
TreeHop: Efficient Embedding-Level Query Rewriter

Anonymous ACL submission

Abstract001

Retrieval-augmented generation (RAG) sys-002
tems face significant challenges in multi-hop003
question answering (MHQA), where com-004
plex queries require synthesizing information005
across multiple document chunks. Existing006
approaches typically rely on iterative LLM-007
based query rewriting and routing, resulting008
in high computational costs due to repeated009
LLM invocations and multi-stage processes.010
To address these limitations, we propose Tree-011
Hop, an embedding-level framework without012
the need for LLMs in query refinement. Tree-013
Hop dynamically updates query embeddings014
by fusing semantic information from prior015
queries and retrieved documents, enabling it-016
erative retrieval through embedding-space op-017
erations alone. This method replaces the tra-018
ditional "Retrieve-Rewrite-Vectorize-Retrieve"019
cycle with a streamlined "Retrieve-Embed-020
Retrieve" loop, significantly reducing compu-021
tational overhead. Moreover, a rule-based stop022
criterion is introduced to further prune redun-023
dant retrievals, balancing efficiency and recall024
rate. Experimental results show that TreeHop025
rivals advanced RAG methods across three026
open-domain MHQA datasets, achieving com-027
parable performance with only 5%-0.4% of the028
model parameter size and reducing the query029
latency by approximately 99% compared to030
concurrent approaches. This makes TreeHop a031
faster and more cost-effective solution for de-032
ployment in a range of knowledge-intensive ap-033
plications. For reproducibility purposes, codes034
and data are available anonymously here1.035

1 Introduction036

Recent breakthroughs in Large Language Models037
(LLMs) (DeepSeek-AI et al., 2025; OpenAI et al.,038
2024) have demonstrated their impressive capabilities039
in understanding queries (Brown et al., 2020; Ouyang040
et al., 2022) and generating human-like language texts.041
Nonetheless, LLMs still face significant limitations, par-042
ticularly in domain-specific (Li et al., 2024; Zhang et al.,043
2024) or knowledge-intensive (Kandpal et al., 2023)044

1https://github.com/Super-Researcher/TreeHop

tasks, where they often hallucinate (Zhang et al., 2023) 045
when dealing with queries that exceed their paramet- 046
ric knowledge (Muhlgay et al., 2024). To address this 047
issue, Retrieval-augmented generation (RAG) (Lewis 048
et al., 2021) has undergone rapid development (Gao 049
et al., 2024), leveraging external knowledge bases to re- 050
trieve relevant document chunks and integrate them into 051
LLMs, thereby producing more faithful (Khandelwal 052
et al., 2020) and generalizable (Kamalloo et al., 2023) 053
answers. 054

However, the conventional single-retrieval paradigm 055
of RAG falters in multi-hop question answering 056
(MHQA) scenarios (Yang et al., 2018; Ho et al., 2020; 057
Tang and Yang, 2024; Trivedi et al., 2022), where an- 058
swers require synthesizing information from multiple 059
document chunks. For instance, consider the query 060
"Who is the grandfather of Donald Trump?" A single 061
retrieval might return a chunk stating "Donald John 062
Trump was born on June 14, 1946..., the fourth child 063
of Fred Trump and Mary Ann Macleod Trump.", but 064
resolving the grandfather requires a follow-up query 065
like "Who is the father of Fred Trump?". This typical 066
multi-hop scenario reveals the need to dynamically com- 067
pose new query based on information in relevant docu- 068
ment chunk. Current methods like query-rewriters (Ma 069
et al., 2023), routers (Zhuang et al., 2024), and iterative 070
loops (Shao et al., 2023) attempt to resolve this by itera- 071
tively refining queries with retrieved information, and 072
drop query-irrelevant chunks. While these approaches 073
improve retrieval, they introduce computational over- 074
head due to repeated LLM invocations and multi-stage 075
processes, leading to latency and complexity trade-offs. 076

To addresses these limitations, we propose TreeHop, 077
a framework enabling embedding-level query updates 078
without requiring LLM rewrites. Inspired by the se- 079
mantic and structural properties of sentence embed- 080
dings (Zhu et al., 2018), TreeHop dynamically generates 081
next-step query embeddings by fusing prior queries and 082
retrieved content embeddings (Step 3, Figure 1). For 083
the aforementioned example, the initial information in 084
query "grandfather of Donald Trump" was substituted 085
with "father of Fred Trump", now encoded directly at 086
the embedding level. This approach collapses the tradi- 087
tional "Retrieve-Rewrite-Vectorize-Retrieve" cycle into 088
a streamlined "Retrieve-Embed-Retrieve" loop, signifi- 089
cantly reducing computational costs. TreeHop further 090
introduces two pruning strategies to ensure computa- 091
tional efficiency: redundancy pruning terminates paths 092

1

https://github.com/Super-Researcher/TreeHop


where the retrieved chunks have been seen in previous093
iterations, while layer-wise top-K pruning retains only094
the top-ranked retrieval candidates at each step, curbing095
exponential branch growth (Step 4, Figure 1).096

TreeHop employs a gated cross-attention mecha-097
nism (Vaswani et al., 2023) to effectively focus on098
extracting salient information from retrieved chunks,099
making the model effective while parameterizing with100
only 25 million parameters. Trained with contrastive101
learning (Chen et al., 2020; Wu et al., 2022b), Tree-102
Hop is capable of achieving a performance comparable103
to computationally intensive multi-hop methods across104
three benchmarks while maintaining significantly lower105
latency. Remarkably, TreeHop reduces retrieval latency106
by 99% compared to LLM-based methods while sacri-107
ficing only 4.8% of the recall rate at maximum, even out-108
performing some advanced systems by 4.1% in deeper109
retrieval iterations.110

In summary, our work makes three key contributions111
to the iterative retrieval framework:112

• A novel embedding-updating mechanism that re-113
places LLM-driven iterative query rewrites with114
lightweight neural operations, enabling linear115
computational complexity for MHQA tasks.116

• An efficient rule-based stopping criterion that con-117
trols branching factor growth while maintaining118
performance in retrieval iteration.119

• Empirical validation demonstrating superior120
efficiency-accuracy trade-offs in three MHQA121
tasks. Our approach bridges the gap between com-122
putational efficiency and retrieval effectiveness,123
offering a scalable solution for diverse knowledge-124
intensive applications.125

2 Preliminaries126

2.1 Multi-hop Retrieval-Augmented Generation127

The Retrieval Augmented Generation (RAG) (Lewis128
et al., 2021; Gao et al., 2024) fundamentally enhances129
the capabilities of LLMs by retrieving pertinent docu-130
ments from an external knowledge base, which is made131
possible through the calculation of semantic similarity132
between user’s query and document chunks. Building133
upon RAG, multi-hop variants have been proposed to134
tackle more complex tasks, such as multi-hop ques-135
tion answering (MHQA). Notable approaches include136
iterative retrieval methods (Shao et al., 2023), where137
the knowledge base is repeatedly searched based on138
the initial query and generated text, providing a more139
comprehensive information retrieval. Other approaches140
revolve around employing cooperative language models141
as query-rewriters (Ma et al., 2023), routers (Manias142
et al., 2024) or both (Zhuang et al., 2024). These mod-143
els generate new queries for document chunk retrieval144
and filter out irrelevant chunks, ensuring the most rele-145
vant information is retained. It is worth noting that they146

all mentioned solutions utilize one or multiple trans- 147
former model variants (Vaswani et al., 2023; Reimers 148
and Gurevych, 2019) for enhanced retrieval, which in- 149
duces additional computational cost and significantly 150
increases system latency. 151

2.2 Sentence Representation Learning and 152
Contrastive Learning 153

Sentence representation learning, a technique for train- 154
ing retrieval model in the realm of RAG, refers to 155
the task of encoding sentences into fixed-dimensional 156
embeddings. Early approaches extended word-level 157
techniques like word2vec (Mikolov et al., 2013) to 158
sentences, such as Skip-Though (Kiros et al., 2015) 159
and FastSent citephill-etal-2016-learning, which learned 160
unsupervised sentence embeddings by optimizing se- 161
quential or semantic coherence objectives. Subse- 162
quent work leveraged pre-trained language models like 163
BERT (Reimers and Gurevych, 2019), extracting sen- 164
tence embeddings via the [CLS] token or mean pooling 165
of contextualized token representations (Reimers and 166
Gurevych, 2019; Li et al., 2020; Su et al., 2021). 167

To further improve the performance, contrastive learn- 168
ing emerged as a powerful paradigm for learning dis- 169
criminative sentence representations (Zhang et al., 2020; 170
Carlsson et al., 2021; Giorgi et al., 2021; Yan et al., 171
2021; Kim et al., 2021). A cornerstone in this space is 172
SimCSE (Gao et al., 2021), which employs InfoNCE 173
(van den Oord et al., 2019) to maximize agreement be- 174
tween augmented views of the same sentence. The loss 175
function is defined as: 176

LinfoNCE = −
N∑
i=1

log
esim(f(xi),f(xi)

′)/τ∑N
j=1 e

sim(f(xi),f(xj)′)/τ
,

(1) 177
where N is the batch size, τ is a temperature hyper- 178

parameter and sim(f(xi), f(xj)
′) =

f(xi)⊤f(xj)
′

∥f(xi)∥·∥f(xj)′∥ 179

is the cosine similarity used in this work. f(·) is the 180
sentence representation encoder, xi and x′

i are a paired 181
semantically related sentences derived from positive set 182
D = {(xi, x

′
i)}mi=1. 183

Additionally, SimCSE applied a dropout as a data 184
augmentation strategy, inspired many following works. 185
Meanwhile, DiffCSE (Chuang et al., 2022) introduces 186
equivariant transformations to ensure invariance to in- 187
put perturbations, while PCL (Wu et al., 2022a) lever- 188
ages diverse augmentation strategies to reduce bias in 189
negative sampling. InfoCSE (Wu et al., 2022c) learns 190
sentence representations with the ability to reconstruct 191
the original sentence fragments, RankCSE (Liu et al., 192
2023) further introduce a listwise ranking objectives for 193
learning effective sentence representations. 194

3 The Proposed Method: TreeHop 195

Our proposed model, TreeHop, is designed to gener- 196
ate the next query embedding by integrating previous 197
query embeddings and retrieved content embeddings. 198

2



Figure 1: The TreeHop model utilizes query and content chunk embeddings to generate new query embeddings,
which are subsequently filtered with similarity and ranking thresholds, thereby streamlines the conventional
"Retrieve-Rewrite-Vectorize-Retrieve" into a "Retrieve-Embed-Retrieve" loop.

This approach streamlines the conventional iterative199
"Retrieve-Rewrite-Vectorize-Retrieve" process inherent200
in RAG systems into a more efficient "Retrieve-Embed-201
Retrieve" workflow, reducing both system latency and202
computational overhead. Furthermore, we have opti-203
mized the architecture to achieve high retrieval perfor-204
mance while ensuring a compact parameter size. In the205
following sections, we first formally define the problem,206
then detail the model architecture and stopping criterion207
that contribute to its computational efficiency and ef-208
fectiveness. Finally, we explain the construction of the209
training data.210

3.1 Problem Formulation211

At retrieval iteration r, given query embedding q, a set of212
the top K document chunk embeddings, T = {ci}Ki=1,213
is retrieved using the retriever g(qr,K). The TreeHop214
model then generates the corresponding next query em-215
bedding set Q1 = {qir+1}Ki=1 for the subsequent hop216
retrieval.217

qir+1 = TreeHop(qr, cir), c
i
r ∈ Tr (2)218

Note, that the TreeHop framework defaults to the219
base retriever under the single-hop retrieval scenario, as220
no iterative query refinement is needed. Please refer to221
Figure 1 for detailed TreeHop inference steps with the222
stop criterion included in subsection 3.3.223

3.2 Model Architecture224

TreeHop’s architecture is tailored to be effective in per-225
formance while maintain a small parameter size. The226
core of TreeHop’s query update is the UpdateGate (see227
Figure 2), which modulates how information from prior228

queries q and retrieved chunks c is retained or discarded. 229
The intuition behind is that we only need to remove 230
information presents in both embeddings, and update 231
information yet to be further retrieved from the retrieved 232
chunks to form a new query embedding. 233

TreeHop(qr, cir) = qr−cir+UpdateGate(qr, c
i
r) (3) 234

The term qr − cir suppresses semantic overlap be- 235
tween the current query and chunk embeddings. This 236
prevents redundant retrieval of information already cap- 237
tured. (e.g., if the chunk confirms "Fred Trump is Don- 238
ald’s father," the model avoids re-searching for Fred 239
Trump in subsequent hops). The UpdateGate(qr, c

i
r) 240

selectively incorporates new information from cir to 241
form the next query. We implement cross-attention 242
mechanism (Vaswani et al., 2023) for UpdateGate. 243

UpdateGate(q, c) = CrossAttnu(q, c)

= softmax(
Qu(q)⊙Ku(c)√

d
)⊙ Vu(c)

(4) 244

Where d is the number of embedding dimension, 245
Qu, Ku and Vu are three weight and bias matrices for 246
UpdateGate. Together, information to be maintained in 247
the chunk embeddings is selectively extracted through 248
comparing the information in qr and cir, and new in- 249
formation is added through UpdateGate. This archi- 250
tectural design is based on empirical experiments for 251
improving the model performance (see subsection 5.1 252
for ablation details). Please also refer to Appendix G for 253
our explanation to the intuition behind the architecture. 254

3



Figure 2: The model architecture of TreeHop. The UpdateGate, using cross-attention, updates embeddings via
selectively incorporating new information from chunk embeddings. The output is combined with the difference
between the previous query and chunk embeddings to form the next query embedding.

3.3 Stopping Criterion255

The TreeHop iteratively generates query embedding for256
every retrieved document chunk, this risks excessive257
computational costs if every query proceeds to subse-258
quent hops. Unchecked, this approach could lead to259
an exponential increase in retrieved chunks (O(nr)),260
degrading efficiency without proportional gains in accu-261
racy. To address this, we introduce a set of rule-based262
stop criterion that dynamically prunes irrelevant or re-263
dundant retrieval branches to ensure only promising264
paths advance.265

Redundancy Pruning We terminate branches where266
the document chunk has been retrieved in the previous267
iterations, as depicted in line 8, Figure 3.268

Layer-wise Top-K Pruning At each retrieval layer,269
we retain only the top-K chunks with highest similarity270
scores across all generated query embeddings. This271
reduces the branching factor from O(nr) to O(nr) by272
focusing computation on the most promising paths, as273
shown in line 12, Figure 3. Please refer to Appendix H274
for more explanation about this pruning.275

3.4 Train Data Construction276

To train the TreeHop model, we require a dataset that277
explicitly captures the multi-step knowledge retrieval278
path for MHQA. The 2WikiMultiHop dataset (Ho et al.,279
2020) provides an ideal foundation due to its explicit280
decomposition of complex questions into intermedi-281
ate steps, with each step linked to corresponding ev-282
idence chunks from Wikipedia. We attempted to con-283
struct retrieval paths on Musique/Multihop-RAG train-284
ing datasets, but found their lack of explicit multi-hop285
paths. 2WikiMultiHop is the only dataset that provides286
concrete and verifiable multi-hop retrieval paths, a.k.a,287
question decompositions. Multihop-RAG does not288
come with question decomposition, whatsoever; while289
MuSiQue provides question decompositions, it tends to290
revise or summarize words from original chunks, im-291
peding us to reliably match the corresponding chunks in292
scale, ultimately forced us to abandon its training data.293

Input: Initial user query text x, embedding model
f(·) that generates embeddings for input text,
total number of hops N ≥ 1, retriever g(·) that
takes one query embedding and outputs top K
text chunks {ci}Ki=1 and respective embeddings
{υi}Ki=1, cosine similarity scores {si}Ki=1.

Output: Retrieved text chunk set C.

1: C = ∅
Q = {f(x)} // Query embedding set

2: for r ∈ {1, . . . , N} do
3: S = ∅
4: for q in Q do
5: // Retrieve and iterate over top K chunks,

embeddings and similarity scores
6: for c, υ, s in g(qi,K) do
7: if c /∈ C then
8: // Include only distinct chunks.

S ← [q, c, v, s]
9: Q = ∅

t = TopSimilarityScore(S,K) // Get
layer-wise K-th similarity score t from set
S.

10: for q, c, υ, s in S do
11: if s ≥ t then
12: C ← c

Q ← TreeHop(q, v)

Figure 3: Multi-hop inference steps and rule-based stop
criterion for TreeHop.

4



To obtain a fine-grained training dataset, the follow-294
ing processes are implemented to clean the dataset:295

Question Type Selection We focus on inference, com-296
positional and bridge comparison questions, as they297
strictly require the model to synthesize information298
across multiple hops (e.g., deriving a grandfather’s iden-299
tity by first retrieving a father’s name). In contrast, com-300
parison questions rely more on direct factual retrieval301
without requiring iterative information interaction. See302
Appendix A for more information about question types.303

Query Type Integrity Check We filter the dataset to304
retain only instances where the provided query decom-305
positions align precisely with the multi-step reasoning306
required by the question type.307

Through this curation process, we have obtained308
111,239 trainable samples.309

3.5 Model Training310

We utilize BGE-m3 (Chen et al., 2024), a multilin-311
gual embedding model that supports more than 100312
languages, to generate dense embeddings for the ini-313
tial query and construct a document chunk embedding314
database. This gives our trained TreeHop model the po-315
tential to be versatile and applicable to a wide range316
of languages and use cases. Note that BGE-m3 re-317
mains frozen during training to ensure the training pro-318
cess focus on the TreeHop model. For detailed prompt319
templates for generating embeddings on three datasets,320
please refer to Table 9 and Table 10 in Appendix C.321

Following previous work (van den Oord et al., 2019),322
we adopt contrastive learning framework to train Tree-323
Hop to generate embeddings that maximizes the simi-324
larities with their corresponding positive chunk embed-325
dings while minimizing similarity with negative ones.326
Specifically, we employ the LinfoNCE objective in Equa-327
tion 1 with temperature τ of 0.15 and five negatives328
sampled from embedding database. The model is com-329
pact enough to be trained on a single Nvidia V100 GPU,330
with batch size of 64, AdamW optimizer and learning331
rate of 6e-5. Inspired by SimCSE (Gao et al., 2021), we332
add a dropout layer after the hidden representations for333
data augmentation.334

4 Experiments and Results335

To examine TreeHop, experiments are conducted re-336
garding its retrieval performance and efficiency. Below,337
we introduce the selective evaluation datasets, evaluate338
metrics, baselines, concurrent advanced RAG solutions339
and downstream LLMs that involve in the experiments340
for comparison.341

4.1 Datasets342

We benchmark TreeHop on three widely used MHQA343
datasets in the literature: 2WikiMultiHop (Ho et al.,344
2020), MuSiQue answerable (Trivedi et al., 2022), and345
MultiHop RAG (Tang and Yang, 2024). Some of their346

questions do not challenge multi-hop retrieval perfor- 347
mance but require LLMs to deduce from multiple docu- 348
ments. Since we only want to test the performance of 349
iterative retrieval systems, we focus on question types 350
requiring multi-step retrieval. To be more specific, in 351
2WikiMultiHop, we filter to inference, compositional 352
and bridge comparison questions (9,536 records), while 353
for MuSiQue, all 2,417 answerable questions are used. 354
MultiHop RAG’s inference questions (816 records) are 355
included. See Appendix A for detailed introduction 356
to the types of question among the evaluate datasets, 357
Table 1 for number of queries and size of embedding 358
databases, and Table 8 for detailed number of queries 359
for each selective types of question. 360

4.2 Evaluation Metrics & Benchmarks 361

To evaluate retrieval performance, we use the standard 362
evaluation metric, the recall rate, to test the retrieval 363
performance, specifically in the top K retrieval setting, 364
denoted Recall@K. It measures whether the relevant 365
documents are present among the top K retrieved docu- 366
ments. Higher Recall@K values indicate better retrieval 367
performance. To compare the efficiency among selected 368
RAG solutions, we record the average durations for 369
each query in seconds on each dataset, denoted latency. 370
The whole evaluation process is conducted on a single 371
Nvidia A100 GPU and 64 GB of RAM. 372

End-to-End QA Evaluation Following Efficient 373
RAG and Iter-Retgen, we employ exact match (EM), 374
as well as accuracy (ACC), a metric that evaluates 375
model answers by GPT-3.5, to evaulate end-to-end 376
QA performance among iterative retrieval solutions. 377
The prompt can be found in Appendix D. We adopt 378
llama3-8B-Instruct (AI@Meta, 2024) and Qwen2.5-7B- 379
Instruct (Qwen et al., 2025) as downstream LLMs. For 380
hyper-parameters, we set top-p, top-k, and repetition 381
penalty as 1, max new token as 1024 for the two models, 382
temperature as 0.8 for Llama3.1-8B-Instruct and 0.6 for 383
Qwen2.5-7B-Instruct, respectively. QA prompt adpoted 384
to the two models can be found in Appendix E. 385

Baselines and Advanced RAG We evaluate the 386
performance of TreeHop by comparing it to a native 387
top retrieval method using the BGE-m3 embedding 388
model as the baseline. In addition, we include two ad- 389
vanced iterative retrieval-augmented generation (RAG) 390
methods: Iter-RetGen (Shao et al., 2023) and Efficien- 391
tRAG (Zhuang et al., 2024) to assess both performance 392
and latency. For Iter-RetGen, we use the vanilla Meta 393
Llama3-8B-Instruct model (AI@Meta, 2024) as the in- 394
ference model. Additionally, we test Iter-RetGen and 395
TreeHop under the second and third retrieval iterations, 396
respectively, to evaluate their performance across differ- 397
ent stages of the retrieval process. For more details on 398
the prompt templates used in Iter-RetGen, please refer 399
to Table 11 in Appendix C. 400

4.3 Results 401

In this section, we present the experimental results of 402
TreeHop and benchmarks on three datasets, including 403

5



Dataset Query Embedding Database

2WikiMultihop 9,536 56,709
MuSiQue 2,417 21,100

Multihop RAG 816 609

Table 1: Descriptive statistics of datasets in terms of the number of queries and sizes of the corresponding embedding
database.

2WIKI MUSIQUE MULTIHOP-RAG
Retriever Recall@K K Latency Recall@K K Latency Recall@K K Latency

Baselines
Direct-R@5 49.3 5 0.002 45.4 5 0.002 48.6 5 0.019
Direct-R@10 53.2 10 0.003 53.8 10 0.002 67.8 10 0.019

Advanced RAG
Iter-RetGen@5 iter2 59.2 9.9 4.690 52.8 9.9 4.949 55.0 9.9 4.876
Iter-RetGen@5 iter3 61.9 14.7 7.278 54.1 14.8 7.274 57.0 14.5 7.322
EfficientRAG@5 60.5 3.8 2.846 46.9 6.1 2.907 51.8 4.1 2.855

Ours
TreeHop@5 iter2 61.6 8.6 0.022 48.0 8.1 0.023 57.9 7.0 0.023
TreeHop@5 iter3 65.4 11.8 0.067 48.1 11.0 0.064 61.1 8.4 0.062
TreeHop@10 iter2 57.9 17.2 0.062 55.7 15.3 0.056 72.8 13.1 0.049

Table 2: We report results of baselines, concurrent advanced RAG solutions and TreeHop on three MHQA datasets.
Bold numbers indicate the best performance in the same iteration among retrievers.

retrieval efficiency, recall, and end-to-end QA perfor-404
mance.405

Retrieval Efficiency As shown in Table 2, Tree-406
Hop significantly reduces computational overhead while407
maintaining competitive retrieval performance. It408
achieves latencies of 0.02 seconds per query in the sec-409
ond iteration and 0.06 seconds in the third, outperform-410
ing the next best solution, EfficientRAG, by over 2.9411
seconds. This significant reduction of 99.2%–99.6% in412
latency is attributed to TreeHop’s embedding-level com-413
putation, which avoids the recursive token generation414
loops required by LLM-based methods. This is con-415
firmed by examining the latency, which is proportional416
to the number of retrieved document chunks.417

Retrieval Performance TreeHop achieves strong per-418
formance across datasets while balancing efficiency and419
effectiveness. On the 2WikiMultiHop and Multihop420
dataset, TreeHop surpasses the second best solution,421
Iter-RetGen, by 2.4%-2.9% recall in the second itera-422
tion and 3.5%-4.1% recall in the third iteration, with423
3.1 less chunks retrieved on average. This demonstrates424
the effectiveness of the embedding mechanism in Equa-425
tion 4. For the MuSiQue dataset, recall is 4.8% lower426
than Iter-RetGen, likely due to the dataset’s unique re-427
quirement for synthesizing information from multiple428
chunks (e.g., branching and converging paths in Table 7),429
which TreeHop’s current architecture addresses less ef-430
fectively than iterative LLM-based approaches. Tree-431
Hop’s current design focuses on generating embeddings432
from query-chunk pairs, limiting its ability to synthesize433
information across multiple chunks simultaneously. The434
performance degradation aligns with EfficientRAG so-435
lution, which also struggles with this dataset, suggesting436
a limitation common to query-chunk-pair strategies.437

Average Number of K Overall, our TreeHop’s av- 438
erage number of retrieved document chunks falls in 439
the middle of the advanced RAG solutions. This is 440
contributed by stop criteria, which drastically curtails 441
computational overhead. For top-5 retrieval, it reduces 442
the theoretical exponential growth of chunks, 52 = 25 443
chunks in second iteration, to 7.1–8.8 chunks, and 444
53 = 125 chunks to 8.3–12.1 chunks in the third it- 445
eration. For top-10 retrieval, this scales linearly to 446
13.8–17.9 chunks, versus 102 chunks without pruning. 447

End-to-End QA performance As illustrated in Ta- 448
ble 3, downstream LLMs achieve the best end-to-end 449
performance on 2WikiMultiHop and MultiHop-RAG 450
with TreeHop’s retrieval outcomes, while on MusiQue 451
they work the best with Iter-Retgen’s retrieval results. 452
This performance is correlated to the performance of 453
upstream retrieval systems, where TreeHop also leads 454
in recall and average number of K on 2WikiMultiHop 455
and MultiHop-RAG, and underperforms Iter-Retgen on 456
MusiQue, as shown in Table 2. Additionally, weaker 457
LLMs tend to be more sensitive to average K, as 458
Llama3.1-8B-Instruct struggles with the lengthy con- 459
text introduced by high average K at the third iteration, 460
pronouncing the role of stopping criterion as proposed 461
in our framework. More powerful LLMs like Qwen3.1- 462
7B-Instruct benefit from TreeHop on more iterations, as 463
they are more capable of reasoning with longer context, 464
leading to more consistent performance increases with 465
the retrieval iterations. 466

5 Ablation Study 467

5.1 Effectiveness of Architecture 468

To evaluate the necessity of each component in Equa- 469
tion (3), we ablated the query term q, chunk term c, 470

6



2WIKI MUSIQUE MULTIHOP-RAG
Downstream LM Qwen2.5-7B Llama3-8B Qwen2.5-7B Llama3-8B Qwen2.5-7B Llama3-8B

Metric EM ACC EM ACC EM ACC EM ACC EM ACC EM ACC

Baselines
Direct-R@5 31.3 30.6 27.7 26.7 18.0 16.2 15.4 14.0 87.2 85.3 86.3 84.4
Direct-R@10 32.8 31.2 27.0 25.9 20.2 18.6 11.8 10.6 90.3 88.6 86.1 85.0

Advanced RAG
Iter-RetGen@5 iter2 38.0 37.6 30.5 30.1 25.4 24.8 17.1 17.1 89.8 88.5 86.3 85.3
Iter-RetGen@5 iter3 39.8 37.9 26.2 25.5 27.8 25.7 18.0 16.6 84.5 82.8 83.9 83.0
EfficientRAG@5 38.7 38.0 31.2 30.4 18.2 17.5 15.9 14.8 88.7 87.7 86.0 84.4

Ours
TreeHop@5 iter2 38.6 38.1 31.3 30.8 19.0 18.8 16.6 16.5 90.0 88.8 87.0 86.2
TreeHop@5 iter3 39.8 38.3 28.9 28.6 19.0 18.9 17.2 16.8 91.4 90.3 86.4 85.3

Table 3: End-to-End Question Answering (QA) Results. Bold numbers indicate the best model answer performance
among iterative retrieval frameworks.

and UpdateGate in isolation. Each variant was trained471
10 times with identical hyperparameters (as in subsec-472
tion 3.5), and performance was evaluated on the second473
hop’s recall rate. Results are illustrated in Table 4 and474
analyzed below.475

Impact of Component Removal The impact of struc-476
ture without c is the minimal, with a decrease of 0.9%-477
6.0% of average recall rates across datasets. The478
UpdateGate mitigated information loss by selectively479
retaining critical chunk information, without c, it keeps480
the information to the extent that still makes the model481
effective. However, average training convergence time482
increased by approximately 15% on average, as the483
model struggled to suppress redundant information with-484
out the q − c structure.485

Without q, the model loses critical information from486
query, thereby experiences significant performance487
degrade on the three datasets, achieves only 0.09%-488
5.3% improvement of average recall rates comparing to489
vanilla top 5 retrieval. It is observable that the model490
exhibits a lower degrades on 2WikiMultihop dataset, we491
conclude from the result that this is due to our usage of492
2WikiMultihop training data that make the model overfit493
to similar questions in evaluate dataset, ultimately leav-494
ing no generalization ability to the other two datasets.495

Without UpdateGate, recall dropped to near base-496
line retrieval performance (within 0.1% of random re-497
trieval), confirming the gate’s critical role in integrating498
new information. Without it, the model degenerated499
to a simple vector difference, failing to refine query500
embeddings iteratively.501

Dataset-Specific Insights The three datasets exhibit502
different extents of performance decay when the same503
components are removed. The MuSiQue dataset decays504
the least without c, q, and UpdateGate, this is due to505
the inherent deficiency of TreeHop on multihop queries506
with converging paths, making it perform inferior to the507
other datasets. The Multihop RAG dataset experiences508
the greatest negative impact without q, due to its com-509
plex queries that mention more than three entities for510
the retrieval model to gather each piece of information.511

Without q, TreeHop cannot navigate the missing infor- 512
mation. The 2WikiMultihop dataset influences less than 513
Multihop RAG without c and q, possibly because of its 514
less challenging queries and query decomposition paths. 515

5.2 Effectiveness of Stop Criterion 516

The stop criterion serves for filtering query paths to re- 517
duce computational cost without sacrificing too much 518
performance. Below we examine the performance with- 519
out the presence of Redundancy Pruning and Layer-wise 520
Top Pruning, illustrated in Table 5. 521

Redundancy Pruning Redundancy pruning prevents 522
revisiting previously retrieved chunks. Table 5 shows 523
that removing this pruning increases the average num- 524
ber of retrieved chunks K to 10, but reduces recall 525
by 4.2 points (e.g., 61.6 → 57.4 on 2WikiMultihop). 526
This occurs because when cooperate with layer-wise 527
top pruning, redundancy pruning further ensures only 528
unique, informative paths are pursued, thereby maintain- 529
ing recall performance. Without redundancy pruning, 530
more duplicated information take the place, resulting in 531
degraded performance. 532

Layer-wise Top Pruning This pruning strategy se- 533
lects top-5 chunks at each layer to control branching. 534
Removing this strategy results in a maximum increase of 535
113% in the average number of retrieved chunks (8.6→ 536
18.4) on the 2WikiMultihop dataset, but yields a 18.6% 537
improvement in recall (61.6%→ 80.2%). This suggests 538
that the pruning introduces a trade-off between compu- 539
tational efficiency and recall performance. In contrast, 540
for the Multihop RAG dataset, the recall improves by 541
5.6% with a 79% increase in average retrieved chunks, 542
a significantly lower increase compared to 2WikiMulti- 543
hop. This disparity among datasets is correlated with the 544
size of the corresponding embedding database. Specif- 545
ically, in large databases such as 2WikiMultihop, fea- 546
turing 56,709 chunk embeddings, the model benefits 547
from exploring more paths (higher K) due to the large 548
information pool. Conversely, in smaller databases, e.g., 549
Multihop RAG with 609 chunk embeddings, iterative 550
retrieval tends to introduce more redundant chunks, mak- 551

7



Architecture 2WIKI (avg.) MUSIQUE (avg.) MULTIHOP RAG (avg.)

Direct-R@5 49.3 45.4 48.6
TreeHop@5 iter2 61.6 48.0 57.9

w/o. c 57.5 (4.1↓) 47.1 (0.9↓) 51.9 (6.0↓)
w/o. q 54.6 (6.0↓) 46.3 (2.5↓) 50.8 (7.1↓)
w/o. UpdateGate 49.3 (12.3↓) 45.4 (3.4↓) 48.6 (9.3↓)

Table 4: Ablation study on TreeHop model architecture. The TreeHop experiences degraded performances when
core components q, c and UpdateGate are removed from its architecture, demonstrating their functionalities to the
model performance.

2WIKI MUSIQUE MULTIHOP RAG

Stop Criterion Recall@K K Recall@K K Recall@K K

TreeHop@5 iter2 61.6 8.6 48.0 8.1 57.9 7.0

w/o. Redundancy Pruning 57.4 10 46.4 10 52.8 10
w/o. Layer-wise Top Pruning 80.2 18.4 53.6 14.5 61.3 9.7
w/o. Both 80.2 30 53.6 30 61.3 30

Table 5: Ablation study on stop criterion, where redundancy pruning and layer-wise top 5 pruning are removed
from post retrieval process, respectively. The results indicate that the recall rate does not exhibit a considerable
enhancement, despite a substantial grow in the number of average K.

ing layer-wise top pruning filter out more useful chunks.552

Combined Effects The synergistic effect of combin-553
ing redundancy pruning and layer-wise top pruning is554
critical to achieving TreeHop’s efficiency gains with-555
out excessive recall loss. Take Multihop RAG for ex-556
ample, When both criteria are applied, they achieve a557
recall of 57.9% with an average number of retrieved558
chunks 7.0. When both criteria are disabled, the sys-559
tem’s computational complexity balloons to 30 chunks560
in the second iteration, a 329% increase, while yield-561
ing only a marginal 3.4% recall improvement. This562
demonstrates that layer-wise top pruning is essential563
for limiting branching factor, while redundancy pruning564
prevents recall degradation from redundant paths. Their565
combined use ensures that TreeHop avoids the exponen-566
tial retrieval path explosion inherent to iterative systems567
while maintaining competitive performance.568

6 Conclusion569

This work presents a novel paradigm for Retrieval-570
Augmented Generation (RAG), introducing TreeHop,571
a lightweight query embedding generator that dynam-572
ically refines query embeddings through iterative re-573
trieval without relying on additional LLMs or complex574
rewrite components, thereby enhancing the efficiency575
of RAG system. Its core mechanism, the UpdateGate,576
employs cross-attention to selectively integrate informa-577
tion from retrieved chunks while discarding redundant578
information, enables a compact model size of 25 mil-579
lion parameters while maintaining competitive perfor-580
mance on three MHQA benchmarks when integrated581
with simple rule-based stop criterion. Future work could582
explore more effective model architecture, adaptive stop583
criteria or extensions to handle lengthy, structural, or584
multi-modal inputs. Our approach underscores the po-585

tential of embedding-centric strategies to enhance re- 586
trieval process for RAG systems, offering a practical 587
balance between performance and computational effi- 588
ciency, paving the way for solutions to real-world multi- 589
hop reasoning challenges in industrial applications. 590

7 Limitation 591

This study seeks to enhance the efficiency of multihop 592
question answering in the realm of retrieval-augmented 593
generation, a shortcoming that continues to hamper its 594
practical applications. Notwithstanding our method 595
have demonstrated efficacy, it relies on uniform doc- 596
ument chunk embeddings generated with a specific 597
prompt template using a specific embedding model. 598
Once trained, the model strictly bonds it usage with the 599
embedding model. Thus, the impact of diverse embed- 600
ding models and prompt templates remains unclear and 601
requires further investigation. Moreover, our model is 602
trained to retrieve information from open domain docu- 603
ments, its robustness cannot be guaranteed on alternative 604
input structures, such as table data or domain-specific 605
documents, which raises our concerns about potential 606
misuse. Additionally, our model is not trained to handle 607
multi-round conversations, which may limit its applica- 608
bility in certain scenarios. Users should exercise caution 609
when processing and verifying the input and output to 610
ensure the reliability of the results. 611

We also note that our TreeHop’s query-rewriting 612
mechanism depends on query-chunk pair embeddings, 613
limiting its capability to synthesize information across 614
multiple chunks simultaneously. This design choice 615
prioritizes efficiency and system complexity, as synthe- 616
sizing arbitrary numbers of chunks requires additional 617
tools to discern query-relevant chunks to impede the 618
introduction of irrelevant information to the generated 619
query embeddings. 620

8



References621

AI@Meta. 2024. Llama 3 model card.622

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie623
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind624
Neelakantan, Pranav Shyam, Girish Sastry, Amanda625
Askell, Sandhini Agarwal, Ariel Herbert-Voss,626
Gretchen Krueger, Tom Henighan, Rewon Child,627
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,628
Clemens Winter, and 12 others. 2020. Lan-629
guage models are few-shot learners. Preprint,630
arXiv:2005.14165.631

Fredrik Carlsson, Amaru Cuba Gyllensten, Evan-632
gelia Gogoulou, Erik Ylipää Hellqvist, and Magnus633
Sahlgren. 2021. Semantic re-tuning with contrastive634
tension. In International Conference on Learning635
Representations.636

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu637
Lian, and Zheng Liu. 2024. Bge m3-embedding:638
Multi-lingual, multi-functionality, multi-granularity639
text embeddings through self-knowledge distillation.640
Preprint, arXiv:2402.03216.641

Ting Chen, Simon Kornblith, Mohammad Norouzi, and642
Geoffrey Hinton. 2020. A simple framework for con-643
trastive learning of visual representations. Preprint,644
arXiv:2002.05709.645

Yung-Sung Chuang, Rumen Dangovski, Hongyin Luo,646
Yang Zhang, Shiyu Chang, Marin Soljacic, Shang-647
Wen Li, Scott Yih, Yoon Kim, and James Glass. 2022.648
DiffCSE: Difference-based contrastive learning for649
sentence embeddings. In Proceedings of the 2022650
Conference of the North American Chapter of the651
Association for Computational Linguistics: Human652
Language Technologies, pages 4207–4218, Seattle,653
United States. Association for Computational Lin-654
guistics.655

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,656
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,657
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,658
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-659
hong Shao, Zhuoshu Li, Ziyi Gao, and 181 others.660
2025. Deepseek-r1: Incentivizing reasoning capa-661
bility in llms via reinforcement learning. Preprint,662
arXiv:2501.12948.663

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.664
SimCSE: Simple contrastive learning of sentence em-665
beddings. In Proceedings of the 2021 Conference on666
Empirical Methods in Natural Language Processing,667
pages 6894–6910, Online and Punta Cana, Domini-668
can Republic. Association for Computational Linguis-669
tics.670

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,671
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang,672
and Haofen Wang. 2024. Retrieval-augmented gener-673
ation for large language models: A survey. Preprint,674
arXiv:2312.10997.675

John Giorgi, Osvald Nitski, Bo Wang, and Gary Bader.676
2021. DeCLUTR: Deep contrastive learning for un-677
supervised textual representations. In Proceedings678

of the 59th Annual Meeting of the Association for 679
Computational Linguistics and the 11th International 680
Joint Conference on Natural Language Processing 681
(Volume 1: Long Papers), pages 879–895, Online. 682
Association for Computational Linguistics. 683

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, 684
and Akiko Aizawa. 2020. Constructing a multi- 685
hop QA dataset for comprehensive evaluation of 686
reasoning steps. In Proceedings of the 28th Inter- 687
national Conference on Computational Linguistics, 688
pages 6609–6625, Barcelona, Spain (Online). Inter- 689
national Committee on Computational Linguistics. 690

Ehsan Kamalloo, Nouha Dziri, Charles L. A. Clarke, 691
and Davood Rafiei. 2023. Evaluating open-domain 692
question answering in the era of large language mod- 693
els. Preprint, arXiv:2305.06984. 694

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric 695
Wallace, and Colin Raffel. 2023. Large lan- 696
guage models struggle to learn long-tail knowledge. 697
Preprint, arXiv:2211.08411. 698

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke 699
Zettlemoyer, and Mike Lewis. 2020. Generalization 700
through memorization: Nearest neighbor language 701
models. Preprint, arXiv:1911.00172. 702

Taeuk Kim, Kang Min Yoo, and Sang-goo Lee. 2021. 703
Self-guided contrastive learning for BERT sentence 704
representations. In Proceedings of the 59th Annual 705
Meeting of the Association for Computational Lin- 706
guistics and the 11th International Joint Conference 707
on Natural Language Processing (Volume 1: Long 708
Papers), pages 2528–2540, Online. Association for 709
Computational Linguistics. 710

Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard 711
Zemel, Raquel Urtasun, Antonio Torralba, and Sanja 712
Fidler. 2015. Skip-thought vectors. In Advances in 713
Neural Information Processing Systems, volume 28. 714
Curran Associates, Inc. 715

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 716
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 717
rich Küttler, Mike Lewis, Wen tau Yih, Tim Rock- 718
täschel, Sebastian Riedel, and Douwe Kiela. 2021. 719
Retrieval-augmented generation for knowledge- 720
intensive nlp tasks. Preprint, arXiv:2005.11401. 721

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, 722
Yiming Yang, and Lei Li. 2020. On the sentence 723
embeddings from pre-trained language models. In 724
Proceedings of the 2020 Conference on Empirical 725
Methods in Natural Language Processing (EMNLP), 726
pages 9119–9130, Online. Association for Computa- 727
tional Linguistics. 728

Zhonghao Li, Xuming Hu, Aiwei Liu, Kening Zheng, 729
Sirui Huang, and Hui Xiong. 2024. Refiner: Restruc- 730
ture retrieval content efficiently to advance question- 731
answering capabilities. Preprint, arXiv:2406.11357. 732

Jiduan Liu, Jiahao Liu, Qifan Wang, Jingang Wang, Wei 733
Wu, Yunsen Xian, Dongyan Zhao, Kai Chen, and 734

9

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://openreview.net/forum?id=Ov_sMNau-PF
https://openreview.net/forum?id=Ov_sMNau-PF
https://openreview.net/forum?id=Ov_sMNau-PF
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://doi.org/10.18653/v1/2022.naacl-main.311
https://doi.org/10.18653/v1/2022.naacl-main.311
https://doi.org/10.18653/v1/2022.naacl-main.311
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://doi.org/10.18653/v1/2021.acl-long.72
https://doi.org/10.18653/v1/2021.acl-long.72
https://doi.org/10.18653/v1/2021.acl-long.72
https://www.aclweb.org/anthology/2020.coling-main.580
https://www.aclweb.org/anthology/2020.coling-main.580
https://www.aclweb.org/anthology/2020.coling-main.580
https://www.aclweb.org/anthology/2020.coling-main.580
https://www.aclweb.org/anthology/2020.coling-main.580
https://arxiv.org/abs/2305.06984
https://arxiv.org/abs/2305.06984
https://arxiv.org/abs/2305.06984
https://arxiv.org/abs/2305.06984
https://arxiv.org/abs/2305.06984
https://arxiv.org/abs/2211.08411
https://arxiv.org/abs/2211.08411
https://arxiv.org/abs/2211.08411
https://arxiv.org/abs/1911.00172
https://arxiv.org/abs/1911.00172
https://arxiv.org/abs/1911.00172
https://arxiv.org/abs/1911.00172
https://arxiv.org/abs/1911.00172
https://doi.org/10.18653/v1/2021.acl-long.197
https://doi.org/10.18653/v1/2021.acl-long.197
https://doi.org/10.18653/v1/2021.acl-long.197
https://proceedings.neurips.cc/paper_files/paper/2015/file/f442d33fa06832082290ad8544a8da27-Paper.pdf
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://doi.org/10.18653/v1/2020.emnlp-main.733
https://doi.org/10.18653/v1/2020.emnlp-main.733
https://doi.org/10.18653/v1/2020.emnlp-main.733
https://arxiv.org/abs/2406.11357
https://arxiv.org/abs/2406.11357
https://arxiv.org/abs/2406.11357
https://arxiv.org/abs/2406.11357
https://arxiv.org/abs/2406.11357


Rui Yan. 2023. Rankcse: Unsupervised sentence rep-735
resentations learning via learning to rank. Preprint,736
arXiv:2305.16726.737

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,738
and Nan Duan. 2023. Query rewriting for retrieval-739
augmented large language models. Preprint,740
arXiv:2305.14283.741

Dimitrios Michael Manias, Ali Chouman, and Abdal-742
lah Shami. 2024. Semantic routing for enhanced743
performance of llm-assisted intent-based 5g core744
network management and orchestration. Preprint,745
arXiv:2404.15869.746

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-747
rado, and Jeff Dean. 2013. Distributed representa-748
tions of words and phrases and their compositionality.749
In Advances in Neural Information Processing Sys-750
tems, volume 26. Curran Associates, Inc.751

Dor Muhlgay, Ori Ram, Inbal Magar, Yoav Levine,752
Nir Ratner, Yonatan Belinkov, Omri Abend,753
Kevin Leyton-Brown, Amnon Shashua, and Yoav754
Shoham. 2024. Generating benchmarks for fac-755
tuality evaluation of language models. Preprint,756
arXiv:2307.06908.757

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,758
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-759
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-760
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,761
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-762
ing Bao, Mohammad Bavarian, Jeff Belgum, and763
262 others. 2024. Gpt-4 technical report. Preprint,764
arXiv:2303.08774.765

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-766
roll L. Wainwright, Pamela Mishkin, Chong Zhang,767
Sandhini Agarwal, Katarina Slama, Alex Ray, John768
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,769
Maddie Simens, Amanda Askell, Peter Welinder,770
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.771
Training language models to follow instructions with772
human feedback. Preprint, arXiv:2203.02155.773

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,774
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan775
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan776
Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin777
Yang, Jiaxi Yang, Jingren Zhou, and 25 oth-778
ers. 2025. Qwen2.5 technical report. Preprint,779
arXiv:2412.15115.780

Nils Reimers and Iryna Gurevych. 2019. Sentence-781
BERT: Sentence embeddings using Siamese BERT-782
networks. In Proceedings of the 2019 Conference on783
Empirical Methods in Natural Language Processing784
and the 9th International Joint Conference on Natu-785
ral Language Processing (EMNLP-IJCNLP), pages786
3982–3992, Hong Kong, China. Association for Com-787
putational Linguistics.788

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie789
Huang, Nan Duan, and Weizhu Chen. 2023. En-790
hancing retrieval-augmented large language models791
with iterative retrieval-generation synergy. Preprint,792
arXiv:2305.15294.793

Jianlin Su, Jiarun Cao, Weijie Liu, and Yangyiwen 794
Ou. 2021. Whitening sentence representations for 795
better semantics and faster retrieval. Preprint, 796
arXiv:2103.15316. 797

Yixuan Tang and Yi Yang. 2024. Multihop-rag: Bench- 798
marking retrieval-augmented generation for multi- 799
hop queries. Preprint, arXiv:2401.15391. 800

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, 801
and Ashish Sabharwal. 2022. MuSiQue: Multi- 802
hop questions via single-hop question composition. 803
Transactions of the Association for Computational 804
Linguistics, 10:539–554. 805

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2019. 806
Representation learning with contrastive predictive 807
coding. Preprint, arXiv:1807.03748. 808

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 809
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 810
Kaiser, and Illia Polosukhin. 2023. Attention is all 811
you need. Preprint, arXiv:1706.03762. 812

Qiyu Wu, Chongyang Tao, Tao Shen, Can Xu, Xiubo 813
Geng, and Daxin Jiang. 2022a. Pcl: Peer-contrastive 814
learning with diverse augmentations for unsupervised 815
sentence embeddings. Preprint, arXiv:2201.12093. 816

Xing Wu, Chaochen Gao, Zijia Lin, Jizhong Han, 817
Zhongyuan Wang, and Songlin Hu. 2022b. InfoCSE: 818
Information-aggregated contrastive learning of sen- 819
tence embeddings. In Findings of the Association 820
for Computational Linguistics: EMNLP 2022, pages 821
3060–3070, Abu Dhabi, United Arab Emirates. Asso- 822
ciation for Computational Linguistics. 823

Xing Wu, Chaochen Gao, Zijia Lin, Jizhong Han, 824
Zhongyuan Wang, and Songlin Hu. 2022c. Infocse: 825
Information-aggregated contrastive learning of sen- 826
tence embeddings. Preprint, arXiv:2210.06432. 827

Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang, 828
Wei Wu, and Weiran Xu. 2021. ConSERT: A con- 829
trastive framework for self-supervised sentence repre- 830
sentation transfer. In Proceedings of the 59th Annual 831
Meeting of the Association for Computational Lin- 832
guistics and the 11th International Joint Conference 833
on Natural Language Processing (Volume 1: Long 834
Papers), pages 5065–5075, Online. Association for 835
Computational Linguistics. 836

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben- 837
gio, William W. Cohen, Ruslan Salakhutdinov, and 838
Christopher D. Manning. 2018. HotpotQA: A dataset 839
for diverse, explainable multi-hop question answer- 840
ing. In Conference on Empirical Methods in Natural 841
Language Processing (EMNLP). 842

Tianjun Zhang, Shishir G. Patil, Naman Jain, Sheng 843
Shen, Matei Zaharia, Ion Stoica, and Joseph E. Gon- 844
zalez. 2024. Raft: Adapting language model to do- 845
main specific rag. Preprint, arXiv:2403.10131. 846

Yan Zhang, Ruidan He, Zuozhu Liu, Kwan Hui Lim, 847
and Lidong Bing. 2020. An unsupervised sentence 848

10

https://arxiv.org/abs/2305.16726
https://arxiv.org/abs/2305.16726
https://arxiv.org/abs/2305.16726
https://arxiv.org/abs/2305.14283
https://arxiv.org/abs/2305.14283
https://arxiv.org/abs/2305.14283
https://arxiv.org/abs/2404.15869
https://arxiv.org/abs/2404.15869
https://arxiv.org/abs/2404.15869
https://arxiv.org/abs/2404.15869
https://arxiv.org/abs/2404.15869
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://arxiv.org/abs/2307.06908
https://arxiv.org/abs/2307.06908
https://arxiv.org/abs/2307.06908
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2412.15115
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://arxiv.org/abs/2305.15294
https://arxiv.org/abs/2305.15294
https://arxiv.org/abs/2305.15294
https://arxiv.org/abs/2305.15294
https://arxiv.org/abs/2305.15294
https://arxiv.org/abs/2103.15316
https://arxiv.org/abs/2103.15316
https://arxiv.org/abs/2103.15316
https://arxiv.org/abs/2401.15391
https://arxiv.org/abs/2401.15391
https://arxiv.org/abs/2401.15391
https://arxiv.org/abs/2401.15391
https://arxiv.org/abs/2401.15391
https://doi.org/10.1162/tacl_a_00475
https://doi.org/10.1162/tacl_a_00475
https://doi.org/10.1162/tacl_a_00475
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2201.12093
https://arxiv.org/abs/2201.12093
https://arxiv.org/abs/2201.12093
https://arxiv.org/abs/2201.12093
https://arxiv.org/abs/2201.12093
https://doi.org/10.18653/v1/2022.findings-emnlp.223
https://doi.org/10.18653/v1/2022.findings-emnlp.223
https://doi.org/10.18653/v1/2022.findings-emnlp.223
https://doi.org/10.18653/v1/2022.findings-emnlp.223
https://doi.org/10.18653/v1/2022.findings-emnlp.223
https://arxiv.org/abs/2210.06432
https://arxiv.org/abs/2210.06432
https://arxiv.org/abs/2210.06432
https://arxiv.org/abs/2210.06432
https://arxiv.org/abs/2210.06432
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393
https://arxiv.org/abs/2403.10131
https://arxiv.org/abs/2403.10131
https://arxiv.org/abs/2403.10131
https://doi.org/10.18653/v1/2020.emnlp-main.124
https://doi.org/10.18653/v1/2020.emnlp-main.124


embedding method by mutual information maximiza-849
tion. In Proceedings of the 2020 Conference on850
Empirical Methods in Natural Language Processing851
(EMNLP), pages 1601–1610, Online. Association for852
Computational Linguistics.853

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,854
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,855
Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei856
Bi, Freda Shi, and Shuming Shi. 2023. Siren’s song857
in the ai ocean: A survey on hallucination in large858
language models. Preprint, arXiv:2309.01219.859

Xunjie Zhu, Tingfeng Li, and Gerard de Melo. 2018.860
Exploring semantic properties of sentence embed-861
dings. In Proceedings of the 56th Annual Meeting of862
the Association for Computational Linguistics (Vol-863
ume 2: Short Papers), pages 632–637, Melbourne,864
Australia. Association for Computational Linguistics.865

Ziyuan Zhuang, Zhiyang Zhang, Sitao Cheng, Fangkai866
Yang, Jia Liu, Shujian Huang, Qingwei Lin, Saravan867
Rajmohan, Dongmei Zhang, and Qi Zhang. 2024.868
Efficientrag: Efficient retriever for multi-hop question869
answering. Preprint, arXiv:2408.04259.870

11

https://doi.org/10.18653/v1/2020.emnlp-main.124
https://doi.org/10.18653/v1/2020.emnlp-main.124
https://doi.org/10.18653/v1/2020.emnlp-main.124
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://doi.org/10.18653/v1/P18-2100
https://doi.org/10.18653/v1/P18-2100
https://doi.org/10.18653/v1/P18-2100
https://arxiv.org/abs/2408.04259
https://arxiv.org/abs/2408.04259
https://arxiv.org/abs/2408.04259


Part I871

Appendix872

Table of Contents
873
874

A Dataset Cards 13875

B Details on Evaluate Dataset Question Types 15876

C Iter-RetGen Prompt Templates 16877

D Accuracy Prompt for GPT 3.5 18878

E QA Prompt for End-to-End Evaluation 18879

F Analysis on The Size of Training Dataset 19880

G Intuition Behind TreeHop’s Architecture 20881

H More Explanation About Layer-Wise Top-K Pruning 20882
883
884885

12



A Dataset Cards 886

Below illustrates datasets inclusive in our work, the question types for evaluation are selected to ensure synthesizing 887
information from query and retrieved document chunks are mandatory for multihop retriever. 888

Dataset Question Type Require Synthesize

2WikiMultiHop

Comparison question: Questions requiring direct comparison of at-
tributes between entities within the same category.
Example Question: Who was born first, Albert Einstein or Abraham
Lincoln?

Inference question: Questions requiring derivation of implicit relation-
ships by combining triples from a knowledge graph.

Example Question: Who is the maternal grandfather of Abraham Lin-
coln?

✓
Triples: (Abraham Lincoln, mother, Nancy Hanks Lincoln); (Nancy
Hanks Lincoln, father, James Hanks).

Compositional question: Questions requiring multi-step relational rea-
soning across non-explicitly linked triples.

Example Question: Who founded the distributor of La La Land? ✓
Triples: (La La Land, distributor, Summit Entertainment); (Summit
Entertainment, founded by, Bernd Eichinger).

Bridge-comparison question: Questions requiring both bridging to
intermediate entities and comparative reasoning.

Example Question: Which movie has the director born first, La La Land
or Tenet?

✓
Steps: 1. Find directors: La La Land → Damien Chazelle; Tenet →
Christopher Nolan.
2. Compare birth years: Damien Chazelle (1985) vs. Christopher Nolan
(1970).

MuSiQue

Unanswerable: Questions with potential support paragraphs are partially
removed, making the reasoning infeasible or unable to arrive at the
correct answer.

2-Hop Reasoning (Linear Path): A single, straightforward logical path
connecting two facts.

Example Question: Who succeeded the first President of Namibia? ✓
steps: 1. Identify the first President of Namibia.
2. Determine who succeeded them.

3-Hop Reasoning (Linear Path) A sequential, three-step logical con-
nection.

Example Question: What currency is used where Billy Giles died? ✓
steps: 1. Find the location of Billy Giles’ death.
2. Locate the region this place belongs to.
3. Identify the currency used in that region.

3-Hop Reasoning (Branching-Converging Path) Begins with a single
inquiry but diverges into different, branching sub-questions, then con-
verges.

Example Question: When was the first establishment that McDonaldiza-
tion is named after, opened in the country Horndean is located?

✓
steps: 1. Determine what McDonaldization refers to.
2. Identify the country where Horndean is located.
3. Find the date the first establishment opened in that country.

Table 6: Dataset Cards.

13



Dataset Question Type Require Synthesize

MuSiQue

4-Hop Reasoning (Linear Path) A continuous, four-step logical pro-
gression.

Example Question: When did Napoleon occupy the city where the
mother of the woman who brought Louis XVI style to the court died?

✓
steps: 1. Identify who introduced Louis XVI style.
2. Find their mother.
3. Determine the city of the mother’s death.
4. Discover when Napoleon occupied that city.

4-Hop Reasoning (Branching-Converging Path) Starts with a single
query, splits into multiple paths, and then converges.

Example Question: How many Germans live in the colonial holding in
Aruba’s continent that was governed by Prazeres’s country?

✓
steps: 1. Locate Aruba’s continent.
2. Identify Prazeres’ country.
3. Determine the colonial holding governed by that country in Aruba’s
continent.
4. Find the number of Germans there.

4-Hop Reasoning (Converging Path): Multiple distinct lines of reason-
ing that eventually converge on the answer.

Example Question: When did the people who captured Malakoff come
to the region where Philipsburg is located?

✓
steps: 1. Determine Philipsburg’s location.
2. Identify the terrain feature it belongs to.
3. Find who captured Malakoff.
4. Determine when those people came to that terrain.

MultiHop RAG

Inference Query: Questions requiring derivation of implicit relation-
ships by combining triples from a knowledge graph.

Example Question: Who is the maternal grandfather of Abraham Lin-
coln?

✓
Triples: (Abraham Lincoln, mother, Nancy Hanks Lincoln); (Nancy
Hanks Lincoln, father, James Hanks).

Comparison query: Questions requiring direct comparison of attributes
between entities within the same category.
Example Question: Did Netflix or Google report higher revenue for the
year 2023?

Temporal query: Question that requires an analysis of the temporal
information of the retrieved chunks
Example Question: Did Apple introduce the AirTag tracking device
before or after the launch of the 5th generation iPad Pro?

Null query: Question whose answer cannot be derived from the retrieved
set.This is purposely for testing the issue of hallucination. The LLM
should produce a null response instead of hallucinating an answer.
Example Question: What are the sales of company ABCD as reported in
its 2022 and 2023 annual reports?

Table 7: Dataset Cards.

14



B Details on Evaluate Dataset Question Types 889

Below, we provide detailed number of questions for each question type in our evaluate datasets. Please refer to 890
Appendix A for introduction to the types.

Dataset Question Type Count

2WikiMultiHop
Compositional 5,236

Bridge Comparison 2,751
Inference 1,549

MuSiQue

2-hop reasoning (linear path) 1,252
3-Hop Reasoning (Linear Path) 568

3-Hop Reasoning (Branching Path) 192
4-Hop Reasoning (Linear Path) 246

4-Hop Reasoning (Branching Path) 64
4-Hop Reasoning (Converging Path) 95

Multihop RAG Inference 816

Table 8: Evaluate data statistics on number of queries and sizes of embedding database.

891

15



C Iter-RetGen Prompt Templates892

Below we illustrate prompt templates for generating embedding and Iter-RetGen. Templates for 2WikiMultihop and893
MuSiQue are identical, while for MultiHop-RAG we add source of content as many of its question decomposition894
revolve around this. Following previous work (Zhuang et al., 2024), we adopt the same prompt template on three895
evaluate datasets for Iter-RetGen.896

Document Chunk Prompt Template for 2WikiMultihop and MuSiQue
Title: [doc title]
Context: [doc text]

Table 9: Prompt template for generating embedding using BGE-m3 embedding model on 2Wiki and MuSiQue train
and evaluate datasets.

Document Chunk Prompt Template for MultiHop-RAG
Title: [doc title]
Source: [doc source]
Context: [doc text]

Table 10: Prompt template for generating embedding using BGE-m3 embedding model on MultiHop-RAG evaluate
dataset.

16



Iter-RetGen Prompt Template for 2WikiMultihop, MuSiQue and MultiHop-RAG

You should think step by step and answer the question after <Question> based on given knowledge embraced with <doc>
and </doc>. Your answer should be after <Answer> in JSON format with key "thought" and "answer", their value should
be string.
Here are some examples for you to refer to:
<doc>
{{KNOWLEDGE FOR THE QUESTION}}
</doc>
<Question>: In which year did the publisher of In Cold Blood form?
Let’s think step by step.
<Answer>:
ˋˋˋ json
{{ "thought": "In Cold Blood was first published in book form by Random House. Random House was form in 2001.",
"answer": "2011" }}
ˋˋˋ
<doc>
{{KNOWLEDGE FOR THE QUESTION}}
</doc>
<Question>: Who was in charge of the city where The Killing of a Sacred Deer was filmed?
Let’s think step by step.
<Answer>:
ˋˋˋ json
{{ "thought": "The Killing of a Sacred Deer was filmed in Cincinnati. The present Mayor of Cincinnati is John Cranley.
Therefore, John Cranley is in charge of the city.", "answer": "John Cranley" }}
ˋˋˋ
<doc>
{{KNOWLEDGE FOR THE QUESTION}}
</doc>
<Question>: Where on the Avalon Peninsula is the city that Signal Hill overlooks?
Let’s think step by step.
<Answer>:
ˋˋˋ json
{{ "thought": "Signal Hill is a hill which overlooks the city of St. John’s. St. John’s is located on the eastern tip of the
Avalon Peninsula.", "answer": "eastern tip" }}
ˋˋˋ
Now based on the given doc, answer the question after <Question>.
<doc>
{documents}
</doc>
<Question>: {question}
Let’s think step by step.
<Answer>:

Table 11: Prompt template for Iter-RetGen on 2Wiki, MuSiQue and MultiHop-RAG evaluate datasets.

17



D Accuracy Prompt for GPT 3.5897

Following previous work (Zhuang et al., 2024), we disclose accuracy prompt for evaluating end-to-end QA898
performance from Table 3.899

Accuracy Prompt
You are an experienced linguist who is responsible for evaluating the correctness of the generated responses.
You are provided with question, the generated responses and the corresponding ground truth answer. Your
task is to compare the generated responses with the ground truth responses and evaluate the correctness of
the generated responses. Response in JSON format with key "response" and value "yes" or "no".
Question: [question]
Prediction: [prediction]
Ground-truth Answer: [answer]

Table 12: Accuracy Prompt for Evaluating end-to-end QA performance

E QA Prompt for End-to-End Evaluation900

For the downstream LLMs (Llama3.1-8B-Instruct and Qwen2.5-7B-Instruct) in our end-to-end QA performance901
evaluation, we applied default chat templates, directly attached questions to the user prompt, and adopted the same902
system prompt for the two LLMs below, where retrieved chunks are naively concatenated in descending order of903
cosine similarity, then further concatenated in retrieval iteration order.904

Answer the question based on the context below. Respond "Unsure about answer" if not sure about the
answer.
Here is the context:
Title: [title1]
[content1]

Title: [title2]
[content2]

. . .

Table 13: Downstream LLM Prompt for Evaluating end-to-end QA performance

18



F Analysis on The Size of Training Dataset 905

To explore the possible room of further improving TreeHop by increasing the size of training dataset, we have 906
randomly sampled our current training dataset and trained TreeHop upon 75%, 50% and 25% of the training 907
dataset, respectively. Throughout the experiment, we adopted the environment and hyper-parameters introduced in 908
subsection 3.5. 909

2WIKI MUSIQUE MULTIHOP RAG
Subsamble Size Recall@K K Recall@K K Recall@K K

Direct-R@5 49.3 5 45.4 5 48.6 5

100% of Training Dataset
TreeHop@5 iter2 61.6 8.6 48.0 8.1 57.9 7.0
TreeHop@5 iter3 65.4 11.8 48.1 11.0 61.1 8.4

75% of Training Dataset
TreeHop@5 iter2 60.9(0.7↓) 8.7 47.9(0.1↓) 8.2 57.9(0.5↓) 7.0
TreeHop@5 iter3 64.7(0.7↓) 11.9 48.1(0.0↓) 11.1 61.1(0.1↓) 8.5

50% of Training Dataset
TreeHop@5 iter2 60.1(1.5↓) 8.6 46.8(1.2↓) 8.0 56.0(1.9↓) 6.7
TreeHop@5 iter3 63.3(2.1↓) 11.8 47.2(0.9↓) 10.8 58.8(2.3↓) 7.9

25% of Training Dataset
TreeHop@5 iter2 57.3(3.8↓) 8.4 46.3(1.7↓) 7.9 55.3(2.6↓) 6.6
TreeHop@5 iter3 60.0(5.3↓) 11.4 46.9(1.2↓) 11.3 58.1(2.9↓) 7.7

Table 14: TreeHop performance trained upon subsampled dataset.

Our experiment reveals that TreeHop’s performance decays as the training dataset size decreases. Although the 910
recall improvement is marginal when increasing from 75% to 100% on MuSiQue and MultiHop RAG, we observe a 911
notable improvement on 2WikiMultihop, indicating that there is still room for improvement if we further scale up 912
the training dataset. This suggests that TreeHop has the potential to benefit from larger embedding spaces. 913

19



G Intuition Behind TreeHop’s Architecture914

To clarify the underlying intuition in subsection 3.2, let us revisit the example presented in the introduction: For the915
question “Who is the grandfather of Donald Trump?”, suppose the first retrieval yields a chunk stating “Donald916
Trump’s father is Fred Trump.” Traditional systems use LLMs to rewrite the query as “Who is the father of Fred917
Trump?” for the next hop. Our TreeHop operates at the embedding level to achieve this rewrite dynamically, thereby918
achieves efficiency. Under the hood, the model is fed with query-chunk embedding pair, it then replaces “grandfather919
of Donald Trump” information in the query embedding with “father of Fred Trump” information in the retrieved920
chunk embedding. The qr − cir term in the Equation 3 serves for this replacing purpose by removing overlapping921
semantics between the query and chunk embeddings. Meanwhile, UpdateGate is adopted to selectively integrate922
new information from the retrieved chunk to form the next query embedding (Equation 3). The UpdateGate is a923
cross attention module that selectively maintain only information that is necessary for the next retrieval from chunk924
embedding (Equation 4), e.g., "Fred Trump".925

H More Explanation About Layer-Wise Top-K Pruning926

To begin with, K is a hyper-parameter that controls the number of chunks to be retrieved given a query. However,927
this could result in an explosion in number of retrieved chunks in multi-hop retrieval. During initial retrieval step,928
a user query is vectorized and K chunks with the highest similarities to the query are retrieved. Subsequently,929
TreeHop would generate K embeddings for each of the query-chunk pair. In the next retrieval, we would retrieve930
top-K chunks again for every generated embedding, resulting in a total of K2 retrieved chunks. Generally, given931
the number of retrieval iterations r, the chunks grow exponentially as Kr, most of which are irrelevant. To address932
this overhead, at each retrieval iteration, our Layer-Wise Top-K Pruning retains only the top-K chunks by cosine933
similarity to the generated query embeddings, pruning the rest. This reduces the branching factor, prevents redundant934
retrievals and minimizes prompt overload for downstream LLMs.935

936

20


	Introduction
	Preliminaries
	Multi-hop Retrieval-Augmented Generation
	Sentence Representation Learning and Contrastive Learning

	The Proposed Method: TreeHop
	Problem Formulation
	Model Architecture
	Stopping Criterion
	Train Data Construction
	Model Training

	Experiments and Results
	Datasets
	Evaluation Metrics & Benchmarks
	Results

	Ablation Study
	Effectiveness of Architecture
	Effectiveness of Stop Criterion

	Conclusion
	Limitation
	Appendix
	I Appendix
	Dataset Cards
	Details on Evaluate Dataset Question Types
	Iter-RetGen Prompt Templates
	Accuracy Prompt for GPT 3.5
	QA Prompt for End-to-End Evaluation
	Analysis on The Size of Training Dataset
	Intuition Behind TreeHop's Architecture
	More Explanation About Layer-Wise Top-K Pruning


