. As shown in Table 1, incorporating working memory consistently
leads to performance improvements across various LLMs and model sizes. This enhancement is
observed not only in ReAcTree but also in the ReAct baseline. In most cases, the performance
improvement occurs because the agent retrieves stored object locations from working memory using
the recall location of action, rather than generating locations through text. This finding aligns with
previous research on tool usage in LLMs (Schick et al., 2024), which also demonstrated similar
benefits.

In ReAcTree, working memory additionally contributes to efficiency improvements through infor-
mation sharing between agent nodes. When one agent node identifies the location of an object or

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

gathers relevant information, it updates this data in the working memory. Other agent nodes can then
access this information, eliminating redundant searches and actions. This inter-node communication
streamlines decision-making and accelerates task completion.

To quantify the efficiency gains provided by working memory, Figure 4b illustrates the average
number of decision-making steps required to complete tasks that are commonly solved both with
and without working memory. The figure shows that across all models, using working memory
significantly reduces the number of steps needed to achieve task success. This reduction indicates
that agents can plan more efficiently and execute tasks with fewer unnecessary actions by leveraging
the shared information stored in working memory.

5.5 EXPERIMENTS ON ALFRED

Datasets and Simulators. We further extended our experiments to include the ALFRED
dataset (Shridhar et al., 2020), which, similar to WAH-NL, involves task planning based on LLM
in a household environment setting. This dataset provides NL instructions, an initial state of the
environment, and a goal condition related to various household tasks. The task types in this experi-
ment are similar to those used in LoTa-Bench (Choi et al., 2024). We used the AI2-THOR simulator,
which corresponds to the ALFRED dataset.

Evaluations. The ALFRED is consists of three sets: train, valid-seen, valid-unseen. The planning
performance of both ReAct and ReAcTree models was evaluated using the valid-seen set. We evalu-
ated using only 30% of the valid-seen set, which consists of 208 task trajectories. We measured plan-
ning performance using the goal success rate (GSR) for ALFRED. GSR is determined by whether
the goal condition of the dataset matches the final state of the simulator after completing the plan-
ning.

Table 2: Goal success rate comparison of ReAct
and ReAcTree on ALFRED with working memory.

Method LLaMA 3 Qwen2
8B 70B 7B 72B

ReAct 5.77 16.35 7.73 14.90

ReAcTree 8.70 19.23 4.33 19.71

Experimental Results. Table 2 summarizes
the comparison between ReAct and ReAcTree
across different LLM models. The proposed
ReAcTree method demonstrates a 2.88% per-
formance improvement over ReAct in both the
LLaMA 3 70B and Qwen2 72B models. For
smaller models, ReAcTree also outperforms
ReAct by 2.93% in the LLaMA 3 8B model.
However, in the Qwen2 7B model, ReAct sur-
passes ReAcTree with a 3.4% advantage. Overall, except for the Qwen2 7B model, ReAcTree con-
sistently improves task planning performance. Visualizations and full text trajectories for a specific
ALFRED task where ReAcTree succeeds and ReAct fails are provided in Appendix G.2 and H.2,
respectively. Please refer to Appendix F for details on the experiments with the ALFRED.

6 CONCLUSION

In this paper, we presented ReAcTree, a hierarchical task planning method that automatically de-
composes complex tasks into subgoals. Our approach uses a tree structure that integrates control
flow nodes for managing tasks and agent nodes to perform sequential decision-making through an
extended action space, which includes not only reasoning and acting, but also expanding. Addition-
ally, we introduced memory systems, with episodic memory retrieving agent-level experiences and
working memory sharing observations between nodes. Our experiments on the WAH-NL dataset
show that ReAcTree consistently outperforms the ReAct baseline, achieving 35% and 63% success
rates with Qwen2.5 7B and 72B, respectively, compared to 24% with ReAct using Qwen2.5 72B.
We also demonstrated the effectiveness of our memory systems.

One limitation of our approach is that the observations obtained after executing actions rely on
ground truth from a simulator, with pre-specified formats for certain action types. These observa-
tions may not always be optimal for solving the current subgoal. Additionally, while ReAcTree
shows significant improvement with smaller models, further enhancements are still needed. For fu-
ture work, we will explore methods to gather more relevant observations from the environment after
action execution. We will also focus on improving the performance of ReAcTree with smaller mod-
els.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 17682–17690, 2024.

Xinglin Chen, Yishuai Cai, Yunxin Mao, Minglong Li, Wenjing Yang, Weixia Xu, and Ji Wang.
Integrating intent understanding and optimal behavior planning for behavior tree generation from
human instructions. arXiv preprint arXiv:2405.07474, 2024.

Jae-Woo Choi, Youngwoo Yoon, Hyobin Ong, Jaehong Kim, and Minsu Jang. Lota-bench: Bench-
marking language-oriented task planners for embodied agents. In The Twelfth International Con-
ference on Learning Representations, 2024.

Michele Colledanchise, Ramviyas Parasuraman, and Petter Ögren. Learning of behavior trees for
autonomous agents. IEEE Transactions on Games, 11(2):183–189, 2018.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Mengkang Hu, Yao Mu, Xinmiao Yu, Mingyu Ding, Shiguang Wu, Wenqi Shao, Qiguang Chen,
Bin Wang, Yu Qiao, and Ping Luo. Tree-planner: Efficient close-loop task planning with large
language models. arXiv preprint arXiv:2310.08582, 2023.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International conference on
machine learning, pp. 9118–9147. PMLR, 2022a.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint arXiv:2207.05608, 2022b.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Tor-
ralba. Virtualhome: Simulating household activities via programs. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 8494–8502, 2018.

Xavier Puig, Tianmin Shu, Shuang Li, Zilin Wang, Yuan-Hong Liao, Joshua B. Tenenbaum, Sanja
Fidler, and Antonio Torralba. Watch-and-help: A challenge for social perception and human-ai
collaboration. In International Conference on Learning Representations, 2021.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing, 11 2019.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, pp. 2655–2671, 2022.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions
for everyday tasks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 10740–10749, 2020.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: adaptive plan-
ning from feedback with language models. In Proceedings of the 37th International Conference
on Neural Information Processing Systems, pp. 58202–58245, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Huaxiaoyue Wang, Kushal Kedia, Juntao Ren, Rahma Abdullah, Atiksh Bhardwaj, Angela Chao,
Kelly Y Chen, Nathaniel Chin, Prithwish Dan, Xinyi Fan, Gonzalo Gonzalez-Pumariega, Aditya
Kompella, Maximus Adrian Pace, Yash Sharma, Xiangwan Sun, Neha Sunkara, and Sanjiban
Choudhury. Mosaic: A modular system for assistive and interactive cooking, 2024a.

Liang Wang, Nan Yang, and Furu Wei. Learning to retrieve in-context examples for large language
models. In Proceedings of the 18th Conference of the European Chapter of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1752–1767, 2024b.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, Yitao Liang, and Team Craft-
Jarvis. Describe, explain, plan and select: interactive planning with large language models enables
open-world multi-task agents. In Proceedings of the 37th International Conference on Neural In-
formation Processing Systems, pp. 34153–34189, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Lionel Wong, Jiayuan Mao, Pratyusha Sharma, Zachary S Siegel, Jiahai Feng, Noa Korneev,
Joshua B Tenenbaum, and Jacob Andreas. Learning adaptive planning representations with natu-
ral language guidance. arXiv preprint arXiv:2312.08566, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Advances
in Neural Information Processing Systems, 36, 2024.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
large-scale task planning. Advances in Neural Information Processing Systems, 36, 2024.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc V Le, et al. Least-to-most prompting enables complex
reasoning in large language models. In The Eleventh International Conference on Learning Rep-
resentations, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS FOR PARTIALLY OBSERVABLE SETTINGS

As outlined in Section 5, we adapt LoTa-bench (Choi et al., 2024) to support partial observability.
Oracle-generated partial observation feedback signals are incorporated into the context information
provided to the LLM. Tables 3 and 4 present detailed example trajectories for each action type under
partial observation. In this setup, the agent is aware only of the receptacles in the current room and
can only see the objects visible within its ego-centric view. VirtualHome is a multi-room apartment
simulator, so it has a “go to room” action type. On the other hand, AI2-THOR is a single-room
studio apartment simulator, so it does not use the “go to room” action type because there is no need
to move between rooms. Table 3 illustrates an example of partial observation feedback from the
VirtualHome simulator, while Table 4 provides a similar example from the AI2-THOR simulator.

Table 3: Action types and sample text observations in the VirtualHome simulator.

Action Type Action Text Observation

initialization - You are in the house, and there are 4 rooms: bathroom (1), bed-
room (1), kitchen (1), living room (1). You are in the middle of
a bathroom (1). Looking quickly around the room, you see bath-
room cabinet (1), bathroom counter (1), faucet (1), sink (1), toilet
(1), towel rack (1), washing machine (1).

go to room go to kitchen 1 You move to the kitchen (1). Looking quickly around the room,
you see chair (1, 2, 3, 4), dishwasher (1), faucet (1), fridge (1),
kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 3),
kitchen table (1), microwave oven (1), nightstand (1, 2), sink (1),
sofa (1), stove (1), toaster (1).

go to receptacle go to kitchen table 1 You arrive at the kitchen table (1). You see apple (2), book (1),
bowl (2, 3), cereal (1), chair (1, 2, 3, 4), chocolate syrup (1),
condiment bottle (1, 2), condiment shaker (1, 2), cupcake (1, 2),
cutlery fork (2, 3, 4), cutlery knife (3, 5, 6), juice (1), kitchen ta-
ble (1), pancake (1), pear (1), plate (2, 3, 4, 5), pudding (2), water
glass (1, 2, 4)

pick up object pick up juice 1 You pick up juice. You hold juice (1).

put down object put down apple 1 You put down apple on coffee table.

open receptacle open fridge 1 You open fridge. You see bench (1), cupcake (1), fridge (1, 2),
juice (1).

close receptacle close dishwasher 1 You close dishwasher.

turn on receptacle turn on dishwasher 1 You turn on dishwasher.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 4: Action types and sample text observations in the AI2-THOR simulator.

Action Type Action Text Observation

initialization - You are in the house, and you arrive at the bathroom, Look-
ing quickly around the room, you see TowelHolder (1), Toilet
(1), ToiletPaperHanger (1), Sink (1), SinkBasin (1), Shelf (1,
2, 3), HandTowelHolder (1), GarbageCan (1), BathtubBasin
(1).

go to receptacle go to BathtubBasin (1) You arrive at BathtubBasin (1). You see SoapBar (2), Cloth
(1), Bathtub (1), BathtubBasin (1).

pick up object pick up SoapBar (2) You pick up SoapBar (2). You see SoapBar (2), Cloth (1),
Bathtub (1), BathtubBasin (1). I am holding SoapBar (2)
now.

put down object put down SoapBar (2) You put SoapBar (2) on Shelf (1). You see SoapBar (1, 2, 3),
Shelf (1), Candle (2).

open receptacle open Microwave (1) You open Microwave (1). You see StoveKnob (1, 2, 3, 4),
StoveBurner (3), Potato (1), Pan (1, 2), Microwave (1), Bowl
(3).

drop object put down DishSponge (1) You put down failed, drop it. You see SoapBar (3), Sink (1),
SinkBasin (1), HandTowel (1), Faucet (2), DishSponge (1).

close receptacle close Microwave (1) You close Microwave (1). You see StoveKnob (1, 2, 3, 4),
StoveBurner (3), Pan (1, 2), Microwave (1).

turn on receptacle turn on Microwave (1) You turn on Microwave (1). You see Microwave (1), Drawer
(5, 6), Cabinet (7, 8, 10).

turn off receptacle turn off Microwave (1) You turn off Microwave (1). You see Microwave (1), Drawer
(5, 6), Cabinet (7, 8, 10).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B LANGUAGE MODELS

Table 5 lists the exact language model names used in the experiments.

Table 5: List of language models used in the experiments. Model names are either from HuggingFace
model hub or OpenAI API.

Class Model name Model size

LLaMA 3 meta-llama/Meta-Llama-3-8B 8B
meta-llama/Meta-Llama-3-70B 70B

LLaMA 3.1 meta-llama/Llama-3.1-8B 8B
meta-llama/Llama-3.1-70B 70B

Qwen2 Qwen/Qwen2-7B 7B
Qwen/Qwen2-72B 72B

Qwen2.5 Qwen/Qwen2.5-7B 7B
Qwen/Qwen2.5-72B 72B

Mistral mistralai/Mistral-7B-v0.3 7B

Gemma google/gemma-7b 7B

GPT-4o gpt-4o-2024-05-13 -

C GPT-4O IMPLEMENTATION DETAILS

GPT-4o was implemented slightly differently due to the lack of access to log probabilities. At each
time step t, the next action at was generated using the OpenAI API. If at was a reasoning action, it
was handled in the same way as with other models. For acting actions, we first checked if at was a
valid skill inAt. If it was valid, it was processed as usual. If not, the following corrective observation
was provided to GPT-4o:

You should only output sentences that begin with Think, Act, or Expand. If you output Act, you
should use one of actions of this list: [go to, pick up, put down, open, close, turn on, recall location
of, done, failure].

Similarly, for expanding actions, if at was valid, it proceeded as normal. If not, the same correc-
tive observation was added, prompting GPT-4o to refine its decision. This method ensured GPT-4o
remained consistent with the task’s action space, despite the lack of log probability access.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D EXTENDED RESULTS

Table 6: Performance comparison of ReAct and ReAcTree on WaH dataset. GSR and SSR represent
goal success rate and subgoal success rate, respectively. WM represents the use of the working
memory.

Metric Method WM LLaMA 3 Qwen2 Gemma
8B 70B 7B 72B 7B

GSR (%) ReAct ✗ 3.00 17.00 9.00 20.00 2.00
✓ 8.00 23.00 13.13 23.00 8.00

ReAcTree ✗ 13.00 53.00 16.00 58.00 10.00
✓ 27.00 59.00 28.00 61.00 36.00

SSR (%) ReAct ✗ 26.82 45.83 26.60 48.02 22.20
✓ 34.22 51.25 32.98 47.58 28.48

ReAcTree ✗ 50.32 78.38 42.73 77.08 43.52
✓ 61.53 77.08 54.80 77.28 59.83

We compare ReAct and ReAcTree on WaH using various recent LLMs. Table 6 presents results
for additional LLMs not included in Table 1. Across both large-scale and lighter models, ReAcTree
consistently outperforms ReAct, with or without working memory. This indicates that the ReAcTree
structure consistently enhances task planning performance by adaptively breaking down complex
tasks into solvable agent-level tasks with control flow, allowing the same LLM to handle tasks more
effectively and easily. We used Llama 3, Qwen 2, and Gemma 2 as off-the-shelf LLMs. The strong
performance of the proposed ReAcTree without working memory further emphasizes its robustness,
making it an effective approach for both lightweight and large-scale language model.

D.1 WITH WORKING MEMORY RESULTS

For the lightweight models, in the case of the LLaMA 3 8B model, ReAcTree shows significant im-
provements over ReAct, with a 19% increase in GSR and a 27.31% increase in SSR. Similarly, in the
Qwen 2 7B model, ReAcTree achieves a 14.87% improvement in GSR and a 21.82% improvement
in SSR compared to ReAct. In the Gemma 2 7B model, ReAcTree demonstrates the most impressive
gains in lightweight model, with a 28% increase in GSR and a 31.35% increase in SSR.

For large-scale models such as LLaMA 3 70B and Qwen2 72B, ReAcTree also significantly out-
performs ReAct. In the LLaMA 3 70B model, ReAcTree outperforms ReAct by 36% in GSR and
by 25.83% in SSR. In the Qwen 2 72B model, ReAcTree shows a 38% improvement in GSR and a
29.06% improvement in SSR over ReAct.

D.2 WITHOUT WORKING MEMORY RESULTS

Even without working memory, ReAcTree surpasses ReAct by a significant margin. In lightweight
models, ReAcTree shows notable improvements over ReAct, with a 10% increase in GSR and a
23.5% increase in SSR. Similar trends are observed in the Qwen 2 7B and Gemma 2 7B models,
where ReAcTree consistently outperforms ReAct in both GSR and SSR.

For large-scale models, ReAcTree continues to outperform ReAct. In the LLaMA 3 70B model, Re-
AcTree achieves a 36% improvement in GSR and a 32.55% increase in SSR over ReAct. Similarly,
in the Qwen 2 72B model, ReAcTree surpasses ReAct by 38% in GSR and 29.06% in SSR, even
without working memory.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

E FAILURE ANALYSIS

E.1 FAILURE TYPES

In this section, we categorize the failure cases of the proposed ReAcTree on the WAH-NL results
using QWEN-2.5 72B model. The failure cases are classified into four types: Expand-level, Agent-
level, Constraints, and Instruction errors. Table 7 summarizes these failure types.

First, Expand-level failures occur during the expand procedure of ReAcTree. These failures are cate-
gorized Task decomposition, Control-flow selection, and Expand-level infinite loop failures. Second,
Agent-level failures arises during the planning process within individual agent nodes. These include
Navigation & search, Agent-level planning, Agent-level infinite loop, and Termination reasoning
failures. Third Constraints failures happen when tasks could be completed with more relaxed limits
but fail due to the current thresholds. This category includes Max step failures, where the maximum
number of decision steps is exceeded. Finally, Instruction error stems from issues in task instruc-
tions of WAH-NL test set. These are divided into Incorrect instructions, where the instruction differs
from the goal, and Ambiguous instructions, where the instructions are unclear.

Table 7: Failure types observed in the WAH-NL results of the proposed ReAcTree using the QWEN-
2.5 72B model.

Hierarchy Failiure Type Details

Expand-level

Task decomposition Failure to break down instructions
into agent-level sub-goals

Control-flow selection Incorrect selection of control flow
within expand-level decomposition

Expand-level infinite loop Infinite loop in expand-level decomposition

Agent-level

Navigation & search Failure in object search & navigation
under partial observability

Agent-level planning Failure in sub-goal planning

Agent-level infinite loop Infinite loop in agent-level decomposition

Termination reasoning Termination condition check failure
in reasoning

Constraints Max step Exceeded the maximum
allowable number of steps

Instruction error Incorrect Instruction When the goal stated in the instructions
differs from the actual goal

Ambiguous Instruction When the goal state cannot be determined
solely from the instructions

E.2 FAILURE ANALYSIS

In this section, we analyze the failure cases of ReAcTree using the QWEN-2.5 72B model, both
with and without working memory. ReAcTree without working memory exhibited a total of 41
failure cases, categorized into Expand-level (9 cases), Agent-level (30 cases), Constraints (1 case),
and Instruction error failures (9 cases). In contrast, ReAcTree with WM showed fewer failures,
with a total of 37 cases distributed as Expand-level (6 cases), Agent-level (22 cases), Constraints (0
cases), and Instruction error failures (9 cases). In both settings, Agent-level failures were the most
prevalent.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 8: Comparison of failure cases with and without the proposed working memory. We analyze
the failure cases from a test set of 100 samples on the WAH-NL benchmark. A failure is defined
as any instance where at least one sub-goal remains unsatisfied. The table also report the average
sub-goal success rate (SSR). In the table, ”WM” denotes working memory, and ”diff.” represents
the difference in SSR between cases with and without working memory.

Failure Type Number of failures Avg. SSR
w.o. WM w. WM w.o. WM w. WM diff.

Task decomposition 6 5 (-1) 58.33 66.67 +8.34
Control-flow selection 2 1 (-1) 16.67 66.67 +50.00
Expand-level infinite loop 1 0 (-1) 0 100 +100
Navigation & search 4 5 (+1) 72.08 70.42 -1.66
Agent-level planning 14 9 (-5) 57.70 73.73 +16.03
Agent-level infinite loop 3 4 (+1) 39.72 41.67 +1.95
Termination reasoning 9 4 (-5) 29.24 57.73 +28.49
Max step 1 0 (-1) 60 100 +40
Incorrect Instruction 4 4 37.50 37.50 0
Ambiguous Instruction 5 5 40.56 39.17 -1.39

To further understand the impact of working memory, we measured the average subgoal success rate
(SSR) for each failure type across tasks that failed in either configuration. Table 8 summarizes these
results, reporting the number of failures and the corresponding average SSR for each failure type.
For example, in the case of Task decomposition failures, the total number of unique tasks used to
compute SSR was 9. These tasks included task IDs 3, 10, 12, 23, 37, 38, and 62 from the without
working memory configuration, and task IDs 12, 23, 37, 38, 47, and 77 from the with working
memory setting. The union of these task sets is {3, 10, 12, 23, 37, 38, 47, 62, 77}. We calculated the
average SSR for both configurations using this union set of failure cases.

The following sections provide a detailed analysis of the major failure types to gain deeper insights
into ReAcTree’s performance.

Task decomposition is working well. In the expanding process of ReAcTree, the agent node selects
a control flow and breaks down its goal sentence into multiple subgoals. Task decomposition failure
occurs when this process generates incorrect subgoals. In our experiments on the WAH-NL test set,
ReAcTree encountered these failures in 6 sample cases (6%) without utilizing working memory.
However, with the integration of the proposed working memory, this number was reduced to 5 cases
(5%), as shown in Table 8. Furthermore, the adoption of working memory significantly improved the
average SSR (Avg. SSR in Table 8), with an increase of 8.34% point, from 58.33% to 66.67%. This
demonstrates that the proposed working memory enhances subgoal success rates, ensuring partial
success even when expand-level task decomposition is not entirely successful.

Working memory enhance Agent-level planning performance. The proposed working memory
significantly reduce the number of Agent-level planning failures. As demonstrated in Table 8, incor-
porating the proposed working memory reduces the number of Agent-level planning failure cases
from 14 to 9, while improving the average SSR by 16.03%. By recalling the locations from previous
observations, the context length is shortened, and the number of nodes is reduced, enabling the LLM
to generate more accurate plans. This improvement effectively minimizes Agent-level planning fail-
ures.

Working memory improves step efficiency in long-horizon task. The proposed working memory
reduces the number of search steps required in partially observable environments. In max step failure
cases, ReAcTree achieves an average SSR of 60.00% without working memory. However, with the
adoption of working memory, these cases are resolved without reaching the maximum step limit.

Limitations. While the proposed ReAcTree and its memory mechanisms enhance embodied task
planning capabilities, certain limitations persist. First, ReAcTree faces challenges in searching for
target objects in partially observable environments. Unlike previous work Choi et al. (2024), which
assumes a fully observable environment, ReAcTree operates in settings with partial observability,
adding significant complexity. As a result, 5% of the evaluation samples fail due to navigation and
search failures, with an average SSR of 70.42%.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Second, there is a risk of error propagation. While expand-level decomposition failures occur in only
5% of the evaluation samples, with an average SSR of 66.67%, such errors in expand-level planning
can propagate and potentially disrupt the entire process. This limitation could be mitigated in future
work by introducing an additional verification step for expand-level planning

Third, unpredictable errors, such as infinite loops in agent-level planning and termination reasoning
failures, remain significant challenges. In our experiments, infinite loops in agent-level planning ac-
counted for 4% of the evaluation set, with an average SSR of 41.67%, while termination reasoning
failures also made up 4%, with an average SSR of 57.73%. Although this work focuses on designing
an efficient architecture for agent nodes and implementing effective memory mechanisms, further
improvements to the agent node itself are essential. To address these issues, a robust verification
process is needed, where each node evaluates the current progress of the task. While this evalua-
tion is weakly performed in the “Think stage” of ReAct, additional verification mechanisms could
significantly mitigate these problems.

E.3 DETAILED DESCRIPTIONS OF THE FAILURE TYPES

E.3.1 TASK DECOMPOSITION FAILURE

Listing 1: The example of the task decomposition failure.
Agent Node 1
Your task is to: Home service robot, input 1 cutlery fork, 1 wine glass and 1

plate into the dishwasher. When complete then turn the dishwasher on.

...

Think: To solve the task, I need to accomplish 4 subgoals independently. Find and
open the dishwasher, move the cutlery fork in the dishwasher, move the wine
glass in the dishwasher, and close and turn on the dishwasher.

Expand: {’control_flow’: ’parallel’, ’conditions’: ’find and open the dishwasher,
move the cutlery fork in the dishwasher, move the wine glass in the dishwasher
, close and turn on the dishwasher’}

Task decomposition failure occurs when the system initially generates an incorrect sequence of
sub-goal instructions to address the given instruction. For instance, in Listing 1, the agent fails to
decompose one of the sub-goals during the expand-level task decomposition process.

E.3.2 CONTROL-FLOW SELECTION FAILURE

Listing 2: The example of the control-flow selection failure.
Agent Node 1
Your task is to: Please serve a water glass on the kitchen table

...

Think: To solve the task, I need to accomplish 2 subgoals sequentially. Find and
pick up the water glass, and find the kitchen table and put down the water
glass.

Expand: {’control_flow’: ’sequence’, ’conditions’: ’find and pick up the water
glass, find the kitchen table and put down the water glass’}

Agent Node 2
Your primary goal is to: Please serve a water glass on the kitchen table

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

To achieve this, you should perform your sibling tasks in sequence. At this level,
your sibling tasks are: find and pick up the water glass, and find the
kitchen table and put down the water glass.

Your task is to: find and pick up the water glass
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen

(1), living room (1). You are in the middle of a bathroom (1). Looking quickly
around the room, you see ...

Think: To solve the task, I need to recall the location of the water glass.
Act: recall location of water glass
You have not seen water glass before.
Think: Now, I need to find and pick up the water glass in one of the rooms. The

water glass is more likely to appear in kitchen 1, living room 1, or bedroom
1. I can check each room one by one until I find and pick up the water glass.

Expand: {’control_flow’: ’fallback’, ’conditions’: ’find and pick up the water
glass in kitchen 1, find and pick up the water glass in living room 1, find
and pick up the water glass in bedroom 1’}

Agent Node 3
Your primary goal is to: find and pick up the water glass
To achieve this, you should perform your sibling tasks using a fallback strategy.

At this level, your sibling tasks are: find and pick up the water glass in
kitchen 1, find and pick up the water glass in living room 1, and find and
pick up the water glass in bedroom 1.

Your task is to: find and pick up the water glass in kitchen 1
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen

(1), living room (1). You are in the middle of a bathroom (1). Looking quickly
around the room, you see ...

Think: I am in bathroom 1. Now, I need to find the water glass. The water glass is
more likely to appear on bathroom counter (1), or in bathroom cabinet (1). I
can check each place one by one, starting from bathroom counter 1, until I
find the water glass.

Act: go to bathroom counter 1
...
Think: I cannot find the water glass in bathroom 1.
Act: failure

Agent Node 4
Your primary goal is to: find and pick up the water glass
To achieve this, you should perform your sibling tasks using a fallback strategy.

At this level, your sibling tasks are: find and pick up the water glass in
kitchen 1, find and pick up the water glass in living room 1, and find and
pick up the water glass in bedroom 1.

Your task is to: find and pick up the water glass in living room 1
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen

(1), living room (1). You are in the middle of a bathroom (1). Looking quickly
around the room, you see ...

Think: I am in bathroom 1. Now, I need to go to living room 1.
Act: go to living room 1
...
Think: I cannot find the water glass in living room 1.
Act: failure

Agent Node 5
Your primary goal is to: find and pick up the water glass
To achieve this, you should perform your sibling tasks using a fallback strategy.

At this level, your sibling tasks are: find and pick up the water glass in
kitchen 1, find and pick up the water glass in living room 1, and find and
pick up the water glass in bedroom 1.

Your task is to: find and pick up the water glass in bedroom 1
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen

(1), living room (1). You are in the middle of a living room (1). Looking
quickly around the room, you see ...

Think: I am in living room 1. Now, I need to go to bedroom 1.
Act: go to bedroom 1

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Think: I cannot find the water glass in bedroom 1.
Act: failure

[The parent sequence node terminates because the fallback node returns a failure.]

Control-flow selection failure arises from selecting an inappropriate control flow, often involving
cases where a ”fallback” node is used for object searching. If the parent node of the ”fallback”
node is not a ”parallel” node but a ”sequence” node, and all child nodes of the ”fallback” fail, the
”sequence” node does not fully execute and terminates prematurely. An example is summarized in
Listing 2.

E.3.3 EXPAND-LEVEL INFINITE LOOP

Listing 3: The example of the expand-level infinite loop failure

Your task is to: move the wine in the fridge
...
Expand: {’control_flow’: ’sequence’, ’conditions’: ’find and pick up the wine,

find the fridge and put down the wine’}

find and pick up the wine

Your task is to: find and pick up the wine
...
Expand: {’control_flow’: ’fallback’, ’conditions’: ’find and pick up the wine in

kitchen 1, find and pick up the wine in living room 1, find and pick up the
wine in bedroom 1’}

Your task is to: find and pick up the wine in kitchen 1
...
Act: failure

Your task is to: find and pick up the wine in living room 1
...
Act: failure

Your task is to: find and pick up the wine in bedroom 1
...
Act: done

find the fridge and put down the wine

[The agent start the infinite loop]
Your task is to: find the fridge and put down the wine
...
Expand: {’control_flow’: ’sequence’, ’conditions’: ’find and pick up the wine,

find the fridge and put down the wine’}

find and pick up the wine

Your task is to: find and pick up the wine
...
Expand: {’control_flow’: ’fallback’, ’conditions’: ’find and pick up the wine in

kitchen 1, find and pick up the wine in living room 1, find and pick up the
wine in bedroom 1’}

Your task is to: find and pick up the wine in kitchen 1
...
Act: failure

Your task is to: find and pick up the wine in living room 1

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

...
Act: failure

Your task is to: find and pick up the wine in bedroom 1
...
Act: done

find the fridge and put down the wine

Your task is to: find the fridge and put down the wine
Expand: {’control_flow’: ’sequence’, ’conditions’: ’find and pick up the wine,

find the fridge and put down the wine’}
[The agent try to find the wine again already found]

find and pick up the wine

Your task is to: find and pick up the wine
Expand: {’control_flow’: ’fallback’, ’conditions’: ’find and pick up the wine in

kitchen 1, find and pick up the wine in living room 1, find and pick up the
wine in bedroom 1’}

...

Lastly, an expand-level infinite loop occurs when the expand-level decomposition succeeds, but a
repetitive sub-goal sequence is endlessly generated, causing the tree structure to expand infinitely.
While this issue arises in only one sample with ReAcTree without working memory and is com-
pletely absent when working memory is employed, it represents a critical failure type. In such cases,
the system is unable to execute actions correctly and continues to expand indefinitely, making the
goal impossible to achieve.

E.3.4 NAVIGATION & SEARCH FAILURE

Listing 4: The example of the navigation & search failure.
...
Your primary goal is to: move the glass of water in the dishwasher
To achieve this, you should perform your sibling tasks in sequence. At this level,

your sibling tasks are: find and pick up the glass of water, and find the
dishwasher and put down the glass of water.

Your task is to: find and pick up the glass of water
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen

(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see chair (1, 2, 3, 4), dishwasher (1), faucet (1),
fridge (1), kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2),
kitchen table (1), microwave oven (1), nightstand (1, 2), sink (1), sofa (1),
stove (1), toaster (1).

Think: To solve the task, I need to recall the location of the glass of water.
Act: recall location of glasses
You have not seen glasses before.
Think: Now, I need to find and pick up the glass of water in one of the rooms. The

glass of water is more likely to appear in kitchen 1, living room 1, or
bedroom 1. I can check each room one by one until I find and pick up the glass
of water.

Expand: {’control_flow’: ’fallback’, ’conditions’: ’find and pick up the glass of
water in kitchen 1, find and pick up the glass of water in living room 1, find
and pick up the glass of water in bedroom 1’}

[Starting search for the water glass.]
Your primary goal is to: find and pick up the glass of water
To achieve this, you should perform your sibling tasks using a fallback strategy.

At this level, your sibling tasks are: find and pick up the glass of water in
kitchen 1, find and pick up the glass of water in living room 1, and find and
pick up the glass of water in bedroom 1.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Your task is to: find and pick up the glass of water in kitchen 1
...
Think: I cannot find the glass of water in kitchen 1.
Act: failure

Your primary goal is to: find and pick up the glass of water
To achieve this, you should perform your sibling tasks using a fallback strategy.

At this level, your sibling tasks are: find and pick up the glass of water in
kitchen 1, find and pick up the glass of water in living room 1, and find and
pick up the glass of water in bedroom 1.

Your task is to: find and pick up the glass of water in living room 1
...
Think: I cannot find the glass of water in living room 1.
Act: failure

Your primary goal is to: find and pick up the glass of water
To achieve this, you should perform your sibling tasks using a fallback strategy.

At this level, your sibling tasks are: find and pick up the glass of water in
kitchen 1, find and pick up the glass of water in living room 1, and find and
pick up the glass of water in bedroom 1.

Your task is to: find and pick up the glass of water in bedroom 1
...
Think: I cannot find the glass of water in bedroom 1.
Act: failure

[Unable to find the water glass, proceeding to the next parallel node]
Your primary goal is to: Please put a cutlery fork and a glass of water in the

dishwasher, then turn the diswasher on.
To achieve this, you should perform your sibling tasks in parallel. At this level,

your sibling tasks are: find and open the dishwasher, move the cutlery fork
in the dishwasher, move the glass of water in the dishwasher, and close and
turn on the dishwasher.

Your task is to: close and turn on the dishwasher
...

Navigation & search failure occurs when the agent is unable to find the target object despite exe-
cuting the entire generated search action sequence(commonly associated with the ”fallback” node
in ReAcTree). Object navigation is particularly challenging due to partial observability, which can
prevent the task from being completed even if the expand-level plan is successfully generated.

E.3.5 AGENT-LEVEL PLANNING FAILURE

Listing 5: The example of the agent-level planning failure.
Your primary goal is to: find and pick up the cake
To achieve this, you should perform your sibling tasks using a fallback strategy.

At this level, your sibling tasks are: find and pick up the cake in kitchen 1,
find and pick up the cake in living room 1, and find and pick up the cake in
bedroom 1.

Your task is to: find and pick up the cake in bedroom 1
...
Think: I am in living room 1. Now, I need to go to bedroom 1.
Act: go to bedroom 1
You move to the bedroom (1). Looking quickly around the room, you see ..
Think: Now, I need to find the cake. The cake is more likely to appear on coffee

table (2), desk (2, 3), or in cabinet (1). I can check each place one by one,
starting from coffee table 2, until I find the cake.

...
You open cabinet. You see apple (2), cabinet (1), computer (2), desk (2), light

switch (4), pound cake (1), sundae (1)
Think: I find pound cake 1. Now, I need to pick it up.
Act: pick up pound cake 1

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

You pick up pound cake. You hold pound cake (1).
Think: Now I accomplish the goal.
Act: done

Agent-level planning failure occurs when the agent generates an incorrect or meaningless action
sequence within action-performing nodes. This can happen when the action sequence is misaligned
with the provided sub-goal instructions or when the actions executed do not align with the previous
reasoning outcomes. For example, in Listing 5, the sub-goal is ”Find and pick up the cake in bed-
room 1.” The agent reasons correctly, stating: ”Think: Now I need to find the cake. The cake is more
likely to be on coffee table (2), desk (2, 3), or in cabinet (1). I can check each place one by one,
starting from coffee table 2, until I find the cake.” However, instead of picking up the cake, the agent
mistakenly picks up a pound cake.

E.3.6 AGENT-LEVEL INFINITE LOOP

Listing 6: The example of the agent-level infinite loop.
Your task is to: go find a bottle of win and a pudding there on the coffee table.

[Starting to search a wine and pudding]
Think: I need to find a bottle of wine and a pudding. The wine is more likely to

appear in kitchen 1, and the pudding is more likely to appear in living room
1.

...
Think: I can see fridge 1. I need to open fridge 1 to find the wine.
Act: go to fridge 1
You arrive at the fridge (1). The fridge (1) is closed. You see fridge (1), mug

(3)
Think: I need to open fridge 1.
Act: open fridge 1
You open fridge. You see apple (1), fridge (1), mug (3), sofa (1)

[Picked up an apple instead of wine]
Think: I can see apple 1. I need to pick up apple 1.
Act: pick up apple 1
You pick up apple. You hold apple (1).

[Search the pudding]
Think: Now, I need to find the pudding. The pudding is more likely to appear in

living room 1.
...
Think: I can see coffee table 1. I need to go to coffee table 1 to find the

pudding.
Act: go to coffee table 1
You arrive at the coffee table (1). You see apple (1), coffee table (1), sofa (2),

tv (1) You hold apple (1).

[Put down apple]
Think: I can see apple 1. I need to put down apple 1.
Act: put down apple 1
You put down apple on coffee table
Think: Now, I need to find the pudding. The pudding is more likely to appear in

living room 1.
Act: go to living room 1
You move to the living room (1). Looking quickly around the room, you see ...
Think: I can see coffee table 1. I need to go to coffee table 1 to find the

pudding.
Act: go to coffee table 1
You arrive at the coffee table (1). You see apple (1), coffee table (1), sofa (2),

tv (1)

[Pick up apple again]

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Think: I can see apple 1. I need to pick up apple 1.
Act: pick up apple 1
You pick up apple. You hold apple (1).
Think: Now, I need to find the pudding. The pudding is more likely to appear in

living room 1.
Act: go to living room 1
You move to the living room (1). Looking quickly around the room, you see

bookshelf (2, 3), chair (6), closet (1), coffee table (1), computer (1), desk
(2), nightstand (4), sofa (2, 3), tv (1). You hold apple (1).

Think: I can see coffee table 1. I need to go to coffee table 1 to find the
pudding.

Act: go to coffee table 1
You arrive at the coffee table (1). You see apple (1), coffee table (1), sofa (2),

tv (1) You hold apple (1).

[Put down apple]
Think: I can see apple 1. I need to put down apple 1.
Act: put down apple 1
You put down apple on coffee table

[Search the pudding]
Think: Now, I need to find the pudding. The pudding is more likely to appear in

living room 1.
Act: go to living room 1
You move to the living room (1). Looking quickly around the room, you see

bookshelf (2, 3), chair (6), closet (1), coffee table (1), computer (1), desk
(2), nightstand (4), sofa (2, 3), tv (1).

Think: I can see coffee table 1. I need to go to coffee table 1 to find the
pudding.

Act: go to coffee table 1
You arrive at the coffee table (1). You see apple (1), coffee table (1), sofa (2),

tv (1)
Think: I can see apple 1. I need to pick up apple 1.
...

An agent-level infinite loop occurs when the agent gets trapped in a continuous cycle of actions
during its execution and cannot break free. Unlike the previous planning failure, where the agent
could transition to the next node, this failure is more severe as it causes the agent’s performance to
stall at a specific node. For example, as shown in Listing 6, the agent repeatedly picks up and puts
down an apple in a loop, an action unrelated to achieving the task’s sub-goal.

E.3.7 TERMINATION REASONING FAILURE

Listing 7: The example of the termination reasoning failure.

Your primary goal is to: find and pick up the juice
To achieve this, you should perform your sibling tasks using a fallback strategy.

At this level, your sibling tasks are: find and pick up the juice in kitchen
1, find and pick up the juice in living room 1, and find and pick up the juice
in bedroom 1.

Your task is to: find and pick up the juice in kitchen 1
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen

(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see chair (1, 2, 3, 4), dishwasher (1), faucet (1),
fridge (1), kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 3),
kitchen table (1), microwave oven (1), nightstand (1, 2), sink (1), sofa (1),
stove (1), toaster (1).

Think: I am in kitchen 1. Now, I need to find the juice. The juice is more likely
to appear on kitchen counter (1, 3), kitchen table (1), or in fridge (1),

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8). I can check each place one by one,
starting from kitchen counter 1, until I find the juice.

Act: go to kitchen counter 1
...
Think: I cannot find the juice. Now, I need to go to living room 1.

[The agent fail to terminate the node]
Act: go to living room 1
You move to the living room (1). Looking quickly around the room, you see

bookshelf (2, 3), chair (6), closet (1), coffee table (1), computer (1), desk
(2), nightstand (4), sofa (2, 3), tv (1).

Think: I am in living room 1. Now, I need to find the juice. The juice is more
likely to appear on coffee table (1), desk (2), or in nightstand (4). I can
check each place one by one, starting from coffee table 1, until I find the
juice.

Act: go to coffee table 1
...

[The agent fail to terminate the node]
Think: I cannot find the juice. Now, I need to go to kitchen 1.
Act: go to kitchen 1
...

[The agent fail to terminate the node]
Think: I cannot find the juice. Now, I need to go to living room 1.
Act: go to living room 1
...

[The agent fail to terminate the node]
Think: I cannot find the juice. Now, I need to go to bedroom 1.
Act: go to bedroom 1
...

[The agent fail to terminate the node]
Think: I cannot find the juice. Now, I need to go to kitchen 1.
Act: go to kitchen 1
...
Max steps

A termination reasoning failure occurs when the agent either fails to recognize that the necessary
actions have been completed and cannot decide to terminate the node or prematurely terminates the
node before fully executing the planned action sequence. Unlike the agent-level infinite loop, where
the agent endlessly repeats actions that are unrelated or only partially related to task completion, a
termination reasoning failure arises when the agent fails to identify task completion or failure and re-
peats the process, even after executing the entire action sequence derived from sub-goal instructions
and reasoning processes.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

E.3.8 MAX STEP

Listing 8: The example of the Max Step failure.
Generated ReAcTree
Instruction : Put a wine a juice a pound cake
a pudding and an apple on the kitchen table.

[a1]rootnode (parallel)

[a2]move the wine on the kitchen table (sequence)
[a3]find and pick up the wine (fallback)

[a4]find and pick up the wine in kitchen 1 [S]
find and pick up the wine in living room 1
find and pick up the wine in bedroom 1

[a5]find the kitchen table and put down the wine [S]

[a6]move the juice on the kitchen table (sequence)
[a7]find and pick up the juice (fallback)

[a8]find and pick up the juice in kitchen 1 [F]
[a9]find and pick up the juice in living room 1 [S]
find and pick up the juice in bedroom 1

[a10]find the kitchen table and put down the juice [S]

[a11]move the pound cake on the kitchen table (sequence)
[a12]find and pick up the pound cake (sequence)

[a13]find and pick up the pound cake in kitchen 1 [S]
find and pick up the pound cake in living room 1
find and pick up the pound cake in bedroom 1

[a14]find the kitchen table and put down the pound cake [S]

[a15]move the pudding on the kitchen table (sequence)
[a16]find and pick up the pudding (fallback)

[a17]find and pick up the pudding in kitchen 1 [F]
[a18]find and pick up the pudding in living room 1 [S]
find and pick up the pudding in bedroom 1

[a19]find the kitchen table and put down the pudding [S]

[a20]move the apple on the kitchen table (sequence)
[a21]find and pick up the apple (fallback1)

[a22]find and pick up the apple in kitchen 1 [MSE]
find and pick up the apple in living room 1 [MSE]
find and pick up the apple in bedroom 1 [MSE]

find the kitchen table and put down the apple [MSE]
[S] : Success, [F] : Failure, [MSE] : Max Step Error
[An] : n-th agent

Agent 22
Your primary goal is to: find and pick up the apple
To achieve this, you should perform your sibling tasks using a fallback strategy.

At this level, your sibling tasks are: find and pick up the apple in kitchen
1, find and pick up the apple in living room 1, and find and pick up the apple
in bedroom 1.

Your task is to: find and pick up the apple in kitchen 1
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen

(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave
oven (1), sink (2), stove (1), toaster (1).

Think: I am in kitchen 1. Now, I need to find the apple. The apple is more likely
to appear on kitchen counter (1, 2), kitchen table (1), or in fridge (1, 2),
kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8). I can check each place one by one,
starting from kitchen counter 1, until I find the apple.

Act: go to kitchen counter 1
You arrive at the kitchen counter (1). You see bowl (1, 2, 3, 4, 5), chair (2),

chicken (1), cutlets (1), dishwashing liquid (1), faucet (2), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1), plate (1, 2, 3, 4), sink (2),
washing sponge (1), wine (2)

Act: go to kitchen counter 2
You arrive at the kitchen counter (2). You see chair (1, 2), kitchen cabinet (3,

5, 6, 7, 8), kitchen counter (1, 2), light switch (2), plate (1, 2, 3, 4),
wine (2)

Act: go to kitchen table 1
You arrive at the kitchen table (1). You see bench (2), book (1), bowl (6), coffee

pot (1), condiment shaker (1, 2), juice (1), kitchen table (1), pound cake
(1), pudding (2), wine (1)

Act: go to fridge 1
You arrive at the fridge (1). The fridge (1) is open. You see bench (1), fridge

(1)
Act: go to fridge 2
You arrive at the fridge (2). The fridge (2) is open. You see bench (1), fridge

(1, 2), pancake (1)
Act: go to kitchen cabinet 1
You arrive at the kitchen cabinet (1). The kitchen cabinet (1) is open. You see

chicken (1), cooking pot (1), cutlery knife (1, 2), cutlets (1), dishwashing
liquid (1), faucet (2), frying pan (1), garbage can (1), kitchen cabinet (1,
4), kitchen counter (1), sink (2), stove (1)

Act: go to kitchen cabinet 2
You arrive at the kitchen cabinet (2). The kitchen cabinet (2) is open. You see

bowl (1, 2, 3, 4, 5), chair (2), chicken (1), cutlery knife (1, 2), cutlets
(1), dishwashing liquid (1), faucet (2), kitchen cabinet (1, 2, 3, 4, 5, 6, 7)
, kitchen counter (1), plate (1, 2, 3, 4), sink (2), washing sponge (1)

Act: go to kitchen cabinet 3
You arrive at the kitchen cabinet (3). The kitchen cabinet (3) is open. You see

bowl (1, 2, 3, 4, 5), chair (1, 2), dishwashing liquid (1), faucet (2),
kitchen cabinet (2, 3, 4, 5, 6, 7), kitchen counter (1, 2), plate (1, 2, 3, 4)
, sink (2), washing sponge (1), wine (2)

Act: go to kitchen cabinet 4
You arrive at the kitchen cabinet (4). The kitchen cabinet (4) is open. You see

bowl (1, 2, 3, 4, 5), chicken (1), cooking pot (1), cutlery knife (1, 2),
cutlets (1), dishwashing liquid (1), faucet (2), garbage can (1), kitchen
cabinet (1, 2, 4), kitchen counter (1), sink (2), washing sponge (1)

Act: go to kitchen cabinet 5
You arrive at the kitchen cabinet (5). The kitchen cabinet (5) is open. You see

bowl (1, 2, 3, 4, 5), chair (1, 2), cutlets (1), dishwashing liquid (1),
faucet (2), kitchen cabinet (2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2),
plate (1, 2, 3, 4), sink (2), washing sponge (1), wine (2)

Max steps

A max step error occurs when the agent successfully generates a valid agent tree and executes the
plans correctly but is forced to terminate upon reaching the maximum step limit. This type of failure
is likely solvable if the agent is given a higher step limit. An example of this case is presented
in Listing 8, with the generated agent tree structure. Here, five sub-goals are correctly managed
within the expand-level and agent-level instruction tree and executed properly by the agent until
the maximum step limit is reached. The SSR achieved in this case is 60.00% as described in Table
8. However, the proposed working memory significantly enhances step efficiency in such cases,
enabling all sub-goals to be resolved within the given step limit.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

E.3.9 INCORRECT INSTRUCTION

Listing 9: The example of the incorrect instruction.
Instruction
Please, put 1 wine glass, 1 water glass, and 1 plate on the
table

Goal condition
"on_plate_kitchentable": 1,
"on_waterglass_kitchentable": 1,
"on_wineglass_kitchentable": 1,
"on_cutleryfork_kitchentable": 1

Incorrect instructions occur when the instructions fail to specify all the required sub-goals. In such
cases, no task planning agent can complete the task due to insufficient information. For example,
as shown in Listing 9, there are four sub-goals, but the instruction specifies only three, omitting the
step of placing a cutlery fork on the kitchen table. Additionally, the instruction is ambiguous, as
it does not clarify which type of table is the intended target receptacle. Despite this incorrectness,
ReAcTree successfully completes the three specified sub-goals in Listing. 9, but achieving an SSR
of 75.00%.

E.3.10 AMBIGUOUS INSTRUCTION

Listing 10: The example of the ambiguous instruction.
[Case 1]
Instruction
give me an apple, a pudding and serve a glass of wine

Goal condition
"on_wine_coffeetable": 1,
"on_pudding_coffeetable": 1,
"on_apple_coffeetable": 1

[Case 2]
Instruction
Always get a glass of water first before anything else,
before food on the table with a cutlery fork and knife

Goal condition
"on_plate_kitchentable": 1,
"on_waterglass_kitchentable": 1,
"on_cutleryfork_kitchentable": 1

The WAH-NL dataset also contains ambiguous instructions. In such cases, the instructions fail to
explicitly describe the goal condition, use unclear object names, or refer to objects with high-level
conceptual nouns. This ambiguity can confuse the LLM when reasoning about the goal state, leading
to the generation of incorrect plans.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

F EXPERIMENTS DETAILS OF ALFRED DATASET

F.1 AI2THOR SIMLUATOR AND ALFRED DATASET

AI2THOR simulator supports 9 interaction actions: “pick up,” “open,” “close,” “turn on,” “turn off,”
“slice,” and “put down,” “drop,” and one navigation action “go to.” ALFRED dataset consists of 7
task types: simple pick & place, pick & place with movable receptacle, cool & place, heat & place,
pick two object & place, clean & place, and look object in light. Following previous work (Choi et al.,
2024), the pick two object and place is excluded. In LoTa-Bench, the AI2THOR simulation used the
“find” for navigation action, but since it wasn’t a partially observable settings, once “find [object]”
was selected as an action, the agent moved directly to the object without considering whether it
was inside a receptacle or an unobserved object. However, in this experiment, we improved this
limitation by applying a partially observable settings, changing the navigation action name from
“find” to “go to” directing the agent to either the object or its receptacle.

F.2 MEMORY CONSTRUCTION

To construct the episodic memory, we began by randomly selecting three task trajectories for each
task type from the ALFRED training set. Then, we collected human-annotated text trajectories
with working memory applied for both the ReAct and ReAcTree models. Next, while running the
LLaMa 3 70B model on the training set, we embedded the human-annotated text trajectories as in-
context examples. Due to the large size of the ALFRED dataset, we sampled 5% of the training set.
Only the trajectories from successfully completed tasks were added to the episodic memory, with no
more than five per task type. Finally, we combined these human-annotated text trajectories with the
successfully completed task trajectories to form the episodic memory for both ReAct and ReAcTree.

F.3 QUALATATIVE RESULTS

Figures 6 and 7 show the qualitative results comparing a failed trajectory in ReAct and a successful
trajectory in ReAcTree for the heat & place task type using the LLaMA 3 70B model. The NL in-
struction for the task is “put the cooked tomato slice on the kitchen island”, which requires slicing
and moving the object. there are a challenge with the ALFRED dataset, where ambiguous NL in-
structions complicate task resolution. For example, in this task, the instruction ambiguously states to
place the item on the “kitchen island,” yet the agent placed it on the countertop since the simulator
does not provide a receptacle explicitly labeled “kitchen island.” Such ambiguity can hinder accurate
task interpretation and execution.

ReAcTree successfully expands and executes the instruction using sequence control flow with eight
subtask sqeuence, such as: “find and pick up the knife, find and slice and then pick up the tomato,
find and open the microwave, find the microwave and put down the tomato, find and close and turn
on the microwave, find and turn off and open microwave, find and pick up tomato in microwave, and
find a countertop and put down the tomato on the countertop.” In contrast, ReAct failed by initially
navigating to SinkBasin (1) and picking up the tomato before the knife, causing the task to fail as the
knife should have been picked up and used to slice the tomato first. Meanwhile, ReAcTree correctly
searched through CounterTop (1) and CounterTop (2) to locate the knife, leading to the successful
completion of the task. Please refer to Appendix H for detailed text trajectories.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

G EXAMPLE OF PLANNING RESULTS

G.1 WAH-NL EXAMPLE CASES

Figure 5: Failure case of ReAct on the WAH-NL dataset using LLaMA 3 70B.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

G.2 ALFRED EXAMPLE CASES

Figure 6: Success case of ReAcTree on the ALFRED dataset using LLaMA 3 70B.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Figure 7: Failure case of ReAct on the ALFRED dataset using LLaMA 3 70B.

H EXAMPLE OF TEXT TRAJECTORIES

H.1 WAH-NL EXAMPLE CASES

Listing 11: Success trajectory of ReAcTree on the WAH-NL dataset using LLaMA 3 70B.
Agent Node 1
Your task is to: Put the apple, pancake, cupcake, and juice on the kitchen table.
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen

(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave
oven (1), sink (2), stove (1), toaster (1).

Think: To solve the task, I need to accomplish 4 subgoals independently. Move the
apple on the kitchen table, move the pancake on the kitchen table, move the
cupcake on the kitchen table, and move the juice on the kitchen table.

Expand:
- control flow: parallel
- subgoals: move the apple on the kitchen table, move the pancake on the kitchen

table, move the cupcake on the kitchen table, move the juice on the kitchen
table

Agent Node 2
Your primary goal is to: Put the apple, pancake, cupcake, and juice on the kitchen

table.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

To achieve this, you should perform your sibling tasks in parallel. At this level,
your sibling tasks are: move the apple on the kitchen table, move the pancake
on the kitchen table, move the cupcake on the kitchen table, and move the
juice on the kitchen table.

Your task is to: move the apple on the kitchen table
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen

(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave
oven (1), sink (2), stove (1), toaster (1).

Think: To solve the task, I need to accomplish 2 subgoals sequentially. Find and
pick up the apple, and find the kitchen table and put down the apple.

Expand
- control flow: sequence
- subgoals: find and pick up the apple, find the kitchen table and put down the

apple

Agent Node 3
Your primary goal is to: move the apple on the kitchen table
To achieve this, you should perform your sibling tasks in sequence. At this level,

your sibling tasks are: find and pick up the apple, and find the kitchen
table and put down the apple.

Your task is to: find and pick up the apple
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen

(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave
oven (1), sink (2), stove (1), toaster (1).

Think: To solve the task, I need to recall the location of the apple.
Act: recall location of apple
You have not seen apple before.
Think: Now, I need to find and pick up the apple in one of the rooms. The apple is

more likely to appear in kitchen 1, living room 1, or bedroom 1. I can check
each room one by one until I find and pick up the apple.

Expand:
- control flow: fallback
- subgoals: find and pick up the apple in kitchen 1, find and pick up the apple

in living room 1, find and pick up the apple in bedroom 1

Agent Node 4
Your primary goal is to: find and pick up the apple
To achieve this, you should perform your sibling tasks using a fallback strategy.

At this level, your sibling tasks are: find and pick up the apple in kitchen
1, find and pick up the apple in living room 1, and find and pick up the apple
in bedroom 1.

Your task is to: find and pick up the apple in kitchen 1
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen

(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave
oven (1), sink (2), stove (1), toaster (1).

Think: I am in kitchen 1. Now, I need to find the apple. The apple is more likely
to appear on kitchen counter (1, 2), kitchen table (1), or in fridge (1, 2),
kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8). I can check each place one by one,
starting from kitchen counter 1, until I find the apple.

Act: go to kitchen counter 1
You arrive at the kitchen counter (1). You see bowl (1, 2, 3, 4, 5), chair (2),

chicken (1), cutlets (1), dishwashing liquid (1), faucet (2), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7), kitchen counter (1), plate (1, 2, 3, 4), sink (2),
washing sponge (1)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Act: go to kitchen counter 2
You arrive at the kitchen counter (2). You see chair (1, 2), kitchen cabinet (5,

6, 7, 8), kitchen counter (1, 2), light switch (2), plate (1, 2, 3, 4)
Act: go to kitchen table 1
You arrive at the kitchen table (1). You see bench (2), book (1), bowl (6),

condiment shaker (1, 2), kitchen table (1)
Act: go to fridge 1
You arrive at the fridge (1). The fridge (1) is closed. You see bench (1), fridge

(1)
Act: open fridge 1
You open fridge. You see bench (1), cupcake (1), fridge (1), pudding (3)
Act: go to fridge 2
You arrive at the fridge (2). The fridge (2) is closed. You see bench (1), cupcake

(1), fridge (1, 2), pudding (3)
Act: open fridge 2
You open fridge. You see apple (2), bench (1), cupcake (1), fridge (1, 2), pudding

(3)
Think: I find apple 2. Now, I need to pick it up.
Act: pick up apple 2
You pick up apple. You hold apple (2).
Think: Now I accomplish the goal.
Act: done

Agent Node 5
Your primary goal is to: move the apple on the kitchen table
To achieve this, you should perform your sibling tasks in sequence. At this level,

your sibling tasks are: find and pick up the apple, and find the kitchen
table and put down the apple.

Your task is to: find the kitchen table and put down the apple
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen

(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave
oven (1), sink (2), stove (1), toaster (1). You hold apple (2).

Think: I hold apple 2. Now, I need to find the kitchen table. I can see kitchen
table 1.

Act: go to kitchen table 1
You arrive at the kitchen table (1). You see apple (2), bench (2), book (1), bowl

(6), condiment shaker (1, 2), kitchen table (1) You hold apple (2).
Think: Now, I need to put down apple 2.
Act: put down apple 2
You put down apple on kitchen table
Think: Now I accomplish the goal.
Act: done

Agent Node 6
Your primary goal is to: Put the apple, pancake, cupcake, and juice on the kitchen

table.
To achieve this, you should perform your sibling tasks in parallel. At this level,

your sibling tasks are: move the apple on the kitchen table, move the pancake
on the kitchen table, move the cupcake on the kitchen table, and move the
juice on the kitchen table.

Your task is to: move the pancake on the kitchen table
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen

(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave
oven (1), sink (2), stove (1), toaster (1).

Think: To solve the task, I need to accomplish 2 subgoals sequentially. Find and
pick up the pancake, and find the kitchen table and put down the pancake.

Expand:

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

- control flow: sequence
- subgoals: find and pick up the pancake, find the kitchen table and put down the

pancake

Agent Node 7
Your primary goal is to: move the pancake on the kitchen table
To achieve this, you should perform your sibling tasks in sequence. At this level,

your sibling tasks are: find and pick up the pancake, and find the kitchen
table and put down the pancake.

Your task is to: find and pick up the pancake
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen

(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave
oven (1), sink (2), stove (1), toaster (1).

Think: To solve the task, I need to recall the location of the pancake
Act: recall location of pancake
You have not seen pancake before.
Think: Now, I need to find and pick up the pancake in one of the rooms. The

pancake is more likely to appear in kitchen 1, living room 1, or bedroom 1. I
can check each room one by one until I find and pick up the pancake.

Expand
- control flow: fallback
- subgoals: find and pick up the pancake in kitchen 1, find and pick up the

pancake in living room 1, find and pick up the pancake in bedroom 1

Agent Node 8
Your primary goal is to: find and pick up the pancake
To achieve this, you should perform your sibling tasks using a fallback strategy.

At this level, your sibling tasks are: find and pick up the pancake in kitchen
1, find and pick up the pancake in living room 1, and find and pick up the
pancake in bedroom 1.

Your task is to: find and pick up the pancake in kitchen 1
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen

(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave
oven (1), sink (2), stove (1), toaster (1).

Think: I am in kitchen 1. Now, I need to find the pancake. The pancake is more
likely to appear on kitchen counter (1, 2), kitchen table (1), or in fridge
(1, 2), kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8). I can check each place one
by one, starting from kitchen counter 1, until I find the pancake.

Act: go to kitchen counter 1
You arrive at the kitchen counter (1). You see bowl (1, 2, 3, 4, 5), chair (2),

chicken (1), cutlets (1), dishwashing liquid (1), faucet (2), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7), kitchen counter (1), plate (1, 2, 3, 4), sink (2),
washing sponge (1)

Act: go to kitchen counter 2
You arrive at the kitchen counter (2). You see chair (1, 2), kitchen cabinet (5,

6, 7, 8), kitchen counter (1, 2), light switch (2), plate (1, 2, 3, 4)
Act: go to kitchen table 1
You arrive at the kitchen table (1). You see apple (2), bench (2), book (1), bowl

(6), condiment shaker (1, 2), kitchen table (1)
Act: go to fridge 1
You arrive at the fridge (1). The fridge (1) is open. You see bench (1), cupcake

(1), fridge (1), pudding (3)
Act: go to fridge 2
You arrive at the fridge (2). The fridge (2) is open. You see bench (1), cupcake

(1), fridge (1, 2), pudding (3)
Act: go to kitchen cabinet 1

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

You arrive at the kitchen cabinet (1). The kitchen cabinet (1) is closed. You see
chicken (1), cooking pot (1), cutlery knife (1, 2), cutlets (1), dishwashing
liquid (1), faucet (2), frying pan (1), garbage can (1), kitchen cabinet (1,
4), kitchen counter (1), sink (2), stove (1)

Act: go to kitchen cabinet 2
You arrive at the kitchen cabinet (2). The kitchen cabinet (2) is closed. You see

bowl (1, 2, 3, 4, 5), chair (2), chicken (1), cutlery knife (1, 2), cutlets
(1), dishwashing liquid (1), faucet (2), kitchen cabinet (1, 2, 3, 4, 5, 6),
kitchen counter (1), plate (1, 2, 3, 4), sink (2), washing sponge (1)

Act: go to kitchen cabinet 3
You arrive at the kitchen cabinet (3). The kitchen cabinet (3) is closed. You see

bowl (1, 2, 3, 4, 5), chair (1, 2), dishwashing liquid (1), faucet (2),
kitchen cabinet (2, 3, 4, 5, 6, 7), kitchen counter (1, 2), plate (1, 2, 3, 4)
, sink (2), washing sponge (1)

Act: go to kitchen cabinet 4
You arrive at the kitchen cabinet (4). The kitchen cabinet (4) is closed. You see

bowl (1, 2, 3, 4, 5), chicken (1), cooking pot (1), cutlery knife (1, 2),
cutlets (1), dishwashing liquid (1), faucet (2), garbage can (1), kitchen
cabinet (1, 2, 4), kitchen counter (1), sink (2), washing sponge (1)

Act: go to kitchen cabinet 5
You arrive at the kitchen cabinet (5). The kitchen cabinet (5) is closed. You see

bowl (1, 2, 3, 4, 5), chair (1, 2), cutlets (1), dishwashing liquid (1),
faucet (2), kitchen cabinet (2, 3, 4, 5, 6, 7), kitchen counter (1, 2), plate
(1, 2, 3, 4), sink (2), washing sponge (1)

Act: go to kitchen cabinet 6
You arrive at the kitchen cabinet (6). The kitchen cabinet (6) is closed. You see

bowl (1, 2, 3, 4, 5), chair (1, 2), dishwashing liquid (1), faucet (2),
kitchen cabinet (2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), plate (1, 2, 3,
4), sink (2), washing sponge (1)

Act: go to kitchen cabinet 7
You arrive at the kitchen cabinet (7). The kitchen cabinet (7) is closed. You see

bowl (1, 2, 3, 4, 5), chair (1, 2), kitchen cabinet (2, 5, 6, 7, 8), kitchen
counter (1), light switch (2), plate (1, 2, 3, 4), sink (2)

Act: go to kitchen cabinet 8
You arrive at the kitchen cabinet (8). The kitchen cabinet (8) is closed. You see

bench (2), chair (1, 2), kitchen cabinet (5, 6, 7, 8), light switch (2)
Think: I cannot find the pancake in kitchen 1.
Act: failure

Agent Node 9
Your primary goal is to: find and pick up the pancake
To achieve this, you should perform your sibling tasks using a fallback strategy.

At this level, your sibling tasks are: find and pick up the pancake in kitchen
1, find and pick up the pancake in living room 1, and find and pick up the
pancake in bedroom 1.

Your task is to: find and pick up the pancake in living room 1
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen

(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave
oven (1), sink (2), stove (1), toaster (1).

Think: I am in kitchen 1. Now, I need to go to living room 1.
Act: go to living room 1
You move to the living room (1). Looking quickly around the room, you see

bookshelf (3), chair (3), closet (1), coffee table (1), computer (1), desk (1)
, garbage can (2), nightstand (1), sofa (1), tv (1).

Think: Now, I need to find the pancake. The pancake is more likely to appear on
coffee table (1), desk (1), or in closet (1). I can check each place one by
one, starting from coffee table 1, until I find the pancake.

Act: go to coffee table 1
You arrive at the coffee table (1). You see alcohol (2), bananas (1), book (3, 6),

bowl (7), cell phone (1, 2), coffee table (1), juice (1), lime (1), mug (1),
plum (1, 2), sofa (1)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Act: go to desk 1
You arrive at the desk (1). You see book (7), chair (3), computer (1), desk (1),

nightstand (1), water glass (2)
Act: go to closet 1
You arrive at the closet (1). The closet (1) is closed. You see closet (1), light

switch (3)
Act: open closet 1
You open closet. You see closet (1), light switch (3)
Think: I cannot find the pancake in living room 1.
Act: failure

Agent Node 10
Your primary goal is to: find and pick up the pancake
To achieve this, you should perform your sibling tasks using a fallback strategy.

At this level, your sibling tasks are: find and pick up the pancake in kitchen
1, find and pick up the pancake in living room 1, and find and pick up the
pancake in bedroom 1.

Your task is to: find and pick up the pancake in bedroom 1
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen

(1), living room (1). You are in the middle of a living room (1). Looking
quickly around the room, you see bookshelf (3), chair (3), closet (1), coffee
table (1), computer (1), desk (1), garbage can (2), nightstand (1), sofa (1),
tv (1).

Think: I am in living room 1. Now, I need to go to bedroom 1.
Act: go to bedroom 1
You move to the bedroom (1). Looking quickly around the room, you see bed (1),

bookshelf (4), cabinet (1), chair (4), closet (2), coffee table (2), computer
(2), desk (2, 3), garbage can (3).

Think: Now, I need to find the pancake. The pancake is more likely to appear on
bed (1), coffee table (2), desk (2, 3), or in cabinet (1). I can check each
place one by one, starting from bed 1, until I find the pancake.

Act: go to bed 1
You arrive at the bed (1). You see bed (1), candy bar (1), coffee table (2),

pancake (2)
Think: I find pancake 2. Now, I need to pick it up.
Act: pick up pancake 2
You pick up pancake. You hold pancake (2).
Think: Now I accomplish the goal.
Act: done

Agent Node 11
Your primary goal is to: move the pancake on the kitchen table
To achieve this, you should perform your sibling tasks in sequence. At this level,

your sibling tasks are: find and pick up the pancake, and find the kitchen
table and put down the pancake.

Your task is to: find the kitchen table and put down the pancake
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen

(1), living room (1). You are in the middle of a bedroom (1). Looking quickly
around the room, you see bed (1), bookshelf (4), cabinet (1), chair (4),
closet (2), coffee table (2), computer (2), desk (2, 3), garbage can (3). You
hold pancake (2).

Think: I hold pancake 2. Now, I need to find the kitchen table. The kitchen table
is more likely to appear in kitchen 1.

Act: go to kitchen 1
You move to the kitchen (1). Looking quickly around the room, you see bench (1, 2)

, bookshelf (1, 2), chair (1, 2), dishwasher (1), faucet (2), fridge (1, 2),
garbage can (1), kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1,
2), kitchen table (1), microwave oven (1), sink (2), stove (1), toaster (1).
You hold pancake (2).

Think: I can see kitchen table 1.
Act: go to kitchen table 1

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

You arrive at the kitchen table (1). You see apple (2), bench (2), book (1), bowl
(6), condiment shaker (1, 2), kitchen table (1), pancake (2) You hold pancake
(2).

Think: Now, I need to put down pancake 2.
Act: put down pancake 2
You put down pancake on kitchen table
Think: Now I accomplish the goal.
Act: done

Agent Node 11
Your primary goal is to: Put the apple, pancake, cupcake, and juice on the kitchen

table.
To achieve this, you should perform your sibling tasks in parallel. At this level,

your sibling tasks are: move the apple on the kitchen table, move the pancake
on the kitchen table, move the cupcake on the kitchen table, and move the
juice on the kitchen table.

Your task is to: move the cupcake on the kitchen table
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen

(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave
oven (1), sink (2), stove (1), toaster (1).

Think: To solve the task, I need to accomplish 2 subgoals sequentially. Find and
pick up the cupcake, and find the kitchen table and put down the cupcake.

Expand:
- control flow: sequence
- subgoals: find and pick up the cupcake, find the kitchen table and put down the

cupcake

Agent Node 12
Your primary goal is to: move the cupcake on the kitchen table
To achieve this, you should perform your sibling tasks in sequence. At this level,

your sibling tasks are: find and pick up the cupcake, and find the kitchen
table and put down the cupcake.

Your task is to: find and pick up the cupcake
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen

(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave
oven (1), sink (2), stove (1), toaster (1).

Think: To solve the task, I need to recall the location of the cupcake
Act: recall location of cupcake
You saw cupcake 1 near fridge 2 in kitchen 1.
Think: Now, I need to go to fridge 2.
Act: go to fridge 2
You arrive at the fridge (2). The fridge (2) is open. You see bench (1), cupcake

(1), fridge (1, 2), pudding (3)
Think: I find cupcake 1. Now, I need to pick it up.
Act: pick up cupcake 1
You pick up cupcake. You hold cupcake (1).
Think: Now I accomplish the goal.
Act: done

Agent Node 13
Your primary goal is to: move the cupcake on the kitchen table
To achieve this, you should perform your sibling tasks in sequence. At this level,

your sibling tasks are: find and pick up the cupcake, and find the kitchen
table and put down the cupcake.

Your task is to: find the kitchen table and put down the cupcake

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen
(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave
oven (1), sink (2), stove (1), toaster (1). You hold cupcake (1).

Think: I hold cupcake 1. Now, I need to find the kitchen table. I can see kitchen
table 1.

Act: go to kitchen table 1
You arrive at the kitchen table (1). You see apple (2), bench (2), book (1), bowl

(6), condiment shaker (1, 2), cupcake (1), kitchen table (1), pancake (2) You
hold cupcake (1).

Think: Now, I need to put down cupcake 1.
Act: put down cupcake 1
You put down cupcake on kitchen table
Think: Now I accomplish the goal.
Act: done

Agent Node 14
Your primary goal is to: Put the apple, pancake, cupcake, and juice on the kitchen

table.
To achieve this, you should perform your sibling tasks in parallel. At this level,

your sibling tasks are: move the apple on the kitchen table, move the pancake
on the kitchen table, move the cupcake on the kitchen table, and move the
juice on the kitchen table.

Your task is to: move the juice on the kitchen table
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen

(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave
oven (1), sink (2), stove (1), toaster (1).

Think: To solve the task, I need to accomplish 2 subgoals sequentially. Find and
pick up the juice, and find the kitchen table and put down the juice.

Expand:
- control flow sequence
- subgoals: find and pick up the juice, find the kitchen table and put down the

juice

Agent Node 15
Your primary goal is to: move the juice on the kitchen table
To achieve this, you should perform your sibling tasks in sequence. At this level,

your sibling tasks are: find and pick up the juice, and find the kitchen
table and put down the juice.

Your task is to: find and pick up the juice
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen

(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave
oven (1), sink (2), stove (1), toaster (1).

Think: To solve the task, I need to recall the location of the juice.
Act: recall location of juice
You saw juice 1 near coffee table 1 in living room 1.
Think: I can find juice 1 near coffee table 1.
Act: go to living room 1
You move to the living room (1). Looking quickly around the room, you see

bookshelf (3), chair (3), closet (1), coffee table (1), computer (1), desk (1)
, garbage can (2), nightstand (1), sofa (1), tv (1).

Act: go to coffee table 1
You arrive at the coffee table (1). You see alcohol (2), bananas (1), book (3, 6),

bowl (7), cell phone (1, 2), coffee table (1), juice (1), lime (1), mug (1),
plum (1, 2), sofa (1)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Think: I find juice 1. Now I need to pick it up.
Act: pick up juice 1
You pick up juice. You hold juice (1).
Think: Now I accomplish the goal.
Act: done

Agent 16
Your primary goal is to: move the juice on the kitchen table
To achieve this, you should perform your sibling tasks in sequence. At this level,

your sibling tasks are: find and pick up the juice, and find the kitchen
table and put down the juice.

Your task is to: find the kitchen table and put down the juice
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen

(1), living room (1). You are in the middle of a living room (1). Looking
quickly around the room, you see bookshelf (3), chair (3), closet (1), coffee
table (1), computer (1), desk (1), garbage can (2), nightstand (1), sofa (1),
tv (1). You hold juice (1).

Think: I hold juice 1. Now, I need to find the kitchen table. The kitchen table is
more likely to appear in kitchen 1.

Act: go to kitchen 1
You move to the kitchen (1). Looking quickly around the room, you see bench (1, 2)

, bookshelf (1, 2), chair (1, 2), dishwasher (1), faucet (2), fridge (1, 2),
garbage can (1), kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1,
2), kitchen table (1), microwave oven (1), sink (2), stove (1), toaster (1).
You hold juice (1).

Think: I can see kitchen table 1.
Act: go to kitchen table 1
You arrive at the kitchen table (1). You see apple (2), bench (2), book (1), bowl

(6), condiment shaker (1, 2), cupcake (1), juice (1), kitchen table (1),
pancake (2) You hold juice (1).

Think: Now, I need to put down juice 1.
Act: put down juice 1
You put down juice on kitchen table
Think: Now I accomplish the goal.
Act: done

Listing 12: Failure trajectory of ReAct on the WAH-NL dataset using LLaMA 3 70B.
Your task is to: Put the apple, pancake, cupcake, and juice on the kitchen table.
You are in the house, and there are 4 rooms: bathroom (1), bedroom (1), kitchen

(1), living room (1). You are in the middle of a kitchen (1). Looking quickly
around the room, you see bench (1, 2), bookshelf (1, 2), chair (1, 2),
dishwasher (1), faucet (2), fridge (1, 2), garbage can (1), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), kitchen table (1), microwave
oven (1), sink (2), stove (1), toaster (1).

Think: To solve the task, I need to find and pick up the apple, then put it on the
kitchen table. And I need to find and pick up the pancake, then put it on the
kitchen table. And I need to find and pick up the cupcake, then put it on the
kitchen table. And I need to find and pick up the juice, then put it on the
kitchen table.

Think: First, I need to find the apple. The apple is more likely to appear in
kitchen 1.

Act: go to kitchen 1
You move to the kitchen (1). Looking quickly around the room, you see bench (1, 2)

, bookshelf (1, 2), chair (1, 2), dishwasher (1), faucet (2), fridge (1, 2),
garbage can (1), kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8), kitchen counter (1,
2), kitchen table (1), microwave oven (1), sink (2), stove (1), toaster (1).

Think: Now, I need to find the apple. The apple is more likely to appear on
kitchen conter (1, 2), kitchen table (1), or in fridge (1, 2), kitchen cabinet
(1, 2, 3, 4, 5, 6, 7, 8). I can check each place one by one, starting from
kitchen counter 1, until I find the apple.

Act: go to kitchen counter 1
You arrive at the kitchen counter (1). You see bowl (1, 2, 3, 4, 5), chair (2),

chicken (1), cutlets (1), dishwashing liquid (1), faucet (2), kitchen cabinet

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

(1, 2, 3, 4, 5, 6, 7), kitchen counter (1), plate (1, 2, 3, 4), sink (2),
washing sponge (1)

Act: go to kitchen counter 2
You arrive at the kitchen counter (2). You see chair (1, 2), kitchen cabinet (5,

6, 7, 8), kitchen counter (1, 2), light switch (2), plate (1, 2, 3, 4)
Act: go to kitchen table 1
You arrive at the kitchen table (1). You see bench (2), book (1), bowl (6),

condiment shaker (1, 2), kitchen table (1)
Act: go to fridge 1
You arrive at the fridge (1). The fridge (1) is closed. You see bench (1), fridge

(1)
Act: open fridge 1
You open fridge. You see bench (1), cupcake (1), fridge (1), pudding (3)
Think: I find cupcake 1. Now, I need to pick it up.
Act: pick up cupcake 1
You pick up cupcake. You hold cupcake (1).
Think: I hold cupcake 1. Now, I need to put it on the kitchen table.
Act: go to kitchen table 1
You arrive at the kitchen table (1). You see bench (2), book (1), bowl (6),

condiment shaker (1, 2), cupcake (1), kitchen table (1) You hold cupcake (1).
Think: Now, I need to put down cupcake 1.
Act: put down cupcake 1
You put down cupcake on kitchen table
Think: I put down cupcake 1 on kitchen table 1. Now, I need to recall the location

of the pancake.
Act: recall location of pancake
You have not seen pancake before.
Think: Now, I need to find the pancake. The pancake is more likely to appear in

kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8). I can check each place one by one,
starting from kitchen cabinet 1, until I find the pancake.

Act: go to kitchen cabinet 1
You arrive at the kitchen cabinet (1). The kitchen cabinet (1) is closed. You see

chicken (1), cooking pot (1), cutlery knife (1, 2), cutlets (1), dishwashing
liquid (1), faucet (2), frying pan (1), garbage can (1), kitchen cabinet (1,
4), kitchen counter (1), sink (2), stove (1)

Act: open kitchen cabinet 1
You open kitchen cabinet. You see chicken (1), cooking pot (1), cutlery knife (1,

2), cutlets (1), dishwashing liquid (1), faucet (2), frying pan (1), garbage
can (1), kitchen cabinet (1, 4), kitchen counter (1), sink (2), stove (1)

Act: go to kitchen cabinet 2
You arrive at the kitchen cabinet (2). The kitchen cabinet (2) is closed. You see

bowl (1, 2, 3, 4, 5), chair (2), chicken (1), cutlery knife (1, 2), cutlets
(1), dishwashing liquid (1), faucet (2), kitchen cabinet (1, 2, 3, 4, 5, 6),
kitchen counter (1), plate (1, 2, 3, 4), sink (2), washing sponge (1)

Act: open kitchen cabinet 2
You open kitchen cabinet. You see bowl (1, 2, 3, 4, 5), chair (2), chicken (1),

cutlery knife (1, 2), cutlets (1), dishwashing liquid (1), faucet (2), kitchen
cabinet (1, 2, 3, 4, 5, 6), kitchen counter (1), plate (1, 2, 3, 4), sink (2)
, washing sponge (1)

Act: go to kitchen cabinet 3
You arrive at the kitchen cabinet (3). The kitchen cabinet (3) is closed. You see

bowl (1, 2, 3, 4, 5), chair (1, 2), dishwashing liquid (1), faucet (2),
kitchen cabinet (2, 3, 4, 5, 6, 7), kitchen counter (1, 2), plate (1, 2, 3, 4)
, sink (2), washing sponge (1)

Act: open kitchen cabinet 3
You open kitchen cabinet. You see bowl (1, 2, 3, 4, 5), chair (1, 2), dishwashing

liquid (1), faucet (2), kitchen cabinet (2, 3, 4, 5, 6, 7), kitchen counter
(1, 2), plate (1, 2, 3, 4), sink (2), washing sponge (1)

Act: go to kitchen cabinet 4
You arrive at the kitchen cabinet (4). The kitchen cabinet (4) is closed. You see

bowl (1, 2, 3, 4, 5), chicken (1), cooking pot (1), cutlery knife (1, 2),
cutlets (1), dishwashing liquid (1), faucet (2), garbage can (1), kitchen
cabinet (1, 2, 4), kitchen counter (1), sink (2), washing sponge (1)

Act: open kitchen cabinet 4

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

You open kitchen cabinet. You see bowl (1, 2, 3, 4, 5), chicken (1), cooking pot
(1), cutlery knife (1, 2), cutlets (1), dishwashing liquid (1), faucet (2),
garbage can (1), kitchen cabinet (1, 2, 4), kitchen counter (1), sink (2),
washing sponge (1)

Act: go to kitchen cabinet 5
You arrive at the kitchen cabinet (5). The kitchen cabinet (5) is closed. You see

bowl (1, 2, 3, 4, 5), chair (1, 2), cutlets (1), dishwashing liquid (1),
faucet (2), kitchen cabinet (2, 3, 4, 5, 6, 7), kitchen counter (1, 2), plate
(1, 2, 3, 4), sink (2), washing sponge (1)

Act: open kitchen cabinet 5
You open kitchen cabinet. You see bowl (1, 2, 3, 4, 5), chair (1, 2), cutlets (1),

dishwashing liquid (1), faucet (2), kitchen cabinet (2, 3, 4, 5, 6, 7),
kitchen counter (1, 2), plate (1, 2, 3, 4), pudding (2), sink (2), washing
sponge (1)

Think: I find pudding 2. Now, I need to pick it up.
Act: pick up pudding 2
You pick up pudding. You hold pudding (2).
Think: I hold pudding 2. Now, I need to put it on the kitchen table.
Act: go to kitchen table 1
You arrive at the kitchen table (1). You see bench (2), book (1), bowl (6),

condiment shaker (1, 2), cupcake (1), kitchen table (1), pudding (2) You hold
pudding (2).

Think: Now, I need to put down pudding 2.
Act: put down pudding 2
You put down pudding on kitchen table
Think: I put down pudding 2 on kitchen table 1. Now, I need to recall the location

of the juice.
Act: recall location of juice
You have not seen juice before.
Think: Now, I need to find the juice. The juice is more likely to appear in

kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8). I can check each place one by one,
starting from kitchen cabinet 1, until I find the juice.

Act: go to kitchen cabinet 6
You arrive at the kitchen cabinet (6). The kitchen cabinet (6) is closed. You see

bowl (1, 2, 3, 4, 5), chair (1, 2), dishwashing liquid (1), faucet (2),
kitchen cabinet (2, 3, 4, 5, 6, 7, 8), kitchen counter (1, 2), plate (1, 2, 3,
4), sink (2), washing sponge (1)

Act: open kitchen cabinet 6
You open kitchen cabinet. You see bowl (1, 2, 3, 4, 5), chair (1, 2), dishwashing

liquid (1), faucet (2), kitchen cabinet (2, 3, 4, 5, 6, 7, 8), kitchen counter
(1, 2), plate (1, 2, 3, 4), sink (2), washing sponge (1)

Act: go to kitchen cabinet 7
You arrive at the kitchen cabinet (7). The kitchen cabinet (7) is closed. You see

bowl (1, 2, 3, 4, 5), chair (1, 2), kitchen cabinet (2, 3, 4, 5, 6, 7, 8),
kitchen counter (1), light switch (2), plate (1, 2, 3, 4), sink (2)

Act: open kitchen cabinet 7
You open kitchen cabinet. You see apple (1), bowl (1, 2, 3, 4, 5), chair (1, 2),

kitchen cabinet (2, 3, 4, 5, 6, 7, 8), kitchen counter (1), light switch (2),
pancake (1), plate (1, 2, 3, 4), sink (2)

Think: I find apple 1. Now, I need to pick it up.
Act: pick up apple 1
You pick up apple. You hold apple (1).
Think: I hold apple 1. Now, I need to put it on the kitchen table.
Act: go to kitchen table 1
You arrive at the kitchen table (1). You see apple (1), bench (2), book (1), bowl

(6), condiment shaker (1, 2), cupcake (1), kitchen table (1), pudding (2) You
hold apple (1).

Think: Now, I need to put down apple 1.
Act: put down apple 1
You put down apple on kitchen table
Think: I put down apple 1 on kitchen table 1. Now, I need to recall the location

of the pancake.
Act: recall location of pancake
You saw pancake 1 near kitchen cabinet 7 in kitchen 1.
Act: go to kitchen cabinet 7

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

You arrive at the kitchen cabinet (7). The kitchen cabinet (7) is open. You see
bowl (1, 2, 3, 4, 5), chair (1, 2), kitchen cabinet (2, 3, 4, 5, 6, 7, 8),
kitchen counter (1), light switch (2), pancake (1), plate (1, 2, 3, 4), sink
(2)

Think: I find pancake 1. Now, I need to pick it up.
Act: pick up pancake 1
You pick up pancake. You hold pancake (1).
Think: I hold pancake 1. Now, I need to put it on the kitchen table.
Act: go to kitchen table 1
You arrive at the kitchen table (1). You see apple (1), bench (2), book (1), bowl

(6), condiment shaker (1, 2), cupcake (1), kitchen table (1), pancake (1),
pudding (2) You hold pancake (1).

Think: Now, I need to put down pancake 1.
Act: put down pancake 1
You put down pancake on kitchen table
Think: I put down pancake 1 on kitchen table 1. Now, I need to recall the location

of the juice.
Act: recall location of juice
You have not seen juice before.
Think: Now, I need to find the juice. The juice is more likely to appear in

kitchen cabinet (1, 2, 3, 4, 5, 6, 7, 8). I can check each place one by one,
starting from kitchen cabinet 1, until I find the juice.

Act: go to kitchen cabinet 8
You arrive at the kitchen cabinet (8). The kitchen cabinet (8) is closed. You see

bench (2), chair (1, 2), kitchen cabinet (5, 6, 7, 8), light switch (2)
Act: open kitchen cabinet 8
You open kitchen cabinet. You see bench (2), chair (1, 2), kitchen cabinet (5, 6,

7, 8), light switch (2)
Think: I cannot find juice in kitchen 1. The juice is more likely to appear in

fridge 1, 2.
Act: go to fridge 1
You arrive at the fridge (1). The fridge (1) is open. You see bench (1), fridge

(1), pudding (3)
Act: go to fridge 2
You arrive at the fridge (2). The fridge (2) is closed. You see bench (1), fridge

(1, 2), pudding (3)
Act: open fridge 2
You open fridge. You see apple (2), bench (1), fridge (1, 2), pudding (3)
Think: I find apple 2. Now, I need to pick it up.
Act: pick up apple 2
You pick up apple. You hold apple (2).
Think: I hold apple 2. Now, I need to put it on the kitchen table.
Act: go to kitchen table 1
You arrive at the kitchen table (1). You see apple (1, 2), bench (2), book (1),

bowl (6), condiment shaker (1, 2), cupcake (1), kitchen table (1), pancake (1)
, pudding (2) You hold apple (2).

Think: Now, I need to put down apple 2.
Act: put down apple 2
You put down apple on kitchen table
Think: I put down apple 2 on kitchen table 1. Now, I need to recall the location

of the juice.
Act: recall location of juice
You have not seen juice before.
Failure: maximum context window size of 8192

H.2 ALFRED EXAMPLE CASES

Listing 13: Success trajectory of ReAcTree on the ALFRED dataset using LLaMA 3 70B.
Agent Node 1
Your task is to: Put the cooked tomato slice on the kitchen island
You are in the house, and you arrive at the kitchen, Looking quickly around the

room, you see Toaster (1), StoveBurner (1, 2, 3, 4, 5, 6), SinkBasin (1),
Microwave (1), GarbageCan (1), Fridge (1), Drawer (1, 2, 3, 4, 5, 6, 7, 8, 9,

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

10, 11, 12, 13), CounterTop (1, 2), CoffeeMachine (1), Cabinet (1, 2, 3, 4, 5,
6, 7, 8, 9).

Think: To solve the task, I need to accomplish 8 subgoals sequentially. find and
pick up the knife, find and slice and then pick up the tomato, find and open
the microwave, find the microwave and put down the tomato, find and close and
turn on the microwave, find and turn off and open microwave, find and pick up
tomato in microwave, and find a countertop and put down the tomato on the
countertop.

Expand:
- control flow: sequence
- subgoals: find and pick up the knife, find and slice and then pick up the tomato

, find and open the microwave, find the microwave and put down the tomato,
find and close and turn on the microwave, find and turn off and open microwave
, find and pick up tomato in microwave, and find a countertop and put down the
tomato on the countertop.

Agent Node 2
Your primary goal is to: Put the cooked tomato slice on the kitchen island
To achieve this, you should perform your sibling tasks in sequence. At this level,

your sibling tasks are: find and pick up the knife, find and slice and then
pick up the tomato, find and open the microwave, find the microwave and put
down the tomato, find and close and turn on the microwave, find and turn off
and open microwave, find and pick up tomato in microwave, and and find a
countertop and put down the tomato on the countertop.

Your task is to: find and pick up the knife
You are in the house, and you arrive at the kitchen, Looking quickly around the

room, you see Toaster (1), StoveBurner (1, 2, 3, 4, 5, 6), SinkBasin (1),
Microwave (1), GarbageCan (1), Fridge (1), Drawer (1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13), CounterTop (1, 2), CoffeeMachine (1), Cabinet (1, 2, 3, 4, 5,
6, 7, 8, 9).

Think: To solve the task, I need to recall location of knife.
Think: Now I need to find Knife. A knife is more likely to appear in CounterTop

(1-2), SinkBasin (1), Cabinet (1-9). I can check one by one, starting with
CounterTop (1).

Act: go to CounterTop (1)
You arrive at CounterTop (1). You see Window (2), Tomato (1), Sink (1), SinkBasin

(1), Lettuce (2), Fork (1), Faucet (1), Egg (2), DishSponge (1), CounterTop
(1), Cabinet (1, 8).

Act: go to CounterTop (2)
You arrive at CounterTop (2). You see Tomato (2), SoapBottle (2), Pot (1),

PepperShaker (2), Mug (2), Knife (1, 2), Kettle (2), CounterTop (1, 2),
CellPhone (2), Bread (1, 2).

Think: Now I find Knife (1, 2). Next, I need to pick it up.
Act: pick up Knife (1)
You pick up Knife (1). You see Tomato (2), SoapBottle (2), Pot (1), PepperShaker

(2), Mug (2), Knife (1, 2), Kettle (2), CounterTop (1, 2), CellPhone (2),
Bread (1, 2). I am holding Knife (1) now.

Think: Now I find and pick up Knife (1)
Act: done

Agent Node 3
Your primary goal is to: Put the cooked tomato slice on the kitchen island
To achieve this, you should perform your sibling tasks in sequence. At this level,

your sibling tasks are: find and pick up the knife, find and slice and then
pick up the tomato, find and open the microwave, find the microwave and put
down the tomato, find and close and turn on the microwave, find and turn off
and open microwave, find and pick up tomato in microwave, and and find a
countertop and put down the tomato on the countertop.

Your task is to: find and slice and then pick up the tomato
You are in the house, and you arrive at the kitchen, Looking quickly around the

room, you see Toaster (1), StoveBurner (1, 2, 3, 4, 5, 6), SinkBasin (1),
Microwave (1), GarbageCan (1), Fridge (1), Drawer (1, 2, 3, 4, 5, 6, 7, 8, 9,

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

10, 11, 12, 13), CounterTop (1, 2), CoffeeMachine (1), Cabinet (1, 2, 3, 4, 5,
6, 7, 8, 9). I am holding Knife (1) now.

Think: To solve the task, I need to recall location of tomato.
Think: I saw Tomato (1) near SinkBasin (1). I need to go to SinkBasin (1), then

slice the Tomato (1).
Act: go to SinkBasin (1)
You arrive at SinkBasin (1). You see Tomato (1), Sink (1), SinkBasin (1), Lettuce

(2), Knife (1), Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1),
CounterTop (1), Cabinet (1, 8). I am holding Knife (1) now.

Think: Now I find a part of the Tomato (1). I need to go in front of the Tomato
(1) to see the whole thing.

Act: go to Tomato (1)
You see Tomato (1), Sink (1), SinkBasin (1), Lettuce (2), Knife (1), Fork (1),

Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1), CounterTop (1), Cabinet
(1, 8). I am holding Knife (1) now.

Act: slice Tomato (1)
You slice Tomato (1). You see Tomato (9, 10), Sink (1), SinkBasin (1), Lettuce (2)

, Knife (1), Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1),
CounterTop (1), Cabinet (1, 8). I am holding Knife (1) now.

Think: Now I slice the Tomato (1), and I do not need to hold Knife (1). I need to
drop the Knife (1).

Act: put down Knife (1)
You put down failed, drop it. You see Tomato (9, 10), Sink (1), SinkBasin (1),

Lettuce (2), Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1),
CounterTop (1), Cabinet (1, 8).

Think: Now I put down Knife (1). Next, I need to pick up the Tomato (9).
Act: pick up Tomato (9)
You pick up Tomato (9). You see Tomato (7, 8, 9, 10), Sink (1), SinkBasin (1),

Lettuce (2), Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1),
CounterTop (1), Cabinet (1, 8). I am holding Tomato (9) now.

Think: Now I pick up Tomato (9).
Act: done

Agent Node 4
Your primary goal is to: Put the cooked tomato slice on the kitchen island
To achieve this, you should perform your sibling tasks in sequence. At this level,

your sibling tasks are: find and pick up the knife, find and slice and then
pick up the tomato, find and open the microwave, find the microwave and put
down the tomato, find and close and turn on the microwave, find and turn off
and open microwave, find and pick up tomato in microwave, and and find a
countertop and put down the tomato on the countertop.

Your task is to: find and open the microwave
You are in the house, and you arrive at the kitchen, Looking quickly around the

room, you see Toaster (1), StoveBurner (1, 2, 3, 4, 5, 6), SinkBasin (1),
Microwave (1), GarbageCan (1), Fridge (1), Drawer (1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13), CounterTop (1, 2), CoffeeMachine (1), Cabinet (1, 2, 3, 4, 5,
6, 7, 8, 9). I am holding Tomato (9) now.

Act: go to Microwave (1)
You arrive at Microwave (1). You see Window (1), Tomato (9), Toaster (1),

Microwave (1), Drawer (4), CounterTop (1). Microwave (1) is closed. I am
holding Tomato (9) now.

Act: open Microwave (1)
You open Microwave (1). You see Window (1), Tomato (9), Toaster (1), Microwave (1)

, Egg (1), Drawer (4), CounterTop (1). I am holding Tomato (9) now.
Think: Now I find and open the Microwave (1).
Act: done

Agent Node 5
Your primary goal is to: Put the cooked tomato slice on the kitchen island
To achieve this, you should perform your sibling tasks in sequence. At this level,

your sibling tasks are: find and pick up the knife, find and slice and then
pick up the tomato, find and open the microwave, find the microwave and put
down the tomato, find and close and turn on the microwave, find and turn off

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

and open microwave, find and pick up tomato in microwave, and and find a
countertop and put down the tomato on the countertop.

Your task is to: find the microwave and put down the tomato
You are in the house, and you arrive at the kitchen, Looking quickly around the

room, you see Toaster (1), StoveBurner (1, 2, 3, 4, 5, 6), SinkBasin (1),
Microwave (1), GarbageCan (1), Fridge (1), Drawer (1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13), CounterTop (1, 2), CoffeeMachine (1), Cabinet (1, 2, 3, 4, 5,
6, 7, 8, 9). I am holding Tomato (9) now.

Think: To solve the task, I need to go to Microwave (1) and put down the Tomato
(9).

Act: go to Microwave (1)
You arrive at Microwave (1). You see Window (1), Tomato (9), Toaster (1),

Microwave (1), Egg (1), Drawer (4), CounterTop (1). Microwave (1) is open. I
am holding Tomato (9) now.

Think: Now I find a Microwave (1). The Microwave (1) is already open, so I need to
put the Tomato (9) down.

Act: put down Tomato (9)
You put Tomato (9) on Microwave (1). You see Window (1), Tomato (9), Toaster (1),

Microwave (1), Egg (1), Drawer (4), CounterTop (1).
Think: Now I put down Tomato (9) in the Microwave (1).
Act: done

Agent Node 6
Your primary goal is to: Put the cooked tomato slice on the kitchen island
To achieve this, you should perform your sibling tasks in sequence. At this level,

your sibling tasks are: find and pick up the knife, find and slice and then
pick up the tomato, find and open the microwave, find the microwave and put
down the tomato, find and close and turn on the microwave, find and turn off
and open microwave, find and pick up tomato in microwave, and and find a
countertop and put down the tomato on the countertop.

Your task is to: find and close and turn on the microwave
You are in the house, and you arrive at the kitchen, Looking quickly around the

room, you see Toaster (1), StoveBurner (1, 2, 3, 4, 5, 6), SinkBasin (1),
Microwave (1), GarbageCan (1), Fridge (1), Drawer (1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13), CounterTop (1, 2), CoffeeMachine (1), Cabinet (1, 2, 3, 4, 5,
6, 7, 8, 9).

Think: To solve the task, I need to go to Microwave (1), close the Microwave (1)
and turn on the Microwave (1).

Act: go to Microwave (1)
You arrive at Microwave (1). You see Window (1), Tomato (9), Toaster (1),

Microwave (1), Egg (1), Drawer (4), CounterTop (1). Microwave (1) is open.
Think: The Microwave (1) is already open and I need to close the Microwave (1).
Act: close Microwave (1)
You close Microwave (1). You see Window (1), Toaster (1), Microwave (1), Drawer

(4), CounterTop (1).
Act: turn on Microwave (1)
You turn on Microwave (1). You see Window (1), Toaster (1), Microwave (1), Drawer

(4), CounterTop (1).
Think: Now I find and close and turn on the Microwave (1).
Act: done

Agent Node 7
Your primary goal is to: Put the cooked tomato slice on the kitchen island
To achieve this, you should perform your sibling tasks in sequence. At this level,

your sibling tasks are: find and pick up the knife, find and slice and then
pick up the tomato, find and open the microwave, find the microwave and put
down the tomato, find and close and turn on the microwave, find and turn off
and open microwave, find and pick up tomato in microwave, and and find a
countertop and put down the tomato on the countertop.

Your task is to: find and turn off and open microwave
You are in the house, and you arrive at the kitchen, Looking quickly around the

room, you see Toaster (1), StoveBurner (1, 2, 3, 4, 5, 6), SinkBasin (1),
Microwave (1), GarbageCan (1), Fridge (1), Drawer (1, 2, 3, 4, 5, 6, 7, 8, 9,

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

10, 11, 12, 13), CounterTop (1, 2), CoffeeMachine (1), Cabinet (1, 2, 3, 4, 5,
6, 7, 8, 9).

Think: To solve the task, I need to go to Microwave (1), turn off and open the
Microwave (1).

Act: go to Microwave (1)
You arrive at Microwave (1). You see Window (1), Toaster (1), Microwave (1),

Drawer (4), CounterTop (1). Microwave (1) is closed. Microwave (1) is already
turned on.

Think: Now I find a Microwave (1). The Microwave (1) is already turned on, so I
need to turn off the Microwave (1).

Act: turn off Microwave (1)
You turn off Microwave (1). You see Window (1), Toaster (1), Microwave (1), Drawer

(4), CounterTop (1).
Act: open Microwave (1)
You open Microwave (1). You see Window (1), Tomato (9), Toaster (1), Microwave (1)

, Egg (1), Drawer (4), CounterTop (1).
Think: Now I turn off and open the Microwave (1).
Act: done

Agent Node 8
Your primary goal is to: Put the cooked tomato slice on the kitchen island
To achieve this, you should perform your sibling tasks in sequence. At this level,

your sibling tasks are: find and pick up the knife, find and slice and then
pick up the tomato, find and open the microwave, find the microwave and put
down the tomato, find and close and turn on the microwave, find and turn off
and open microwave, find and pick up tomato in microwave, and and find a
countertop and put down the tomato on the countertop.

Your task is to: find and pick up tomato in microwave
You are in the house, and you arrive at the kitchen, Looking quickly around the

room, you see Toaster (1), StoveBurner (1, 2, 3, 4, 5, 6), SinkBasin (1),
Microwave (1), GarbageCan (1), Fridge (1), Drawer (1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13), CounterTop (1, 2), CoffeeMachine (1), Cabinet (1, 2, 3, 4, 5,
6, 7, 8, 9).

Think: To solve the task, I need to recall the location of tomato.
Think: I saw Tomato (2) near Microwave (1). I need to go to Microwave (1), then

pick up Tomato (2).
Act: go to Microwave (1)
You arrive at Microwave (1). You see Window (1), Tomato (9), Toaster (1),

Microwave (1), Egg (1), Drawer (4), CounterTop (1). Microwave (1) is open.
Think: Now, I find a Microwave (1). The Microwave (1) is already open, so I need

to pick up Tomato (2).
Act: pick up Tomato (9)
You pick up Tomato (9). You see Window (1), Tomato (9), Toaster (1), Microwave (1)

, Egg (1), Drawer (4), CounterTop (1). I am holding Tomato (9) now.
Think: Now I find and pick up the Tomato (9) in Microwave (1).
Act: done

Agent Node 9
Your primary goal is to: Put the cooked tomato slice on the kitchen island
To achieve this, you should perform your sibling tasks in sequence. At this level,

your sibling tasks are: find and pick up the knife, find and slice and then
pick up the tomato, find and open the microwave, find the microwave and put
down the tomato, find and close and turn on the microwave, find and turn off
and open microwave, find and pick up tomato in microwave, and and find a
countertop and put down the tomato on the countertop.

Your task is to: and find a countertop and put down the tomato on the countertop.
You are in the house, and you arrive at the kitchen, Looking quickly around the

room, you see Toaster (1), StoveBurner (1, 2, 3, 4, 5, 6), SinkBasin (1),
Microwave (1), GarbageCan (1), Fridge (1), Drawer (1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13), CounterTop (1, 2), CoffeeMachine (1), Cabinet (1, 2, 3, 4, 5,
6, 7, 8, 9). I am holding Tomato (9) now.

Think: To solve the task, I need to go to CounterTop (1) and put down the Tomato
(9) on the CounterTop (1).

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

Act: go to CounterTop (1)
You arrive at CounterTop (1). You see Window (2), Tomato (7, 8, 9, 10), Sink (1),

SinkBasin (1), Lettuce (2), Fork (1), Faucet (1), Egg (2), DishSponge (1),
CounterTop (1), Cabinet (1, 8). I am holding Tomato (9) now.

Act: put down Tomato (9)
You put Tomato (9) on CounterTop (1). You see Window (2), Tomato (7, 8, 9, 10),

Sink (1), SinkBasin (1), Lettuce (2), Fork (1), Faucet (1), Egg (2),
DishSponge (1), CounterTop (1), Cabinet (1, 8).

Think: Now I put Tomato (9) on the CounterTop (1).
Act: done

Listing 14: Failure trajectory of ReAct on the ALFRED dataset using LLaMA 3 70B.
Your task is to : Put the cooked tomato slice on the kitchen island
You are in the house, and you arrive at the kitchen, Looking quickly around the

room, you see Toaster (1), StoveBurner (1, 2, 3, 4, 5, 6), SinkBasin (1),
Microwave (1), GarbageCan (1), Fridge (1), Drawer (1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13), CounterTop (1, 2), CoffeeMachine (1), Cabinet (1, 2, 3, 4, 5,
6, 7, 8, 9).

Think: To solve the task, I need to find and pick up knife, then find and slice
tomato and then pick up tomato, then find plate and put tomato on plte, then
find and pick up plate, then find fridge and put plate on fridge

Think: First, I need to recall location of knife
Act: recall location of Knife
You have not seen Knife before.
Think: Now I need to find and pick up knife. A knife is more likely to appear in

SinkBasin (1), Sink (1), DiningTable (1), CounterTop (1-3), Cabinet (1-2),
Drawer (1-6). I can check one by one, starting with SinkBasin (1).

Act: go to SinkBasin (1)
You arrive at SinkBasin (1). You see Tomato (1), Sink (1), SinkBasin (1), Lettuce

(2), Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1), CounterTop
(1), Cabinet (1, 8).

Think: Now I find Knife (1). Next, I need to pick it up.
Act: pick up Tomato (1)
You pick up Tomato (1). You see Tomato (1), Sink (1), SinkBasin (1), Lettuce (2),

Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1), CounterTop (1),
Cabinet (1, 8). I am holding Tomato (1) now.

Think: Now I find and pick up Knife (1).
Think: Next, I need to recall location of tomato
Act: recall location of Tomato
You are holding Tomato (1).
Think: I saw Tomato (3) near SinkBasin (1)
Act: go to SinkBasin (1)
You arrive at SinkBasin (1). You see Tomato (1), Sink (1), SinkBasin (1), Lettuce

(2), Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1), CounterTop
(1), Cabinet (1, 8). I am holding Tomato (1) now.

Think: Now I find Tomato (3). Next, I need to slice it
Act: slice Tomato (1)
The Tomato (1) slice failed. I am holding Tomato (1) now.
Think: Now I slice Tomato (3). Next, I need to drop Knife (1) because I do not

need to hold it now.
Act: go to SinkBasin (1)
You arrive at SinkBasin (1). You see Tomato (1), Sink (1), SinkBasin (1), Lettuce

(2), Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1), CounterTop
(1), Cabinet (1, 8). I am holding Tomato (1) now.

Think: Next, I need to pick up Tomato (5)
Act: pick up Tomato (1)
You are currently holding Tomato (1). I am holding Tomato (1) now.
Think: Now I find and slice Tomato (3), then pick up Tomato (5)
Think: Next, I need to recall location of plate.
Act: recall location of Plate
You have not seen Plate before.
Think: I saw Plate (1) near SinkBasin (1).
Act: go to SinkBasin (1)

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

You arrive at SinkBasin (1). You see Tomato (1), Sink (1), SinkBasin (1), Lettuce
(2), Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1), CounterTop
(1), Cabinet (1, 8). I am holding Tomato (1) now.

Think: I need to go to Plate (1), then put Tomato (5) on Plate (1)
Act: go to SinkBasin (1)
You arrive at SinkBasin (1). You see Tomato (1), Sink (1), SinkBasin (1), Lettuce

(2), Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1), CounterTop
(1), Cabinet (1, 8). I am holding Tomato (1) now.

Act: put down Tomato (1)
You put Tomato (1) on SinkBasin (1). You see Tomato (1), Sink (1), SinkBasin (1),

Lettuce (2), Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1),
CounterTop (1), Cabinet (1, 8).

Think: Now I find Plate (1), then put Tomato (5) on Plate (1)
Think: Next, I need to pick up Plate (1) again.
Act: pick up Tomato (1)
You pick up Tomato (1). You see Tomato (1), Sink (1), SinkBasin (1), Lettuce (2),

Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1), CounterTop (1),
Cabinet (1, 8). I am holding Tomato (1) now.

Think: Now I find and pick up Plate (1). Next, I need to find fridge, then put
plate on fridge.

Act: go to SinkBasin (1)
You arrive at SinkBasin (1). You see Tomato (1), Sink (1), SinkBasin (1), Lettuce

(2), Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1), CounterTop
(1), Cabinet (1, 8). I am holding Tomato (1) now.

Act: open Fridge (1)
The Fridge (1) is not close to you. I am holding Tomato (1) now.
Act: put down Tomato (1)
You put Tomato (1) on SinkBasin (1). You see Tomato (1), Sink (1), SinkBasin (1),

Lettuce (2), Fork (1), Faucet (1), Egg (2), Drawer (1, 6), DishSponge (1),
CounterTop (1), Cabinet (1, 8).

Think: Now I put Plate (1) on Fridge (1).
Act: done

50

	Introduction
	Related Works
	Preliminaries
	ReAcTree
	ReAcTree Algorithm
	Memory Systems

	Experiments
	Experimental Setup
	Main Results
	Episodic Memory
	Working Memory
	Experiments on ALFRED

	Conclusion
	Implementation Details for Partially Observable Settings
	Language Models
	GPT-4o Implementation details
	Extended Results
	with working memory results
	Without Working memory results

	Failure Analysis
	Failure Types
	Failure Analysis
	Detailed descriptions of the failure types
	Task Decomposition Failure
	Control-flow selection Failure
	Expand-level infinite loop
	Navigation & Search Failure
	Agent-level planning Failure
	Agent-level Infinite loop
	Termination reasoning Failure
	Max Step
	Incorrect instruction
	Ambiguous instruction

	Experiments Details of ALFRED dataset
	AI2THOR simluator and ALFRED dataset
	Memory Construction
	Qualatative Results

	Example of Planning Results
	WAH-NL example cases
	ALFRED example cases

	Example of Text Trajectories
	WAH-NL example cases
	ALFRED example cases

