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Abstract

Large language models (LLMs) have changed
the modern landscape of natural language pro-
cessing (NLP). Due to their strong performance
on multiple tasks, analyzing LLM performance
in unusual or difficult scenarios is important.
In this work, we investigate LLaMA’s perfor-
mance when using rare and unknown words,
something previous transformer based models
have been shown to struggle with. We apply
various rare word experiments on Large Lan-
guage Models, specifically LLaMA 7B and
13B. We demonstrate that LLMs still perform
worse processing rare and unknown words com-
pared to frequent words, but show that in con-
textualized scenarios, LLMs face far less deteri-
oration using rare words than previous models.

1 Introduction

Large Language Models (LLMs) have had a large
impact in Natural Language Processing and Arti-
ficial Intelligence in general. They have shown
strong performance on many NLP tasks. Addi-
tionally, they have been shown to perform well
in zero-shot and few-shot settings (Brown et al.,
2020), making them powerful models for various
tasks even without fine-tuning. As a result, LLMs
have become a large focus of study.

While LLMs have been tested on various tasks,
one area that has not been studied is LLMs’ un-
derstanding of rare and unknown words. Rare and
unknown words have always been a challenge in
language representation. In static word embed-
dings like word2vec (Mikolov et al., 2013a,b) and
GloVe (Pennington et al., 2014), these words either
have weak or no representations. In contextual-
ized embeddings produced by transformer mod-
els like BERT (Devlin et al., 2018) and RoBERTa
(Liu et al., 2019), theoretically rare words should
have good representations because they are influ-
enced by the context; however, as shown in (Schick
and Schiitze, 2020), rare words still impede perfor-
mance in these models as well.

In this work, we evaluate the ability of LLMs to
understand and use rare words. We conduct experi-
ments on the LLaMA model (Touvron et al., 2023),
specifically the 7B and 13B versions. We make the
following contributions: first, we adapt various rare
word tasks to causal language models. Then, we
apply these tasks to LLaMA 7B and 13B in order
to evaluate their ability to understand rare words.
We find that in both intrinsic and downstream tasks,
the 7B and 13B LLaMA models have a weaker
understanding of low frequency words compared
to higher frequency ones. However, we find that
in downstream tasks, LLaMA model face far less
deterioration with rare words than previous models.
We also show that some deterioration is due to the
downstream rarification task itself, and not only the
frequency of the words.

2 Related Work
2.1 Large Language Models

Language modeling has made large gains in re-
cent years. Models like GPT (Brown et al., 2020),
Megatron (Shoeybi et al., 2020), PaLM (Chowd-
hery et al., 2022), and LLaMA (Touvron et al.,
2023), have been shown to be proficient in many
NLP tasks. In addition, these models are able to
handle zero or few shot scenarios, performing well
on tasks without finetuning (Brown et al., 2020). In
this work, we focus on the LLaMA model. LLaMA
is a transformer based model that has a smaller
number of parameters than other LLMs, but is
trained on much more data. (Touvron et al., 2023)
shows that this approach can outperform models
with more parameters on various tasks. LLaMA
has four versions; 7 billion, 13 billion, 30 billion,
and 65 billion parameters. We focus on the 7 billion
and 13 billion models (7B and 13B respectively).

2.2 Rare Words

Rare and unknown words have always been a chal-
lenge with word embeddings. Static word em-



bedding techniques like word2vec (Mikolov et al.,
2013a,b) and GloVe (Pennington et al., 2014) only
learn representations for words in the vocabulary
of the training corpus. There have been attempts
to estimate rare/unknown embeddings to make up
for this issue; some approaches use an unknown
word’s context (Lazaridou et al., 2017; Horn, 2017,
Herbelot and Baroni, 2017; Arora et al., 2017; Mu
and Viswanath, 2018; Khodak et al., 2018), oth-
ers use the word’s roots (Bojanowski et al., 2017;
Pinter et al., 2017; Sasaki et al., 2019), while oth-
ers combine these approaches (Schick and Schiitze,
2019a,c; Hu et al., 2019; Patel and Domeniconi,
2020, 2023). Contextualized models like Elmo (Pe-
ters et al., 2018) and BERT (Devlin et al., 2018)
are able to produce representations influenced by
its surrounding context, allowing for the ability to
generate an embedding for an unknown/rare word
on the spot. However, as demonstrated in (Schick
and Schiitze, 2020), contextualized models still
struggle on rare words despite this, suggesting em-
bedding estimation techniques are still necessary.
This weakness is the main motivation for this work;
if rare words are a challenge for smaller pretrained
language models, are they still an issue in LLMs?

3 Experiments

3.1 WNLaMPro

First, we evaluate LLaMA’s rare word representa-
tions using the Wordnet Language Model Probing
(WNLaMPro) data set (Schick and Schiitze, 2020).
This data set was created to analyze a language
model’s ability to understand rare words. It con-
tains a list of triples (which include keyword, re-
lation, and target words) and pattern sentences for
each relation. The goal of this task is to build a
sentence out of the pattern and keyword, and then
have the model predict the target words based on
the inputted sentence. The language model is then
evaluated based on where the target words rank in
the probability of the output. For example, if we
had the pattern "A <W> is a <MASK>" and our
keyword is "lime", we would apply mask predic-
tion on "A lime is a <MASK>" as input, and see
the probability of the <MASK> token’s output. We
would then view the rankings of our target words,
in this case words like "lemon" or "fruit". The task
has defined multiple pattern sets, with relationships
including Antonyms (opposites), Hypernyms (a
category the word is in), Cohyponyms (words that
share a Hypernym), and Corruptions (misspellings

Rare Medium Frequent
Overall 0.156  0.206 0.264
Antonym  0.333  0.321 0.550
Hypernym  0.360  0.438 0.475
Cohyponym 0.060  0.054 0.087
Corruption  0.135 - -

Table 1: LLaMA 7B WNLaMPro (MRR)

Rare Medium Frequent
Overall 0.146  0.197 0.256
Antonym 0319  0.321 0.552
Hypernym 0.344  0.420 0.454
Cohyponym 0.066  0.051 0.088
Corruption  0.117 - -

Table 2: LLaMA 13B WNLaMPro (MRR)

of frequent words). Schick and Schiitze (Schick
and Schiitze, 2020) apply this task on BERT and
RoBERTa, showing that rarer keywords perform
worse at this task than common ones.

We adapt this task to causal language models,
specifically a next token prediction task instead of
mask prediction. For example, we adapt the pattern
"A <W>is a <MASK>"to "A <W>is a", evaluat-
ing the next token predicted by the language model.
We apply this adapted version of WNLaMPro to
LLaMA 7B and 13B and compare the results of
rare, medium, and frequent words. Word frequency
is determined using the Westbury Wikipedia Cor-
pus (WWC) (Shaoul, 2010) word counts, where
occurrences of 0 to 10 instances are considered
rare, 10 to 100 are considered medium, and every-
thing higher is considered frequent. Performance
is evaluated by looking at the ranks of the target
words in the next token probability; the higher prob-
ability words have better ranks. This is measured
using Mean Reciprocal Rank (MRR). We show the
results in Tables 1 and 2.

As shown in the results, rare and medium words
lag behind frequent words in all categories. In ad-
dition, the corruption MRR is low (if the corrupted
word is matching its frequent counterpart, it should
be close to 1), suggesting that when frequent words
are misspelled, LLaMA may struggle with them
as well. However, this task generally has weak
contexts; the sentences do not contain other infor-
mative words to help LLaMA figure out what it
could mean. To this end, we also investigate rare
words in downstream tasks.

'We also report Precision@3 and Precision@10 in Ap-
pendix A.
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Figure 1: Example of Rarification. Test data is classified
by the model, and the correct classifications are kept.
Then, the most impactful word is removed from the data
until the classification is incorrect. These words are
then replaced with rarer versions using a substitution
dictionary.

3.2 Rarification on Downstream Tasks

We now shift our focus to rare words occuring in
more informative contexts, by investigating down-
stream tasks. Our main goal is to evaluate how rare
words impact the performance on a downstream
task. This introduces a challenge, however: due to
their infrequency, it can be difficult to see their im-
pact compared to more common words. This does
not mean rare words are insignificant; as mentioned
in (Schick and Schiitze, 2019b), rare words com-
prehension is an important indicator of language
understanding. Additionally, tasks on domains
with specific terms or tasks with a large amount
of named entities could depend on unusual terms
that are extremely relevant to the domain, motivat-
ing rare word understanding for specific NLP tasks.
Therefore, in order to evaluate rare words in down-
stream tasks, we use a process called rarification
(Schick and Schiitze, 2019b).

The goal of rarification is to replace important
words in the data set with rarer synonyms, and to
see how that impacts performance. First, using the
WWC word counts used in Section 3.1 and synsets
from WordNet (Fellbaum, 2010), we built a sub-
stitution dictionary. This dictionary maps frequent
words to rare/medium words that are synonyms
(from the same synset in WordNet). Similar to the
approach in (Schick and Schiitze, 2019b), we take
the most common sense of each frequent word, and
ensure that the corresponding rare/medium words
share the same parts of speech. Then, using the
data set of the downstream task, we extract a test
set of examples that contain at least one word in
the substitution dictionary. From this subset we
take 10,000 examples. Our goal is to find impor-
tant words to replace, so we take the following ap-

proach. First, we classify each example, and only
take the ones that were correctly predicted. Then,
for each example, we replace each word from our
substitution dictionary with an "<unk>" token and
compare how the classification probability changes
for each replacement. We keep the replacement
with the biggest change in probability and then re-
peat the process until the predicted class changes.
The goal here is to find replaceable words that are
needed for correct prediction. We then construct
the rarified set by replacing all the chosen words
with rarer synonyms. We show an example of this
process in Figure 1. This data set has the following
properties: with the original words, the classifica-
tion accuracy should be 100%. With the chosen
words replaced by "<unk>", it should be 0 %. Our
goal is to see how well the model performs on the
data set with the chosen words replaced by rarer
versions. If LLaMA understands rare words, it
should have an accuracy close to 100%.

We apply rarification to two tasks; AG News
(Zhang et al., 2015) classification and Multi-Genre
Natural Language Inference (MNLI) (Williams
et al., 2018). AG News involves classifying news
articles into four categories, "World", "Sports",
"Business", and "Sci/Tech". For classification, we
take the few shot approach. We formulate a prompt
with some examples from the train set with their
corresponding label, and then a test example with-
out the label. Each example follows the format:
"Article : [train article] Label : [train label]". It
then ends with "Article : [test article] Label :".
We then view the probability of the next token for
each class name, selecting the highest as the cho-
sen class. MNLI is an inference task that takes
a premise and a hypothesis and assigns a rela-
tion between the two; either neutral, entailment,
or contradiction. It follows the same approach as
AG News, with a different prompt. It starts with
"Given a Premise and a Hypothesis, state whether
the relationship between the two is described as
Entailment, Neutral, or Contradiction. Premise:
[train premise] Hypothesis: [train hypothesis] La-
bel : [train label]". It adds two more train examples,
then ends with "Premise: [test premise] Hypothesis:
[test hypothesis] Label : ".

In addition to the two LLaMA models, we in-
clude the results of rarification with BERT and
RoBERTa from (Schick and Schiitze, 2019b) (de-
noted with a "*"). We emphasize that the various
models are not directly comparable with one an-



Model AG News MNLI

BERT (base)* 61.9% 53.4%
RoBERTa(large)* 65.7% 68.4%
BERT+BERTRAM* 66.6% 62.7%
RoBERTa+BERTRAM* 69.0% 73.2%
7B 86.3% 86.0%

13B 96.9% 74.0%

Table 3: Rarefication results. Results denoted by "*" are
taken from (Schick and Schiitze, 2019b). Each model
should be compared to their unrarified data set, which
has an accuracy of 100%.

other, as the rarification set is dependant on the type
of model (it builds the set based on what the model
gets correct). In addition, our experiments pull
from a subsample of 10000 examples from each
data set, and our word frequencies are based on
WWC, as opposed to WWC combined with Book-
Corpus in (Schick and Schiitze, 2019b). Regard-
less, the results indicate how robust each model
is to rare words, as each result is a measure on
how much the model deteriorates when the origi-
nal data subset is 100% accurate. We also include
these models enhanced with BERTRAM (Schick
and Schiitze, 2019b), which improves rare word
representation, to compare how enhanced models
perform with rare words. We apply the rarification
approach to each task using 7B and 13B. For each
task/model combination, we get a rarified data set,
on which we then apply the few-shot learning ap-
proach with the corresponding model. The results
of rarification on AG News and MNLI are shown
in Table 3.

As shown in the results, rarer words lead to some
deterioration of results in both 7B and 13B. This
demonstrates that even in downstream tasks with
stronger contextualization, LLaMA has weaker
performance, reducing from 100% to 86.3% and
86.0% in the 7B model for AG News and MNLI
respectively, and to 96.9% and 74.0% in the 13B
model. That being said, the high percentages sug-
gests LLaMA does have smaller degradation from
rare words compared to other models. This can
especially be seen in the 13B model in AG News,
which only degrades by 3.1% when rarification
is applied. Compared to BERT and RoBERTa,
LLaMA is far more robust to rarification, with
much higher performance than the other models.
This even holds true when BERT and RoBERTa
use rare word estimation model BERTRAM to im-
prove their rare word representations, suggesting

AG News MNLI

Rare Freq Rare Freq
7B 88.0% 92.4% 854% 90.4%
13B 97.4% 98.0% 71.2% 76.0%

Table 4: Rarification using Rare vs Frequent Words

LlaMA’s representations are higher quality, despite
not being as strong as their frequent word represen-
tations.

One potential risk of rarification is that the
weaker performance can be attributed to the act
of substituting the words, as opposed to the words
themselves. To verify that weaker performance of
LLaMA is due to rare words, we propose a vari-
ant on the rarification task. We build another sub-
stitution dictionary, this one with frequent word
replacements (i.e. frequent synonyms of frequent
words). We then take the overlap of replaceable
words between this substitution dictionary and the
rare word one, in order to create a comparable sub-
set. We then repeat the rarification process, and
compare the sets. Note that this creates a different
data set, and therefore is not directly comparable
to the results in Table 3.

We show the comparisons in Table 4. As shown
in the results, replacing words with rare words
does indeed make a difference, demonstrating that
LLaMA has a weaker understanding of rare words
compared to frequent ones. However, substitution
in rarification does impact results, as shown by
the fact that frequent replacements are not 100%.
Overall, while the rarification process inherently
leads to deterioration in the results, rare words still
lead to more deterioration in LLaMA compared to
frequent ones.

4 Conclusion

We investigate performance of LLaMA 7B and 13B
on rare words. We find that in low context scenarios
there is a sizable gap in language model understand-
ing between frequent and rare words. We also find
that LLaMA has weaker rare word performance in
downstream tasks, but the deterioration is far less
than previous models. This suggests that previous
contextualized embedding estimation methods like
BERTRAM (Schick and Schiitze, 2019b) may still
be applicable to modern LLMs, and worth consid-
ering. We plan to investigate this further in future
work.



Limitations

There are some limitations to our work. First, we
rely on building a specific prompt for the few-shot
rarification task (Section 3.2), and extracted the pre-
dicted class by viewing the next token prediction
probability. While this approach gave satisfactory
results in the main classification task, it is possible
that other prompt building methods and /or classi-
fier methods could lead to stronger performance in
general, and maybe even better understanding of
the rare words. Secondly, our investigation does
not cover the larger LLaMA models (the 30 billion
and 65 billion parameter versions), due to com-
putational capability. However, it would be very
interesting to see how these larger models fit into
these experiments, especially given the difference
in performances between 7B and 13B in the rarifi-
cation tasks.
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Rare Medium Frequent
MRR P@3 P@l10| MRR P@3 P@l10| MRR P@3 P@I10
Overall | 0.156 0.064 0.027 | 0.206 0.085 0.043 | 0.264 0.112 0.057
Ant 0.333 0.111 0.033 | 0.321 0.107 0.032 | 0.550 0.189 0.059
Hyp | 0360 0.149 0.073 | 0.438 0.188 0.088 | 0.475 0.211 0.098
Coh | 0.060 0.022 0.014 | 0.054 0.018 0.015 | 0.087 0.032 0.026
Cor 0.135 0.056 0.018 - - - - - -
Table 5: WNLaMPro on LLaMA 7B
Rare Medium Frequent
MRR P@3 P@Il0| MRR P@3 P@Il0| MRR P@3 P@I0
Overall | 0.146 0.062 0.028 | 0.197 0.082 0.044 | 0.256 0.110 0.057
Ant 0.319 0.111 0.033 | 0.321 0.107 0.032 | 0.552 0.189 0.060
Hyp | 0.344 0.146 0.072 | 0.420 0.182 0.086 | 0.454 0.202 0.093
Coh | 0.066 0.023 0.015 | 0.051 0.017 0.016 | 0.088 0.034 0.028
Cor 0.117 0.053 0.018 - - - - - -

Table 6: WNLaMPro on LLaMA 13B




