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Abstract
Large language models (LLMs) have changed001
the modern landscape of natural language pro-002
cessing (NLP). Due to their strong performance003
on multiple tasks, analyzing LLM performance004
in unusual or difficult scenarios is important.005
In this work, we investigate LLaMA’s perfor-006
mance when using rare and unknown words,007
something previous transformer based models008
have been shown to struggle with. We apply009
various rare word experiments on Large Lan-010
guage Models, specifically LLaMA 7B and011
13B. We demonstrate that LLMs still perform012
worse processing rare and unknown words com-013
pared to frequent words, but show that in con-014
textualized scenarios, LLMs face far less deteri-015
oration using rare words than previous models.016

1 Introduction017

Large Language Models (LLMs) have had a large018

impact in Natural Language Processing and Arti-019

ficial Intelligence in general. They have shown020

strong performance on many NLP tasks. Addi-021

tionally, they have been shown to perform well022

in zero-shot and few-shot settings (Brown et al.,023

2020), making them powerful models for various024

tasks even without fine-tuning. As a result, LLMs025

have become a large focus of study.026

While LLMs have been tested on various tasks,027

one area that has not been studied is LLMs’ un-028

derstanding of rare and unknown words. Rare and029

unknown words have always been a challenge in030

language representation. In static word embed-031

dings like word2vec (Mikolov et al., 2013a,b) and032

GloVe (Pennington et al., 2014), these words either033

have weak or no representations. In contextual-034

ized embeddings produced by transformer mod-035

els like BERT (Devlin et al., 2018) and RoBERTa036

(Liu et al., 2019), theoretically rare words should037

have good representations because they are influ-038

enced by the context; however, as shown in (Schick039

and Schütze, 2020), rare words still impede perfor-040

mance in these models as well.041

In this work, we evaluate the ability of LLMs to 042

understand and use rare words. We conduct experi- 043

ments on the LLaMA model (Touvron et al., 2023), 044

specifically the 7B and 13B versions. We make the 045

following contributions: first, we adapt various rare 046

word tasks to causal language models. Then, we 047

apply these tasks to LLaMA 7B and 13B in order 048

to evaluate their ability to understand rare words. 049

We find that in both intrinsic and downstream tasks, 050

the 7B and 13B LLaMA models have a weaker 051

understanding of low frequency words compared 052

to higher frequency ones. However, we find that 053

in downstream tasks, LLaMA model face far less 054

deterioration with rare words than previous models. 055

We also show that some deterioration is due to the 056

downstream rarification task itself, and not only the 057

frequency of the words. 058

2 Related Work 059

2.1 Large Language Models 060

Language modeling has made large gains in re- 061

cent years. Models like GPT (Brown et al., 2020), 062

Megatron (Shoeybi et al., 2020), PaLM (Chowd- 063

hery et al., 2022), and LLaMA (Touvron et al., 064

2023), have been shown to be proficient in many 065

NLP tasks. In addition, these models are able to 066

handle zero or few shot scenarios, performing well 067

on tasks without finetuning (Brown et al., 2020). In 068

this work, we focus on the LLaMA model. LLaMA 069

is a transformer based model that has a smaller 070

number of parameters than other LLMs, but is 071

trained on much more data. (Touvron et al., 2023) 072

shows that this approach can outperform models 073

with more parameters on various tasks. LLaMA 074

has four versions; 7 billion, 13 billion, 30 billion, 075

and 65 billion parameters. We focus on the 7 billion 076

and 13 billion models (7B and 13B respectively). 077

2.2 Rare Words 078

Rare and unknown words have always been a chal- 079

lenge with word embeddings. Static word em- 080
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bedding techniques like word2vec (Mikolov et al.,081

2013a,b) and GloVe (Pennington et al., 2014) only082

learn representations for words in the vocabulary083

of the training corpus. There have been attempts084

to estimate rare/unknown embeddings to make up085

for this issue; some approaches use an unknown086

word’s context (Lazaridou et al., 2017; Horn, 2017;087

Herbelot and Baroni, 2017; Arora et al., 2017; Mu088

and Viswanath, 2018; Khodak et al., 2018), oth-089

ers use the word’s roots (Bojanowski et al., 2017;090

Pinter et al., 2017; Sasaki et al., 2019), while oth-091

ers combine these approaches (Schick and Schütze,092

2019a,c; Hu et al., 2019; Patel and Domeniconi,093

2020, 2023). Contextualized models like Elmo (Pe-094

ters et al., 2018) and BERT (Devlin et al., 2018)095

are able to produce representations influenced by096

its surrounding context, allowing for the ability to097

generate an embedding for an unknown/rare word098

on the spot. However, as demonstrated in (Schick099

and Schütze, 2020), contextualized models still100

struggle on rare words despite this, suggesting em-101

bedding estimation techniques are still necessary.102

This weakness is the main motivation for this work;103

if rare words are a challenge for smaller pretrained104

language models, are they still an issue in LLMs?105

3 Experiments106

3.1 WNLaMPro107

First, we evaluate LLaMA’s rare word representa-108

tions using the Wordnet Language Model Probing109

(WNLaMPro) data set (Schick and Schütze, 2020).110

This data set was created to analyze a language111

model’s ability to understand rare words. It con-112

tains a list of triples (which include keyword, re-113

lation, and target words) and pattern sentences for114

each relation. The goal of this task is to build a115

sentence out of the pattern and keyword, and then116

have the model predict the target words based on117

the inputted sentence. The language model is then118

evaluated based on where the target words rank in119

the probability of the output. For example, if we120

had the pattern "A <W> is a <MASK>" and our121

keyword is "lime", we would apply mask predic-122

tion on "A lime is a <MASK>" as input, and see123

the probability of the <MASK> token’s output. We124

would then view the rankings of our target words,125

in this case words like "lemon" or "fruit". The task126

has defined multiple pattern sets, with relationships127

including Antonyms (opposites), Hypernyms (a128

category the word is in), Cohyponyms (words that129

share a Hypernym), and Corruptions (misspellings130

Rare Medium Frequent
Overall 0.156 0.206 0.264

Antonym 0.333 0.321 0.550
Hypernym 0.360 0.438 0.475

Cohyponym 0.060 0.054 0.087
Corruption 0.135 - -

Table 1: LLaMA 7B WNLaMPro (MRR)

Rare Medium Frequent
Overall 0.146 0.197 0.256

Antonym 0.319 0.321 0.552
Hypernym 0.344 0.420 0.454

Cohyponym 0.066 0.051 0.088
Corruption 0.117 - -

Table 2: LLaMA 13B WNLaMPro (MRR)

of frequent words). Schick and Schütze (Schick 131

and Schütze, 2020) apply this task on BERT and 132

RoBERTa, showing that rarer keywords perform 133

worse at this task than common ones. 134

We adapt this task to causal language models, 135

specifically a next token prediction task instead of 136

mask prediction. For example, we adapt the pattern 137

"A <W> is a <MASK>" to "A <W> is a", evaluat- 138

ing the next token predicted by the language model. 139

We apply this adapted version of WNLaMPro to 140

LLaMA 7B and 13B and compare the results of 141

rare, medium, and frequent words. Word frequency 142

is determined using the Westbury Wikipedia Cor- 143

pus (WWC) (Shaoul, 2010) word counts, where 144

occurrences of 0 to 10 instances are considered 145

rare, 10 to 100 are considered medium, and every- 146

thing higher is considered frequent. Performance 147

is evaluated by looking at the ranks of the target 148

words in the next token probability; the higher prob- 149

ability words have better ranks. This is measured 150

using Mean Reciprocal Rank (MRR). We show the 151

results in Tables 1 and 21. 152

As shown in the results, rare and medium words 153

lag behind frequent words in all categories. In ad- 154

dition, the corruption MRR is low (if the corrupted 155

word is matching its frequent counterpart, it should 156

be close to 1), suggesting that when frequent words 157

are misspelled, LLaMA may struggle with them 158

as well. However, this task generally has weak 159

contexts; the sentences do not contain other infor- 160

mative words to help LLaMA figure out what it 161

could mean. To this end, we also investigate rare 162

words in downstream tasks. 163

1We also report Precision@3 and Precision@10 in Ap-
pendix A.
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Tougher rules won't 
soften Law's game

Cassini Spies Two 
Little Saturn Moons

World

Sci/Tech

Take Correct 

Remove Most 
Important Word

Cassini Spies Two 
Little Saturn Moons

Cassini Spies Two 
Little Saturn Moons

Cassini Spies Two 
Little <unk> Moons

Sci/Tech

Cassini Spies Two 
Little <unk> <unk>

World
Correct, Continue Incorrect, Finish

Cassini Spies Two 
Little <unk> <unk>

Replace with Rare Synonyms Cassini Spies Two 
Little Phainon Planetoids

1.

2.

3.

Model

Remove Most 
Important Word

Model Model

Figure 1: Example of Rarification. Test data is classified
by the model, and the correct classifications are kept.
Then, the most impactful word is removed from the data
until the classification is incorrect. These words are
then replaced with rarer versions using a substitution
dictionary.

3.2 Rarification on Downstream Tasks164

We now shift our focus to rare words occuring in165

more informative contexts, by investigating down-166

stream tasks. Our main goal is to evaluate how rare167

words impact the performance on a downstream168

task. This introduces a challenge, however: due to169

their infrequency, it can be difficult to see their im-170

pact compared to more common words. This does171

not mean rare words are insignificant; as mentioned172

in (Schick and Schütze, 2019b), rare words com-173

prehension is an important indicator of language174

understanding. Additionally, tasks on domains175

with specific terms or tasks with a large amount176

of named entities could depend on unusual terms177

that are extremely relevant to the domain, motivat-178

ing rare word understanding for specific NLP tasks.179

Therefore, in order to evaluate rare words in down-180

stream tasks, we use a process called rarification181

(Schick and Schütze, 2019b).182

The goal of rarification is to replace important183

words in the data set with rarer synonyms, and to184

see how that impacts performance. First, using the185

WWC word counts used in Section 3.1 and synsets186

from WordNet (Fellbaum, 2010), we built a sub-187

stitution dictionary. This dictionary maps frequent188

words to rare/medium words that are synonyms189

(from the same synset in WordNet). Similar to the190

approach in (Schick and Schütze, 2019b), we take191

the most common sense of each frequent word, and192

ensure that the corresponding rare/medium words193

share the same parts of speech. Then, using the194

data set of the downstream task, we extract a test195

set of examples that contain at least one word in196

the substitution dictionary. From this subset we197

take 10,000 examples. Our goal is to find impor-198

tant words to replace, so we take the following ap-199

proach. First, we classify each example, and only 200

take the ones that were correctly predicted. Then, 201

for each example, we replace each word from our 202

substitution dictionary with an "<unk>" token and 203

compare how the classification probability changes 204

for each replacement. We keep the replacement 205

with the biggest change in probability and then re- 206

peat the process until the predicted class changes. 207

The goal here is to find replaceable words that are 208

needed for correct prediction. We then construct 209

the rarified set by replacing all the chosen words 210

with rarer synonyms. We show an example of this 211

process in Figure 1. This data set has the following 212

properties: with the original words, the classifica- 213

tion accuracy should be 100%. With the chosen 214

words replaced by "<unk>", it should be 0 %. Our 215

goal is to see how well the model performs on the 216

data set with the chosen words replaced by rarer 217

versions. If LLaMA understands rare words, it 218

should have an accuracy close to 100%. 219

We apply rarification to two tasks; AG News 220

(Zhang et al., 2015) classification and Multi-Genre 221

Natural Language Inference (MNLI) (Williams 222

et al., 2018). AG News involves classifying news 223

articles into four categories, "World", "Sports", 224

"Business", and "Sci/Tech". For classification, we 225

take the few shot approach. We formulate a prompt 226

with some examples from the train set with their 227

corresponding label, and then a test example with- 228

out the label. Each example follows the format: 229

"Article : [train article] Label : [train label]". It 230

then ends with "Article : [test article] Label :". 231

We then view the probability of the next token for 232

each class name, selecting the highest as the cho- 233

sen class. MNLI is an inference task that takes 234

a premise and a hypothesis and assigns a rela- 235

tion between the two; either neutral, entailment, 236

or contradiction. It follows the same approach as 237

AG News, with a different prompt. It starts with 238

"Given a Premise and a Hypothesis, state whether 239

the relationship between the two is described as 240

Entailment, Neutral, or Contradiction. Premise: 241

[train premise] Hypothesis: [train hypothesis] La- 242

bel : [train label]". It adds two more train examples, 243

then ends with "Premise: [test premise] Hypothesis: 244

[test hypothesis] Label : ". 245

In addition to the two LLaMA models, we in- 246

clude the results of rarification with BERT and 247

RoBERTa from (Schick and Schütze, 2019b) (de- 248

noted with a "*"). We emphasize that the various 249

models are not directly comparable with one an- 250
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Model AG News MNLI
BERT(base)* 61.9% 53.4%

RoBERTa(large)* 65.7% 68.4%
BERT+BERTRAM* 66.6% 62.7%

RoBERTa+BERTRAM* 69.0% 73.2%
7B 86.3% 86.0%
13B 96.9% 74.0%

Table 3: Rarefication results. Results denoted by "*" are
taken from (Schick and Schütze, 2019b). Each model
should be compared to their unrarified data set, which
has an accuracy of 100%.

other, as the rarification set is dependant on the type251

of model (it builds the set based on what the model252

gets correct). In addition, our experiments pull253

from a subsample of 10000 examples from each254

data set, and our word frequencies are based on255

WWC, as opposed to WWC combined with Book-256

Corpus in (Schick and Schütze, 2019b). Regard-257

less, the results indicate how robust each model258

is to rare words, as each result is a measure on259

how much the model deteriorates when the origi-260

nal data subset is 100% accurate. We also include261

these models enhanced with BERTRAM (Schick262

and Schütze, 2019b), which improves rare word263

representation, to compare how enhanced models264

perform with rare words. We apply the rarification265

approach to each task using 7B and 13B. For each266

task/model combination, we get a rarified data set,267

on which we then apply the few-shot learning ap-268

proach with the corresponding model. The results269

of rarification on AG News and MNLI are shown270

in Table 3.271

As shown in the results, rarer words lead to some272

deterioration of results in both 7B and 13B. This273

demonstrates that even in downstream tasks with274

stronger contextualization, LLaMA has weaker275

performance, reducing from 100% to 86.3% and276

86.0% in the 7B model for AG News and MNLI277

respectively, and to 96.9% and 74.0% in the 13B278

model. That being said, the high percentages sug-279

gests LLaMA does have smaller degradation from280

rare words compared to other models. This can281

especially be seen in the 13B model in AG News,282

which only degrades by 3.1% when rarification283

is applied. Compared to BERT and RoBERTa,284

LLaMA is far more robust to rarification, with285

much higher performance than the other models.286

This even holds true when BERT and RoBERTa287

use rare word estimation model BERTRAM to im-288

prove their rare word representations, suggesting289

AG News MNLI
Rare Freq Rare Freq

7B 88.0% 92.4% 85.4% 90.4%
13B 97.4% 98.0% 71.2% 76.0%

Table 4: Rarification using Rare vs Frequent Words

LlaMA’s representations are higher quality, despite 290

not being as strong as their frequent word represen- 291

tations. 292

One potential risk of rarification is that the 293

weaker performance can be attributed to the act 294

of substituting the words, as opposed to the words 295

themselves. To verify that weaker performance of 296

LLaMA is due to rare words, we propose a vari- 297

ant on the rarification task. We build another sub- 298

stitution dictionary, this one with frequent word 299

replacements (i.e. frequent synonyms of frequent 300

words). We then take the overlap of replaceable 301

words between this substitution dictionary and the 302

rare word one, in order to create a comparable sub- 303

set. We then repeat the rarification process, and 304

compare the sets. Note that this creates a different 305

data set, and therefore is not directly comparable 306

to the results in Table 3. 307

We show the comparisons in Table 4. As shown 308

in the results, replacing words with rare words 309

does indeed make a difference, demonstrating that 310

LLaMA has a weaker understanding of rare words 311

compared to frequent ones. However, substitution 312

in rarification does impact results, as shown by 313

the fact that frequent replacements are not 100%. 314

Overall, while the rarification process inherently 315

leads to deterioration in the results, rare words still 316

lead to more deterioration in LLaMA compared to 317

frequent ones. 318

4 Conclusion 319

We investigate performance of LLaMA 7B and 13B 320

on rare words. We find that in low context scenarios 321

there is a sizable gap in language model understand- 322

ing between frequent and rare words. We also find 323

that LLaMA has weaker rare word performance in 324

downstream tasks, but the deterioration is far less 325

than previous models. This suggests that previous 326

contextualized embedding estimation methods like 327

BERTRAM (Schick and Schütze, 2019b) may still 328

be applicable to modern LLMs, and worth consid- 329

ering. We plan to investigate this further in future 330

work. 331
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Limitations332

There are some limitations to our work. First, we333

rely on building a specific prompt for the few-shot334

rarification task (Section 3.2), and extracted the pre-335

dicted class by viewing the next token prediction336

probability. While this approach gave satisfactory337

results in the main classification task, it is possible338

that other prompt building methods and /or classi-339

fier methods could lead to stronger performance in340

general, and maybe even better understanding of341

the rare words. Secondly, our investigation does342

not cover the larger LLaMA models (the 30 billion343

and 65 billion parameter versions), due to com-344

putational capability. However, it would be very345

interesting to see how these larger models fit into346

these experiments, especially given the difference347

in performances between 7B and 13B in the rarifi-348

cation tasks.349
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Rare Medium Frequent
MRR P@3 P@10 MRR P@3 P@10 MRR P@3 P@10

Overall 0.156 0.064 0.027 0.206 0.085 0.043 0.264 0.112 0.057
Ant 0.333 0.111 0.033 0.321 0.107 0.032 0.550 0.189 0.059
Hyp 0.360 0.149 0.073 0.438 0.188 0.088 0.475 0.211 0.098
Coh 0.060 0.022 0.014 0.054 0.018 0.015 0.087 0.032 0.026
Cor 0.135 0.056 0.018 - - - - - -

Table 5: WNLaMPro on LLaMA 7B

Rare Medium Frequent
MRR P@3 P@10 MRR P@3 P@10 MRR P@3 P@10

Overall 0.146 0.062 0.028 0.197 0.082 0.044 0.256 0.110 0.057
Ant 0.319 0.111 0.033 0.321 0.107 0.032 0.552 0.189 0.060
Hyp 0.344 0.146 0.072 0.420 0.182 0.086 0.454 0.202 0.093
Coh 0.066 0.023 0.015 0.051 0.017 0.016 0.088 0.034 0.028
Cor 0.117 0.053 0.018 - - - - - -

Table 6: WNLaMPro on LLaMA 13B
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