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Abstract

Auto-regressive (AR) language models fac-
torize sequence probabilities as Pθ(w) =∏

t Pθ(wt|w<t). While empirically powerful,
their internal mechanisms remain partially under-
stood. This work introduces an analytical frame-
work using Markov Categories (MCs), specif-
ically the category Stoch of standard Borel
spaces and Markov kernels. We model the
AR generation step w<t 7→ Pθ(·|w<t) as a
composite kernel kgen,θ = khead ◦ kbb ◦ kemb.
Leveraging the enrichment of Stoch with sta-
tistical divergences D and associated categori-
cal information measures (entropy HD, mutual
information ID), we define principled metrics:
Representation Divergence D(pHt|s1∥pHt|s2),
State-Prediction Information ID(Ht;Wt), Tem-
poral Coherence ID(Ht;Ht+1), LM Head
Stochasticity HD(khead), and Information Flow
Bounds via the Data Processing Inequality (e.g.,
ID(S;Ht) ≥ ID(S;Wt)). Beyond providing
metrics, this framework analyzes the negative log-
likelihood (NLL) objective itself. We argue NLL
minimization equates to optimal compression and
learning the data’s intrinsic stochasticity (H̄D).
We employ information geometry, analyzing the
pullback Fisher-Rao metric g∗ on the representa-
tion space H, to understand learned sensitivities.
Furthermore, we formalize the concept that NLL
acts as implicit structure learning, demonstrating
how minimizing NLL forces representations of
predictively dissimilar contexts apart.

1. Introduction
Autoregressive language models (AR LMs), particularly
the Transformer-based architectures (Vaswani et al., 2017;
Radford et al., 2019; Brown et al., 2020), have become
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foundational in natural language processing. Their success
stems from factorizing sequence probabilities Pθ(w) =∏

t Pθ(wt|w<t) and optimizing parameters θ by minimiz-
ing negative log-likelihood (NLL) on large datasets. Despite
their empirical power, a deep theoretical understanding of
their internal information processing pathways, representa-
tion learning dynamics, and the reasons behind their emer-
gent capabilities remains incomplete (Manning et al., 2020;
Hupkes et al., 2020; Elhage et al., 2021). Such understand-
ing is crucial for improving model interpretability, robust-
ness, efficiency, and for guiding future development. Why
the simple NLL objective yields representations capturing
complex linguistic and world knowledge is a particularly
central question.

This work introduces an analytical framework focused on
the core AR generation step w<t 7→ Pθ(·|w<t), rooted in
the theory of Markov Categories (MCs) (Cho & Jacobs,
2019; Fritz, 2020). MCs provide an abstract algebraic set-
ting tailored for reasoning about systems involving prob-
ability, causality, and information flow. We specifically
leverage Stoch, the category of standard Borel spaces
and Markov kernels (Kallenberg & Kallenberg, 1997; Fritz,
2020). The strength of this framework lies in its inherent
compositionality, mirroring the layered structure of neural
networks, its native handling of probability and stochastic
transformations crucial for generative models, and its capac-
ity for defining fundamental information-theoretic quanti-
ties. We model the generation step as a composite kernel
kgen,θ = khead ◦ kbb ◦ kemb in Stoch, separating embed-
ding, backbone processing, and the final stochastic predic-
tion head.

By enriching Stoch with a statistical divergence D (e.g.,
DKL, dTV) (Baez et al., 2016; Perrone, 2023a;b) and us-
ing associated categorical information measures (entropy
HD, mutual information ID) satisfying the Data Processing
Inequality (DPI), we develop a multifaceted analysis:

1. We provide a formal MC model of the AR step, ground-
ing the process in measure-theoretic probability and
category theory.

2. We define principled metrics: Representation Diver-
gence (RepDivD) to quantify how well hidden states
distinguish context properties; Categorical Mutual In-
formation (ID) measuring state-prediction relevance
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and temporal coherence; LM Head Categorical En-
tropy (HD) assessing prediction stochasticity; and DPI-
based Information Flow Bounds quantifying process-
ing bottlenecks.

3. We interpret NLL minimization as equivalent to min-
imizing average KL divergence, linking it directly to
optimal data compression (cf. the "compression im-
plies intelligence" hypothesis) and forcing the model
to learn the data’s intrinsic conditional stochasticity
(H̄D).

4. We employ information geometry, analyzing the
pullback Fisher-Rao metric (g∗) on the representa-
tion space H induced by the LM head, to under-
stand learned predictive sensitivities and functional
anisotropy.

5. We formalize NLL as implicit structure learning,
demonstrating how minimizing NLL necessarily forces
representations of predictively dissimilar contexts apart
along sensitive dimensions, establishing rigorous con-
nections to spectral graph theory principles based on
predictive similarity kernels.

2. Background
This section reviews the essential mathematical concepts
forming the foundation of our framework: the definition of
Markov Categories and the specific category Stoch, fol-
lowed by the enrichment of Stoch with statistical diver-
gences leading to categorical information measures.

2.1. Markov Categories and Stoch

Markov Categories provide an axiomatic framework for
probability and stochastic processes using category theory
(Fritz, 2020).
Definition 2.1 (Markov Category (Fritz, 2020)). A Markov
category (C,⊗, I) is a symmetric monoidal category where
each object X is equipped with a commutative comonoid
structure (∆X : X → X ⊗X, !X : X → I) that is natural
in X , and the monoidal unit I is a terminal object (the
causality axiom: !X is the unique map X → I).

Morphisms k : X → Y are interpreted as stochastic pro-
cesses or channels transforming systems of type X to type
Y . Composition h ◦ k denotes sequential processing, k ⊗ h
parallel processing. The comonoid maps ∆X (copy) and
!X (discard) model the duplication and deletion of informa-
tion. States (probability distributions) on X are morphisms
p : I → X .

The key example for our purposes is the category Stoch.
Definition 2.2 (Category Stoch (Fritz, 2020; Perrone,
2023a)). The Markov category Stoch is defined by:

• Objects: Standard Borel spaces (X,B(X)). The

monoidal unit I is a singleton space ({⋆}, {∅, {⋆}}).
• Morphisms: Markov kernels k : X → Y . A map
k : X × B(Y ) → [0, 1] where k(x, ·) is a probabil-
ity measure on Y for each x ∈ X , and k(·, A) is a
measurable function on X for each A ∈ B(Y ).

• Composition: Given k : X → Y and h : Y → Z,
the composite h ◦ k : X → Z is (h ◦ k)(x,C) :=∫
Y
h(y, C) k(x, dy) (Chapman-Kolmogorov). Identity

idX(x,A) = δx(A).
• Monoidal Product (⊗): Product space (X ×
Y,B(X)⊗ B(Y )) with the product σ-algebra. Prod-
uct kernel (k⊗ h)((x, y), ·) := k(x, ·)⊗ h(y, ·) (prod-
uct measure).

• Symmetry: Swap map σX,Y : X ⊗ Y → Y ⊗ X is
σX,Y ((x, y), ·) = δ(y,x).

• Comonoid Structure: Copy ∆X : X → X ⊗ X is
∆X(x, ·) = δ(x,x). Discard !X : X → I maps to the
unique point measure on I , !X(x, {⋆}) = 1.

• Causality: I is terminal, !Y ◦ k =!X holds, reflecting
probability normalization.

Remark 2.3 (Interpretation). In Stoch, objects represent
the types of random outcomes (e.g., sequences, vectors, to-
kens). Morphisms represent stochastic processes or chan-
nels mapping inputs to probability distributions over out-
puts. Deterministic functions f : X → Y correspond to
deterministic kernels kf (x, ·) = δf(x). States p : I → X
correspond bijectively to probability measures µp ∈ P(X)
via µp(A) = p(⋆,A). Marginalization arises from discard-
ing information, e.g., for a joint state p : I → X ⊗ Y , the
X-marginal is pX = (idX⊗!Y ) ◦ p.

2.2. Divergence Enrichment and Categorical
Information Measures

The structure of Stoch is particularly powerful when en-
riched with a statistical divergence D, quantifying the dis-
similarity between probability measures (states) p, q : I →
X , written DX(p∥q) (Perrone, 2023a). Examples include
KL divergence (DKL), Total Variation (dTV), Rényi diver-
gences (Dα), and the broad class of f -divergences (Df )
(Amari & Nagaoka, 2000; Nowozin et al., 2016).

A fundamental property linking divergences and Markov
kernels is the Data Processing Inequality (DPI), which holds
for most standard divergences (e.g., f -divergences, Rényi
α ∈ [0,∞]).

Theorem 2.4 (Data Processing Inequality (DPI)). Let D be
a statistical divergence satisfying the DPI. For any Markov
kernel k : X → Y in Stoch and any pair of states p, q :
I → X:

DY (k ◦ p∥k ◦ q) ≤ DX(p∥q) (1)

Processing through k cannot increase the D-divergence
between the distributions.
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Based on this, Perrone (Perrone, 2023a) introduced categor-
ical definitions of entropy and mutual information intrinsi-
cally tied to the divergence D and the MC structure.

Definition 2.5 (Categorical Entropy and Mutual Information
(Perrone, 2023a)). Let (Stoch, D) be enriched with a DPI-
satisfying divergence D.

1. The Categorical Entropy of a kernel k : X → Y
measures its intrinsic stochasticity:

HD(k) := DY⊗Y (∆Y ◦ k ∥ (k ⊗ k) ◦∆X) (2)

It compares two processes producing pairs in Y ⊗ Y .
The first (∆Y ◦ k) applies k once (x 7→ y ∼ k(x, ·))
and deterministically copies the output (y, y). The sec-
ond ((k ⊗ k) ◦∆X ) deterministically copies the input
(x, x) and applies k independently to each component
(y1, y2) where y1, y2 ∼ k(x, ·) are i.i.d. The diver-
gence measures how different these two resulting joint
distributions are, quantifying how far k is from being
deterministic. If k is deterministic, k = kf , both sides
yield the same state (corresponding to δ(f(x),f(x))) and
HD(kf ) = 0.

2. The Categorical Mutual Information of a joint state
p : I → X ⊗ Y measures the statistical dependence
between X and Y :

ID(p) := DX⊗Y (p ∥ pX ⊗ pY ) (3)

where pX = (idX⊗!Y ) ◦ p and pY = (!X ⊗ idY ) ◦ p
are the marginal states. ID(p) measures how far the
joint state p is from the product of its marginals (rep-
resenting independence), according to the geometry
induced by D.

Remark 2.6 (Properties and Connections). When D =
DKL, IDKL

(p) recovers the standard Shannon mutual in-
formation I(X;Y ) for the joint distribution p. HDKL

(k)
provides an intrinsic measure of the kernel’s stochasticity,
related to but distinct from average conditional Shannon
entropy (Perrone, 2023a). Crucially, these categorical defi-
nitions automatically satisfy the DPI. For instance, consider
a state pXY : I → X ⊗ Y and a kernel h : Y → Z. Let
pXZ be the state obtained by applying idX ⊗h to pXY . The
DPI for D applied to the states involved in the definition of
ID implies ID(pXY ) ≥ ID(pXZ) (Perrone, 2023a, Prop.
4.8). This reflects the principle that processing (Y → Z)
cannot increase information about X . Furthermore, infor-
mation geometry (Amari & Nagaoka, 2000) arises naturally:
the Fisher-Rao metric is induced by the local quadratic ap-
proximation of the KL divergence, linking the divergence
D to the underlying geometric structure of the space of
probability measures.

3. Autoregressive Language Models as
Composed Kernels

We now apply the Markov Category framework established
in Section 2 to model Autoregressive language models.
Specifically, we model the single-step generation mapping
w<t 7→ Pθ(·|w<t) as a composition of Markov kernels
within the category Stoch.

The relevant measurable spaces (objects in Stoch) are:

• Input context space: (V∗,B(V∗)) = (V∗,B(V∗)),
where V∗ is the set of finite sequences over the vocab-
ulary V , equipped with a suitable σ-algebra making it
standard Borel (e.g., considering it as a disjoint union
of finite products Vn).

• Initial sequence representation
space: (Hseq_emb,B(Hseq_emb)) =
(Hseq_emb,B(Hseq_emb)), the space of initial
vector sequences (e.g.,

⋃
n(Rdmodel)n), also equipped

with a standard Borel structure.
• Final hidden state space: (H,B(H)) = (H,B(H)),

typically (Rdmodel ,B(Rdmodel)).
• Output vocabulary space: (V,P(V)) = (V,P(V)), a

finite measurable space.

Standard Borel spaces are chosen because they form a well-
behaved class of measurable spaces (isomorphic to Borel
subsets of Polish spaces) closed under countable products,
sums, and containing standard examples like Rd and finite
sets, ensuring measure-theoretic regularity (Kallenberg &
Kallenberg, 1997).

The generation process decomposes into three kernels (mor-
phisms in Stoch):

1. Embedding Layer Kernel (kemb : (V∗,B(V∗)) →
(Hseq_emb,B(Hseq_emb))): This kernel encapsulates the
initial processing of the discrete input sequence w<t ∈ V∗.
It typically involves applying a token embedding function E :
V → Rdmodel to each token wi and potentially incorporating
absolute positional encodings. Let femb : V∗ → Hseq_emb

denote the overall deterministic function computing the
initial sequence representation E<t. Since this mapping
is deterministic, the kernel kemb is defined via the Dirac
measure δ·:

kemb(w<t, A) := δfemb(w<t)(A) = 1A(femb(w<t)),

for A ∈ B(Hseq_emb). (4)

This is a valid morphism in Stoch.

2. Backbone Transformation Kernel (kbb :
(Hseq_emb,B(Hseq_emb)) → (H,B(H))): This ker-
nel represents the core computation, usually a deep neural
network like a Transformer stack. Let fbb : Hseq_emb → H
be the function mapping the initial sequence representation
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E<t to the final hidden state ht ∈ H (often the output vector
at the last sequence position). This function incorporates
complex operations like multi-head self-attention and
feed-forward layers. Relative positional information, such
as Rotary Position Embeddings (RoPE) (Su et al., 2024),
is implemented within the function fbb by modifying
attention computations based on token positions. Assuming
the backbone computation is deterministic for a given E<t

and parameters θ, the kernel kbb is also deterministic:

kbb(E<t, B) := δfbb(E<t)(B) = 1B(fbb(E<t)),

for B ∈ B(H). (5)

This is also a morphism in Stoch.

3. LM Head Kernel (khead : (H,B(H)) → (V,P(V))):
This final kernel maps the summary hidden state ht ∈ H to
a probability distribution over the finite vocabulary V . Typi-
cally, ht is passed through a linear layer (fhead : H → R|V|)
producing logits z = fhead(ht), followed by the softmax
function: P (w|ht) = [softmax(z)]w. This defines a gen-
uinely stochastic Markov kernel:

khead(h,A) :=
∑
w∈A

[softmax(fhead(h))]w

for h ∈ H, A ⊆ V. (6)

This kernel maps each point h in the representation space
to a probability measure on the discrete space V , satisfying
the required measurability conditions. It is a morphism in
Stoch.

The overall single-step generation kernel kgen,θ :
(V∗,B(V∗)) → (V,P(V)) is the composition khead ◦kbb ◦
kemb in the category Stoch. This composition precisely
represents the model’s learned conditional probability map
Pθ(·|w<t). The subsequent sections will use this represen-
tation to define and analyze information-theoretic metrics.

4. Markov Categorical Metrics
We now apply the Markov category framework (Stoch, D)
to analyze the AR generation kernel kgen,θ = khead ◦ kbb ◦
kemb. We select a suitable statistical divergenceD satisfying
the Data Processing Inequality (DPI) (e.g., DKL, dTV, or
more generally an f -divergence (Amari & Nagaoka, 2000;
Nowozin et al., 2016)) and utilize the corresponding cat-
egorical information measures HD and ID (Equations (2)
and (3)) to probe the information flow and transformations
within the generation step. A particular focus is placed on
the final hidden state Ht ∈ H and the stochastic prediction
kernel khead.

We operate within the probabilistic setting induced by a
distribution over input contexts. Let Pctx be a probability
measure on the context space (V∗,B(V∗)) = (V∗,B(V∗)).

This corresponds to an initial state in the Markov cate-
gory Stoch, represented by a morphism pW<t : I →
(V∗,B(V∗)), where I is the monoidal unit (a singleton
measurable space) and pW<t

(⋆,A) = Pctx(A) for any
A ∈ B(V∗). Processing this initial state through the
sequence of deterministic kernels kemb and kbb, and the
stochastic kernel khead, induces distributions (states) at sub-
sequent stages:

• Initial Sequence Embedding State: Given pW<t
:

I → (V∗,B(V∗)), the distribution of the initial vec-
tor sequence representation E<t ∈ Hseq_emb is given
by the state pE<t : I → (Hseq_emb,B(Hseq_emb)),
defined as:

pE<t
:= kemb ◦ pW<t

. (7)

Since kemb corresponds to the deterministic function
femb, the measure associated with pE<t

is the pushfor-
ward measure (Pctx) ◦ f−1

emb.
• Final Hidden State: The distribution of the final hid-

den state Ht ∈ H is given by the state pHt
: I →

(H,B(H)):

pHt
:= kbb ◦ pE<t

= (kbb ◦ kemb) ◦ pW<t
. (8)

As kbb is also deterministic (representing fbb), pHt

corresponds to the pushforward measure (Pctx)◦(fbb ◦
femb)

−1.
• Predicted Next Token State: The marginal distribu-

tion of the predicted next token Wt ∈ V , averaged
over all contexts according to Pctx, is given by the state
pWt : I → (V,P(V)):

pWt
:= khead ◦ pHt = (khead ◦ kbb ◦ kemb) ◦ pW<t

=kgen,θ ◦ pW<t . (9)

Let µHt
be the measure on H associated with pHt

.
Then the measure associated with pWt on V is given
by µWt(A) =

∫
H khead(h,A)µHt(dh) for A ⊆ V .

The random variables corresponding to these stages are
denoted W<t (context sequence), E<t (initial embedding
sequence), Ht (final hidden state), and Wt (predicted next
token). Their respective distributions (states in Stoch) are
denoted pW<t

, pE<t
, pHt

, and pWt
. Using these rigorously

defined states and the categorical information measures, we
propose the following metrics.

4.1. Metric 1: Representation Divergence (Context
Encoding Fidelity)

To quantify how effectively the distribution of the final hid-
den state Ht distinguishes between different underlying
properties S of the input context w<t. Consider a random
variable S representing a context property. Let pW<t|s be
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the conditional input state for property value s. The con-
ditional distribution of the hidden state Ht given S = s is
represented by the state:

pHt|s := (kbb ◦ kemb) ◦ pW<t|s : I → (H,B(H)). (10)

Let µHt|s be the probability measure on H associated with
pHt|s.
Definition 4.1 (Representation Divergence). The Represen-
tation Divergence between contexts exhibiting properties
s1 and s2 is the statistical divergence D between the corre-
sponding conditional hidden state measures:

RepDivD(s1∥s2) := DH(µHt|s1∥µHt|s2)

≡ DH(pHt|s1∥pHt|s2). (11)

Interpretation. A large RepDivD(s1∥s2) implies Ht effec-
tively distinguishes properties s1, s2. A small value suggests
similar representations. The choice of D affects the notion
of distinguishability.

A large value indicates that the measures µHt|s1 and µHt|s2
are highly distinguishable according to the chosen diver-
gence D. This implies that the transformation (kbb ◦ kemb)
maps contexts with properties s1 and s2 to significantly dif-
ferent distributions in the representation space H. The hid-
den state Ht thus serves as an effective statistical signature
for distinguishing between properties s1 and s2. (Estimation
details are discussed in Appendix B).

4.2. Metric 2: Categorical Mutual Information
(Statistical Dependencies)

To measure the strength of statistical dependence between
key random variables using the intrinsic definition ID (Equa-
tion (3)).
Definition 4.2 (State-Prediction Dependence
(ID(Ht;Wt))). The joint state pHt,Wt

: I →
(H,B(H)) ⊗ (V,P(V)) representing (Ht,Wt) is
obtained categorically:

pHt,Wt
:= (idH ⊗ khead) ◦∆H ◦ pHt

. (12)

The categorical mutual information is:

ID(Ht;Wt) := ID(pHt,Wt
)

≡ DH⊗V(pHt,Wt
∥ pHt

⊗ pWt
). (13)

If D = DKL, this recovers Shannon mutual information
I(Ht;Wt).
Definition 4.3 (Temporal State Dependence
(ID(Ht;Ht+1))). Modeling the transition Ht → Ht+1

involves generating Wt and re-encoding. This defines an
effective transition kernel k̄step : H → H. The joint state
pHt,Ht+1 : I → H⊗H is:

pHt,Ht+1
:= (idH ⊗ k̄step) ◦∆H ◦ pHt . (14)

The temporal statistical dependence is:

ID(Ht;Ht+1) := ID(pHt,Ht+1
)

≡ DH⊗H(pHt,Ht+1
∥ pHt

⊗ pHt+1
).

(15)

Interpretation. ID(Ht;Wt) quantifies the average amount
of information (relative to divergence D) that the hidden
state Ht provides about the immediately following token
Wt. A high value suggests Ht strongly constrains the
distribution over Wt, indicating high predictive relevance.
ID(Ht;Ht+1) measures the average statistical dependency
between consecutive hidden states. A high value implies
that the state Ht+1 is highly predictable from Ht, suggest-
ing the model maintains and evolves contextual information
coherently over time. Low values might indicate informa-
tion loss or abrupt changes in representation between time
steps. (Estimation details are discussed in Appendix B).

4.3. Metric 3: LM Head Categorical Entropy
(Prediction Stochasticity)

To quantify the intrinsic stochasticity of the LM head kernel
khead : (H,B(H)) → (V,P(V)) using categorical entropy
(Equation (2)).

Definition 4.4 (Categorical Entropy of khead).

HD(khead) := DV⊗V (∆V ◦ khead∥(khead ⊗ khead) ◦∆H) .
(16)

This compares generating (W,W ) vs (W1,W2) where
W,W1,W2

i.i.d.∼ khead(h, ·).

A practical measure is the average categorical entropy over
the input distribution pHt

:

H̄D(khead; pHt
) := Eh∼pHt

[
DV⊗V

( ∑
w∈V

khead(h, {w})δ(w,w) (17)

∥khead(h, ·)⊗ khead(h, ·)
)]
. (18)

Interpretation. Measures the average conditional stochas-
ticity or "spread" of the output distribution khead(h, ·). A
value of 0 indicates a deterministic mapping. Higher val-
ues indicate greater average uncertainty. For D = DKL, it
relates closely to the average conditional Shannon entropy
Eh[H(khead(h, ·))].

If khead were deterministic (i.e., for each h, it mapped to
a single specific wh, so ph = δwh

), then both measures
inside the divergence would be δ(wh,wh), and the entropy
would be D(δ(wh,wh)∥δ(wh,wh)) = 0. A higher value of
H̄D(khead; pHt) indicates greater average uncertainty or
spread in the output distribution ph = khead(h, ·), meaning
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the kernel is inherently more stochastic. It quantifies how
far the prediction process is from a deterministic assign-
ment, measured in the geometry of V ⊗ V induced by D.
(Estimation details are discussed in Appendix B).

4.4. Metric 4: Information Flow Bounds via Data
Processing Inequality

To leverage the DPI to bound information flow about a
context property S to the output token Wt. The sequence
S → w<t → E<t → Ht → Wt forms a Markov chain
S → Ht → Wt. The joint state pS,Wt

is obtained from
pS,Ht

via the kernel idS ⊗ khead: pS,Wt
= (idS ⊗ khead) ◦

pS,Ht
.

Theorem 4.5 (Categorical Information Flow Bound). Let
ID(S;X) := DS⊗X(pS,X∥pS ⊗ pX). The DPI applied to
the definition of ID implies:

ID(S;Ht) ≥ ID(S;Wt). (19)

Proof. We want to show ID(S;Ht) ≥ ID(S;Wt). Recall
ID(S;X) := DS⊗X(pS,X∥pS ⊗ pX). The kernel relating
the joint states is k = idS ⊗ khead : S ⊗H → S ⊗ V . We
have pS,Wt

= k ◦ pS,Ht
. Also, pS ⊗ pWt

= pS ⊗ (khead ◦
pHt

) = (idS ⊗ khead) ◦ (pS ⊗ pHt
) = k ◦ (pS ⊗ pHt

).
The DPI states that for any kernel k : A → B and states
p, q : I → A, we have DB(k ◦ p∥k ◦ q) ≤ DA(p∥q).
Apply this with A = S ⊗ H, B = S ⊗ V , k = idS ⊗
khead, p = pS,Ht

, and q = pS ⊗ pHt
. Then k ◦ p =

pS,Wt
and k ◦ q = pS ⊗ pWt

. The inequality becomes:
DS⊗V(pS,Wt

∥pS ⊗ pWt
) ≤ DS⊗H(pS,Ht

∥pS ⊗ pHt
). By

definition, this is ID(S;Wt) ≤ ID(S;Ht).

Interpretation. Information about S present in the rep-
resentation Ht cannot be increased by the final prediction
step khead. The difference ID(S;Ht) − ID(S;Wt) ≥ 0
quantifies information loss about S at this stage.

This fundamental inequality asserts that the amount of sta-
tistical information (measured by ID) that the next token
Wt carries about the context property S cannot exceed the
amount of information about S that is already encoded
in the intermediate hidden representation Ht. The final
stochastic step khead : Ht →Wt can only preserve or lose
information about S; it cannot create it. The difference
ID(S;Ht) − ID(S;Wt) ≥ 0 quantifies the information
about S that is present in the representation Ht but is "lost"
or not utilized in the immediate prediction of Wt. This
loss could be due to the inherent stochasticity of khead (as
measured by HD(khead)) or because the mapping discards
aspects of Ht relevant to S but not relevant for predicting
Wt. This unused information might still be crucial for pre-
dicting subsequent tokens (Wt+1, . . . ). (Estimation details
are discussed in Appendix B).

5. Pretraining Objective, Compression, and
Learning Intrinsic Stochasticity

The NLL objective minLCE(θ) =
−E(w<t,wt)∼Pdata [logPθ(wt|w<t)] drives AR LM training.
Let kdata be the true data kernel and kgen,θ the model kernel.

Theorem 5.1 (NLL Minimization as Average KL Minimiza-
tion). Minimizing LCE(θ) is equivalent to minimizing the
average KL divergence:

argmin
θ

LCE(θ) = argmin
θ

LKL(θ)

:= argmin
θ

Ew<t∼pW<t
[DKL(kdata(w<t, ·)

∥ kgen,θ(w<t, ·))] (20)

The minimum LKL(θ) ≥ 0 is achieved iff kgen,θ(w<t, ·) =
kdata(w<t, ·) almost everywhere.

Proof. Let px(·) := kdata(x, ·) denote the true conditional
probability distribution Pdata(·|x) for context x = w<t. Let
qx,θ(·) = kgen,θ(x, ·) denote the model’s conditional proba-
bility distribution Pθ(·|x). The context distribution is pW<t

.

The cross-entropy loss is defined as:

LCE(θ) = −E(x,w)∼Pdata [log qx,θ(w)]

= −Ex∼pW<t

[
EW∼px(·)[log qx,θ(W )]

]
= −Ex∼pW<t

[∑
w∈V

px(w) log qx,θ(w)

]

The average KL divergence is defined as:

LKL(θ) = Ex∼pW<t
[DKL(px(·) ∥ qx,θ(·))]

= Ex∼pW<t

[∑
w∈V

px(w) log
px(w)

qx,θ(w)

]
= Ex∼pW<t

[ ∑
w∈V

px(w) log px(w)−∑
w∈V

px(w) log qx,θ(w)
]

= Ex∼pW<t
[−H(px(·))]−

Ex∼pW<t

[∑
w∈V

px(w) log qx,θ(w)

]
= −H(Wt|W<t)data + LCE(θ),

where H(px(·)) = −
∑

w px(w) log px(w) is the Shannon
entropy of the distribution px(·), and H(Wt|W<t)data =
Ex∼pW<t

[H(px(·))] is the average conditional Shannon en-
tropy of the data generating process.

Rearranging gives:

LCE(θ) = LKL(θ) +H(Wt|W<t)data
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Since H(Wt|W<t)data is a property of the data distribution
and does not depend on the model parameters θ, minimiz-
ing LCE(θ) with respect to θ is equivalent to minimizing
LKL(θ).

The KL divergence DKL(p∥q) ≥ 0 for any probabil-
ity distributions p, q, with equality if and only if p =
q. Therefore, the average KL divergence LKL(θ) =
Ex∼pW<t

[DKL(px(·) ∥ qx,θ(·))] is also non-negative, as it
is an expectation of non-negative values.

The minimum value LKL(θ) = 0 is achieved if and only
if the integrand is zero pW<t

-almost everywhere. That is,
DKL(px(·) ∥ qx,θ∗(·)) = 0 for pW<t

-almost every x. This
occurs if and only if px(·) = qx,θ∗(·) for pW<t -almost every
x. In terms of kernels, this means kdata(x, ·) = kgen,θ∗(x, ·)
for pW<t

-almost every x.

If the model class {kgen,θ} contains kdata, say kdata =
kgen,θtrue , then choosing θ∗ = θtrue achieves LKL(θ

∗) = 0,
which is the minimum possible value.

This frames training as density estimation, forcing the model
kernel to match the data kernel. Via source coding theory,
minimizing LCE(θ) corresponds to finding a model that
provides efficient data compression, approaching the condi-
tional entropy H(Wt|W<t)data. Success implies the model
must also replicate the intrinsic stochasticity of kdata, quan-
tifiable via average categorical entropy (Equation (18)).

Theorem 5.2 (Convergence of Average Categorical En-
tropy via NLL Minimization). Under suitable conver-
gence conditions (pointwise kernel convergence, weak
state convergence, divergence continuity), if LKL(θn) →
infθ LKL(θ), then the average categorical entropy of the
learned LM head converges to that of the optimal head:
limn→∞ H̄D(khead,n; pHt,θn) = H̄D(khead,θ∗ ; pHt,θ∗). If
LKL(θ

∗) = 0, the learned entropy approximates the true
data’s intrinsic conditional stochasticity. (Proof in Appendix
A.1).

Theorem 5.2 formalizes that NLL training forces the model
to learn the correct degree of uncertainty dictated by the
data, measured by H̄D. This is integral to the compression
process.

6. Information Geometry of Representation
and Prediction Spaces

The Markov Category (Stoch, DKL) connects naturally to
Information Geometry (Amari & Nagaoka, 2000; Perrone,
2023b). The space of next-token distributions P(V) is a
simplex ∆|V|−1 with Fisher-Rao metric gFR. The LM Head
kernel corresponds to a map ghead : H → P(V), typically
ghead(h) = softmax(Wh). This map pulls back the Fisher-
Rao metric gFR from P(V) to a (possibly degenerate) metric

g∗ = g∗headg
FR on H. Let J(h) be the Jacobian of ghead.

Then g∗(h) = J(h)⊤gFR(ghead(h))J(h).
Theorem 6.1 (Pullback Metric and Local Divergence). For
h ∈ H and v ∈ ThH, the local KL divergence is related to
the pullback metric:

DKL(ghead(h+ ϵv) ∥ ghead(h)) =
1

2
ϵ2g∗(h)(v, v) +O(ϵ3)

(21)
where g∗(h)(v, v) = v⊤g∗(h)v. (Proof follows standard
pullback arguments, see Appendix A.2 in Appendix).

This shows g∗(h) measures the local sensitivity of the output
distribution ph to changes in h, quantified by KL divergence.
Remark 6.2 (Connection to Score Function).
The pullback metric can be expressed via
the score function ∇h log ph(W ): g∗(h) =
EW∼ph

[(∇h log ph(W ))(∇h log ph(W ))⊤].

Proposition 6.3 (Rank of the Pullback Metric).
rank(g∗(h)) ≤ min(dmodel, |V| − 1).
Remark 6.4 (Typical Rank and Degeneracy). In typical
LLMs, dmodel ≪ |V|. If the Jacobian J(h) has rank dmodel,
then g∗(h) is usually non-degenerate (full rank dmodel). The
geometry is anisotropic, meaning sensitivity varies with di-
rection v, but there isn’t a significant null space of directions
irrelevant to prediction.

Implications. The pullback metric g∗ characterizes the
functional geometry of H. Its spectrum reveals principal
directions of predictive sensitivity. Directions v with large
g∗(h)(v, v) are those where changes in h strongly affect
the output distribution ph. Training shapes the encoder and
head to structure this manifold (H, g∗), separating represen-
tations based on their predictive consequences.

7. Implicit Spectral Structuring via NLL
Optimization

Why does minimizing NLL (Equation (20)) yield structured
representations ht = fenc(x)? We argue NLL implicitly
imposes geometric constraints related to spectral methods
(HaoChen et al., 2021; Tan et al., 2024). Let pθ(·|x) =
ghead(fenc(x)) and Pdata(·|x) be the target.
Theorem 7.1 (Output Distribution Approximation Con-
straint). If L(θ) = Ex[DKL(Pdata(·|x)∥pθ(·|x))] is small,
then for metrics dout satisfying dout(p, q)

k ≤ C ·DKL(p∥q)
(e.g., Hellinger, TV), the average output distance is small:

Ex∼µctx
[dout(Pdata(·|x), pθ(·|x))k] ≤ C · L(θ). (22)

By the triangle inequality, this implies

dout(Pdata(·|x), Pdata(·|x′)) ≤ dout(Pdata(·|x), pθ(·|x))
+dout(pθ(·|x), pθ(·|x′)) + dout(pθ(·|x′), Pdata(·|x′)),

(23)
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and dout(pθ(·|x), pθ(·|x′)) ≈ dout(Pdata(·|x), Pdata(·|x′)).
(Proof in Appendix A.3).

This theorem shows NLL forces model outputs to mirror
the pairwise distance structure of the true data distributions.

Definition 7.2 (Sensitive Directions and Head Sensitivity).
A direction v ∈ H is sensitive for ghead at h if the pullback
metric g∗(h)(v, v) > 0. ghead is sufficiently sensitive if
dout(ghead(h1), ghead(h2)) > δ implies (h1 − h2) has signif-
icant components along sensitive directions.

Corollary 7.3 (Implicit Representation Separation). As-
sume conditions of Thm. 7.1 and Def. 7.2 hold. If contexts
x, x′ are predictively dissimilar (dout(Pdata(·|x), Pdata(·|x′))
large), their representations hx, hx′ must differ along sensi-
tive directions for ghead. Conversely, NLL does not strongly
constrain the distance between hx, hx′ for predictively simi-
lar contexts. (Proof in Appendix A.4).

This corollary shows NLL implicitly separates representa-
tions based on predictive dissimilarity along head-sensitive
dimensions.

Definition 7.4 (Predictive Similarity Kernel). A kernel
K(x, x′) ≥ 0 measures similarity between Pdata(·|x) and
Pdata(·|x′) (e.g., based on Bhattacharyya coefficient KBC,
Hellinger distance KH, or Expected Likelihood KLin). High
K(x, x′) means high predictive similarity.

Definition 7.5 (Graph Laplacian and Dirichlet Energy).
Let K(x, x′) be a predictive similarity kernel. The graph
Laplacian ∆K acts on ϕ : V∗ → R. Its quadratic form
is the Dirichlet energy EK(ϕ) = 1

2

∫∫
K(x, x′)(ϕ(x) −

ϕ(x′))2dµctxdµctx, measuring smoothness over the simi-
larity graph.

Proposition 7.6 (NLL Objective and Implicit Dirichlet En-
ergy Minimization). Let ϕv(x) = ⟨fenc(x), v⟩ be the pro-
jection onto a sensitive direction v. Minimizing NLL L(θ)
implicitly encourages representations such that EK(ϕv)
tends to be small for sensitive directions v, by pushing repre-
sentations closer whenK(x, x′) is high. (Proof in Appendix
A.4.1).

This links NLL to minimizing Dirichlet energy on the pre-
dictive similarity graph along head-sensitive dimensions,
akin to spectral clustering.

Definition 7.7 (Predictive Similarity Operator). The op-
erator MK averages functions ψ(hx′) over contexts x′,
weighted by K(x, x′):

(MKψ)(hx) ≜ Ex′∼µctx [K(x, x′)ψ(hx′)]

=

∫
V∗
K(x, x′)ψ(fenc(x

′))µctx(dx
′). (24)

Its eigenspace captures patterns of predictive similarity.

Hypothesis 7.8 (NLL Objective and Alignment with Op-
erator Eigenspace). Minimizing NLL likely aligns repre-
sentations with the eigenspace of MK . It may compress
representations along directions associated with large eigen-
values (high similarity) but primarily along components less
sensitive to the head (g∗(h)(v, v) small), while preserving
variance along head-sensitive components needed to distin-
guish dissimilar contexts. (Argument in Appendix A.5).

In summary, NLL optimization implicitly enforces geomet-
ric constraints mirroring spectral methods on the predictive
similarity graph, pushing representations of predictively
similar contexts together along relevant dimensions, thus
providing a basis for understanding how NLL induces struc-
tured representations.

8. Conclusion
We introduced a Markov Categorical framework for ana-
lyzing AR language model generation steps, modeling the
process as a kernel composition kgen,θ = khead ◦kbb ◦kemb

in Stoch. Using divergence enrichment (D) and categorical
information measures (HD, ID), we defined metrics for Rep-
resentation Divergence, State-Prediction/Temporal Informa-
tion, Head Stochasticity, and Information Flow bounds via
DPI. This framework interprets NLL minimization as equiv-
alent to average KL divergence minimization (Section 5),
linking it to compression and learning the data’s intrinsic
stochasticity (H̄D). Information geometry (Section 6) ana-
lyzes the functional geometry of H via the pullback metric
g∗, revealing predictive sensitivities. We formalized NLL
as implicit structure learning (Section 7), demonstrating it
imposes geometric constraints separating representations
based on predictive dissimilarity, connecting it formally to
spectral methods on predictive similarity graphs.

Impact Statement
This work is primarily theoretical, aiming to establish a
mathematical framework for analyzing the internal mech-
anisms of autoregressive language models. The principal
positive impact of this research is the advancement of fun-
damental AI understanding, which is crucial for building
more reliable and transparent systems. Our framework and
the proposed metrics offer a principled approach to: 1) Pro-
viding tools to dissect information flow and representation
geometry, allowing researchers to better understand how
models make predictions; 2) A deeper theoretical grasp can
inform the development of more robust, efficient, and ca-
pable future architectures; 3) Metrics like Representation
Divergence could be used to formally audit models for bi-
ases or to quantify how they represent sensitive concepts.
We do not foresee direct negative societal consequences
from this theoretical work.
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A. Proofs and Arguments
A.1. Proof of Theorem 5.2 (Convergence of Average Categorical Entropy)

We want to show that limn→∞ H̄D(khead,n; pHt,θn) = H̄D(khead,θ∗ ; pHt,θ∗).

Recall the definition:
H̄D(khead,θ; pHt,θ) = Eh∼pHt,θ

[ΨD(h, khead,θ(h, ·))],

where ΨD(h, p) := DV⊗V(
∑

w∈V p(w)δ(w,w) ∥ p⊗ p), and p = khead,θ(h, ·).

Let Xn be the random variable ΨD(Hn, khead,n(Hn, ·)) where Hn ∼ pHt,θn . We want to show limn→∞ E[Xn] = E[X∗],
where X∗ = ΨD(H∗, khead,θ∗(H∗, ·)) with H∗ ∼ pHt,θ∗ .

We are given: (i) khead,n(h, ·) → khead,θ∗(h, ·) in a suitable topology (e.g., total variation) for pHt,θ∗-almost every h. Let’s
denote this pn(h) → p∗(h).

(ii) pHt,θn ⇒ pHt,θ∗ (weak convergence). This means
∫
g(h)pHt,θn(dh) →

∫
g(h)pHt,θ∗(dh) for all bounded continuous

functions g : H → R.

(iii) The function ΨD(h, p) is continuous and bounded in p (with respect to the topology in (i)) for relevant h. Since V
is finite, standard divergences like KL and TV are continuous functions of the probability vectors p ∈ ∆|V|−1. The map
p 7→

∑
p(w)δ(w,w) and p 7→ p⊗ p are also continuous. Thus, p 7→ ΨD(h, p) is continuous for fixed h. Boundedness also

holds for typical divergences on finite spaces. Let M be an upper bound: |ΨD(h, p)| ≤M .

Let Φn(h) = ΨD(h, khead,n(h, ·)) and Φ∗(h) = ΨD(h, khead,θ∗(h, ·)). From (i) and the continuity part of (iii), we have
Φn(h) → Φ∗(h) for pHt,θ∗ -almost every h.

We want to show limn→∞
∫
Φn(h)pHt,θn(dh) =

∫
Φ∗(h)pHt,θ∗(dh).

Consider the difference:

|E[Xn]− E[X∗]| =
∣∣∣∣∫ Φn(h)pHt,θn(dh)−

∫
Φ∗(h)pHt,θ∗(dh)

∣∣∣∣
≤

∣∣∣∣∫ Φn(h)pHt,θn(dh)−
∫

Φ∗(h)pHt,θn(dh)

∣∣∣∣
+

∣∣∣∣∫ Φ∗(h)pHt,θn(dh)−
∫

Φ∗(h)pHt,θ∗(dh)

∣∣∣∣
=

∣∣∣∣∫ (Φn(h)− Φ∗(h))pHt,θn(dh)

∣∣∣∣
+

∣∣∣∣∫ Φ∗(h)pHt,θn(dh)−
∫

Φ∗(h)pHt,θ∗(dh)

∣∣∣∣
The second term converges to 0 as n→ ∞ due to the weak convergence (ii), provided Φ∗(h) is bounded and continuous.
While Φ∗(h) might not be continuous in h, if it is bounded and continuous pHt,θ∗ -almost everywhere, weak convergence is
often sufficient. Let’s assume Φ∗(h) behaves well enough (e.g., is bounded and continuous almost everywhere w.r.t. the
limiting measure pHt,θ∗) for

∫
Φ∗(h)pHt,θn(dh) →

∫
Φ∗(h)pHt,θ∗(dh). (This is sometimes known as the Generalized

Continuous Mapping Theorem or Portmanteau Theorem).

For the first term, we have Φn(h) → Φ∗(h) for pHt,θ∗-almost every h. We also have the bound |Φn(h) − Φ∗(h)| ≤
|Φn(h)| + |Φ∗(h)| ≤ 2M from the boundedness assumption (iii). We can use a variant of the Dominated Convergence
Theorem adapted for converging measures (sometimes related to uniform integrability or Pratt’s Lemma). Since pHt,θn ⇒
pHt,θ∗ and Φn → Φ∗ pointwise a.e. (w.r.t. pHt,θ∗), and the sequence Φn is uniformly bounded, we can conclude that
limn→∞

∫
|Φn(h)− Φ∗(h)|pHt,θn(dh) = 0. (A rigorous justification might need Skorokhod’s representation theorem or

related results, but under these conditions, this convergence generally holds).

Combining these, we get limn→∞ E[Xn] = E[X∗].

For the final part: if the model class is expressive such that kgen,θ∗ = kdata (meaning LKL(θ
∗) = 0), then the model

perfectly matches the data generating process almost everywhere. If we assume the data process can be similarly factorized

10



A Markov Categorical Framework for Language Modeling

kdata = khead, data ◦ kenc, data, then matching kgen,θ∗ = kdata implies that the components must match (up to potential
identifiability issues, e.g., transformations between the encoder output and head input that cancel out). Under reasonable
assumptions (e.g., the factorization is unique in the relevant sense), we would have khead,θ∗ ≈ khead, data and the distribution
induced by the encoder kbb ◦ kemb would approximate the distribution of the "true" internal state feeding into khead, data, i.e.,
pHt,θ∗ ≈ pHt,data. Therefore, H̄D(khead,θ∗ ; pHt,θ∗) ≈ H̄D(khead, data; pHt,data).

A.2. Proof for Theorem 6.1 (Pullback Metric and Local Divergence)

Let ξ be local coordinates for P(V) around ph = ghead(h). The KL divergence between nearby pξ′ and pξ isDKL(pξ′ ∥ pξ) =
1
2

∑
i,j g

FR
ij (ξ)(ξ

′
i−ξi)(ξ′j −ξj)+O(∥ξ′−ξ∥3), where gFR is the Fisher-Rao metric in these coordinates (Amari & Nagaoka,

2000). Let ξ(h) be the coordinates of ph = ghead(h). For ph+ϵv = ghead(h+ ϵv), the coordinates are ξ(h+ ϵv). By Taylor
expansion:

ξi(h+ ϵv) ≈ ξi(h) + ϵ

dmodel∑
a=1

∂ξi
∂ha

(h)va +O(ϵ2).

Let J(h) be the Jacobian matrix of the map h 7→ ξ(h), with entries Jia(h) = ∂ξi
∂ha

(h). Then ξi(h + ϵv) − ξi(h) =

ϵ
∑

a Jia(h)va +O(ϵ2) = ϵ(J(h)v)i +O(ϵ2). Substituting into the KL expansion:

DKL(ph+ϵv ∥ ph) ≈
1

2

∑
i,j

gFR
ij (ξ(h))(ϵ(J(h)v)i)(ϵ(J(h)v)j)

=
1

2
ϵ2

∑
i,j

(J(h)v)ig
FR
ij (ξ(h))(J(h)v)j +O(ϵ3)

=
1

2
ϵ2(J(h)v)⊤gFR(ξ(h))(J(h)v)

=
1

2
ϵ2v⊤J(h)⊤gFR(ξ(h))J(h)v

The term J(h)⊤gFR(ξ(h))J(h) is the definition of the pullback metric g∗(h) in the standard basis of H ∼= Rdmodel . Thus,
DKL(ph+ϵv ∥ ph) = 1

2ϵ
2v⊤g∗(h)v +O(ϵ3) = 1

2ϵ
2g∗(h)(v, v) +O(ϵ3).

A.3. Proof of Theorem 7.1 (Output Distribution Approximation Constraint)

We are given the average KL divergence loss:

L(θ) = Ex∼µctx
[DKL(Pdata(·|x) ∥ pθ(·|x))]

where pθ(·|x) = ghead(fenc(x)) and µctx is the distribution over contexts. We are also given a metric dout on P(V) satisfying
a Pinsker-type inequality:

dout(p, q)
k ≤ C ·DKL(p∥q)

for some constants k,C > 0. Examples include Hellinger distance dH (k = 2, C = 1/2) and Total Variation distance dTV

(k = 2, C = 1).

Let p = Pdata(·|x) and q = pθ(·|x) for a specific context x. Applying the inequality yields:

dout(Pdata(·|x), pθ(·|x))k ≤ C ·DKL(Pdata(·|x)∥pθ(·|x)).

Now, we take the expectation of both sides with respect to the context distribution x ∼ µctx. Since expectation is linear and
the inequality holds pointwise for each x, we get:

Ex∼µctx
[dout(Pdata(·|x), pθ(·|x))k] ≤ Ex∼µctx

[C ·DKL(Pdata(·|x)∥pθ(·|x))]

Ex∼µctx
[dout(Pdata(·|x), pθ(·|x))k] ≤ C · Ex∼µctx

[DKL(Pdata(·|x)∥pθ(·|x))]

Ex∼µctx
[dout(Pdata(·|x), pθ(·|x))k] ≤ C · L(θ).

This establishes the first part of the theorem, Equation (22).
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For the second part, consider any two contexts x, x′. Let pdata
x = Pdata(·|x), pdata

x′ = Pdata(·|x′), pθx = pθ(·|x), and
pθx′ = pθ(·|x′). The triangle inequality for the metric dout states:

dout(A,C) ≤ dout(A,B) + dout(B,C)

Applying this twice:

dout(p
data
x , pdata

x′ ) ≤ dout(p
data
x , pθx) + dout(p

θ
x, p

data
x′ )

≤ dout(p
data
x , pθx) + (dout(p

θ
x, p

θ
x′) + dout(p

θ
x′ , pdata

x′ ))

= dout(p
data
x , pθx) + dout(p

θ
x, p

θ
x′) + dout(p

θ
x′ , pdata

x′ ).

This is Equation (23) in the main text. Let ϵx = dout(p
data
x , pθx) and ϵx′ = dout(p

θ
x′ , pdata

x′ ). If the model fits the data well, L(θ)
is small. From Equation (22), Ex∼µctx

[ϵkx] ≤ CL(θ), meaning the expected error (to the power k) is small. By Markov’s
inequality, for any δ > 0,

P(ϵkx ≥ δk) ≤ E[ϵkx]
δk

≤ CL(θ)
δk

.

Thus, P(ϵx ≥ δ) is small if L(θ) is small, implying that for a vast majority of contexts x drawn from µctx, the individual
error ϵx is small. Therefore, for typical pairs (x, x′), both ϵx and ϵx′ are small.

Rearranging the triangle inequality gives:

dout(p
θ
x, p

θ
x′) ≥ dout(p

data
x , pdata

x′ )− (ϵx + ϵx′)

dout(p
θ
x, p

θ
x′) ≤ dout(p

data
x , pdata

x′ ) + (ϵx + ϵx′)

When ϵx and ϵx′ are small, these inequalities show that the distance between the model’s output distributions, dout(p
θ
x, p

θ
x′),

must be close to the distance between the true data distributions, dout(p
data
x , pdata

x′ ). In particular, if dout(p
data
x , pdata

x′ ) is large
(predictively dissimilar contexts), then dout(p

θ
x, p

θ
x′) must also be large, as the difference is bounded by small error terms.

A.4. Proof of Corollary 7.3 (Implicit Representation Separation)

We assume the two conditions hold: (i) L(θ) is sufficiently small such that for typical x, x′, the errors ϵx =
dout(Pdata(·|x), pθ(·|x)) and ϵx′ = dout(pθ(·|x′), Pdata(·|x′)) are negligible compared to dout(Pdata(·|x), Pdata(·|x′)). (ii)
The head mapping ghead : H → P(V) is sufficiently sensitive: if dout(ghead(hx), ghead(hx′)) > δ > 0 for hx, hx′ in the
populated region, then hx and hx′ must differ along directions sensitive to ghead. These sensitive directions span the
subspace orthogonal to the null space of the Jacobian Jghead(h), which corresponds to the support of the pullback metric
g∗(h) (Section 6).

From the proof of Theorem 7.1, under assumption (i), we have:

dout(pθ(·|x), pθ(·|x′)) ≈ dout(Pdata(·|x), Pdata(·|x′)).

Substitute pθ(·|y) = ghead(hy) where hy = fenc(y):

dout(ghead(hx), ghead(hx′)) ≈ dout(Pdata(·|x), Pdata(·|x′)).

Now, consider the case where contexts x, x′ are predictively dissimilar, meaning dout(Pdata(·|x), Pdata(·|x′)) is large. Specifi-
cally, assume it is significantly larger than the approximation error (ϵx + ϵx′) and also larger than the sensitivity threshold δ
from assumption (ii). Then, dout(ghead(hx), ghead(hx′)) must also be large, and in particular, dout(ghead(hx), ghead(hx′)) > δ.

By assumption (ii), if the distance between the outputs ghead(hx) and ghead(hx′) exceeds the threshold δ, then the inputs hx
and hx′ must differ along directions to which ghead is sensitive. Therefore, we conclude that if dout(Pdata(·|x), Pdata(·|x′)) is
large, then hx and hx′ must differ along the sensitive directions for ghead (as defined in Definition 7.2).

Conversely, consider the case where x, x′ are predictively similar, i.e., dout(Pdata(·|x), Pdata(·|x′)) is small (e.g., close to
zero). Then, dout(ghead(hx), ghead(hx′)) must also be small. This condition (ghead(hx) close to ghead(hx′)) can potentially
be satisfied even if hx and hx′ differ significantly, provided their difference lies primarily within the null space of the
Jacobian of ghead (directions insensitive to the head). However, the condition does not require hx and hx′ to be far apart
along sensitive directions. In fact, mapping them closely together along sensitive dimensions is consistent with achieving a
small dout(ghead(hx), ghead(hx′)) and thus satisfying the NLL objective constraint in this case. Therefore, NLL optimization
does not strongly constrain the distance between hx and hx′ along relevant dimensions when contexts are predictively
similar.
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A.4.1. PROOF OF PROPOSITION 7.6 (NLL OBJECTIVE AND IMPLICIT DIRICHLET ENERGY MINIMIZATION)

We are given a sensitive direction v (in the support of g∗(h)) and the projection ϕv(x) = ⟨hx, v⟩, where hx = fenc(x). The
Dirichlet energy with respect to a predictive similarity kernel K(x, x′) is:

EK(ϕv) =
1

2

∫∫
K(x, x′)(ϕv(x)− ϕv(x

′))2 µctx(dx)µctx(dx
′)

EK(ϕv) =
1

2

∫∫
K(x, x′)(⟨hx − hx′ , v⟩)2 µctx(dx)µctx(dx

′)

We assume L(θ) is small, and the conditions of Corollary 7.3 hold.

Consider a pair of contexts (x, x′) where the predictive similarity K(x, x′) is high. By Definition 7.4, high K(x, x′) implies
that the true conditional distributions Pdata(·|x) and Pdata(·|x′) are similar, meaning dout(Pdata(·|x), Pdata(·|x′)) is small.
From the converse part of Corollary 7.3, when dout(Pdata(·|x), Pdata(·|x′)) is small, the NLL objective does not force hx and
hx′ apart along sensitive directions v. In fact, to ensure that pθ(·|x) = ghead(hx) is close to pθ(·|x′) = ghead(hx′), which is
required to approximate the small distance between Pdata(·|x) and Pdata(·|x′), the representations hx and hx′ are encouraged
to be close along these sensitive directions v. That is, if K(x, x′) is large, minimizing NLL encourages ⟨hx − hx′ , v⟩ to be
small for sensitive v.

Now examine the integral defining EK(ϕv). The integrand is K(x, x′)(⟨hx − hx′ , v⟩)2. This term makes a significant
contribution only when K(x, x′) is large (otherwise the factor K(x, x′) makes it small) and (⟨hx − hx′ , v⟩)2 is large.
However, we just argued that minimizing NLL exerts pressure such that when K(x, x′) is large, the term (⟨hx − hx′ , v⟩)2
tends to be small for sensitive directions v.

Therefore, NLL minimization actively discourages configurations where the integrand is large for the pairs (x, x′) that
contribute most due to high K(x, x′). This means the optimization process implicitly favors representations hx such that the
overall integral EK(ϕv) is small for projections ϕv onto directions v sensitive to the prediction head. While this is not a
direct minimization of EK(ϕv), the pressure exerted by NLL aligns with reducing the terms that dominate the Dirichlet
energy integral, thus implicitly favoring lower energy configurations along predictively relevant dimensions.

A.5. Argument of Hypothesis 7.8 (NLL Objective and Alignment with Operator Eigenspace)

This argument remains more interpretative, formalizing the sketch. We assume the setup: encoder fenc, head ghead, predictive
similarity kernel K, similarity operator MK (Equation (24)) with eigenfunctions {ϕi} and eigenvalues {λi}. Assume
Corollary 7.3 holds.

The operator MK acts on functions ψ defined on the representation space H. Its eigenfunctions ϕi represent directions
or patterns in H that are stable under averaging weighted by predictive similarity. A large eigenvalue λi signifies that the
corresponding eigenfunction ϕi captures a dominant structure of predictive similarity: contexts x whose representations hx
have high values of ϕi(hx) tend to be predictively similar to other contexts x′ whose representations hx′ also have high
values of ϕi(hx′).

From Corollary 7.3, minimizing NLL requires:

• If K(x, x′) is low (dissimilar predictions), then hx and hx′ must differ along sensitive directions for ghead.
• If K(x, x′) is high (similar predictions), then hx and hx′ are allowed (and encouraged) to be close along sensitive

directions for ghead.

Consider directions u in H that are strongly correlated with eigenfunctions ϕi having large eigenvalues λi. These directions
capture clusters or variations associated with high predictive similarity. For contexts x, x′ within such a cluster (high
K(x, x′)), NLL allows their representations hx, hx′ to be close along the sensitive components of u.

Now, invoke a principle of representational efficiency or compression (Section 5). A model minimizing prediction error
(NLL) might also implicitly seek compact representations, discarding information not necessary for the immediate task.
Dimensions in H that are insensitive to the head ghead (i.e., directions w where g∗(h)(w,w) ≈ 0) carry information not used
for the next-token prediction pθ(·|x). These directions are precisely those that are not sensitive according to Definition
7.2. As g∗ is likely non-degenerate (Remark 6.4), the insensitive subspace is trivial. The relevant distinction is between
directions v where g∗(h)(v, v) is large (highly sensitive) vs small (weakly sensitive).
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Consider the variation of representations {hx} along a direction u associated with a large eigenvalue λi. This variation
reflects differences among contexts that are generally predictively similar. NLL requires ghead(hx) to be close for these
contexts. This allows hx to be close along highly sensitive directions (large g∗(h)(v, v)). An efficient model might compress
representations by reducing variance along directions where variation is less critical for NLL. This could preferentially target
directions v where g∗(h)(v, v) is small (weakly sensitive directions), as variation along these directions has less impact on
the output distribution pθ(·|x) and thus the NLL loss.

This leads to an implicit alignment: directions u associated with high predictive similarity (large λi) may exhibit reduced
variance along components v where g∗(h)(v, v) is small. Conversely, directions needed to distinguish predictively dissimilar
contexts (low K(x, x′)) must maintain variance along components v where g∗(h)(v, v) is large, as this is necessary to
separate their output distributions ghead(hx) and ghead(hx′) as required by NLL.

This behavior mirrors the outcome of spectral contrastive learning, where representations are collapsed along directions
of assumed similarity (analogous to large λi) while preserving discriminative information. While NLL optimization
doesn’t explicitly target the spectrum of MK , the combined pressure of accurate prediction and potential representational
compression leads to a structure where the geometry of H implicitly reflects the eigenspectrum of the predictive similarity
operator, particularly in how variance is distributed between head-sensitive and head-insensitive dimensions. A fully rigorous
proof connecting NLL optimization dynamics directly to the spectrum of MK would require stronger assumptions about the
optimization process and the model’s implicit biases towards compression.

B. Estimation Details for Metrics
This section provides more details on the practical estimation of the metrics defined in Section 4. Estimation generally relies
on Monte Carlo methods, drawing samples from the relevant distributions and using statistical estimators.

Metric 1: Representation Divergence RepDivD(s1∥s2) = DH(µHt|s1∥µHt|s2)

• Sampling: Draw N1 contexts {w(i)
<t}

N1
i=1 ∼ Pctx(·|s1) and N2 contexts {w(j)

<t}
N2
j=1 ∼ Pctx(·|s2). Compute the

corresponding hidden states {h(i)t }N1
i=1 and {h(j)t }N2

j=1 using fenc = fbb ◦ femb.
• Estimators for D:

– kNN-based: For KL or Rényi divergences, estimators based on distances to k-nearest neighbors in the pooled
sample can be used (Wang et al., 2009; Pérez-Cruz, 2008). These are non-parametric but require large N1, N2

especially for high dmodel (curse of dimensionality).
– Variational (f-GAN / MINE): Use neural networks to estimate density ratios or bounds based on variational

principles (Nowozin et al., 2016; Belghazi et al., 2018). For KL divergence using the Donsker-Varadhan
representation (DKL(µ∥ν) = supT (Eµ[T ]− logEν [e

T ])), a neural network Tϕ : H → R is trained to maximize

a sample-based lower bound: supϕ
(

1
N1

∑
i Tϕ(h

(i)
t )− log

(
1
N2

∑
j e

Tϕ(h
(j)
t )

))
. These can potentially handle

higher dimensions better but introduce optimization challenges and approximation errors based on the capacity of
Tϕ.

Metric 2: Mutual Information ID(Ht;Wt) and ID(Ht;Ht+1)

• Sampling: Generate sequences by iteratively sampling contexts, computing states, sampling next tokens, and computing
next states. Collect sample pairs (h(i)t , w

(i)
t ) for ID(Ht;Wt) and (h

(i)
t , h

(i)
t+1) for ID(Ht;Ht+1).

• Estimators for ID (often focused on D = DKL):
– kNN-based (KSG): The Kraskov-Stögbauer-Grassberger estimator (Kraskov et al., 2004) estimates Shannon

MI I(X;Y ) based on nearest neighbor distances in the joint space X × Y compared to marginal spaces X
and Y . It requires careful choice of k and metric on the spaces. For ID(Ht;Wt), the space H × V has mixed
continuous-discrete nature. For ID(Ht;Ht+1), the space is high-dimensional continuous H×H. These estimators
also suffer dimensionality issues.

– Variational (MINE/InfoNCE): Maximize lower bounds on MI using neural networks (Belghazi et al., 2018;
Oord et al., 2018). MINE uses the Donsker-Varadhan representation of KL divergence applied to I(X;Y ) =
DKL(PXY ∥PXPY ). InfoNCE provides another lower bound often optimized via noise contrastive estimation.
These methods generally handle higher dimensions better but depend on the expressiveness and training of the
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auxiliary neural networks.

Metric 3: Average Categorical Entropy H̄D(khead; pHt
)

• Sampling: Draw N contexts {w(i)
<t}Ni=1 ∼ Pctx, compute hidden states {h(i)t }Ni=1.

• Computation: For each h
(i)
t : 1. Compute the output probability vector p

h
(i)
t

= khead(h
(i)
t , ·) (via softmax). 2.

Construct the two measures on V ×V : µ(i)
1 =

∑
w ph(i)

t
(w)δ(w,w) and µ(i)

2 = p
h
(i)
t

⊗ p
h
(i)
t

. 3. Compute the divergence

d(i) = DV⊗V(µ
(i)
1 ∥µ(i)

2 ). Since V×V is a finite space, this computation is generally straightforward (e.g., a summation
for KL divergence).

• Averaging: Estimate the average entropy as 1
N

∑N
i=1 d

(i). This Monte Carlo estimate converges asN → ∞. Estimation
is generally feasible as the high-dimensional part only involves sampling ht, and the divergence is computed on the
low-dimensional space V × V .

Metric 4: Information Flow Bound ID(S;Ht) ≥ ID(S;Wt)

• Sampling: Requires samples (s(i), h(i)t ) and (s(i), w
(i)
t ). Obtain these by sampling contexts conditioned on s, computing

ht, and sampling wt.
• Estimation:

– ID(S;Wt): If S is discrete, this is MI between two discrete variables, estimable from contingency tables (if
sample size is sufficient) or standard discrete MI estimators. If S is continuous, it’s a mixed-type MI estimation
problem, potentially simpler than involving Ht.

– ID(S;Ht): This involves MI between S and the high-dimensional continuous hidden state Ht. Estimation
requires robust methods suited for high dimensions (kNN or variational), considering whether S is discrete or
continuous.

In all cases involving high-dimensional spaces (H), the choice of estimator, its hyperparameters (like k in kNN or the
architecture of variational networks), and the number of samples used are important considerations for obtaining reliable
estimates
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