
Over the Top-1: Uncertainty-Aware Cross-Modal Retrieval with CLIP

Lluis Gomez1

1 Computer Vision Center, Universitat Autònoma de Barcelona.

Abstract

State-of-the-art vision-language models, such as
CLIP, achieve remarkable performance in cross-
modal retrieval tasks, yet estimating their predic-
tive uncertainty remains an open challenge. While
recent works have explored probabilistic embed-
dings to quantify retrieval uncertainty, these ap-
proaches often require model retraining or fine-
tuning adapters, making them computationally ex-
pensive and dataset-dependent. In this work, we
propose a training-free framework for uncertainty
estimation in cross-modal retrieval. We start with
a simple yet effective baseline that uses the co-
sine similarity between a query and its top-ranked
match as an uncertainty measure. Building on this,
we introduce a method that estimates uncertainty
by analyzing the consistency of the top-1 retrieved
item across samples drawn from the posterior pre-
dictive distribution using Monte Carlo Dropout
(MCD) or Deep Ensembles. Finally, we propose
an adversarial perturbation-based method, where
the minimal perturbation required to alter the top-1
retrieval serves as a robust indicator of uncertainty.
Empirical results in two standard cross-modal re-
trieval benchmarks demonstrate that our approach
achieves superior calibration compared to learned
probabilistic methods, all while incurring zero ad-
ditional training cost.

1 INTRODUCTION

Cross-modal retrieval systems enable the retrieval of infor-
mation across different modalities, such as using a text query
to find matching images or vice versa. This capability has
gained significant momentum in recent years, driven by the
growing need to efficiently search and manage information
in increasingly large multimodal databases. The ability to

bridge the gap between different modalities has become a
cornerstone of modern artificial intelligence applications,
ranging from image search engines to multimodal content
understanding.

State-of-the-art deep learning models for cross-modal re-
trieval, such as CLIP (Contrastive Language-Image Pre-
training) (Radford et al. [2021]), ALIGN (Li et al. [2021]),
Flamingo (Alayrac et al. [2022]), and BLIP (Li et al. [2023]),
have demonstrated remarkable performance in tasks like
image retrieval, text-to-image synthesis, and multimodal
reasoning. These models are typically trained by maxi-
mizing the agreement between image and text represen-
tations, leveraging large-scale datasets to learn rich, seman-
tically aligned embeddings. Their impressive performance
on benchmark datasets, such as MSCOCO (Lin et al. [2014])
and Flickr30K (Young et al. [2014]), underscores their ef-
fectiveness in bridging visual and textual information.

However, a critical aspect often overlooked in the evaluation
of cross-modal retrieval models is the uncertainty associated
with their predictions. Standard evaluation metrics, such
as Recall@K, focus solely on the accuracy of the retrieval
results, providing no insight into how confident the model is
in its predictions. In real-world applications, where retrieval
errors can have significant consequences – such as in medi-
cal imaging, autonomous systems, or content moderation –
understanding the model’s uncertainty is as important as its
accuracy.

Reliable measures of predictive uncertainty are essential for
distinguishing between confident, trustworthy predictions
and those where the model may be uncertain or even er-
roneous. Quantifying uncertainty in cross-modal retrieval
is particularly challenging due to the complex interactions
between modalities, where ambiguity can arise not only
from the model but also from the data, the task, and the
inherent variability in semantic alignment across different
modalities.

In this work, we focus on epistemic uncertainty – lack of
knowledge about the correct mapping from inputs to outputs.
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In Bayesian deep learning, epistemic uncertainty is captured
by placing a distribution over model weights and observ-
ing the spread in predictions this induces. The variance of
predictions across posterior samples directly quantifies the
model’s epistemic uncertainty. Monte Carlo Dropout (Gal
and Ghahramani [2016]) and Deep Ensembles (Lakshmi-
narayanan et al. [2017]) are practical posterior-sampling
techniques that make prediction variability observable, pro-
viding a Bayesian estimate of model uncertainty and help-
ing to mitigate the overconfidence of a single deterministic
network. Intuitively, if the model’s belief about the best
prediction is unstable across different sampled weight con-
figurations, it signals a lack of knowledge. In classification
tasks, epistemic uncertainty can be measured by the con-
sistency of model’s predictions: high posterior confidence
implies the model returns the same top class across nearly
all samples, whereas variation in predictions indicates sig-
nificant epistemic uncertainty.

We argue that the same principles apply to retrieval and
ranking tasks, including cross-modal retrieval. A Monte
Carlo Dropout (MCD) or Deep Ensemble ranker outputs a
predictive relevance distribution rather than a single score,
and the dispersion of this predictive distribution corresponds
to the model’s uncertainty in the ranking. By leveraging
posterior sampling (via dropout or ensembles) and tracking
changes in the top retrieval result, we obtain a principled and
quantifiable indicator of epistemic uncertainty in retrieval
outcomes, consistent with established definitions of model
uncertainty in classification and regression tasks.

In this paper, we propose several training-free approaches to
quantify uncertainty in cross-modal retrieval, with a focus
on pre-trained CLIP models. We explore simple yet effective
baselines, such as cosine similarity-based uncertainty scores,
as well as more sophisticated methods for predictive uncer-
tainty estimation, including Monte Carlo Dropout (MCD),
Deep Ensembles, and adversarial perturbation-based uncer-
tainty estimation. Our evaluation, conducted on standard
datasets (MSCOCO and Flickr30K), demonstrates that the
proposed uncertainty measures not only correlate well with
retrieval performance but also help to identify unreliable
rankings, improve retrieval robustness, and enhance the over-
all trustworthiness of cross-modal retrieval systems.

2 RELATED WORK

Uncertainty estimation has been extensively studied in
unimodal tasks such as image classification, natural lan-
guage processing, and time series forecasting. Methods in
Bayesian Neural Networks (Blundell et al. [2015], Neal
[2012]), including variational inference and Hamiltonian
Monte Carlo, provide principled approaches to estimate
predictive uncertainty but are often computationally expen-
sive, limiting their scalability to large models. To address
these limitations, more scalable techniques have been de-

veloped, such as Monte Carlo Dropout (Gal and Ghahra-
mani [2016]) and Deep Ensembles (Lakshminarayanan et al.
[2017]), which approximate Bayesian inference through
stochastic regularization and model diversity, respectively.
Additionally, post-hoc calibration methods like temperature
scaling (Guo et al. [2017]) have been proposed to adjust con-
fidence estimates without modifying the underlying model.

In the multimodal domain, uncertainty estimation remains
less explored. Probabilistic embedding methods (Chun et al.
[2021], Li et al. [2022], Neculai et al. [2022], Ji et al. [2023])
model cross-modal retrieval as a probabilistic matching task,
learning uncertainty-aware representations via probabilistic
contrastive losses. However, these methods often require
retraining models from scratch, which limits their scalability
to large pre-trained vision-language models (VLMs).

To reduce computational overhead, adapter-based ap-
proaches (Chun, Upadhyay et al. [2023]) have been pro-
posed. For example, ProbVLM (Upadhyay et al. [2023]) in-
troduces a probabilistic adapter trained post hoc to estimate
uncertainty distributions from frozen VLM embeddings.
While ProbVLM achieves strong calibration without mod-
ifying the base model, it still relies on additional training
and dataset-specific fine-tuning.

In contrast, our work focuses on training-free uncertainty
estimation methods for cross-modal retrieval. We systemati-
cally investigate approaches such as top-1 similarity-based
uncertainty, Monte Carlo Dropout, Deep Ensembles, and
adversarial perturbation-based techniques, all of which can
be directly applied to pre-trained models like CLIP without
additional fine-tuning. Our goal is to provide practical, com-
putationally efficient predictive uncertainty estimates that
improve retrieval robustness and help identify unreliable
predictions in cross-modal retrieval.

3 UNCERTAINTY ESTIMATION IN
CROSS-MODAL RETRIEVAL MODELS

In this section, we introduce our framework for estimating
uncertainty in cross-modal retrieval models. We first discuss
a simple baseline using similarity scores as an uncertainty
measure before exploring probabilistic techniques such as
Monte Carlo Dropout and Deep Ensembles. Finally, we
propose an adversarial perturbation-based approach that
quantifies uncertainty based on retrieval robustness.

3.1 BACKGROUND

State-of-the-art cross-modal retrieval models such as CLIP
learn embedding functions ϕq for text queries and ϕI for
images (and vice versa). These functions project their re-
spective inputs into a shared embedding space, aiming to
position the representation of a text query ϕq(q) and an
image ϕI(I) closely together if the image I is relevant to



the query q. The similarity between embeddings, quantified
using a similarity metric sim(ϕq(q), ϕI(I)), guides the re-
trieval of relevant images in response to a given text query.
Let R(q, I) denote the retrieval ranking for a query q ob-
tained as:

R(q, I) = argsortI∈I [sim(ϕq(q), ϕI(I))] (1)

where argsort sorts images in in the retrieval set I in de-
scending order by similarity score.

The standard evaluation metric for cross-modal retrieval
models is Recall at Rank K (R@K), which measures the pro-
portion of queries where a relevant item appears in the top-K
results. This metric is particularly preferred in datasets such
as MSCOCO and Flickr30k, where each text query has only
a single relevant image, and each image query has only five
relevant captions. This sparsity in ground-truth relevance
makes other retrieval metrics like Mean Average Precision
(mAP) less suitable, as they assume multiple relevant items
per query. R@K is also more suitable for practical retrieval
tasks where users primarily interact with top-ranked results.

In this scenario, a natural approach for estimating retrieval
confidence is to use the distance to the top-1 retrieved item
as a proxy for the uncertainty for a given query ranking;
similar to using the max value of a softmax as a proxy for
predictive uncertainty of classification models (Guo et al.
[2017]). In metric spaces, confidence and uncertainty are
inherently linked to the density of relevant items. In high-
confidence cases, queries should be embedded close to their
correct match, yielding high similarity scores, whereas am-
biguous queries exhibit lower similarity due to embedding
uncertainty. Therefore, we define a simple confidence mea-
sure as:

C(q) = sim(ϕq(q), ϕI(I
∗)), (2)

where I∗ = argmaxI∈I [sim(ϕq(q), ϕI(I))] is the top-1
retrieved image for query q. In CLIP, the similarity func-
tion sim is cosine similarity, ensuring that the confidence
score C(q) is bounded in the range [0, 1]. This bounded
range makes it an interpretable and normalized proxy for
confidence estimation. In the experimental section, we will
analyze how this simple confidence measure demonstrates
strong calibration with retrieval performance (in terms of
R@K), establishing it as an effective baseline for uncertainty
estimation (U(q) = 1− C(q)) in cross-modal retrieval.

3.2 MONTE CARLO DROPOUT

Monte Carlo Dropout (Gal and Ghahramani [2016]) pro-
vides an approximation to Bayesian inference in deep neural
networks by enabling dropout (Srivastava et al. [2014]) at
inference time, effectively sampling from the approximate

posterior distribution. More formally, given a neural net-
work with weights W , we introduce stochasticity through a
dropout mask z ∼ Bernoulli(p) applied independently to
each layer during each forward pass:

y∗(x,W, z) = f(x;W, z), (3)

where y∗(x,W, z) is the output given input x. The Bayesian
posterior predictive mean is approximated using M stochas-
tic forward passes:

Ep̂(y∗|x∗)[y
∗] ≈ 1

M

M∑
m=1

y∗m, (4)

where y∗m = f(x∗;W, zm) is the output from the m-th
stochastic forward pass. Similarly, the predictive variance is
given by:

Varp̂(y∗|x∗)(y
∗) ≈τ−1I +

1

M

M∑
m=1

y∗my∗Tm

− Ep̂(y∗|x∗)[y
∗]Ep̂(y∗|x∗)[y

∗]T

(5)

where τ−1ID represents the observation noise variance, ac-
counting for aleatoric uncertainty; the second term captures
epistemic uncertainty by averaging the variance of multi-
ple stochastic forward passes; while the final term ensures
proper centering of the variance estimate around the predic-
tive mean. This formulation enables uncertainty estimation
by leveraging variability across multiple stochastic forward
passes.

Gal and Ghahramani [2016] demonstrated the effectiveness
of Monte Carlo Dropout (MCD) for regression and classifi-
cation tasks, showing that dropout can serve as an efficient
Bayesian approximation. Although MCD has been widely
applied in unimodal settings such as image classification
(Gustafsson et al. [2020]) and natural language process-
ing (Xiao and Wang [2019]), its application to cross-modal
retrieval remains largely unexplored.

A key challenge in applying MCD to retrieval models is that
uncertainty estimation in retrieval is fundamentally different
from both classification and regression tasks. In classifica-
tion, uncertainty is estimated over discrete class probabil-
ities, while in regression, it is captured by the variance of
scalar outputs. However, in retrieval models, outputs are
rankings derived from distances in a high-dimensional em-
bedding space. In this context, the embedding functions ϕq

and ϕI can be seen as high-dimensional regressors, mapping
input text queries and images (and vice versa) into a shared
space where semantic similarity is measured.

Unlike traditional regression tasks, where uncertainty is
directly estimated on a continuous output variable, retrieval



uncertainty must be inferred from the variability in ranked
similarity scores across stochastic forward passes. Therefore,
applying MCD in retrieval requires analyzing the variance
of retrieval rankings rather than direct output distributions.

Given a retrieval query q and image gallery I , we obtain M
stochastic forward passes of the embedding functions ϕq and
ϕI , resulting in a set of retrieval rankings {Rm(q, I)}Mm=1.
From a Bayesian perspective, these retrieval rankings repre-
sent samples from the posterior distribution over rankings,
induced by the model’s uncertainty in embedding represen-
tations under dropout.

To quantify retrieval uncertainty, we propose to measure the
consistency of the top-1 retrieval outcome across posterior
samples:

UMCD(q) = 1− 1

M

M∑
m=1

⊮[Rm(q, I)1 = R∗(q, I)1], (6)

where R∗(q, I)1 is the most frequently retrieved top-1 item
across all Monte Carlo samples. This formulation reflects
epistemic uncertainty, as greater variability in top-1 re-
trievals suggests higher model uncertainty in ranking stabil-
ity.

Intuitively, if the same top-1 item appears consistently
across stochastic passes (UMCD(q) ≈ 0), the model is confi-
dent in its retrieval decision. Conversely, if the retrieved
top-1 item varies significantly across posterior samples
(UMCD(q) ≈ 1), the model exhibits high epistemic uncer-
tainty, signaling potential ambiguity in the ranking.

In Appendix A we analyze the sensitivity of MCD uncer-
tainty estimation to key hyperparameters: dropout rate and
the number of samples. Our experiments indicate robustness
across typical dropout values, with 0.2 providing optimal
calibration performance. Moreover, increasing the number
of samples improves stability in uncertainty estimates, with
20 samples offering a good trade-off between computational
efficiency and performance, although our default choice of
50 ensures more robust results.

3.3 DEEP ENSEMBLES

Deep Ensembles Lakshminarayanan et al. [2017] provide
a robust approach for predictive uncertainty estimation by
training multiple independent neural networks with different
random initializations. Although originally introduced as a
non-Bayesian technique, Deep Ensembles have been shown
to approximate Bayesian inference Hoffmann and Elster
[2021], where each model in the ensemble represents a
sample from a multimodal posterior distribution over the
model parameters.

Formally, consider an ensemble of K independently trained

retrieval models {Mk}Kk=1, each parameterized by weights
θk. The posterior predictive distribution for a new input x∗

is approximated as a uniformly-weighted mixture:

p̂(y∗|x∗) =
1

K

K∑
k=1

pθk(y
∗|x∗, θk), (7)

where pθk(y
∗|x∗, θk) is the predictive distribution of the

k-th model. This formulation aligns to Bayesian model aver-
aging, where the ensemble acts as an approximation to the
true posterior by representing it as a mixture of delta func-
tions centered at the maximum a posteriori (MAP) estimates
of each model’s parameters.

For regression tasks, this mixture can be approximated by
a Gaussian distribution, with the posterior predictive mean
and variance given by:

Ep̂(y∗|x∗)[y
∗] ≈ 1

K

K∑
k=1

µθk(x
∗) (8)

Varp̂(y∗|x∗)(y
∗) ≈ 1

K

K∑
k=1

(
σ2
θk
(x∗) + µ2

θk
(x∗)

)
−

(
Ep̂(y∗|x∗)[y

∗]
)2 (9)

where µθk(x
∗) and σ2

θk
(x∗) represent the mean and variance

predicted by the k-th model.

Applying Deep Ensembles to cross-modal retrieval intro-
duces challenges similar to those encountered with Monte
Carlo Dropout. Specifically, uncertainty must be inferred
from variability in retrieval rankings rather than scalar out-
puts or probability distributions over classes. Given a query
q and an image gallery I, we obtain K retrieval rankings
{Rk(q, I)}Kk=1 from each ensemble member.

To quantify retrieval uncertainty, we propose measuring the
consistency of the top-1 retrieval across ensemble members:

UEns(q) = 1− 1

K

K∑
k=1

⊮[Rk(q, I)1 = R∗(q, I)1], (10)

where R∗(q, I)1 is the most frequently retrieved top-1 item
across all ensemble models. This metric captures epistemic
uncertainty, as greater variability among ensemble predic-
tions indicates less confidence in the retrieval outcome.

3.4 ADVERSARIAL PERTURBATIONS FOR
UNCERTAINTY ESTIMATION

Building on the confidence scores based on top-1 distance
(our baseline from section 3.1) and top-1 consistency (sec-
tions 3.2 and 3.3), we propose an uncertainty estimation
framework based on adversarial perturbations. The core idea
is that robustness to small perturbations in the embedding



space can serve as an indicator of model uncertainty: confi-
dent rankings should remain stable under minor changes of
the query embedding, while uncertain predictions are more
susceptible to fluctuations.

Formally, given an input query q and its corresponding em-
bedding ϕq(q), an adversarial perturbation δ is defined as the
minimal perturbation required to alter the model’s output,
in our case, the top-1 retrieved item. This can be expressed
as the following optimization problem:

δ∗ = min{δ | R(ϕq(q) + δ, I)1 ̸= R(ϕq(q), I)1} (11)

This formulation seeks the smallest perturbation δ∗ that
changes the top-1 retrieval result. Eq. 11 is solved via Pro-
jected Gradient Descent (PGD) Madry et al. [2018]:

ϕq(q)
(t+1) = ϕq(q)

(t) − η
∇qL

∥∇qL∥2
, (12)

where η is the step size, and L is the difference between the
top-1 similarity and the highest-ranked competitor. The final
perturbation norm ∥δ∗∥2 serves as a proxy for the model’s
confidence:

Cadv(q) = tanh(∥δ∗∥2), (13)

where δ∗ is the minimal perturbation required to flip the
top-1 retrieval, and the tanh function maps the perturbation
norm to a bounded confidence score in [0, 1]. The L2 norm
offers a practical and interpretable proxy for retrieval robust-
ness, as it directly quantifies how far the query embedding
must be displaced to alter the retrieval outcome.

Notice that we solve the optimization in Eq. 11 using PGD in
CLIP’s embedding space. Specifically, we apply small, nor-
malized gradient steps (with a fixed step size) until the top-1
retrieval result changes or a maximum number of iterations
is reached. In this setting, the minimal query embedding per-
turbation required to alter the top-1 retrieval corresponds to
the distance to the nearest decision boundary in embedding
space – that is, the set of points where another candidate
becomes more similar than the current top-1 item. Since
the cosine similarity function is 1-Lipschitz continuous on
the unit sphere, the magnitude of the required perturbation
provides a meaningful proxy for retrieval robustness: larger
perturbations imply greater distance to the decision bound-
ary, and thus higher model confidence; smaller perturbations
indicate proximity to ambiguity regions where the ranking
is unstable. This perspective aligns with traditional margin-
based uncertainty estimation in classification tasks (e.g.,
SVMs), where distance to the decision boundary serves as
an uncertainty measure.

In our experiments, we also consider a linear approxima-
tion of δ∗ that directly estimates the minimal perturbation

required to flip the ranking:

δ∗ ≈ sim(q, I1)− sim(q, I2)

∥∇q(sim(q, I1)− sim(q, I2))∥2
. (14)

where I1 and I2 are the top-1 and top-2 retrieved items.

In our experiments we apply the adversarial perturbation
methods to both text-to-image and image-to-text retrieval
tasks. In all cases, the perturbation is applied only to the
query embedding (either text or image), while the gallery
embeddings remain fixed.

4 EXPERIMENTS

In this section, we present a comprehensive evaluation of
our proposed uncertainty estimation framework for cross-
modal retrieval. We begin by describing the datasets and
evaluation metrics used in our experiments. This is followed
by an in-depth analysis of top-1-based uncertainty estima-
tion techniques, including a comparison of our approach
with state-of-the-art probabilistic embeddings to highlight
its effectiveness in terms of calibration and efficiency.

4.1 DATASETS AND METRICS

We evaluate our methods on two standard benchmarks for
cross-modal retrieval, enabling reproducibility and compa-
rability with prior work: MSCOCO Lin et al. [2014] and
Flickr30K Young et al. [2014].

Flickr30K contains 31,783 images, each paired with five
descriptive captions. We follow the standard splits com-
monly used in cross-modal retrieval benchmarks, such as
the CLIP benchmark, with 29,000 images for training, 1,000
for validation, and 1,000 for testing.

MSCOCO-Captions comprises over 123,000 images, each
associated with five captions. We adopt the standard 2014
version with 82,783 images for training and 40,504 images
for validation/testing. For fair comparison, we follow the
established 5K test split protocol, which is widely used in
standard becnchmarks.

To assess the quality of our uncertainty estimates, we em-
ploy a combination of calibration plots, correlation mea-
sures, and rejection curves. Calibration Plots (Reliability
Diagrams) visualize the relationship between predicted un-
certainty scores and actual retrieval performance (measured
by Recall@k). Ideally, well-calibrated models should have
points lying close to the diagonal, indicating that the pre-
dicted confidence aligns with empirical performance.

Following Upadhyay et al. [2023], we define uncertainty lev-
els by partitioning the dataset based on predicted uncertainty
scores. We then compute the Spearman rank correlation (S)
to measure the monotonic relationship between uncertainty
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Figure 1: Calibration plots for all considered uncertainty estimation methods on MSCOCO (a) and Flickr30K (b).

levels and Recall@1. A perfectly calibrated model would
exhibit a correlation of -1, indicating that performance de-
creases monotonically with increasing uncertainty.

On the other hand, the R2 score evaluates how well a linear
regression model fits the relationship between uncertainty
levels and Recall@1. A higher R2 indicates a stronger linear
trend. We also provide a unified metric (−SR2) which com-
bines both scores to provide a single calibration measure.
An ideal model would achieve a score of 1.0, reflecting per-
fect monotonicity and linearity in the relationship between
uncertainty and retrieval performance.

4.2 IMPLEMENTATION DETAILS

For all experiments, we use the ViT-L/14 architecture with
original pretrained weights from Radford et al. [2021]. Ap-
pendix B provides additional experiments comparing ViT-
L/14 and the smaller ViT-B/32 variant.

For the experiments that involve Monte Carlo Dropout
(MCD), we perform 50 stochastic forward passes with 0.2
dropout rate during inference to approximate the predic-
tive posterior distribution, which is common practice in the
MCD literature to achieve stable uncertainty estimates.

For Deep Ensembles, we construct an ensemble of 12 inde-
pendently trained ViT-L/14 models sourced from the Open-
CLIP repository (Ilharco et al. [2021]). These models are
trained on diverse datasets, including OpenAI, LAION, Dat-
aComp, MetaCLIP, and DFN. This ensemble configuration
enables the capture of diverse model behaviors, contributing
to more robust uncertainty estimates through the aggregation
of outputs from models with varying inductive biases.

For the Adversarial Perturbation-based uncertainty estima-
tion, we set the perturbation hyperparameters after empirical
tuning to a step size of 0.025 and a maximum of 50 itera-
tions, striking a balance between computational efficiency
and the effectiveness of the perturbations in revealing model
uncertainty. We empirically determined approximately op-
timal values for these parameters using a hold-out dataset
(MSCOCO validation).

4.3 UNCERTAINTY CALIBRATION

Figure 1 presents calibration plots for all considered meth-
ods, while Table 1 provides a quantitative assessment of
their calibration in terms of the Spearman rank correlation
(S) and R² scores.

To compute the uncertainty levels used in our analysis, we
first define bins based on the range of values produced by
each uncertainty measure. Specifically, for each method, we
identify the minimum and maximum uncertainty scores and
divide this range into 10 equally spaced bins, representing
different levels of uncertainty.

Each query is then assigned to one of these bins based on its
corresponding uncertainty score. Within each bin, we com-
pute the retrieval performance in terms of Recall@1 (R@1),
which reflects the proportion of queries where the correct
item is retrieved at the top rank. This binning process allows
us to evaluate how well the model’s predicted uncertainty
aligns with its actual retrieval accuracy, providing insights
into the calibration of the uncertainty estimates.

In a well-calibrated model, we expect a monotonic de-
crease in R@1 performance as the uncertainty level in-
creases—indicating that higher uncertainty corresponds to
lower retrieval accuracy. This trend is clearly observed in
Figure 1, where R@1 consistently declines across increasing
uncertainty levels for most methods, demonstrating effective
calibration of the uncertainty estimates.

The results in Table 1 demonstrate all proposed top1-based
methods exhibit exceptional calibration performance, as
seen in their consistently low Spearman Rank Correlation
(S) and high R² and -SR² scores. These methods directly
address uncertainty in retrieval rankings, making them par-
ticularly effective for the task at hand.

The Top-1similarity baseline achieves near-perfect calibra-
tion across both image-to-text and text-to-image retrieval
tasks. Its simplicity – using the cosine similarity between
the query and the top-1 retrieved item as a confidence score –
proves highly effective, yielding a −SR2 = 0.95 for image-
to-text and text-to-image retrieval in the MSCOCO dataset.
The method based on Adversarial Perturbations on top of the
ranking provided by the deterministic model (“Adversarial”



MSCOCO Flickr30K

image2text text2image image2text text2image

S R2 -SR2 S R2 -SR2 S R2 -SR2 S R2 -SR2

Upadhyay et al. [2023] -0.99 0.93 0.93 -0.30 0.35 0.10 -0.70 0.71 0.49 0.70 0.50 0.35

Top1similarity -1.00 0.95 0.95 -1.00 0.95 0.95 -0.98 0.86 0.84 -1.00 0.94 0.94
Adversarial -1.00 0.97 0.97 -1.00 0.99 0.99 -0.95 0.87 0.83 -1.00 0.96 0.96
Adversarial lin. -1.00 0.96 0.96 -1.00 0.98 0.98 -0.95 0.85 0.81 -1.00 0.92 0.92

Top1similarity (MCD) -0.92 0.88 0.82 -1.00 0.96 0.96 -0.97 0.85 0.83 -1.00 0.96 0.96
Top1consistency (MCD) -1.00 0.88 0.88 -1.00 0.96 0.96 -0.98 0.77 0.75 -1.00 0.99 0.99
Adversarial (MCD) -1.00 0.99 0.99 -1.00 0.98 0.98 -0.96 0.93 0.89 -1.00 0.95 0.95
Adversarial lin. (MCD) -1.00 0.97 0.97 -1.00 0.95 0.95 -1.00 0.95 0.95 -1.00 0.91 0.91

Top1similarity (Ens.) -0.99 0.92 0.91 -1.00 0.95 0.95 -0.98 0.77 0.75 -0.90 0.85 0.77
Top1consistency (Ens.) -1.00 0.91 0.91 -1.00 0.96 0.96 -0.98 0.90 0.88 -1.00 0.99 0.99
Adversarial (Ens.) -0.97 0.89 0.86 -0.99 0.90 0.89 -0.90 0.83 0.75 -1.00 0.84 0.84

Table 1: Uncertainty calibration metrics for all considered methods. The calibration results of ProbVLM (Upadhyay et al.
[2023]) are included for reference, though they are not directly comparable to the other methods (see main text for detailed
analysis). Note that the ProbVLM results on Flickr30K are based on models trained on MSCOCO in a cross-dataset scenario.

in the table) slightly outperforms the baseline method.

The best uncertainty estimation in terms of average -SR² is
the method based on Adversarial Perturbations on top of
the MCD ranking – “Adversarial (MCD)” in the table. We
appreciate that using Monte Carlo Dropout (MCD) or Deep
Ensemble (Ens.) improve in some tasks/datasets. Although
there is no clear winner overall in terms of calibration, the
analysis in section 4.4 offers a distinct analysis that reveals
clear differences among methods.

Comparison with ProbVLM

ProbVLM (Upadhyay et al. [2023]), while more sophisti-
cated and capable of converting deterministic embeddings
into probabilistic ones, demonstrates weaker calibration per-
formance. It is important to highlight that ProbVLM and the
rest of considered methods tackle different problems, and
thus, their performance metrics are not directly comparable
in every aspect.

ProbVLM introduces a probabilistic adapter over pre-trained
Vision-Language Models (VLMs) like CLIP, converting
their deterministic outputs into probability distributions.
However, the calibration results indicate that its uncertainty
estimates do not align as closely with retrieval performance
as those of the proposed top1-based methods.

The probabilistic approach in ProbVLM is more flexible,
enabling the model to capture uncertainties in multi-modal
data and supporting advanced downstream tasks like model
selection and active learning, which simpler methods cannot
do. However, this increased complexity comes at the cost
of calibration in retrieval tasks, as shown by its lower -SR²

scores compared to the simpler methods proposed.

Moreover, ProbVLM relies on training data for cross-modal
alignment, making it more computationally expensive and
data-dependent. As an example, notice the lower results on
Flickr30K in Table 1 for ProbVLM trained on MSCOCO
– i.e. in a cross-dataset scenario. In contrast, the proposed
methods show that variability/similarity in top-1 retrieval
results provides an excellent indicator of retrieval uncer-
tainty, leading to high-quality uncertainty calibration, in a
data-agnostic manner.

4.4 REJECTION PLOTS

We complement calibration analysis with rejection plots
which show how retrieval performance improves as increas-
ingly uncertain samples are rejected. This helps visualize
the utility of uncertainty estimates in practical scenarios,
where unreliable predictions may be filtered out to enhance
system robustness. Figure 2 presents rejection plots for all
considered uncertainty estimation methods.

To implement these plots, we first sort all queries in de-
scending order of uncertainty, starting from the most uncer-
tain to the least uncertain. For each uncertainty estimation
method, we progressively remove the most uncertain queries
in batches and recalculate the retrieval performance after
each removal. This process allows us to observe how per-
formance metrics evolve as the most uncertain samples are
systematically excluded.

For text-to-image (t2i) retrieval, where we have a total of
25,000 and 5,000 queries in MSCOCO and Flickr30K re-
spectively, we remove 500 text queries at each step. In the
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Figure 2: Rejection plots for all considered uncertainty estimation methods on MSCOCO (a) and Flickr30K (b). The x-axis
represents the number of rejected queries, while the y-axis shows Recall@1. The Area Under the Curve (AUC) for each
method is indicated in brackets next to the method names in the figure legends, facilitating direct comparison across methods.

case of image-to-text (i2t) retrieval, we remove 100 image
queries per step due to the smaller query set (5,000 and
1,000 respectively). After each batch removal, we compute
Recall@1 (R@1) for the remaining queries to track per-
formance changes as increasingly uncertain samples are
filtered out.

A well-calibrated uncertainty estimation method should
show a monotonic improvement in R@1 as the most un-
certain queries are removed. This is because the retained
queries are those for which the model is more confident,
leading to higher retrieval accuracy. The upper-bound curve
in the plots represents the theoretical maximum performance
achievable if the most challenging queries were perfectly
identified and removed.

In addition to visualizing the rejection curves, we quan-
tify performance by computing the area under the curve
(AUC) for each method. The AUC is calculated using the
trapezoidal rule, which approximates the region under the
curve as a series of trapezoids. The area of each trapezoid
is computed based on the retrieval performance at consecu-
tive points along the rejection curve. Mathematically, this is
expressed as:

∫ b

a

f(x) dx ≈ (b− a) · 1
2 (f(a) + f(b)). (15)

where f(x) represents the retrieval performance (R@1), and
[a, b] are the boundaries of each interval corresponding to
the rejection steps. We normalize the number of rejected
samples such that the maximum possible area under the
curve equals 1. This method provides an efficient and ac-
curate approximation of the overall performance across the
entire range of rejected samples.

As shown in Figure 2, most methods exhibit a clear upward
trend, confirming that their uncertainty estimates effectively
identify low-confidence predictions. The computed AUC
values – shown in brackets after the methods’ names in the
figure legends – reflect the overall performance improve-

ment, with higher AUC indicating better utilization of un-
certainty estimates. This trend is particularly evident in both
MSCOCO and Flickr30K, where performance approaches
the upper bound as a large fraction of uncertain queries is
rejected, highlighting the effectiveness of the uncertainty
estimates in improving retrieval robustness.

Interestingly, unlike the results observed in the calibration
analysis, where all proposed methods performed equally
well and showed similar trends, the rejection plots reveal a
clear distinction in performance across the different methods.
Specifically, methods based on Top-1consistency (across
Monte Carlo Dropout samples) and adversarial perturba-
tions consistently outperform the top-1 similarity baselines.
This indicates that while simple similarity-based measures
can provide good overall calibration, more sophisticated
approaches like MCD-based consistency and adversarial
robustness capture deeper aspects of model uncertainty that
translate into better real-world performance when uncertain
samples are filtered out.

This divergence in findings between calibration and rejec-
tion analyses can be attributed to the different aspects of
uncertainty each evaluation metric emphasizes. Calibration
analysis primarily assesses how well the model’s predicted
uncertainty scores align with actual performance, focusing
on the global relationship between uncertainty and accu-
racy across all samples. In contrast, rejection analysis places
greater emphasis on the relative ranking of uncertainty esti-
mates – it evaluates how effectively the model can prioritize
uncertain samples for rejection to maximize performance
gains.

While top-1 similarity may provide well-calibrated scores
on average, it may lack the fine-grained sensitivity needed to
distinguish between subtle differences in uncertainty among
hard queries. On the other hand, top-1 consistency (MCD)
and adversarial perturbation methods are designed to capture
model stability and robustness under perturbations, which
are more directly linked to the model’s uncertainty in spe-
cific decisions. These methods excel in identifying truly



uncertain queries, leading to superior performance in rejec-
tion scenarios.

5 CONCLUSION

In this work, we have presented a comprehensive frame-
work for uncertainty estimation in cross-modal retrieval
models, exploring different techniques to quantify retrieval
confidence. We introduced a range of methods, starting
from straightforward top-1 similarity-based measures, pro-
gressing through probabilistic approaches like Monte Carlo
Dropout (MCD) and Deep Ensembles, and culminating in
an adversarial perturbation-based method that assesses un-
certainty through retrieval robustness.

Our calibration analysis demonstrated that all proposed
methods achieve exceptional calibration performance, with
top-1 similarity-based approaches providing strong base-
line results. Notably, methods incorporating MCD and ad-
versarial perturbations slightly outperformed the baseline
in certain settings, although the differences were not pro-
nounced. This suggests that simple confidence measures,
such as cosine similarity to the top-1 retrieved item, can be
surprisingly effective for aligning predicted confidence with
actual retrieval accuracy.

However, rejection analysis uncovered clear distinctions
between the methods. Specifically, techniques based on top-
1 consistency across MCD samples and adversarial per-
turbations consistently outperformed top-1 similarity base-
lines. These methods excelled at identifying truly uncertain
queries, leading to superior performance when filtering out
unreliable retrieval rankings. This divergence highlights an
important insight: while calibration metrics evaluate global
alignment between confidence and performance, rejection
analysis is more sensitive to a method’s ability to rank uncer-
tainty effectively – a critical factor in real-world applications
where decisions are made based on the most confident pre-
dictions.

Our comparison with ProbVLM (Upadhyay et al. [2023])
reveals that while ProbVLM offers advanced capabilities
through probabilistic modeling – enabling applications
like active learning and model selection – it demonstrated
weaker calibration compared to the proposed methods. This
performance gap is specially notable in cross-dataset sce-
narios, due to dataset-specific training dependencies. This
highlights an inherent strength of our approach – dataset
agnosticism and superior generalization.

In conclusion, our findings suggest that top1-based, retrieval-
focused predictive uncertainty estimation methods, such as
MCD-based rank consistency and adversarial perturbation
approaches, are not only computationally efficient but also
highly effective in both calibration and robustness evalu-
ations. These methods offer strong, data-agnostic perfor-
mance without the overhead of complex probabilistic mod-

eling, making them well-suited for real-world cross-modal
retrieval applications.

While our MCD and Ensemble-based methods do not re-
quire additional training, they do incur extra inference-time
computation. This overhead scales linearly with the number
of MCD samples or the number of models in the Ensem-
ble; however, these computations are trivially parallelizable
in practice, leading to minimal time overhead. Moreover,
the computational cost can be further mitigated through
selective application – for example, using simpler cosine
similarity-based uncertainty (or fewer MCD samples) for
routine queries, while reserving more expensive uncertainty
estimation for critical or high-risk decisions.

To support reproducibility and further research, the
code for all proposed uncertainty estimation methods,
along with the evaluation framework used in this work,
are made publicly available at http://github.com/
lluisgomez/uCLIP.
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A SENSITIVITY ANALYSIS OF MCD HYPERPARAMETERS

In this section, we provide additional results analyzing the sensitivity of the Monte Carlo Dropout (MCD) uncertainty
estimation to its key hyperparameters: the dropout rate and the number of stochastic forward passes (samples). In the main
paper, we use 50 stochastic forward passes with a dropout rate of 0.2 during inference, here we evaluate the robustness of
our top-1 consistency uncertainty estimates on Flickr30K and MSCOCO retrieval tasks under different settings of these
hyperparameters. Calibration plots are shown in Figures 3 and 4 respectively.

(a) Calibration when varying the dropout rate with a fixed number of MCD samples (num_samples = 50).

(b) Calibration when varying the number of MCD samples with a fixed dropout rate (drop_rate = 0.2).

Figure 3: Calibration plots of MCD top1-consistency uncertainty estimation on Flickr30K text-to-image (t2i) and image-
to-text (i2t) retrieval tasks for different hyperparameter settings. Each curve corresponds to a different hyperparameter
configuration, with the −SR2 calibration score shown in brackets in the respective legend entry.

Effect of Dropout Rate. Figures 3(a) and 4(a) show calibration plots for varying dropout rates while fixing the number of
samples to 50. We observe that the uncertainty estimates are relatively robust across typical dropout values, with a dropout
rate of 0.2 providing slightly better calibration performance overall.

Effect of Number of Samples. Figure 3(b) and 4(b) show calibration plots for varying the number of samples while
fixing the dropout rate to 0.2. As expected, increasing the number of samples leads to more stable uncertainty estimates.
Nevertheless, we find that 20 samples already provide a good trade-off between performance and computational cost, while
our default choice of 50 samples ensures more stable estimates.
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(a) Calibration when varying the dropout rate with a fixed number of MCD samples (num_samples = 50).

(b) Calibration when varying the number of MCD samples with a fixed dropout rate (drop_rate = 0.2).

Figure 4: Calibration plots of MCD top1-consistency uncertainty estimation on MSCOCO text-to-image (t2i) and image-
to-text (i2t) retrieval tasks for different hyperparameter settings. Each curve corresponds to a different hyperparameter
configuration, with the −SR2 calibration score shown in brackets in the respective legend entry.

B IMPACT OF MODEL SCALE

To assess the impact of model scale on uncertainty estimation, we conducted additional experiments comparing ViT-L/14
and the smaller ViT-B/32 variant. The results are presented in Table 2.

MSCOCO Flickr30K

image2text text2image image2text text2image

S R2 -SR2 S R2 -SR2 S R2 -SR2 S R2 -SR2

Top1similarity (ViT-L/14) -1.00 0.95 0.95 -1.00 0.95 0.95 -0.98 0.86 0.84 -1.00 0.94 0.94
Top1similarity (ViT-B/32) -1.00 0.95 0.95 -1.00 0.95 0.95 -1.00 0.83 0.83 -0.98 0.96 0.94

MCD Top1similarity (ViT-L/14) -0.92 0.88 0.82 -1.00 0.96 0.96 -0.97 0.85 0.83 -1.00 0.96 0.96
MCD Top1similarity (ViT-B/32) -0.95 0.86 0.82 -1.00 0.96 0.96 -0.98 0.92 0.90 -1.00 0.95 0.95
MCD Top1consistency (ViT-L/14) -1.00 0.88 0.88 -1.00 0.96 0.96 -0.98 0.77 0.75 -1.00 0.99 0.99
MCD Top1consistency (ViT-B/32) -0.98 0.84 0.82 -1.00 0.99 0.99 -0.96 0.72 0.70 -1.00 0.98 0.98
MCD Adversarial (ViT-L/14) -1.00 0.99 0.99 -1.00 0.98 0.98 -0.96 0.93 0.89 -1.00 0.95 0.95
MCD Adversarial (ViT-B/32) -0.99 0.92 0.91 -0.98 0.87 0.85 -0.99 0.90 0.89 -0.97 0.78 0.76
MCD Adversarial lin. (ViT-L/14) -1.00 0.97 0.97 -1.00 0.95 0.95 -1.00 0.95 0.95 -1.00 0.91 0.91
MCD Adversarial lin. (ViT-B/32) -0.95 0.89 0.85 -1.00 0.86 0.86 -0.99 0.91 0.90 -0.99 0.78 0.77

Table 2: Uncertainty calibration metrics for all considered methods using CLIP ViT-L/14 and ViT-B/32.

Our analysis shows that while the larger ViT-L/14 model achieves better calibration metrics overall, the uncertainty
estimation performance of ViT-B/32 remains competitive and consistent across tasks. Specifically, we observe that for
Top1-similarity and Top1-consistency methods, the relative differences between the two models are moderate, suggesting
that these uncertainty estimates are robust to model scale. In contrast, for the adversarial methods, the differences between
ViT-L/14 and ViT-B/32 are more pronounced, indicating a stronger dependence on model size.
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