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Abstract

Retrieval-augmented generation (RAG) sys-
tems face significant challenges in multi-hop
question answering (MHQA), where com-
plex queries require synthesizing information
across multiple document chunks. Existing
approaches typically rely on iterative LLM-
based query rewriting and routing, resulting
in high computational costs due to repeated
LLM invocations and multi-stage processes.
To address these limitations, we propose Tree-
Hop, an embedding-level framework without
the need for LLMs in query refinement. Tree-
Hop dynamically updates query embeddings
by fusing semantic information from prior
queries and retrieved documents, enabling it-
erative retrieval through embedding-space op-
erations alone. This method replaces the tra-
ditional "Retrieve-Rewrite-Vectorize-Retrieve"
cycle with a streamlined "Retrieve-Embed-
Retrieve" loop, significantly reducing compu-
tational overhead. Moreover, a rule-based stop
criterion is introduced to further prune redun-
dant retrievals, balancing efficiency and recall
rate. Experimental results show that TreeHop
rivals advanced RAG methods across three
open-domain MHQA datasets, achieving com-
parable performance with only 5%-0.4% of the
model parameter size and reducing the query
latency by approximately 99% compared to
concurrent approaches. This makes TreeHop a
faster and more cost-effective solution for de-
ployment in a range of knowledge-intensive ap-
plications. For reproducibility purposes, codes
and data are available anonymously here!.

1 Introduction

Recent breakthroughs in Large Language Models
(LLMs) (DeepSeek-Al et al., 2025; OpenAl et al.,
2024) have demonstrated their impressive capabilities
in understanding queries (Brown et al., 2020; Ouyang
et al., 2022) and generating human-like language texts.
Nonetheless, LLMs still face significant limitations, par-
ticularly in domain-specific (Li et al., 2024; Zhang et al.,
2024) or knowledge-intensive (Kandpal et al., 2023)

"https://github.com/Super-Researcher/TreeHop

tasks, where they often hallucinate (Zhang et al., 2023)
when dealing with queries that exceed their paramet-
ric knowledge (Muhlgay et al., 2024). To address this
issue, Retrieval-augmented generation (RAG) (Lewis
et al., 2021) has undergone rapid development (Gao
et al., 2024), leveraging external knowledge bases to re-
trieve relevant document chunks and integrate them into
LLMs, thereby producing more faithful (Khandelwal
et al., 2020) and generalizable (Kamalloo et al., 2023)
answers.

However, the conventional single-retrieval paradigm
of RAG falters in multi-hop question answering
(MHQA) scenarios (Yang et al., 2018; Ho et al., 2020;
Tang and Yang, 2024; Trivedi et al., 2022), where an-
swers require synthesizing information from multiple
document chunks. For instance, consider the query
"Who is the grandfather of Donald Trump?" A single
retrieval might return a chunk stating "Donald John
Trump was born on June 14, 1946..., the fourth child
of Fred Trump and Mary Ann Macleod Trump.", but
resolving the grandfather requires a follow-up query
like "Who is the father of Fred Trump?". This typical
multi-hop scenario reveals the need to dynamically com-
pose new query based on information in relevant docu-
ment chunk. Current methods like query-rewriters (Ma
et al., 2023), routers (Zhuang et al., 2024), and iterative
loops (Shao et al., 2023) attempt to resolve this by itera-
tively refining queries with retrieved information, and
drop query-irrelevant chunks. While these approaches
improve retrieval, they introduce computational over-
head due to repeated LLM invocations and multi-stage
processes, leading to latency and complexity trade-offs.

To addresses these limitations, we propose TreeHop,
a framework enabling embedding-level query updates
without requiring LLM rewrites. Inspired by the se-
mantic and structural properties of sentence embed-
dings (Zhu et al., 2018), TreeHop dynamically generates
next-step query embeddings by fusing prior queries and
retrieved content embeddings (Step 3, Figure 1). For
the aforementioned example, the initial information in
query "grandfather of Donald Trump" was substituted
with "father of Fred Trump", now encoded directly at
the embedding level. This approach collapses the tradi-
tional "Retrieve-Rewrite-Vectorize-Retrieve" cycle into
a streamlined "Retrieve-Embed-Retrieve" loop, signifi-
cantly reducing computational costs. TreeHop further
introduces two pruning strategies to ensure computa-
tional efficiency: redundancy pruning terminates paths
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where the retrieved chunks have been seen in previous
iterations, while layer-wise top-K pruning retains only
the top-ranked retrieval candidates at each step, curbing
exponential branch growth (Step 4, Figure 1).

TreeHop employs a gated cross-attention mecha-
nism (Vaswani et al., 2023) to effectively focus on
extracting salient information from retrieved chunks,
making the model effective while parameterizing with
only 25 million parameters. Trained with contrastive
learning (Chen et al., 2020; Wu et al., 2022b), Tree-
Hop is capable of achieving a performance comparable
to computationally intensive multi-hop methods across
three benchmarks while maintaining significantly lower
latency. Remarkably, TreeHop reduces retrieval latency
by 99% compared to LLM-based methods while sacri-
ficing only 4.8% of the recall rate at maximum, even out-
performing some advanced systems by 4.1% in deeper
retrieval iterations.

In summary, our work makes three key contributions
to the iterative retrieval framework:

* A novel embedding-updating mechanism that re-
places LLM-driven iterative query rewrites with
lightweight neural operations, enabling linear
computational complexity for MHQA tasks.

* Anefficient rule-based stopping criterion that con-
trols branching factor growth while maintaining
performance in retrieval iteration.

e Empirical validation demonstrating superior
efficiency-accuracy trade-offs in three MHQA
tasks. Our approach bridges the gap between com-
putational efficiency and retrieval effectiveness,
offering a scalable solution for diverse knowledge-
intensive applications.

2 Preliminaries

2.1 Multi-hop Retrieval-Augmented Generation

The Retrieval Augmented Generation (RAG) (Lewis
et al., 2021; Gao et al., 2024) fundamentally enhances
the capabilities of LLMs by retrieving pertinent docu-
ments from an external knowledge base, which is made
possible through the calculation of semantic similarity
between user’s query and document chunks. Building
upon RAG, multi-hop variants have been proposed to
tackle more complex tasks, such as multi-hop ques-
tion answering (MHQA). Notable approaches include
iterative retrieval methods (Shao et al., 2023), where
the knowledge base is repeatedly searched based on
the initial query and generated text, providing a more
comprehensive information retrieval. Other approaches
revolve around employing cooperative language models
as query-rewriters (Ma et al., 2023), routers (Manias
et al., 2024) or both (Zhuang et al., 2024). These mod-
els generate new queries for document chunk retrieval
and filter out irrelevant chunks, ensuring the most rele-
vant information is retained. It is worth noting that they

all mentioned solutions utilize one or multiple trans-
former model variants (Vaswani et al., 2023; Reimers
and Gurevych, 2019) for enhanced retrieval, which in-
duces additional computational cost and significantly
increases system latency.

2.2 Sentence Representation Learning and
Contrastive Learning

Sentence representation learning, a technique for train-
ing retrieval model in the realm of RAG, refers to
the task of encoding sentences into fixed-dimensional
embeddings. Early approaches extended word-level
techniques like word2vec (Mikolov et al., 2013) to
sentences, such as Skip-Though (Kiros et al., 2015)
and FastSent citephill-etal-2016-learning, which learned
unsupervised sentence embeddings by optimizing se-
quential or semantic coherence objectives. Subse-
quent work leveraged pre-trained language models like
BERT (Reimers and Gurevych, 2019), extracting sen-
tence embeddings via the [CLS] token or mean pooling
of contextualized token representations (Reimers and
Gurevych, 2019; Li et al., 2020; Su et al., 2021).

To further improve the performance, contrastive learn-
ing emerged as a powerful paradigm for learning dis-
criminative sentence representations (Zhang et al., 2020;
Carlsson et al., 2021; Giorgi et al., 2021; Yan et al.,
2021; Kim et al., 2021). A cornerstone in this space is
SimCSE (Gao et al., 2021), which employs InfoNCE
(van den Oord et al., 2019) to maximize agreement be-
tween augmented views of the same sentence. The loss
function is defined as:
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where N is the batch size, 7 is a temperature hyper-
parameter and sim(f(x;), f(z;)) = %
is the cosine similarity used in this work. f(-) is the
sentence representation encoder, x; and x are a paired
semantically related sentences derived from positive set
D = {(ws, 7).

Additionally, SImCSE applied a dropout as a data
augmentation strategy, inspired many following works.
Meanwhile, DiffCSE (Chuang et al., 2022) introduces
equivariant transformations to ensure invariance to in-
put perturbations, while PCL (Wu et al., 2022a) lever-
ages diverse augmentation strategies to reduce bias in
negative sampling. InfoCSE (Wu et al., 2022c¢) learns
sentence representations with the ability to reconstruct
the original sentence fragments, RankCSE (Liu et al.,
2023) further introduce a listwise ranking objectives for
learning effective sentence representations.

3 The Proposed Method: TreeHop

Our proposed model, TreeHop, is designed to gener-
ate the next query embedding by integrating previous
query embeddings and retrieved content embeddings.



| Donald John Trump was born

i onJune 14, 1946..., the fourth
\ child of Fred Trump and Mary
{ Anne Macleod Trump.

Step 2: Retrieval :’I Donald John Trump (born June 14,
i 1946) is an American politician,
| media personality, and
| businessman who is the
| 47th president of the United States.
Step 3:
Generate New Query
Embeddings
Step 4: ‘

Redundancy Pruning ‘

Stop Criterion

(rule-based)
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Figure 1: The TreeHop model utilizes query and content chunk embeddings to generate new query embeddings,
which are subsequently filtered with similarity and ranking thresholds, thereby streamlines the conventional
"Retrieve-Rewrite-Vectorize-Retrieve" into a "Retrieve-Embed-Retrieve" loop.

This approach streamlines the conventional iterative
"Retrieve-Rewrite-Vectorize-Retrieve" process inherent
in RAG systems into a more efficient "Retrieve-Embed-
Retrieve" workflow, reducing both system latency and
computational overhead. Furthermore, we have opti-
mized the architecture to achieve high retrieval perfor-
mance while ensuring a compact parameter size. In the
following sections, we first formally define the problem,
then detail the model architecture and stopping criterion
that contribute to its computational efficiency and ef-
fectiveness. Finally, we explain the construction of the
training data.

3.1 Problem Formulation

Atretrieval iteration r, given query embedding g, a set of
the top K document chunk embeddings, 7 = {c¢'} X |,
is retrieved using the retriever g(g,., K). The TreeHop
model then generates the corresponding next query em-
bedding set Q; = {q¢\,,}/, for the subsequent hop
retrieval.

qTi*-‘rl = TreeHop(qTa Ci)a Ci S 77“ (2)

Note, that the TreeHop framework defaults to the
base retriever under the single-hop retrieval scenario, as
no iterative query refinement is needed. Please refer to
Figure 1 for detailed TreeHop inference steps with the
stop criterion included in subsection 3.3.

3.2 Model Architecture

TreeHop’s architecture is tailored to be effective in per-
formance while maintain a small parameter size. The
core of TreeHop’s query update is the UpdateGate (see
Figure 2), which modulates how information from prior

queries ¢ and retrieved chunks c is retained or discarded.
The intuition behind is that we only need to remove
information presents in both embeddings, and update
information yet to be further retrieved from the retrieved
chunks to form a new query embedding.

TreeHop(q,, c.) = q, — c-. 4+ UpdateGate(qy, c’.) (3)

The term g, — ¢’ suppresses semantic overlap be-
tween the current query and chunk embeddings. This
prevents redundant retrieval of information already cap-
tured. (e.g., if the chunk confirms "Fred Trump is Don-
ald’s father," the model avoids re-searching for Fred
Trump in subsequent hops). The UpdateGate(q,, ct.)
selectively incorporates new information from ci. to
form the next query. We implement cross-attention
mechanism (Vaswani et al., 2023) for UpdateGate.

UpdateGate(q, c) = CrossAttn,(q,c)
Qu(q) © Ku(c)

7 ) © Vul(e)

“

Where d is the number of embedding dimension,
Q.. K, and V,, are three weight and bias matrices for
UpdateGate. Together, information to be maintained in
the chunk embeddings is selectively extracted through
comparing the information in ¢, and ¢, and new in-
formation is added through UpdateGate. This archi-
tectural design is based on empirical experiments for
improving the model performance (see subsection 5.1
for ablation details). Please also refer to Appendix G for
our explanation to the intuition behind the architecture.

= softmax(
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Figure 2: The model architecture of TreeHop. The UpdateGate, using cross-attention, updates embeddings via
selectively incorporating new information from chunk embeddings. The output is combined with the difference
between the previous query and chunk embeddings to form the next query embedding.

3.3 Stopping Criterion

The TreeHop iteratively generates query embedding for
every retrieved document chunk, this risks excessive
computational costs if every query proceeds to subse-
quent hops. Unchecked, this approach could lead to
an exponential increase in retrieved chunks (O(n")),
degrading efficiency without proportional gains in accu-
racy. To address this, we introduce a set of rule-based
stop criterion that dynamically prunes irrelevant or re-
dundant retrieval branches to ensure only promising
paths advance.

Redundancy Pruning We terminate branches where
the document chunk has been retrieved in the previous
iterations, as depicted in line 8, Figure 3.

Layer-wise Top-K Pruning At each retrieval layer,
we retain only the top-K chunks with highest similarity
scores across all generated query embeddings. This
reduces the branching factor from O(n") to O(nr) by
focusing computation on the most promising paths, as
shown in line 12, Figure 3. Please refer to Appendix H
for more explanation about this pruning.

3.4 Train Data Construction

To train the TreeHop model, we require a dataset that
explicitly captures the multi-step knowledge retrieval
path for MHQA. The 2WikiMultiHop dataset (Ho et al.,
2020) provides an ideal foundation due to its explicit
decomposition of complex questions into intermedi-
ate steps, with each step linked to corresponding ev-
idence chunks from Wikipedia. We attempted to con-
struct retrieval paths on Musique/Multihop-RAG train-
ing datasets, but found their lack of explicit multi-hop
paths. 2WikiMultiHop is the only dataset that provides
concrete and verifiable multi-hop retrieval paths, a.k.a,
question decompositions. Multihop-RAG does not
come with question decomposition, whatsoever; while
MusSiQue provides question decompositions, it tends to
revise or summarize words from original chunks, im-
peding us to reliably match the corresponding chunks in
scale, ultimately forced us to abandon its training data.

Input: Initial user query text x, embedding model
f(-) that generates embeddings for input text,
total number of hops N > 1, retriever g(-) that
takes one query embedding and outputs top K
text chunks {c'}X | and respective embeddings
{vi}K |, cosine similarity scores {s‘}X ;.

Output: Retrieved text chunk set C.

:C=0
Q = {f(x)} // Query embedding set

2: forr € {1,...,N} do

33 S8=0

4: for gin Q do

5 // Retrieve and iterate over top K chunks,

embeddings and similarity scores

6: for ¢, v, sin g(g;, K) do
7 if c ¢ C then
3: // Include only distinct chunks.
S« [g,¢,v, 5]
9 Q=0
t = TopSimilarityScore(S, K) // Get
layer-wise K-th similarity score ¢ from set
S.
10: forq,c,v,sin S do
11: if s > ¢t then
12: C+c

Q <+ TreeHop(q, v)

Figure 3: Multi-hop inference steps and rule-based stop
criterion for TreeHop.



To obtain a fine-grained training dataset, the follow-
ing processes are implemented to clean the dataset:

Question Type Selection We focus on inference, com-
positional and bridge comparison questions, as they
strictly require the model to synthesize information
across multiple hops (e.g., deriving a grandfather’s iden-
tity by first retrieving a father’s name). In contrast, com-
parison questions rely more on direct factual retrieval
without requiring iterative information interaction. See
Appendix A for more information about question types.

Query Type Integrity Check We filter the dataset to
retain only instances where the provided query decom-
positions align precisely with the multi-step reasoning
required by the question type.

Through this curation process, we have obtained
111,239 trainable samples.

3.5 Model Training

We utilize BGE-m3 (Chen et al., 2024), a multilin-
gual embedding model that supports more than 100
languages, to generate dense embeddings for the ini-
tial query and construct a document chunk embedding
database. This gives our trained TreeHop model the po-
tential to be versatile and applicable to a wide range
of languages and use cases. Note that BGE-m3 re-
mains frozen during training to ensure the training pro-
cess focus on the TreeHop model. For detailed prompt
templates for generating embeddings on three datasets,
please refer to Table 9 and Table 10 in Appendix C.

Following previous work (van den Oord et al., 2019),
we adopt contrastive learning framework to train Tree-
Hop to generate embeddings that maximizes the simi-
larities with their corresponding positive chunk embed-
dings while minimizing similarity with negative ones.
Specifically, we employ the L;,toncE Objective in Equa-
tion 1 with temperature 7 of 0.15 and five negatives
sampled from embedding database. The model is com-
pact enough to be trained on a single Nvidia V100 GPU,
with batch size of 64, AdamW optimizer and learning
rate of 6e-5. Inspired by SimCSE (Gao et al., 2021), we
add a dropout layer after the hidden representations for
data augmentation.

4 Experiments and Results

To examine TreeHop, experiments are conducted re-
garding its retrieval performance and efficiency. Below,
we introduce the selective evaluation datasets, evaluate
metrics, baselines, concurrent advanced RAG solutions
and downstream LLMs that involve in the experiments
for comparison.

4.1 Datasets

We benchmark TreeHop on three widely used MHQA
datasets in the literature: 2WikiMultiHop (Ho et al.,
2020), MuSiQue answerable (Trivedi et al., 2022), and
MultiHop RAG (Tang and Yang, 2024). Some of their

questions do not challenge multi-hop retrieval perfor-
mance but require LLMs to deduce from multiple docu-
ments. Since we only want to test the performance of
iterative retrieval systems, we focus on question types
requiring multi-step retrieval. To be more specific, in
2WikiMultiHop, we filter to inference, compositional
and bridge comparison questions (9,536 records), while
for MuSiQue, all 2,417 answerable questions are used.
MultiHop RAG’s inference questions (816 records) are
included. See Appendix A for detailed introduction
to the types of question among the evaluate datasets,
Table 1 for number of queries and size of embedding
databases, and Table 8 for detailed number of queries
for each selective types of question.

4.2 Evaluation Metrics & Benchmarks

To evaluate retrieval performance, we use the standard
evaluation metric, the recall rate, to test the retrieval
performance, specifically in the top K retrieval setting,
denoted Recall@K. It measures whether the relevant
documents are present among the top K retrieved docu-
ments. Higher Recall@K values indicate better retrieval
performance. To compare the efficiency among selected
RAG solutions, we record the average durations for
each query in seconds on each dataset, denoted latency.
The whole evaluation process is conducted on a single
Nvidia A100 GPU and 64 GB of RAM.

End-to-End QA Evaluation Following Efficient
RAG and Iter-Retgen, we employ exact match (EM),
as well as accuracy (ACC), a metric that evaluates
model answers by GPT-3.5, to evaulate end-to-end
QA performance among iterative retrieval solutions.
The prompt can be found in Appendix D. We adopt
1lama3-8B-Instruct (Al@Meta, 2024) and Qwen2.5-7B-
Instruct (Qwen et al., 2025) as downstream LLMs. For
hyper-parameters, we set top-p, top-k, and repetition
penalty as 1, max new token as 1024 for the two models,
temperature as 0.8 for Llama3.1-8B-Instruct and 0.6 for
Qwen?2.5-7B-Instruct, respectively. QA prompt adpoted
to the two models can be found in Appendix E.

Baselines and Advanced RAG We evaluate the
performance of TreeHop by comparing it to a native
top retrieval method using the BGE-m3 embedding
model as the baseline. In addition, we include two ad-
vanced iterative retrieval-augmented generation (RAG)
methods: Iter-RetGen (Shao et al., 2023) and Efficien-
tRAG (Zhuang et al., 2024) to assess both performance
and latency. For Iter-RetGen, we use the vanilla Meta
Llama3-8B-Instruct model (AI@Meta, 2024) as the in-
ference model. Additionally, we test Iter-RetGen and
TreeHop under the second and third retrieval iterations,
respectively, to evaluate their performance across differ-
ent stages of the retrieval process. For more details on
the prompt templates used in Iter-RetGen, please refer
to Table 11 in Appendix C.

4.3 Results

In this section, we present the experimental results of
TreeHop and benchmarks on three datasets, including



Dataset

Query Embedding Database

2WikiMultihop 9,536
2,417

MuSiQue

Multihop RAG 816

56,709
21,100
609

Table 1: Descriptive statistics of datasets in terms of the number of queries and sizes of the corresponding embedding

database.
2WIKI MUSIQUE MULTIHOP-RAG
Retriever Recall@ K K Latency | Recall@ K K Latency | Recall@ KX K Latency
Baselines
Direct-R@5 49.3 5 0.002 454 5 0.002 48.6 5 0.019
Direct-R@10 532 10 0.003 53.8 10 0.002 67.8 10 0.019
Advanced RAG
Iter-RetGen @5 iter2 59.2 9.9  4.690 52.8 9.9 4949 55.0 9.9 4.876
Iter-RetGen @5 iter3 61.9 147 7.278 54.1 14.8 7.274 57.0 145  7.322
EfficientRAG @5 60.5 38 2.846 46.9 6.1 2907 51.8 4.1 2.855
Ours
TreeHop @5 iter2 61.6 8.6  0.022 48.0 8.1 0.023 57.9 7.0  0.023
TreeHop @5 iter3 65.4 11.8  0.067 48.1 11.0  0.064 61.1 8.4  0.062
TreeHop @10 iter2 57.9 17.2  0.062 55.7 15.3  0.056 72.8 13.1  0.049

Table 2: We report results of baselines, concurrent advanced RAG solutions and TreeHop on three MHQA datasets.
Bold numbers indicate the best performance in the same iteration among retrievers.

retrieval efficiency, recall, and end-to-end QA perfor-
mance.

Retrieval Efficiency As shown in Table 2, Tree-
Hop significantly reduces computational overhead while
maintaining competitive retrieval performance. It
achieves latencies of 0.02 seconds per query in the sec-
ond iteration and 0.06 seconds in the third, outperform-
ing the next best solution, EfficientRAG, by over 2.9
seconds. This significant reduction of 99.2%-99.6% in
latency is attributed to TreeHop’s embedding-level com-
putation, which avoids the recursive token generation
loops required by LLM-based methods. This is con-
firmed by examining the latency, which is proportional
to the number of retrieved document chunks.

Retrieval Performance TreeHop achieves strong per-
formance across datasets while balancing efficiency and
effectiveness. On the 2WikiMultiHop and Multihop
dataset, TreeHop surpasses the second best solution,
Iter-RetGen, by 2.4%-2.9% recall in the second itera-
tion and 3.5%-4.1% recall in the third iteration, with
3.1 less chunks retrieved on average. This demonstrates
the effectiveness of the embedding mechanism in Equa-
tion 4. For the MuSiQue dataset, recall is 4.8% lower
than Iter-RetGen, likely due to the dataset’s unique re-
quirement for synthesizing information from multiple
chunks (e.g., branching and converging paths in Table 7),
which TreeHop’s current architecture addresses less ef-
fectively than iterative LLM-based approaches. Tree-
Hop’s current design focuses on generating embeddings
from query-chunk pairs, limiting its ability to synthesize
information across multiple chunks simultaneously. The
performance degradation aligns with EfficientRAG so-
lution, which also struggles with this dataset, suggesting
a limitation common to query-chunk-pair strategies.

Average Number of K Overall, our TreeHop’s av-
erage number of retrieved document chunks falls in
the middle of the advanced RAG solutions. This is
contributed by stop criteria, which drastically curtails
computational overhead. For top-5 retrieval, it reduces
the theoretical exponential growth of chunks, 52 = 25
chunks in second iteration, to 7.1-8.8 chunks, and
53 = 125 chunks to 8.3-12.1 chunks in the third it-
eration. For top-10 retrieval, this scales linearly to
13.8-17.9 chunks, versus 102 chunks without pruning.

End-to-End QA performance As illustrated in Ta-
ble 3, downstream LLMs achieve the best end-to-end
performance on 2WikiMultiHop and MultiHop-RAG
with TreeHop’s retrieval outcomes, while on MusiQue
they work the best with Iter-Retgen’s retrieval results.
This performance is correlated to the performance of
upstream retrieval systems, where TreeHop also leads
in recall and average number of K on 2WikiMultiHop
and MultiHop-RAG, and underperforms Iter-Retgen on
MusiQue, as shown in Table 2. Additionally, weaker
LLMs tend to be more sensitive to average K, as
Llama3.1-8B-Instruct struggles with the lengthy con-
text introduced by high average K at the third iteration,
pronouncing the role of stopping criterion as proposed
in our framework. More powerful LLMs like Qwen3.1-
7B-Instruct benefit from TreeHop on more iterations, as
they are more capable of reasoning with longer context,
leading to more consistent performance increases with
the retrieval iterations.

5 Ablation Study

5.1 Effectiveness of Architecture

To evaluate the necessity of each component in Equa-
tion (3), we ablated the query term g, chunk term c,



2WIKI MUSIQUE MULTIHOP-RAG
Downstream LM | Qwen2.5-7B | Llama3-8B | Qwen2.5-7B | Llama3-8B | Qwen2.5-7B | Llama3-8B
Metric EM ACC |[EM ACC | EM ACC [EM ACC|EM ACC |[EM AcCC
Baselines
Direct-R@5 31.3 30.6 277 26.7 |18.0 162 154 14.0 |87.2 853 863 844
Direct-R@10 328 312 270 259 (202 186 11.8 10.6 [90.3 886 86.1 85.0
Advanced RAG
Iter-RetGen@5 iter2 38.0 37.6 30.5 30.1 |254 248 17.1 17.1 |89.8 88.5 86.3 853
Iter-RetGen@5 iter3 39.8 379 262 255 |27.8 25.7 18.0 16.6 |84.5 82.8 839 83.0
EfficientRAG @5 38.7 380 312 304 |182 175 159 14.8 |88.7 877 860 844
Ours
TreeHop @5 iter2 38.6 38.1 313 30.8 [19.0 188 166 16.5 [90.0 88.8 87.0 86.2
TreeHop @5 iter3 398 383 289 28.6 (190 189 172 16.8 {914 903 864 853

Table 3: End-to-End Question Answering (QA) Results. Bold numbers indicate the best model answer performance

among iterative retrieval frameworks.

and UpdateGate in isolation. Each variant was trained
10 times with identical hyperparameters (as in subsec-
tion 3.5), and performance was evaluated on the second
hop’s recall rate. Results are illustrated in Table 4 and
analyzed below.

Impact of Component Removal The impact of struc-
ture without ¢ is the minimal, with a decrease of 0.9%-
6.0% of average recall rates across datasets. The
UpdateGate mitigated information loss by selectively
retaining critical chunk information, without c, it keeps
the information to the extent that still makes the model
effective. However, average training convergence time
increased by approximately 15% on average, as the
model struggled to suppress redundant information with-
out the ¢ — c structure.

Without ¢, the model loses critical information from
query, thereby experiences significant performance
degrade on the three datasets, achieves only 0.09%-
5.3% improvement of average recall rates comparing to
vanilla top 5 retrieval. It is observable that the model
exhibits a lower degrades on 2WikiMultihop dataset, we
conclude from the result that this is due to our usage of
2WikiMultihop training data that make the model overfit
to similar questions in evaluate dataset, ultimately leav-
ing no generalization ability to the other two datasets.

Without UpdateGate, recall dropped to near base-
line retrieval performance (within 0.1% of random re-
trieval), confirming the gate’s critical role in integrating
new information. Without it, the model degenerated
to a simple vector difference, failing to refine query
embeddings iteratively.

Dataset-Specific Insights The three datasets exhibit
different extents of performance decay when the same
components are removed. The MuSiQue dataset decays
the least without ¢, ¢, and UpdateGate, this is due to
the inherent deficiency of TreeHop on multihop queries
with converging paths, making it perform inferior to the
other datasets. The Multihop RAG dataset experiences
the greatest negative impact without ¢, due to its com-
plex queries that mention more than three entities for
the retrieval model to gather each piece of information.

Without ¢, TreeHop cannot navigate the missing infor-
mation. The 2WikiMultihop dataset influences less than
Multihop RAG without ¢ and ¢, possibly because of its
less challenging queries and query decomposition paths.

5.2 Effectiveness of Stop Criterion

The stop criterion serves for filtering query paths to re-
duce computational cost without sacrificing too much
performance. Below we examine the performance with-
out the presence of Redundancy Pruning and Layer-wise
Top Pruning, illustrated in Table 5.

Redundancy Pruning Redundancy pruning prevents
revisiting previously retrieved chunks. Table 5 shows
that removing this pruning increases the average num-
ber of retrieved chunks K to 10, but reduces recall
by 4.2 points (e.g., 61.6 — 57.4 on 2WikiMultihop).
This occurs because when cooperate with layer-wise
top pruning, redundancy pruning further ensures only
unique, informative paths are pursued, thereby maintain-
ing recall performance. Without redundancy pruning,
more duplicated information take the place, resulting in
degraded performance.

Layer-wise Top Pruning This pruning strategy se-
lects top-5 chunks at each layer to control branching.
Removing this strategy results in a maximum increase of
113% in the average number of retrieved chunks (8.6 —
18.4) on the 2WikiMultihop dataset, but yields a 18.6%
improvement in recall (61.6% — 80.2%). This suggests
that the pruning introduces a trade-off between compu-
tational efficiency and recall performance. In contrast,
for the Multihop RAG dataset, the recall improves by
5.6% with a 79% increase in average retrieved chunks,
a significantly lower increase compared to 2WikiMulti-
hop. This disparity among datasets is correlated with the
size of the corresponding embedding database. Specif-
ically, in large databases such as 2WikiMultihop, fea-
turing 56,709 chunk embeddings, the model benefits
from exploring more paths (higher K') due to the large
information pool. Conversely, in smaller databases, e.g.,
Multihop RAG with 609 chunk embeddings, iterative
retrieval tends to introduce more redundant chunks, mak-



Architecture 2WIKI (avg.) MUSIQUE (avg.) MULTIHOP RAG (avg.)
Direct-R@5 49.3 454 48.6
TreeHop @5 iter2 61.6 48.0 57.9

w/o. ¢ 57.5@4.1)) 47.1(0.9)) 51.9 (6.0))

w/o. q 54.6 (6.0]) 46.3 (2.5)) 50.8 (7.1))

w/o. UpdateGate — 49.3 (12.3]) 454 (3.4)) 48.6 (9.3))

Table 4: Ablation study on TreeHop model architecture. The TreeHop experiences degraded performances when
core components ¢, ¢ and UpdateGate are removed from its architecture, demonstrating their functionalities to the

model performance.

2WIKI MUSIQUE MULTIHOP RAG
Stop Criterion Recall@ K K Recall@ K K Recall@ K K
TreeHop @5 iter2 61.6 8.6 48.0 8.1 57.9 7.0
w/o. Redundancy Pruning 574 10 46.4 10 52.8 10
w/o. Layer-wise Top Pruning 80.2 18.4 53.6 14.5 61.3 9.7
w/o. Both 80.2 30 53.6 30 61.3 30

Table 5: Ablation study on stop criterion, where redundancy pruning and layer-wise top 5 pruning are removed
from post retrieval process, respectively. The results indicate that the recall rate does not exhibit a considerable
enhancement, despite a substantial grow in the number of average K.

ing layer-wise top pruning filter out more useful chunks.

Combined Effects The synergistic effect of combin-
ing redundancy pruning and layer-wise top pruning is
critical to achieving TreeHop’s efficiency gains with-
out excessive recall loss. Take Multihop RAG for ex-
ample, When both criteria are applied, they achieve a
recall of 57.9% with an average number of retrieved
chunks 7.0. When both criteria are disabled, the sys-
tem’s computational complexity balloons to 30 chunks
in the second iteration, a 329% increase, while yield-
ing only a marginal 3.4% recall improvement. This
demonstrates that layer-wise top pruning is essential
for limiting branching factor, while redundancy pruning
prevents recall degradation from redundant paths. Their
combined use ensures that TreeHop avoids the exponen-
tial retrieval path explosion inherent to iterative systems
while maintaining competitive performance.

6 Conclusion

This work presents a novel paradigm for Retrieval-
Augmented Generation (RAG), introducing TreeHop,
a lightweight query embedding generator that dynam-
ically refines query embeddings through iterative re-
trieval without relying on additional LLMs or complex
rewrite components, thereby enhancing the efficiency
of RAG system. Its core mechanism, the UpdateGate,
employs cross-attention to selectively integrate informa-
tion from retrieved chunks while discarding redundant
information, enables a compact model size of 25 mil-
lion parameters while maintaining competitive perfor-
mance on three MHQA benchmarks when integrated
with simple rule-based stop criterion. Future work could
explore more effective model architecture, adaptive stop
criteria or extensions to handle lengthy, structural, or
multi-modal inputs. Our approach underscores the po-

tential of embedding-centric strategies to enhance re-
trieval process for RAG systems, offering a practical
balance between performance and computational effi-
ciency, paving the way for solutions to real-world multi-
hop reasoning challenges in industrial applications.

7 Limitation

This study seeks to enhance the efficiency of multihop
question answering in the realm of retrieval-augmented
generation, a shortcoming that continues to hamper its
practical applications. Notwithstanding our method
have demonstrated efficacy, it relies on uniform doc-
ument chunk embeddings generated with a specific
prompt template using a specific embedding model.
Once trained, the model strictly bonds it usage with the
embedding model. Thus, the impact of diverse embed-
ding models and prompt templates remains unclear and
requires further investigation. Moreover, our model is
trained to retrieve information from open domain docu-
ments, its robustness cannot be guaranteed on alternative
input structures, such as table data or domain-specific
documents, which raises our concerns about potential
misuse. Additionally, our model is not trained to handle
multi-round conversations, which may limit its applica-
bility in certain scenarios. Users should exercise caution
when processing and verifying the input and output to
ensure the reliability of the results.

We also note that our TreeHop’s query-rewriting
mechanism depends on query-chunk pair embeddings,
limiting its capability to synthesize information across
multiple chunks simultaneously. This design choice
prioritizes efficiency and system complexity, as synthe-
sizing arbitrary numbers of chunks requires additional
tools to discern query-relevant chunks to impede the
introduction of irrelevant information to the generated
query embeddings.
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A Dataset Cards

Below illustrates datasets inclusive in our work, the question types for evaluation are selected to ensure synthesizing
information from query and retrieved document chunks are mandatory for multihop retriever.

Dataset Question Type Require Synthesize

Comparison question: Questions requiring direct comparison of at-
tributes between entities within the same category.

Example Question: Who was born first, Albert Einstein or Abraham
Lincoln?

Inference question: Questions requiring derivation of implicit relation-
ships by combining triples from a knowledge graph.

Example Question: Who is the maternal grandfather of Abraham Lin- \/

coln?

Triples: (Abraham Lincoln, mother, Nancy Hanks Lincoln); (Nancy
2WikiMultiHop Hanks Lincoln, father, James Hanks).

Compositional question: Questions requiring multi-step relational rea-
soning across non-explicitly linked triples.

Example Question: Who founded the distributor of La La Land? \/
Triples: (La La Land, distributor, Summit Entertainment); (Summit
Entertainment, founded by, Bernd Eichinger).

Bridge-comparison question: Questions requiring both bridging to
intermediate entities and comparative reasoning.

Example Question: Which movie has the director born first, La La Land \/
or Tenet?

Steps: 1. Find directors: La La Land — Damien Chazelle; Tenet —
Christopher Nolan.

2. Compare birth years: Damien Chazelle (1985) vs. Christopher Nolan

(1970).

Unanswerable: Questions with potential support paragraphs are partially
removed, making the reasoning infeasible or unable to arrive at the
correct answer.

2-Hop Reasoning (Linear Path): A single, straightforward logical path
connecting two facts.

Example Question: Who succeeded the first President of Namibia? \/
steps: 1. Identify the first President of Namibia.
2. Determine who succeeded them.

) 3-Hop Reasoning (Linear Path) A sequential, three-step logical con-
MuSiQue nection.

Example Question: What currency is used where Billy Giles died? \/
steps: 1. Find the location of Billy Giles’ death.

2. Locate the region this place belongs to.

3. Identify the currency used in that region.

3-Hop Reasoning (Branching-Converging Path) Begins with a single
inquiry but diverges into different, branching sub-questions, then con-
verges.

Example Question: When was the first establishment that McDonaldiza- \/
tion is named after, opened in the country Horndean is located?

steps: 1. Determine what McDonaldization refers to.

2. Identify the country where Horndean is located.

3. Find the date the first establishment opened in that country.

Table 6: Dataset Cards.
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Dataset  Question Type Require Synthesize

4-Hop Reasoning (Linear Path) A continuous, four-step logical pro-
gression.

Example Question: When did Napoleon occupy the city where the \/
mother of the woman who brought Louis XVI style to the court died?

steps: 1. Identify who introduced Louis X VI style.

2. Find their mother.

3. Determine the city of the mother’s death.

4. Discover when Napoleon occupied that city.

4-Hop Reasoning (Branching-Converging Path) Starts with a single
query, splits into multiple paths, and then converges.

Example Question: How many Germans live in the colonial holding in \/
Aruba’s continent that was governed by Prazeres’s country?

steps: 1. Locate Aruba’s continent.

2. Identify Prazeres’ country.

3. Determine the colonial holding governed by that country in Aruba’s

continent.

4. Find the number of Germans there.

MuSiQue 4-Hop Reasoning (Converging Path): Multiple distinct lines of reason-
ing that eventually converge on the answer.

Example Question: When did the people who captured Malakoff come \/
to the region where Philipsburg is located?

steps: 1. Determine Philipsburg’s location.

2. Identify the terrain feature it belongs to.

3. Find who captured Malakoff.

4. Determine when those people came to that terrain.

Inference Query: Questions requiring derivation of implicit relation-
ships by combining triples from a knowledge graph.

) Example Question: Who is the maternal grandfather of Abraham Lin- \/
MultiHop RAG 12

Triples: (Abraham Lincoln, mother, Nancy Hanks Lincoln); (Nancy
Hanks Lincoln, father, James Hanks).

Comparison query: Questions requiring direct comparison of attributes
between entities within the same category.

Example Question: Did Netflix or Google report higher revenue for the
year 2023?

Temporal query: Question that requires an analysis of the temporal
information of the retrieved chunks

Example Question: Did Apple introduce the AirTag tracking device
before or after the launch of the 5th generation iPad Pro?

Null query: Question whose answer cannot be derived from the retrieved
set.This is purposely for testing the issue of hallucination. The LLM
should produce a null response instead of hallucinating an answer.
Example Question: What are the sales of company ABCD as reported in
its 2022 and 2023 annual reports?

Table 7: Dataset Cards.
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B Details on Evaluate Dataset Question Types

Below, we provide detailed number of questions for each question type in our evaluate datasets. Please refer to
Appendix A for introduction to the types.

Dataset Question Type Count
Compositional 5,236
2WikiMultiHop Bridge Comparison 2,751
Inference 1,549
2-hop reasoning (linear path) 1,252
3-Hop Reasoning (Linear Path) 568
. 3-Hop Reasoning (Branching Path) 192
MuSiQue 4-Hop Reasoning (Linear Path) 246
4-Hop Reasoning (Branching Path) 64
4-Hop Reasoning (Converging Path) 95
Multihop RAG Inference 816

Table 8: Evaluate data statistics on number of queries and sizes of embedding database.
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C Iter-RetGen Prompt Templates

Below we illustrate prompt templates for generating embedding and Iter-RetGen. Templates for 2WikiMultihop and
MusSiQue are identical, while for MultiHop-RAG we add source of content as many of its question decomposition
revolve around this. Following previous work (Zhuang et al., 2024), we adopt the same prompt template on three
evaluate datasets for Iter-RetGen.

Document Chunk Prompt Template for 2WikiMultihop and MuSiQue
Title: [doc title]
Context: [doc text]

Table 9: Prompt template for generating embedding using BGE-m3 embedding model on 2Wiki and MuSiQue train
and evaluate datasets.

Document Chunk Prompt Template for MultiHop-RAG
Title: [doc title]

Source: [doc source]

Context: [doc text]

Table 10: Prompt template for generating embedding using BGE-m3 embedding model on MultiHop-RAG evaluate
dataset.
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Iter-RetGen Prompt Template for 2WikiMultihop, MuSiQue and MultiHop-RAG

You should think step by step and answer the question after <Question> based on given knowledge embraced with <doc>
and </doc>. Your answer should be after <Answer> in JSON format with key "thought" and "answer", their value should
be string.
Here are some examples for you to refer to:
<doc>
{{ KNOWLEDGE FOR THE QUESTION}}
</doc>
<Question>: In which year did the publisher of In Cold Blood form?
Let’s think step by step.
<Answer>:
* json
{{ "thought": "In Cold Blood was first published in book form by Random House. Random House was form in 2001.",
"answer": "2011" }}

<doc>
{ {KNOWLEDGE FOR THE QUESTION} }
</doc>
<Question>: Who was in charge of the city where The Killing of a Sacred Deer was filmed?
Let’s think step by step.
<Answer>:
** json
{{ "thought": "The Killing of a Sacred Deer was filmed in Cincinnati. The present Mayor of Cincinnati is John Cranley.

Therefore, John Cranley is in charge of the city.", "answer": "John Cranley" }}

<doc>
{{ KNOWLEDGE FOR THE QUESTION}}
</doc>
<Question>: Where on the Avalon Peninsula is the city that Signal Hill overlooks?
Let’s think step by step.
<Answer>:
 json
{{ "thought": "Signal Hill is a hill which overlooks the city of St. John’s. St. John’s is located on the eastern tip of the

non noon

Avalon Peninsula.", "answer": "eastern tip" }}

Now based on the given doc, answer the question after <Question>.
<doc>

{documents }

</doc>

<Question>: {question}

Let’s think step by step.

<Answer>:

Table 11: Prompt template for Iter-RetGen on 2Wiki, MuSiQue and MultiHop-RAG evaluate datasets.
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D Accuracy Prompt for GPT 3.5

Following previous work (Zhuang et al., 2024), we disclose accuracy prompt for evaluating end-to-end QA
performance from Table 3.

Accuracy Prompt

You are an experienced linguist who is responsible for evaluating the correctness of the generated responses.
You are provided with question, the generated responses and the corresponding ground truth answer. Your
task is to compare the generated responses with the ground truth responses and evaluate the correctness of
the generated responses. Response in JSON format with key "response” and value "yes" or "no".

Question: [question]

Prediction: [prediction]

Ground-truth Answer: [answer]

Table 12: Accuracy Prompt for Evaluating end-to-end QA performance

E QA Prompt for End-to-End Evaluation

For the downstream LL.Ms (Llama3.1-8B-Instruct and Qwen2.5-7B-Instruct) in our end-to-end QA performance
evaluation, we applied default chat templates, directly attached questions to the user prompt, and adopted the same
system prompt for the two LLMs below, where retrieved chunks are naively concatenated in descending order of
cosine similarity, then further concatenated in retrieval iteration order.

Answer the question based on the context below. Respond "Unsure about answer" if not sure about the
answer.

Here is the context:

Title: [titlel]

[contentl ]

Title: [title2]
[content2]

Table 13: Downstream LLM Prompt for Evaluating end-to-end QA performance
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F Analysis on The Size of Training Dataset

To explore the possible room of further improving TreeHop by increasing the size of training dataset, we have
randomly sampled our current training dataset and trained TreeHop upon 75%, 50% and 25% of the training
dataset, respectively. Throughout the experiment, we adopted the environment and hyper-parameters introduced in

subsection 3.5.

2WIKI MUSIQUE MULTIHOP RAG
Subsamble Size Recall@K K Recall@K K Recall@K K
Direct-R@5 49.3 5 454 5 48.6 5
100% of Training Dataset
TreeHop @5 iter2 61.6 8.6 48.0 8.1 57.9 7.0
TreeHop @5 iter3 65.4 11.8 48.1 11.0 61.1 8.4
75% of Training Dataset
TreeHop@5 iter2 60.9(0.7)) 8.7 479(0.1)) 82 57.9(0.5)) 7.0
TreeHop@5 iter3  64.7(0.7)) 11.9 48.1(0.04) 11.1 61.1(0.1]) 8.5
50% of Training Dataset
TreeHop@5 iter2 60.1(1.5]) 8.6 46.8(1.2)) 8.0 56.0(1.9)) 6.7
TreeHop@5 iter3  63.3(2.1)) 11.8 47.2(0.9)) 10.8 58.8(2.3)) 7.9
25% of Training Dataset
TreeHop@5 iter2 57.3(3.8]) 84 463(1.7)) 7.9 55.3(2.6)) 6.6
TreeHop@5 iter3  60.0(5.3]) 114 469(1.2)) 11.3 58.1(2.9)) 7.7

Table 14: TreeHop performance trained upon subsampled dataset.

Our experiment reveals that TreeHop’s performance decays as the training dataset size decreases. Although the
recall improvement is marginal when increasing from 75% to 100% on MuSiQue and MultiHop RAG, we observe a
notable improvement on 2WikiMultihop, indicating that there is still room for improvement if we further scale up
the training dataset. This suggests that TreeHop has the potential to benefit from larger embedding spaces.
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G Intuition Behind TreeHop’s Architecture

To clarify the underlying intuition in subsection 3.2, let us revisit the example presented in the introduction: For the
question “Who is the grandfather of Donald Trump?”, suppose the first retrieval yields a chunk stating “Donald
Trump’s father is Fred Trump.” Traditional systems use LLMs to rewrite the query as “Who is the father of Fred
Trump?” for the next hop. Our TreeHop operates at the embedding level to achieve this rewrite dynamically, thereby
achieves efficiency. Under the hood, the model is fed with query-chunk embedding pair, it then replaces “grandfather
of Donald Trump” information in the query embedding with “father of Fred Trump” information in the retrieved
chunk embedding. The ¢, — ¢’ term in the Equation 3 serves for this replacing purpose by removing overlapping
semantics between the query and chunk embeddings. Meanwhile, UpdateGate is adopted to selectively integrate
new information from the retrieved chunk to form the next query embedding (Equation 3). The UpdateGate is a
cross attention module that selectively maintain only information that is necessary for the next retrieval from chunk
embedding (Equation 4), e.g., "Fred Trump".

H More Explanation About Layer-Wise Top-K Pruning

To begin with, K is a hyper-parameter that controls the number of chunks to be retrieved given a query. However,
this could result in an explosion in number of retrieved chunks in multi-hop retrieval. During initial retrieval step,
a user query is vectorized and K chunks with the highest similarities to the query are retrieved. Subsequently,
TreeHop would generate K embeddings for each of the query-chunk pair. In the next retrieval, we would retrieve
top-K chunks again for every generated embedding, resulting in a total of K2 retrieved chunks. Generally, given
the number of retrieval iterations r, the chunks grow exponentially as K", most of which are irrelevant. To address
this overhead, at each retrieval iteration, our Layer-Wise Top-K Pruning retains only the top- K chunks by cosine
similarity to the generated query embeddings, pruning the rest. This reduces the branching factor, prevents redundant
retrievals and minimizes prompt overload for downstream LLM:s.
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