
DexMimicGen: Automated Data Generation for
Bimanual Dexterous Manipulation via Imitation

Learning

Zhenyu Jiang∗1,2 Yuqi Xie∗1,2 Kevin Lin∗1,2 Zhenjia Xu1 Weikang Wan3

Ajay Mandlekar†1 Linxi “Jim” Fan†1 Yuke Zhu†1,2 ∗†

DexMimicGen

Real-World Teleoperation

Data
Generation

Real-World Deployment

Digital Twin

Real2Sim

Simulation Replay

Digital Twin

Sim2Real

Generated Trajectories

Figure 1: DexMimicGen Overview.

Parallel subtask: pick up concave piece and convex piece separately. 

Coordination subtask: place the lid with both hands.

Sequential subtask: pour ball into bowl and then place bowl on green pad.

Pre-task Post-task

Figure 2: Subtask Types.

1 Introduction

Imitation learning from human demonstrations is an effective means to teach robots manipulation
skills [1, 2]. However, data acquisition is a key bottleneck in applying this paradigm more broadly.
Prior efforts for data collection in the single robot arm setting required multiple human operators,
robots, and months of human effort [3, 2, 4, 5, 6]. Unfortunately, scaling data collection for hu-
manoids can be even more difficult, owing to the challenges of controlling multiple arms and multi-
fingered dexterous hands simultaneously. Enabling real-time teleoperation for humanoids has re-
quired the development of special-purpose teleoperation interfaces [7, 8, 9, 10, 11, 12], but these
pipelines can be costly and difficult to scale. Furthermore, the increase in operator burden due to
multi-arm and multi-finger hand control makes collecting demonstrations in this setting more chal-
lenging compared to the single-arm setting, further limiting the rate of data collection. The data
acquisition burden is further compounded by the fact that data requirements in the humanoid setting
can be higher due to the increased task complexity.

Instead, leveraging automated data generation in simulation is a compelling alternative that has
proved effective for the single-arm robot manipulation setting [13, 14, 15]. Inspired by this success,
we introduce DexMimicGen (DexMG), a large-scale automated data generation system for
bimanual robots with dexterous hands, such as humanoids (Fig. 1). The core idea is to leverage
a small set of human demonstrations and use demonstration transformation and replay in physical
simulation to automatically generate large amounts of training data suitable for imitation learning in
the bimanual dexterous manipulation setting. This system builds on top of MimicGen [15], which
proposed a similar pipeline for the single-arm with parallel-jaw gripper setting, but there are several
technical challenges that DexMimicGen overcomes to apply the same principles to our setting.

MimicGen relies on decomposing each task into a sequence of subtasks, to generate trajectories for
each subtask separately and then stitch them together. Bimanual dexterous manipulation involves

∗*Equal Contributions, †Project Leads
†1NVIDIA Research, 2UT Austin, 3UC San Diego

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.



Parallel: pick cube 

Ref object: blue cube

Parallel: place cube 

Ref object: tray

Coordination: lift tray 

Ref object: tray

Source demo segmentation

Parallel: pick cube 

Ref object: green cube

Parallel: place cube 

Ref object: tray

Coordination: lift tray 

Ref object: tray

Current 

Observation

Reference 

Subtask

Generated 

Trajectory

Reference 

Trajectory

Executed

 Trajectory

New trajectory generation and execution

Object-Centric 

Trajectory Transformation

Right

Arm

Left

Arm

Full

Demo

Left arm

Right arm

Two-arm coordination

Figure 3: DexMimicGen Workflow. Left: DexMimicGen segments source demonstrations for each arm and
records the poses of the reference objects. Right: In a new simulation environment, we generate trajectories by
transforming source trajectories with reference object poses and executing them.

three types of subtasks where the two arms need to achieve sub-goals independently, with coordina-
tion, and following a specific order. MimicGen, which relies on a single subtask segmentation, strug-
gles to handle the independent and interdependent actions required in bimanual tasks. To address
these challenges, DexMimicGen incorporates a flexible per-arm subtask segmentation strategy, al-
lowing each arm to execute its subtasks independently while still accommodating the necessary coor-
dination phases. DexMG employs a synchronization strategy to ensure precise alignment of actions
during coordination subtasks and an ordering constraint mechanism to enforce the correct order of
actions during sequential subtasks. More videos are at https://dexmimicgen.github.io/.
Please check the full paper in Appendix.

2 DexMimicGen Method

DexMimicGen generates data for bimanual and dexterous manipulation — this involves handling
three key challenges compared to MimicGen (Fig. 2). First, each arm must be able to operate
independently of the other arm to achieve different goals. Next, arms must be able to coordinate
to achieve a shared goal. Finally, certain arm objectives must be completed before other objectives
can be attempted. DexMimicGen handles these challenges by introducing a taxonomy of subtask
types — parallel (Sec. 2.1), coordination (Sec. 2.2), and sequential (Sec. 2.3), and making changes
to the data generation process to accommodate them. Sec. 2.4 provides an overview of the entire
data generation process.

2.1 Parallel Subtasks

In the bimanual setting, each arm must be able to operate independently of the other arm. This
makes the single fixed sequence of subtasks from MimicGen unsuitable. To enable a flexible order
of completion for parallel subtasks involving two arms, we consider each task to consist of a se-
quence of subtasks for each arm. Each source demonstration is split into object-centric manipulation
segments as in MimicGen, but now each arm has its own set of segments.

However, since arm subtasks are defined independently, their execution can start and end at different
times that are not aligned. To accommodate this, DexMimicGen employs an asynchronous execution
strategy, where an action queue is maintained for each arm. Actions are dequeued for each arm one
by one in parallel. Whenever an arm’s queue is empty, it is populated with the transformed subtask
segment for the next subtask (using the same transformation from MimicGen). This approach allows
for the execution of actions for both arms without requiring alignment between subtasks.

https://dexmimicgen.github.io/


Task Source Demo DP BC-RNN-GMM BC-RNN DP
Piece Assembly 3.3± 0.9 74.0± 2.8 74.7± 2.5 80.7± 0.9
Threading 1.3± 0.9 54.0± 4.3 55.3± 5.0 69.3± 1.9
Transport 52.7± 7.7 64.0± 3.3 60.0± 0.0 83.3± 0.9
Box Cleanup 62.0± 1.6 64.0± 10.0 96.7± 2.5 92.0± 4.3
Drawer Cleanup 0.7± 0.9 30.7± 5.0 56.7± 4.1 76.0± 0.0
Tray Lift 3.3± 0.9 66.0± 8.2 75.3± 7.5 88.7± 0.9
Pouring 0.7± 0.9 74.0± 8.6 86.0± 3.3 79.3± 0.9
Coffee 14.7± 0.9 12.0± 1.6 73.3± 12.3 77.3± 0.9
Can Sorting 0.7± 0.9 75.3± 1.9 96.0± 1.6 97.3± 0.9

Table 1: Success rates (3 seeds) of image-based policies trained with BC on the source demos and DexMimic-
Gen datasets of 1000 trajectories.

2.2 Coordination Subtasks

Some tasks require precise coordination. In these coordination subtasks, the relative poses be-
tween the two end-effectors during execution must be aligned with the corresponding relative poses
in the source demonstration. To achieve this, we ensure that 1) both arms execute their trajectories
in a synchronized manner and 2) the trajectories for both arms are generated with the same transfor-
mation. To achieve this temporal alignment, we enforce that coordination subtasks end at the same
timestep during source demo segmentation. During execution, we implement a synchronization
strategy in which each arm waits for the other until both have the same number of remaining steps
in the coordination subtask, aligning the end of subtask execution with the subtask segmentation.

2.3 Sequential Subtasks

Some tasks require subtasks to be completed in a specific order. To handle these sequential sub-
tasks, we implement an ordering constraint mechanism. We specify a pre-subtask (pouring the ball)
and a post-subtask (picking the bowl) based on the task requirement. This mechanism ensures that
the arm executing the post-subtask waits until the pre-subtask of the other arm is completed before
continuing with the post-subtask.

2.4 Data Generation for Bimanual Manipulation

We outline the overall DexMimicGen data generation workflow. First, source demos are segmented
into per-arm subtasks using heuristics or human annotation. The final subtask for each arm re-
quires coordination (they must lift the tray together), so it is annotated as a coordination subtask
for synchronization during data generation (Sec. 2.2). At the start of data generation, the scene is
randomized and a source demonstration is selected (as in MimicGen). We then iteratively generate
and execute trajectories for each subtask of each arm in parallel. In this example, given the pose
of the reference object (the tray), we compute the relative transformation between the current tray
pose and the tray pose in the source segment. We use this transformation to transform the source
trajectories of both arms because these are coordination subtasks. Then we use the synchronization
execution strategy described in Sec. 2.2 to execute the generated trajectory. Note that we generate
finger motion by replaying the finger joint actions in the source demo because the finger movement
is always relative to the end-effector movement. Each generated demonstration is only kept if the
task is successful, and this process repeats until a sufficient amount of data is generated.

3 Experiments

3.1 DexMimicGen Features

DexMimicGen significantly boosts the policies’ success rates over using the source demonstra-
tions only. Robots trained on DexMimicGen’s datasets outperform those trained only on the small



Task Policy DemoNoise DexMimicGen

Piece Assembly BCRNN + GMM 12.7 ± 3.4 74.0 ± 2.8
Tray Lift BCRNN 16.7 ± 2.5 75.3 ± 7.5
Pouring DP 26.7 ± 2.5 79.3 ± 0.9

Figure 4: Comparison with demo-noise baseline.

Task Policy D0 D1 D2
Piece Assembly BC-RNN-GMM 74.0± 2.8 67.3± 0.9 44.0± 3.3
Box Cleanup BCRNN 96.7± 2.5 88.0± 5.9 78.7± 2.5
Pouring DP 79.3± 0.9 82.0± 2.0 71.3± 2.5

Figure 5: Success rates on broader initial distributions.

source datasets across all tasks (see Table 1). Notable improvements include policy performance on
Drawer Cleanup (0.7% to 76.0% success), Threading (1.3% to 69.3%), and Piece Assembly (3.3%
to 80.7%).

DexMimicGen produces capable policies across diverse initial state distributions. DexMimic-
Gen generates datasets with broader initial state distributions (D1, D2) from source demos in D0.
As shown in Table 5, policies trained on these datasets are performant in the evaluation with the
same broader initial state distributions, showing that DexMimicGen generates valuable datasets on
new initial state distributions.

DexMimicGen generates data across different benchmarks. We apply DexMimicGen to Bi-
Gym [16], a new simulation benchmark for humanoid robots involving bimanual mobile manipula-
tion tasks. We generate 1000 demonstrations for each of the three tasks, FlipCup, DishwasherLoad-
Plates, and CupBoardsCloseAll, and achieve data generation success rates of 29.1%, 43.6%, and
76.4%. The visualizations of generated demonstrations can be found on the project website.
3.2 DexMimicGen Analysis

How does DexMimicGen data generation compare to alternatives? We compare DexMimic-
Gen with a Demo-Noise data generation baseline, which takes the same source demonstrations as
DexMimicGen, but generates data by replaying the source demos with action noise during execu-
tion. In Table 4, we train policies on datasets of 1000 demos generated by both DexMimicGen and
the Demo-Noise baseline. We can see that the policies trained using DexMimicGen outperform
those trained on the Demo-Noise baseline by more than 58% across all tasks. Furthermore, un-
like DexMimicGen, the Demo-Noise baseline cannot generate results on D1 and D2, as it can only
replay the same initial configurations in the source demos.

How do different policy architecture choices affect success rates? In Table 1, we also compare
the performance of different policy architectures (Diffusion Policy [17], BC-RNN-GMM [1], BC-
RNN [1] with no GMM action head) on the datasets generated by DexMimicGen. We found that
Diffusion Policy [17] generally outperforms the other architectures. Interestingly, we also found that
BC-RNN-GMM generally underperformed BC-RNN and Diffusion Policy, especially on tasks that
involve dexterous hands, in contrast to the RoboMimic study [1] which found the use of a GMM
head to be beneficial. We believe DexMimicGen datasets will make it easier for future work to study
further how imitation learning choices might differ in the bimanual dexterous manipulation setting.

3.3 Real-World Evaluation

We showcase how DexMimicGen enables real-world deployment using the pipeline illustrated in
Fig. 1. We generate 40 real-world demonstrations from 4 source demonstrations with DexMimicGen
using a digital twin [18] as safety insurance. We use a Fourier GR1 robot equipped with two 6-
DoF Inspire dexterous hands. We compare visuomotor policies trained using Diffusion Policy [17]
on the 40 DexMimicGen demos with one trained on the 4 source demos. The policy trained on
DexMimicGen data achieves 90% success, while the model trained on the source data achieves 0%;
DexMimicGen thus offers an efficient pipeline for training real-world robots through the use of a
digital twin.



References
[1] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese,

Y. Zhu, and R. Martı́n-Martı́n. What matters in learning from offline human demonstrations
for robot manipulation. In Conference on Robot Learning (CoRL), 2021.

[2] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv
preprint arXiv:2212.06817, 2022.

[3] F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher, G. Georgakis, K. Daniilidis, C. Finn, and
S. Levine. Bridge Data: Boosting Generalization of Robotic Skills with Cross-Domain
Datasets. In Proceedings of Robotics: Science and Systems, New York City, NY, USA, 6
2022. doi:10.15607/RSS.2022.XVIII.063.

[4] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho, J. Ibarz, A. Irpan, E. Jang,
R. Julian, et al. Do as i can, not as i say: Grounding language in robotic affordances. In
Conference on Robot Learning, pages 287–318. PMLR, 2023.

[5] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. Bc-z:
Zero-shot task generalization with robotic imitation learning. In Conference on Robot Learn-
ing, pages 991–1002. PMLR, 2022.

[6] C. Lynch, A. Wahid, J. Tompson, T. Ding, J. Betker, R. Baruch, T. Armstrong, and P. Florence.
Interactive language: Talking to robots in real time. IEEE Robotics and Automation Letters,
2023.

[7] K. Darvish, L. Penco, J. Ramos, R. Cisneros, J. Pratt, E. Yoshida, S. Ivaldi, and D. Pucci.
Teleoperation of humanoid robots: A survey. IEEE Transactions on Robotics, 39(3):1706–
1727, 2023.

[8] R. Ding, Y. Qin, J. Zhu, C. Jia, S. Yang, R. Yang, X. Qi, and X. Wang. Bunny-
visionpro: Real-time bimanual dexterous teleoperation for imitation learning. arXiv preprint
arXiv:2407.03162, 2024.

[9] X. Cheng, J. Li, S. Yang, G. Yang, and X. Wang. Open-television: teleoperation with immer-
sive active visual feedback. arXiv preprint arXiv:2407.01512, 2024.

[10] T. He, Z. Luo, W. Xiao, C. Zhang, K. Kitani, C. Liu, and G. Shi. Learning human-to-humanoid
real-time whole-body teleoperation. arXiv preprint arXiv:2403.04436, 2024.

[11] T. He, Z. Luo, X. He, W. Xiao, C. Zhang, W. Zhang, K. Kitani, C. Liu, and G. Shi. Omnih2o:
Universal and dexterous human-to-humanoid whole-body teleoperation and learning. arXiv
preprint arXiv:2406.08858, 2024.

[12] Z. Fu, Q. Zhao, Q. Wu, G. Wetzstein, and C. Finn. Humanplus: Humanoid shadowing and
imitation from humans. arXiv preprint arXiv:2406.10454, 2024.

[13] M. Dalal, A. Mandlekar, C. R. Garrett, A. Handa, R. Salakhutdinov, and D. Fox. Imitating task
and motion planning with visuomotor transformers. In Conference on Robot Learning, pages
2565–2593. PMLR, 2023.

[14] Y. Wang, Z. Xian, F. Chen, T.-H. Wang, Y. Wang, K. Fragkiadaki, Z. Erickson, D. Held, and
C. Gan. Robogen: Towards unleashing infinite data for automated robot learning via generative
simulation. In Forty-first International Conference on Machine Learning, 2023.

[15] A. Mandlekar, S. Nasiriany, B. Wen, I. Akinola, Y. Narang, L. Fan, Y. Zhu, and D. Fox.
Mimicgen: A data generation system for scalable robot learning using human demonstrations.
In Conference on Robot Learning, pages 1820–1864. PMLR, 2023.

http://dx.doi.org/10.15607/RSS.2022.XVIII.063


[16] N. Chernyadev, N. Backshall, X. Ma, Y. Lu, Y. Seo, and S. James. Bigym: A demo-driven
mobile bi-manual manipulation benchmark. arXiv preprint arXiv:2407.07788, 2024.

[17] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion. In Proceedings of Robotics: Science and
Systems (RSS), 2023.

[18] Z. Jiang, C.-C. Hsu, and Y. Zhu. Ditto: Building digital twins of articulated objects from
interaction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5616–5626, 2022.



DexMimicGen: Automated Data Generation for
Bimanual Dexterous Manipulation via Imitation Learning

Abstract— Imitation learning from human demonstrations is
an effective means to teach robots manipulation skills. But data
acquisition is a major bottleneck in applying this paradigm
more broadly, due to the amount of cost and human effort in-
volved. There has been significant interest in imitation learning
for bimanual dexterous robots, like humanoids. Unfortunately,
data collection is even more challenging here due to the chal-
lenges of simultaneously controlling multiple arms and multi-
fingered hands. Automated data generation in simulation is a
compelling, scalable alternative to fuel this need for data. To this
end, we introduce DexMimicGen, a large-scale automated data
generation system that synthesizes trajectories from a handful
of human demonstrations for humanoid robots with dexterous
hands. We present a collection of simulation environments in
the setting of bimanual dexterous manipulation, spanning a
range of manipulation behaviors and different requirements
for coordination among the two arms. We generate 21K demos
across these tasks from just 60 source human demos and
study the effect of several data generation and policy learning
decisions on agent performance. Finally, we present a real-to-
sim-to-real pipeline and deploy it on a real-world humanoid
can sorting task.

I. INTRODUCTION

Imitation learning from human demonstrations is an ef-
fective means to teach robots manipulation skills [1,2]. One
popular approach is teleoperation, where human operators
control robot arms to collect data, and the data is used to train
the robots for autonomous operation [3,4]. Recent efforts
have scaled this approach to collect large diverse datasets
through teams of human operators, and shown that robots
trained on this data can achieve impressive performance and
even generalize to different settings [2,5–8]. There has also
been recent interest in applying this paradigm to humanoid
robot embodiments [9–14].

However, data acquisition is a key bottleneck in applying
this paradigm more broadly. Prior efforts for data collection
in the single robot arm setting required multiple human
operators, robots, and months of human effort [2,5–8]. Unfor-
tunately, scaling data collection for humanoids can be even
more difficult, owing to the challenges of controlling multiple
arms and multi-fingered dexterous hands simultaneously. En-
abling real-time teleoperation for humanoids has required the
development of special-purpose teleoperation interfaces [9–
14], but these pipelines can be costly and difficult to scale.
Furthermore, the increase in operator burden due to multi-
arm and multi-finger hand control makes collecting demon-
strations in this setting more challenging compared to the
single-arm setting, further limiting the rate of data collection.
The data acquisition burden is further compounded by the
fact that data requirements in the humanoid setting can be

DexMimicGen

Real-World Teleoperation

Data
Generation

Real-World Deployment

Digital Twin

Real2Sim

Simulation Replay

Digital Twin

Sim2Real

Generated Trajectories

Fig. 1: DexMimicGen Overview. DexMimicGen offers an efficient pipeline
to train capable bimanual dexterous robots. (left) First, a human operator
collects around five demonstrations of a task using a teleoperation device.
(middle) Next, DexMimicGen automatically generates a large set of demon-
stration trajectories in simulation. (right) Finally, a policy is trained with
imitation learning and deployed in the real world.

higher due to the increased task complexity.
Instead, leveraging automated data generation in simula-

tion is a compelling alternative that has proved effective for
the single-arm robot manipulation setting [15–17]. Inspired
by this success, we introduce DexMimicGen (DexMG), a
large-scale automated data generation system for biman-
ual robots with dexterous hands, such as humanoids. The
core idea is to leverage a small set of human demonstrations
and use demonstration transformation and replay in phys-
ical simulation to automatically generate large amounts of
training data suitable for imitation learning in the bimanual
dexterous manipulation setting. This system builds on top of
MimicGen [17], which proposed a similar pipeline for the
single-arm with parallel-jaw gripper setting, but there are
several technical challenges that DexMimicGen overcomes
to apply the same principles to our setting.

MimicGen relies on decomposing each task into a se-
quence of subtasks, to generate trajectories for each subtask
separately and then stitch them together. Bimanual dexterous
manipulation involves three types of subtasks where the two
arms need to achieve sub-goals independently, with coor-
dination, and following a specific order. MimicGen, which
relies on a single subtask segmentation, struggles to han-
dle the independent and interdependent actions required in
bimanual tasks. To address these challenges, DexMimicGen
incorporates a flexible per-arm subtask segmentation strategy,
allowing each arm to execute its subtasks independently
while still accommodating the necessary coordination phases.
DexMG employs a synchronization strategy to ensure precise
alignment of actions during coordination subtasks and an
ordering constraint mechanism to enforce the correct order



of actions during sequential subtasks.
We make the following contributions:
• We introduce DexMimicGen (DexMG), a data generation
system that automatically synthesizes trajectories from a
small number of human demonstrations for bimanual and
dexterous robot manipulation. We introduce several key
design features, including an asynchronous per-arm execu-
tion strategy, synchronization, and sequential constraints that
enable handling multi-arm coordination.
• We introduce a suite of nine simulation environments
across three different embodiment types requiring different
coordination behaviors between the two arms. We apply
DexMimicGen to generate 21K demos across these tasks
from merely 60 source human demos and study the effect
of several data generation and policy learning decisions on
agent performance. We will release the simulations and
datasets to facilitate future study into the bimanual and
dexterous manipulation setting.
• We create a simulated digital twin of a real-world can-
sorting task, replay real-world human demonstrations in the
simulation, synthesize trajectories with DexMimicGen, and
then transfer the generated trajectories back into the real
world, producing a visuomotor policy of 90% success rate,
as opposed to 0% from just using the human demos (Fig. 1).

II. RELATED WORK

Data Collection through Teleoperation. Teleoperation
is a prevalent approach to gather task demonstrations for
robotics [3,4,18–23]. Human operators use an interface to
control a robot in real time, and sensor data and robot
control commands are logged to a dataset. Some systems
allow data collection for multiple robot arms [24–26] and
humanoids [9–14,27], and some also enable robot-free data
collection using specialized hardware [28–30]. However,
all these methods require significant human time and re-
sources to collect large datasets. Some other efforts use
pre-programmed experts to automate data generation in
simulation [15,16,31–35], but applying these methods to
challenging scenarios involving multi-arm coordination can
be difficult. By contrast, DexMimicGen builds on Mimic-
Gen [17,36,37] to automate data generation using a handful
of human demonstrations, greatly reducing the human effort
involved in collecting large datasets.

Imitation Learning and Data Augmentation. Behav-
ioral Cloning [38] is an established framework for learn-
ing robot control policies from demonstrations and has
been used extensively in prior work [32,39–49], includ-
ing for bimanual manipulators [24–26,50] and humanoid
robots [10,11,27,51,52]. In this work, we apply existing
imitation learning methods [1,53] to datasets generated by
DexMimicGen, but DexMimicGen can play a significant role
in facilitating algorithm development for bimanual manip-
ulation by making simulation-based bimanual manipulation
datasets more widely accessible and providing easy to repro-
duce results. Some works leverage offline data augmentation
to increase the size of demonstration datasets [1,54–68]. By

contrast, DexMimicGen collects datasets online, ensuring the
generated trajectories are physically valid.

III. PREREQUISITES

Imitation Learning. We formalize each manipulation
task as a Partially Observable Markov Decision Pro-
cess (POMDP). We are given N demonstrations D =
{(si0, oi0, ai0, si1, oi1, ai1, ..., siHi

)}Ni=1 consisting of states s ∈
S, observations o ∈ O, and actions a ∈ A. Each episode
starts in a state si0 ∼ D sampled from the initial state
distribution D ⊆ S. The goal is to learn a policy π : O → A
that maps observations to a distribution over the action
space. We focus on Behavioral Cloning (BC) [38] methods
that find a policy via the maximum likelihood objective
argmaxθ E(s,o,a)∼D[log πθ(a | o)]. In this work, we train
our policies with datasets generated via DexMimicGen.

Assumptions. Like MimicGen [17], we make these as-
sumptions. (A1): the action space A consists of the following
components for each robot arm: a pose command for an end
effector controller and an actuation command for the hand (1-
D open/close for parallel-jaw gripper, 6-D joint commands
for dexterous hand). (A2): Each task can be divided into
object-centric subtasks (see Sec. IV-A). (A3): During data
collection, an object’s pose can be observed or estimated
prior to a robot arm making contact with that object.

MimicGen. MimicGen [17] uses a small number of source
human demonstrations Dsrc to generate a large dataset D. It
assumes that every task consists of a sequence of object-
centric subtasks (S1(o1), S2(o2), . . . , SM (oM )) where the
manipulation in each subtask Si(oi) is relative to a single
object’s coordinate frame (oi ∈ O, where O is the set
of objects in the task). It divides each source demo τ ∈
Dsrc into contiguous object-centric manipulation segments
{τi}Mi=1, each of which corresponds to a subtask Si(oi).
Each segment is a sequence of end effector control poses
τi = (TC0

W , TC1

W , ..., TCK

W ) where W is the world reference
frame. This segmentation can be done with human annotation
or using heuristics. To generate a new demonstration in a
novel scene, it observes the pose of the object for the current
subtask T

o′i
W , and transforms the poses in a source human

segment (with a constant SE(3) transform T
o′i
W (T oi

W )−1) such
that relative poses between the end effector and object frame
are preserved between the source segment and the new
scene. It then adds poses to the start of the segment to
interpolate between the robot’s current state and the start
of the transformed segment. Then, it executes the entire
sequence of poses open-loop using the robot end effector
controller and repeats this process for the next subtask. It
checks for task success after executing all subtasks and only
keeps the demonstration if it was successful.

IV. DEXMIMICGEN METHOD

DexMimicGen generates data for bimanual and dexterous
manipulation — this involves handling three key challenges
compared to MimicGen. First, each arm must be able to
operate independently of the other arm to achieve different
goals. Next, arms must be able to coordinate to achieve a



Parallel subtask: pick up concave piece and convex piece separately. 

Coordination subtask: place the lid with both hands.

Sequential subtask: pour ball into bowl and then place bowl on green pad.

Pre-task Post-task

Fig. 2: Subtask Types. We categorize the subtasks into parallel, co-
ordination, and sequential subtasks, where two arms achieve subgoals
independently, with coordination, and following a specific order.

shared goal. Finally, certain arm objectives must be com-
pleted before other objectives can be attempted. DexMimic-
Gen handles these challenges by introducing a taxonomy of
subtask types (Fig. 2) — parallel (Sec. IV-A), coordination
(Sec. IV-B), and sequential (Sec. IV-C), and making changes
to the data generation process to accommodate them. Sec. IV-
D provides an overview of the entire data generation process.

A. Parallel Subtasks

In the bimanual setting, each arm must be able to operate
independently of the other arm. For example, at the start
of the Piece Assembly task (Fig. 2 top), each arm needs
to grasp a separate object and might finish grasping the
object at different points in time. This makes the single fixed
sequence of subtasks from MimicGen unsuitable. To enable a
flexible order of completion for parallel subtasks involving
two arms, we consider each task to consist of a sequence of
subtasks for each arm: Sa1

1 (o1), ..., Sa1

M1
(oM1) and Sa2

1 (o1),
..., Sa2

M2
(oM2

). Each source demonstration is split into object-
centric manipulation segments as in MimicGen, but now each
arm has its own set of segments ({τni }Mn

i=1, n ∈ {1, 2}).
However, since arm subtasks are defined independently,

their execution can start and end at different times that are
not aligned. To accommodate this, DexMimicGen employs
an asynchronous execution strategy, where an action queue is
maintained for each arm. Actions are dequeued for each arm
one by one in parallel. Whenever an arm’s queue is empty,
it is populated with the transformed subtask segment for the
next subtask (using the same transformation from Mimic-
Gen). This approach allows for the execution of actions for
both arms without requiring alignment between subtasks.

B. Coordination Subtasks

Some tasks require precise coordination, such as placing
the lid in the Box Cleanup task (Fig. 2 middle). In these
coordination subtasks, the relative poses between the two
end-effectors during execution must be aligned with the
corresponding relative poses in the source demonstration.
To achieve this, we ensure that 1) both arms execute their
trajectories in a synchronized manner and 2) the trajectories
for both arms are generated with the same transformation.
To achieve this temporal alignment, we enforce that coor-
dination subtasks end at the same timestep during source
demo segmentation. During execution, we implement a syn-
chronization strategy in which each arm waits for the other
until both have the same number of remaining steps in the
coordination subtask, aligning the end of subtask execution
with the subtask segmentation.

We provide different source demonstration transformation
schemes to acquire the common transformation matrix for
both arms in coordination subtasks. These include the Trans-
form and Replay schemes. The Transform scheme utilizes the
transformation matrix T

o′i
W (T oi

W )−1 computed from the object
pose at the moment the first arm begins the coordination
subtask T

o′i
W and the object pose in the corresponding source

segment T oi
W . In contrast, the replay scheme directly uses the

source trajectories without applying any transformation. The
replay scheme can be beneficial for coordination subtasks
like handover because it ensures the trajectory remains within
kinematic limits and is fully executable.

C. Sequential Subtasks

Some tasks require subtasks to be completed in a specific
order. For example, in the Pouring task (Fig. 2 bottom),
the robot must pour the ball into the bowl with one hand
before moving the bowl to the pad with the other hand. To
handle these sequential subtasks, we implement an ordering
constraint mechanism. We specify a pre-subtask (pouring the
ball) and a post-subtask (picking the bowl) based on the task
requirement. This mechanism ensures that the arm executing
the post-subtask waits until the pre-subtask of the other arm
is completed before continuing with the post-subtask.

D. Data Generation for Bimanual Manipulation

We outline the overall DexMimicGen data generation
workflow using the Tray Lift task as an example. First,
source demos are segmented into per-arm subtasks using
heuristics or human annotation (Fig. 3 left). The final subtask
for each arm requires coordination (they must lift the tray
together), so it is annotated as a coordination subtask for
synchronization during data generation (Sec. IV-B).

At the start of data generation, the scene is randomized
and a source demonstration is selected (as in MimicGen).
We then iteratively generate and execute trajectories for each
subtask of each arm in parallel (see Fig. 3 right). In this
example, given the pose of the reference object (the tray), we
compute the relative transformation between the current tray
pose and the tray pose in the source segment. We use this
transformation to transform the source trajectories of both



Parallel: pick cube 

Ref object: blue cube

Parallel: place cube 

Ref object: tray

Coordination: lift tray 

Ref object: tray

Source demo segmentation

Parallel: pick cube 

Ref object: green cube

Parallel: place cube 

Ref object: tray

Coordination: lift tray 

Ref object: tray

Current 

Observation

Reference 

Subtask

Generated 

Trajectory

Reference 

Trajectory

Executed

 Trajectory

New trajectory generation and execution

Object-Centric 

Trajectory Transformation

Right

Arm

Left

Arm

Full

Demo

Left arm

Right arm

Two-arm coordination

Fig. 3: DexMimicGen Workflow. Left: DexMimicGen segments source demonstrations for each arm and records the poses of the reference objects. Right:
In a new simulation environment, we generate trajectories by transforming source trajectories with reference object poses and executing them.

arms because these are coordination subtasks. Then we use
the synchronization execution strategy described in Sec. IV-
B to execute the generated trajectory. Note that we generate
finger motion by replaying the finger joint actions in the
source demo because the finger movement is always relative
to the end-effector movement. Each generated demonstration
is only kept if the task is successful, and this process repeats
until a sufficient amount of data is generated.

V. SYSTEM DESIGN

In order to instantiate DexMimicGen, we build a large
collection of simulation environments and a teleoperation
system allowing for source human demonstration collection
in both simulation and the real world.

Simulation Environments. We introduce a diverse range
of setups and tasks to demonstrate the capability of DexMim-
icGen to generate data across different embodiments and
manipulation behaviors. The tasks are developed in Robo-
Suite [69] and use MuJoCo [70] for physics simulation.
We focus on three embodiments: (1) bimanual Panda arms
equipped with parallel-jaw grippers, (2) bimanual Panda
arms with dexterous hands, and (3) a GR-1 humanoid
equipped with dexterous hands. We apply different con-
trollers for different embodiments. For the Panda arms, we
leverage the Operational Space Control (OSC) [71] frame-
work, which converts the delta end-effector pose into joint
torque commands. For the humanoid, we implemented an
Inverse Kinematics (IK) controller based on mink [72,73].
We found this to be an effective approach to deal with the
complexity of the humanoid kinematic tree, where both arms
are linked to a single torso. The IK controller translates
global target end-effector poses into robot joint positions.
For finger control, we directly use joint position control.

For each embodiment, we introduce three tasks, resulting
in a total of nine tasks, as depicted in Fig. 4. These
tasks involve high-precision manipulation (Threading, Piece

Threading Piece Assembly Transport

Box Cleanup Drawer Cleanup Tray Lift

Pouring Coffee Can Sorting

Fig. 4: Simulation Tasks. We deploy DexMimicGen on nine simulation
tasks across three embodiments — two arms with parallel-jaw grippers (top),
two arms with dexterous hands (middle), and a humanoid (bottom)

Assembly, Box Packing, Coffee), manipulation of articu-
lated objects (Drawer), and are long-horizon (Transport).
The tasks also require overcoming key challenges in multi-
arm interaction. Several of these tasks contain coordination
subtasks, where both arms need to cooperate to finish the
subtask (Threading, Transport, Box Packing, Tray Lift, Can
Sorting). Other tasks necessitate sequential subtask execution
(Piece Assembly, Drawer Cleanup, Pouring, Coffee). We also
introduce task variants that broaden the default reset distri-
bution D0 for certain tasks, as in MimicGen. For instance,
in the Pouring task, D1 represents a variant where objects
have a larger initial reset distribution, while in D2, the reset
positions of the bowl and the green pad are swapped. These
simulation environments along with the datasets generated
by DexMimicGen provide a valuable platform to analyze
various factors that influence the performance of imitation
learning in the bimanual and dexterous manipulation setting.

Teleoperation System. To collect source demonstrations
for the tasks, we employ different teleoperation methods
tailored to each embodiment. For bimanual Panda arms
equipped with parallel-jaw grippers, we use an iPhone-based



Task Source Demo DP BC-RNN-GMM BC-RNN DP

Piece Assembly 3.3± 0.9 74.0± 2.8 74.7± 2.5 80.7± 0.9
Threading 1.3± 0.9 54.0± 4.3 55.3± 5.0 69.3± 1.9
Transport 52.7± 7.7 64.0± 3.3 60.0± 0.0 83.3± 0.9
Box Cleanup 62.0± 1.6 64.0± 10.0 96.7± 2.5 92.0± 4.3
Drawer Cleanup 0.7± 0.9 30.7± 5.0 56.7± 4.1 76.0± 0.0
Tray Lift 3.3± 0.9 66.0± 8.2 75.3± 7.5 88.7± 0.9
Pouring 0.7± 0.9 74.0± 8.6 86.0± 3.3 79.3± 0.9
Coffee 14.7± 0.9 12.0± 1.6 73.3± 12.3 77.3± 0.9
Can Sorting 0.7± 0.9 75.3± 1.9 96.0± 1.6 97.3± 0.9

TABLE I: Success rates (3 seeds) of image-based policies trained with BC
on the source demos and DexMimicGen datasets of 1000 trajectories.

Task Policy D0 D1 D2

Piece Assembly BC-RNN-GMM 74.0± 2.8 67.3± 0.9 44.0± 3.3
Box Cleanup BCRNN 96.7± 2.5 88.0± 5.9 78.7± 2.5
Pouring DP 79.3± 0.9 82.0± 2.0 71.3± 2.5

TABLE II: Success rates of policy trained on data generated with broader
initial distributions, evaluated with same broader initial distributions.

teleoperation interface, as introduced in RoboTurk [4,24], to
capture human wrist and gripper actions. For robots equipped
with dexterous hands, we implemented an Apple Vision
Pro-based teleoperation system. Specifically, we employ the
VisionProTeleop software [74] to collect wrist and finger
poses via Apple Vision Pro. We first need to align the human
and the robot to convert the raw human end effector poses to
robot poses. We design a human-to-robot calibration process
asking the human teleoperator to start with a fixed pose,
and we automatically compute the relative transformation
matrices that map the human poses to robot targets. This
calibration process adapts to both bimanual panda arms
with dexterous hands and the GR-1 humanoid. We use the
retargeting method provided by OmniH2O [13] to retarget
human finger pose to robot finger joint positions. This
teleoperation system converts human actions to robot action
targets, allowing us to collect demonstrations intuitively.

VI. EXPERIMENTS

In this section, we provide empirical evidence showcasing
the efficacy of DexMimicGen. We first provide details on
experiment setup (Sec. VI-A), then highlight DexMimicGen
features and applications (Sec. VI-B), then analyze how
data generation and policy learning choices impact policy
performance (Sec. VI-C), and finally present a real-world
application of the DexMimicGen system (Sec. VI-D).

A. Experimental Setup
We collect ten source human demonstrations for each

task with parallel-jaw grippers, but only five demonstrations
for those involving dexterous hands due to the additional
operator burden and time cost of collecting demonstrations
for dexterous hands. DexMimicGen is subsequently used to
generate 1000 demonstrations per task. Each dataset was
used to train visuomotor policies through Behavioral Cloning
with an RNN [1], an RNN-GMM [1], and a Diffusion Pol-
icy [53]. For evaluation, we follow the procedure in [1,17]:
we run each experiment across 3 different seeds, and take
the maximum policy success rate for each seed.

B. DexMimicGen Features
DexMimicGen significantly boosts the policies’ success

rates over using the source demonstrations only. Robots

Fig. 5: Dataset Size Comparison. Success rates of policies trained on
datasets with different sizes

Task Policy DemoNoise DexMimicGen

Piece Assembly BCRNN + GMM 12.7 ± 3.4 74.0 ± 2.8
Tray Lift BCRNN 16.7 ± 2.5 75.3 ± 7.5
Pouring DP 26.7 ± 2.5 79.3 ± 0.9

TABLE III: Success rates of policies trained on data generated with
DexMimicGen and Demo-noise baseline.

trained on DexMimicGen’s datasets outperform those trained
only on the small source datasets across all tasks (see
Table I). Notable improvements include policy performance
on Drawer Cleanup (0.7% to 76.0% success), Threading
(1.3% to 69.3%), and Piece Assembly (3.3% to 80.7%).

DexMimicGen produces capable policies across di-
verse initial state distributions. DexMimicGen generates
datasets with broader initial state distributions (D1, D2)
from source demos in D0. As shown in Table II, policies
trained on these datasets are performant in the evaluation
with the same broader initial state distributions, showing
that DexMimicGen generates valuable datasets on new initial
state distributions.

DexMimicGen generates data across different bench-
marks. We apply DexMimicGen to BiGym [75], a new sim-
ulation benchmark for humanoid robots involving bimanual
mobile manipulation tasks. We generate 1000 demonstrations
for each of the three tasks, FlipCup, DishwasherLoadPlates,
and CupBoardsCloseAll, and achieve data generation success
rates of 29.1%, 43.6%, and 76.4%. The visualizations of gen-
erated demonstrations can be found on the project website.

C. DexMimicGen Analysis

How does DexMimicGen data generation compare to
alternatives? We compare DexMimicGen with a Demo-
Noise data generation baseline, which takes the same source
demonstrations as DexMimicGen, but generates data by
replaying the source demos with action noise during exe-
cution. In Table III, we train policies on datasets of 1000
demos generated by both DexMimicGen and the Demo-
Noise baseline. We can see that the policies trained using
DexMimicGen outperform those trained on the Demo-Noise
baseline by more than 58% across all tasks. Furthermore,
unlike DexMimicGen, the Demo-Noise baseline cannot gen-
erate results on D1 and D2, as it can only replay the same
initial configurations in the source demos.

Do larger datasets boost policy performance? We train
policies on 100, 500, 1000, and 5000 demos generated by
DexMimicGen across several tasks (Fig. 5). We observe large



boosts in performance from 100 to 500 and 1000, showing
that increasing dataset size boosts performance in this data
regime; however, the success rate does not always increase
from 1000 to 5000, suggesting that there can be diminishing
returns depending on the task.

How do different DexMimicGen data generation strate-
gies impact results? First, we compare the Replay and
Transform schemes in the coordination subtask (Sec. IV-
B). Specifically, we evaluate two tasks involving the han-
dover subtask with two distinct policies: Transport using
BCRNN+GMM, and Can Sorting using a diffusion policy.
Replay demonstrates better policy performance (63.3% vs.
46.0%) in the Transport task and achieves comparable out-
comes (97.3% vs. 98.6%) in the Can Sorting task. Thus,
Replay is our default choice for subtasks that involve han-
dover.

Next, we assess the effectiveness of ordering constraints in
sequential subtasks (Sec. IV-C). When using the same source
demonstration for both arms, subtask ordering requirements
are typically satisfied automatically. In contrast, employing
different source demonstrations for each arm requires an
ordering constraint but also increases data diversity. We also
evaluate two tasks involving the sequential subtasks with
two distinct policies: Drawer Cleanup with BCRNN, and
Pouring with diffusion policy. We found training on data
generated with ordering constraints consistently outperforms
training without them (50.7% vs. 48.0% in Drawer Cleanup
and 88.7% vs. 76.7% in Pouring). Directly using the same
source demo yields the policy success rates of 56.7% in the
Drawer Cleanup and 79.3% in Pouring.

How do different policy architecture choices affect
success rates? In Table I, we also compare the performance
of different policy architectures (Diffusion Policy [53], BC-
RNN-GMM [1], BC-RNN [1] with no GMM action head)
on the datasets generated by DexMimicGen. We found
that Diffusion Policy [53] generally outperforms the other
architectures. Interestingly, we also found that BC-RNN-
GMM generally underperformed BC-RNN and Diffusion
Policy, especially on tasks that involve dexterous hands, in
contrast to the RoboMimic study [1] which found the use
of a GMM head to be beneficial. We believe DexMimicGen
datasets will make it easier for future work to study further
how imitation learning choices might differ in the bimanual
dexterous manipulation setting.

D. Real-World Evaluation

We showcase how DexMimicGen enables real-world de-
ployment using the pipeline illustrated in Fig. 1. We generate
real-world demonstrations from source demonstrations using
a digital twin [76] as safety insurance.

Hardware Setup. We use a Fourier GR1 robot equipped
with two 6-DoF Inspire dexterous hands. For vision, we
use two Intel RealSense D435i cameras: one head-mounted
camera provides a first-person view and one camera in front
of the robot as a third-person view.

Digital Twin Setup. We perform our experiment on the
Can Sorting task (Fig. 6), with digital twin assets in simula-

Fig. 6: Real-World DexMimicGen Deployment. Rollouts of real-world
visuomotor policy trained with DexMimicGen data and digital twin.

tion that align with the real-world setup. To ensure accurate
alignment between the real-world and simulated environ-
ments, we perform pose estimation on the objects prior to
data collection. Using the head-mounted camera, we capture
an initial RGB-D frame and apply GroundingDINO [77] to
segment an RGB mask of the object. We use the real world
object’s center point (determined by averaging the depth
values within the RGB mask) to initialize the object’s x−
and y−coordinates in simulation.

Data Collection Pipeline. Using the teleoperation pipeline
described in Sec. V, we collect 4 source human demon-
strations for the Can Sorting task. These demonstrations
are replayed in simulation, and are used as source demon-
strations for DexMimicGen in the digital twin. Next, new
real-world demonstrations are collected by synchronizing the
initial object state from real to sim, and then attempting to
generate a new demonstration in sim with DexMimicGen. If
the demonstration is successful in simulation, the sequence of
robot control actions is sent to the real-world for execution.
In this way, the digital twin functions to ensure safety during
real-world data generation, while DexMimicGen mitigates
human effort for data collection, which is autonomous apart
from the environment resets. We generate 40 successful
demonstrations with the approach described above.

Results. We compare visuomotor policies trained using
Diffusion Policy [53] on the 40 DexMimicGen demos with
one trained on the 4 source demos. We evaluated both models
by running 10 trials each for the red and blue cups. The
policy trained on DexMimicGen data achieves 90% success,
while the model trained on the source data achieves 0%;
DexMimicGen thus offers an efficient pipeline for training
real-world robots through the use of a digital twin.

VII. CONCLUSION

We introduce DexMimicGen, a large-scale automated data
generation system that synthesizes trajectories from a small
number of human demonstrations for bimanual and dexterous
robots, and a collection of simulation environments across 3
embodiments requiring different coordination behaviors. Our
findings from applying DexMimicGen to these tasks show
that there is great value in further investigating policy learn-
ing in this setting. We hope the release of our DexMimicGen
datasets and environments will facilitate future research.



REFERENCES

[1] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni,
L. Fei-Fei, S. Savarese, Y. Zhu, and R. Martı́n-Martı́n, “What matters
in learning from offline human demonstrations for robot manipula-
tion,” in Conference on Robot Learning (CoRL), 2021.

[2] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu, et al., “Rt-1:
Robotics transformer for real-world control at scale,” arXiv preprint
arXiv:2212.06817, 2022.

[3] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg,
and P. Abbeel, “Deep imitation learning for complex manipulation
tasks from virtual reality teleoperation,” in 2018 IEEE international
conference on robotics and automation (ICRA). IEEE, 2018, pp.
5628–5635.

[4] A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung,
J. Gao, J. Emmons, A. Gupta, E. Orbay, S. Savarese, and L. Fei-Fei,
“RoboTurk: A Crowdsourcing Platform for Robotic Skill Learning
through Imitation,” in Conference on Robot Learning, 2018.

[5] F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher, G. Georgakis,
K. Daniilidis, C. Finn, and S. Levine, “Bridge Data: Boosting General-
ization of Robotic Skills with Cross-Domain Datasets,” in Proceedings
of Robotics: Science and Systems, New York City, NY, USA, 6 2022.

[6] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho,
J. Ibarz, A. Irpan, E. Jang, R. Julian, et al., “Do as i can, not as i say:
Grounding language in robotic affordances,” in Conference on Robot
Learning. PMLR, 2023, pp. 287–318.

[7] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch,
S. Levine, and C. Finn, “Bc-z: Zero-shot task generalization with
robotic imitation learning,” in Conference on Robot Learning. PMLR,
2022, pp. 991–1002.

[8] C. Lynch, A. Wahid, J. Tompson, T. Ding, J. Betker, R. Baruch,
T. Armstrong, and P. Florence, “Interactive language: Talking to robots
in real time,” IEEE Robotics and Automation Letters, 2023.

[9] K. Darvish, L. Penco, J. Ramos, R. Cisneros, J. Pratt, E. Yoshida,
S. Ivaldi, and D. Pucci, “Teleoperation of humanoid robots: A survey,”
IEEE Transactions on Robotics, vol. 39, no. 3, pp. 1706–1727, 2023.

[10] R. Ding, Y. Qin, J. Zhu, C. Jia, S. Yang, R. Yang, X. Qi, and X. Wang,
“Bunny-visionpro: Real-time bimanual dexterous teleoperation for
imitation learning,” arXiv preprint arXiv:2407.03162, 2024.

[11] X. Cheng, J. Li, S. Yang, G. Yang, and X. Wang, “Open-television:
teleoperation with immersive active visual feedback,” arXiv preprint
arXiv:2407.01512, 2024.

[12] T. He, Z. Luo, W. Xiao, C. Zhang, K. Kitani, C. Liu, and G. Shi,
“Learning human-to-humanoid real-time whole-body teleoperation,”
arXiv preprint arXiv:2403.04436, 2024.

[13] T. He, Z. Luo, X. He, W. Xiao, C. Zhang, W. Zhang, K. Kitani,
C. Liu, and G. Shi, “Omnih2o: Universal and dexterous human-
to-humanoid whole-body teleoperation and learning,” arXiv preprint
arXiv:2406.08858, 2024.

[14] Z. Fu, Q. Zhao, Q. Wu, G. Wetzstein, and C. Finn, “Humanplus:
Humanoid shadowing and imitation from humans,” arXiv preprint
arXiv:2406.10454, 2024.

[15] M. Dalal, A. Mandlekar, C. R. Garrett, A. Handa, R. Salakhutdinov,
and D. Fox, “Imitating task and motion planning with visuomotor
transformers,” in Conference on Robot Learning. PMLR, 2023, pp.
2565–2593.

[16] Y. Wang, Z. Xian, F. Chen, T.-H. Wang, Y. Wang, K. Fragkiadaki,
Z. Erickson, D. Held, and C. Gan, “Robogen: Towards unleashing
infinite data for automated robot learning via generative simulation,”
in Forty-first International Conference on Machine Learning, 2023.

[17] A. Mandlekar, S. Nasiriany, B. Wen, I. Akinola, Y. Narang, L. Fan,
Y. Zhu, and D. Fox, “Mimicgen: A data generation system for scalable
robot learning using human demonstrations,” in Conference on Robot
Learning. PMLR, 2023, pp. 1820–1864.

[18] A. Mandlekar, J. Booher, M. Spero, A. Tung, A. Gupta, Y. Zhu,
A. Garg, S. Savarese, and L. Fei-Fei, “Scaling robot supervision to
hundreds of hours with roboturk: Robotic manipulation dataset through
human reasoning and dexterity,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2019,
pp. 1048–1055.

[19] A. Mandlekar, D. Xu, R. Martı́n-Martı́n, Y. Zhu, L. Fei-Fei, and
S. Savarese, “Human-in-the-loop imitation learning using remote tele-
operation,” arXiv preprint arXiv:2012.06733, 2020.

[20] J. Wong, A. Tung, A. Kurenkov, A. Mandlekar, L. Fei-Fei, S. Savarese,
and R. Martı́n-Martı́n, “Error-aware imitation learning from teleopera-
tion data for mobile manipulation,” in Conference on Robot Learning.
PMLR, 2022, pp. 1367–1378.

[21] P. Wu, Y. Shentu, Z. Yi, X. Lin, and P. Abbeel, “Gello: A general, low-
cost, and intuitive teleoperation framework for robot manipulators,”
2023.

[22] A. Iyer, Z. Peng, Y. Dai, I. Guzey, S. Haldar, S. Chintala, and
L. Pinto, “Open teach: A versatile teleoperation system for robotic
manipulation,” arXiv preprint arXiv:2403.07870, 2024.

[23] S. Dass, W. Ai, Y. Jiang, S. Singh, J. Hu, R. Zhang, P. Stone,
B. Abbatematteo, and R. Martı́n-Martı́n, “Telemoma: A modular
and versatile teleoperation system for mobile manipulation,” in 2nd
Workshop on Mobile Manipulation and Embodied Intelligence at ICRA
2024, 2024.

[24] A. Tung, J. Wong, A. Mandlekar, R. Martı́n-Martı́n, Y. Zhu, L. Fei-
Fei, and S. Savarese, “Learning multi-arm manipulation through
collaborative teleoperation,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2021, pp. 9212–9219.

[25] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning Fine-Grained
Bimanual Manipulation with Low-Cost Hardware,” in Proceedings of
Robotics: Science and Systems, Daegu, Republic of Korea, 7 2023.

[26] J. Aldaco, T. Armstrong, R. Baruch, J. Bingham, S. Chan, K. Draper,
D. Dwibedi, C. Finn, P. Florence, S. Goodrich, et al., “Aloha 2:
An enhanced low-cost hardware for bimanual teleoperation,” arXiv
preprint arXiv:2405.02292, 2024.

[27] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends
in cognitive sciences, vol. 3, no. 6, pp. 233–242, 1999.

[28] H. Fang, H.-S. Fang, Y. Wang, J. Ren, J. Chen, R. Zhang, W. Wang,
and C. Lu, “Low-cost exoskeletons for learning whole-arm manipula-
tion in the wild,” in Towards Generalist Robots: Learning Paradigms
for Scalable Skill Acquisition@ CoRL2023, 2023.

[29] C. Chi, Z. Xu, C. Pan, E. Cousineau, B. Burchfiel, S. Feng, R. Tedrake,
and S. Song, “Universal manipulation interface: In-the-wild robot
teaching without in-the-wild robots,” in Proceedings of Robotics:
Science and Systems (RSS), 2024.

[30] H. Etukuru, N. Naka, Z. Hu, S. Lee, J. Mehu, A. Edsinger, C. Paxton,
S. Chintala, L. Pinto, and N. M. M. Shafiullah, “Robot utility models:
General policies for zero-shot deployment in new environments,” 2024.

[31] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison, “Rlbench: The
robot learning benchmark & learning environment,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 3019–3026, 2020.

[32] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian,
T. Armstrong, I. Krasin, D. Duong, V. Sindhwani, et al., “Transporter
networks: Rearranging the visual world for robotic manipulation,” in
Conference on Robot Learning. PMLR, 2021, pp. 726–747.

[33] Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-
Fei, A. Anandkumar, Y. Zhu, and L. Fan, “Vima: General robot
manipulation with multimodal prompts,” in Fortieth International
Conference on Machine Learning, 2023.

[34] J. Gu, F. Xiang, X. Li, Z. Ling, X. Liu, T. Mu, Y. Tang, S. Tao, X. Wei,
Y. Yao, et al., “Maniskill2: A unified benchmark for generalizable
manipulation skills,” in The Eleventh International Conference on
Learning Representations, 2023.

[35] H. Ha, P. Florence, and S. Song, “Scaling up and distilling down:
Language-guided robot skill acquisition,” in Conference on Robot
Learning. PMLR, 2023, pp. 3766–3777.

[36] R. Hoque, A. Mandlekar, C. R. Garrett, K. Goldberg, and
D. Fox, “Interventional data generation for robust and data-efficient
robot imitation learning,” in First Workshop on Out-of-Distribution
Generalization in Robotics at CoRL 2023, 2023. [Online]. Available:
https://openreview.net/forum?id=ckFRoOaA3n

[37] S. Nasiriany, A. Maddukuri, L. Zhang, A. Parikh, A. Lo, A. Joshi,
A. Mandlekar, and Y. Zhu, “Robocasa: Large-scale simulation of
everyday tasks for generalist robots,” in Robotics: Science and Systems
(RSS), 2024.

[38] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” in Advances in neural information processing systems, 1989,
pp. 305–313.

[39] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine, “One-shot visual
imitation learning via meta-learning,” in Conference on robot learning.
PMLR, 2017, pp. 357–368.

[40] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot program-
ming by demonstration,” in Springer Handbook of Robotics, 2008.



[41] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. Billard,
“Learning and reproduction of gestures by imitation,” IEEE Robotics
and Automation Magazine, vol. 17, pp. 44–54, 2010.

[42] A. Mandlekar, D. Xu, R. Martı́n-Martı́n, S. Savarese, and L. Fei-Fei,
“GTI: Learning to Generalize across Long-Horizon Tasks from Human
Demonstrations,” in Proceedings of Robotics: Science and Systems,
Corvalis, Oregon, USA, 7 2020.

[43] C. Wang, R. Wang, A. Mandlekar, L. Fei-Fei, S. Savarese, and D. Xu,
“Generalization through hand-eye coordination: An action space for
learning spatially-invariant visuomotor control,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021, pp. 8913–8920.

[44] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine,
and P. Sermanet, “Learning latent plans from play,” in Conference on
Robot Learning, 2019.

[45] K. Pertsch, Y. Lee, Y. Wu, and J. J. Lim, “Demonstration-guided
reinforcement learning with learned skills,” in Conference on Robot
Learning, 2021.

[46] A. Ajay, A. Kumar, P. Agrawal, S. Levine, and O. Nachum, “Opal:
Offline primitive discovery for accelerating offline reinforcement
learning,” in International Conference on Learning Representations,
2021.

[47] K. Hakhamaneshi, R. Zhao, A. Zhan, P. Abbeel, and M. Laskin,
“Hierarchical few-shot imitation with skill transition models,” in
International Conference on Learning Representations, 2021.

[48] Y. Zhu, P. Stone, and Y. Zhu, “Bottom-up skill discovery from
unsegmented demonstrations for long-horizon robot manipulation,”
IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4126–4133,
2022.

[49] S. Nasiriany, T. Gao, A. Mandlekar, and Y. Zhu, “Learning and
retrieval from prior data for skill-based imitation learning,” in Confer-
ence on Robot Learning (CoRL), 2022.

[50] M. Drolet, S. Stepputtis, S. Kailas, A. Jain, J. Peters, S. Schaal, and
H. Ben Amor, “A comparison of imitation learning algorithms for
bimanual manipulation,” IEEE Robotics and Automation Letters (RA-
L), 2024.

[51] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” Proceedings 2002
IEEE International Conference on Robotics and Automation, vol. 2,
pp. 1398–1403 vol.2, 2002.

[52] M. Seo, S. Han, K. Sim, S. H. Bang, C. Gonzalez, L. Sentis, and
Y. Zhu, “Deep imitation learning for humanoid loco-manipulation
through human teleoperation,” in 2023 IEEE-RAS 22nd International
Conference on Humanoid Robots (Humanoids). IEEE, 2023, pp. 1–8.

[53] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song,
“Diffusion policy: Visuomotor policy learning via action diffusion,” in
Proceedings of Robotics: Science and Systems (RSS), 2023.

[54] P. Mitrano and D. Berenson, “Data Augmentation for Manipulation,”
in Proceedings of Robotics: Science and Systems, New York City, NY,
USA, 6 2022.

[55] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas,
“Reinforcement learning with augmented data,” Advances in neural
information processing systems, vol. 33, pp. 19 884–19 895, 2020.

[56] D. Yarats, I. Kostrikov, and R. Fergus, “Image augmentation is all
you need: Regularizing deep reinforcement learning from pixels,” in
International conference on learning representations, 2021.

[57] S. Young, D. Gandhi, S. Tulsiani, A. Gupta, P. Abbeel, and L. Pinto,
“Visual imitation made easy,” arXiv e-prints, pp. arXiv–2008, 2020.

[58] A. Zhan, R. Zhao, L. Pinto, P. Abbeel, and M. Laskin, “A framework
for efficient robotic manipulation,” in Deep RL Workshop NeurIPS
2021, 2021.

[59] S. Sinha, A. Mandlekar, and A. Garg, “S4rl: Surprisingly simple
self-supervision for offline reinforcement learning in robotics,” in
Conference on Robot Learning. PMLR, 2022, pp. 907–917.

[60] S. Pitis, E. Creager, and A. Garg, “Counterfactual data augmentation
using locally factored dynamics,” Advances in Neural Information
Processing Systems, vol. 33, pp. 3976–3990, 2020.

[61] S. Pitis, E. Creager, A. Mandlekar, and A. Garg, “Mocoda: model-
based counterfactual data augmentation,” in Proceedings of the 36th
International Conference on Neural Information Processing Systems,
2022, pp. 18 143–18 156.

[62] Z. Mandi, H. Bharadhwaj, V. Moens, S. Song, A. Rajeswaran, and
V. Kumar, “Cacti: A framework for scalable multi-task multi-scene
visual imitation learning,” in CoRL 2022 Workshop on Pre-training
Robot Learning, 2022.

[63] T. Yu, T. Xiao, A. Stone, J. Tompson, A. Brohan, S. Wang, J. Singh,
C. Tan, J. Peralta, B. Ichter, et al., “Scaling robot learning with
semantically imagined experience,” arXiv preprint arXiv:2302.11550,
2023.

[64] Z. Chen, S. Kiami, A. Gupta, and V. Kumar, “Genaug: Retargeting
behaviors to unseen situations via generative augmentation,” arXiv
preprint arXiv:2302.06671, 2023.

[65] H. Bharadhwaj, J. Vakil, M. Sharma, A. Gupta, S. Tulsiani, and
V. Kumar, “Roboagent: Generalization and efficiency in robot ma-
nipulation via semantic augmentations and action chunking,” in First
Workshop on Out-of-Distribution Generalization in Robotics at CoRL
2023, 2023.

[66] X. Zhang, M. Chang, P. Kumar, and S. Gupta, “Diffusion meets
dagger: Supercharging eye-in-hand imitation learning,” arXiv preprint
arXiv:2402.17768, 2024.

[67] S. Tian, B. Wulfe, K. Sargent, K. Liu, S. Zakharov, V. Guizilini, and
J. Wu, “View-invariant policy learning via zero-shot novel view syn-
thesis,” in Conference on Robot Learning (CoRL), Munich, Germany,
2024.

[68] L. Y. Chen, C. Xu, K. Dharmarajan, M. Z. Irshad, R. Cheng,
K. Keutzer, M. Tomizuka, Q. Vuong, and K. Goldberg, “Rovi-aug:
Robot and viewpoint augmentation for cross-embodiment robot learn-
ing,” in Conference on Robot Learning (CoRL), Munich, Germany,
2024.

[69] Y. Zhu, J. Wong, A. Mandlekar, and R. Martı́n-Martı́n, “robosuite: A
modular simulation framework and benchmark for robot learning,” in
arXiv preprint arXiv:2009.12293, 2020.

[70] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine
for model-based control,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2012, pp. 5026–5033.

[71] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” IEEE Journal on
Robotics and Automation, vol. 3, no. 1, pp. 43–53, 1987.

[72] K. Zakka, “mink,” 2024. [Online]. Available: https://github.com/
kevinzakka/mink

[73] S. Caron, Y. De Mont-Marin, R. Budhiraja, S. H. Bang,
I. Domrachev, and S. Nedelchev, “Pink: Python inverse kinematics
based on Pinocchio,” 2024. [Online]. Available: https://github.com/
stephane-caron/pink

[74] Y. Park and P. Agrawal, “Using apple vision pro to train and control
robots,” 2024. [Online]. Available: https://github.com/Improbable-AI/
VisionProTeleop

[75] N. Chernyadev, N. Backshall, X. Ma, Y. Lu, Y. Seo, and S. James,
“Bigym: A demo-driven mobile bi-manual manipulation benchmark,”
arXiv preprint arXiv:2407.07788, 2024.

[76] Z. Jiang, C.-C. Hsu, and Y. Zhu, “Ditto: Building digital twins of
articulated objects from interaction,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
5616–5626.

[77] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li,
J. Yang, H. Su, J. Zhu, et al., “Grounding dino: Marrying dino with
grounded pre-training for open-set object detection,” arXiv preprint
arXiv:2303.05499, 2023.


	Introduction
	DexMimicGen Method
	Parallel Subtasks
	Coordination Subtasks
	Sequential Subtasks
	Data Generation for Bimanual Manipulation

	Experiments
	DexMimicGen Features
	DexMimicGen Analysis
	Real-World Evaluation


