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ABSTRACT

Recent work explores agentic inference-time techniques to perform structured,
multi-step reasoning. However, stateless inference often struggles on multi-step
tasks due to the absence of persistent state. Moreover, task-specific fine-tuning
or instruction-tuning often achieve surface-level code generation but remain brit-
tle on tasks requiring deeper reasoning and long-horizon dependencies. To ad-
dress these limitations, we propose stateful multi-agent evolutionary search, a
training-free framework that departs from prior stateless approaches by combining
(i) persistent inference-time state, (ii) adversarial mutation, and (iii) evolutionary
preservation. We demonstrate its effectiveness in automated unit test generation
through the generation of edge cases. We generate robust edge cases using an
evolutionary search process, where specialized agents sequentially propose, mu-
tate, and score candidates. A controller maintains persistent state across gener-
ations, while evolutionary preservation ensures diversity and exploration across
all possible cases. This yields a generalist agent capable of discovering robust,
high-coverage edge cases across unseen codebases. Experiments show our stateful
multi-agent inference framework achieves substantial gains in coverage over state-
less single-step baselines, evaluated on prevalent unit-testing benchmarks such as
HumanEval and TestGenEvalMini and using three diverse LLM families—Llama,
Gemma, and GPT. These results indicate that combining persistent inference-time
state with evolutionary search materially improves unit-test generation.

1 INTRODUCTION

Despite their success on single-step tasks, most inference-time computation in large language mod-
els (LLMs) remains stateless, with each inference call discarding prior intermediate reasoning unless
explicitly re-injected into the prompt. This design choice optimizes deployment throughput but crip-
ples performance in domains that require deep, multi-stage reasoning—such as program synthesis,
theorem proving, multi-hop reasoning, deductive reasoning, and mathematical problem-solving—
where intermediate states must be persistently updated and revisited. The fixed computational depth
per transformer forward pass (Vaswani et al., 2017) and the well-documented decline in reasoning
fidelity over long logical chains (Wei et al., 2022; Anil et al., 2022) make these limitations struc-
tural rather than incidental. The autoregressive decoding process further constrains exploration by
forcing reasoning branches to unfold serially, often necessitating brittle orchestration through mul-
tiple model calls (Yao et al., 2023a; Long et al., 2024). Overcoming these constraints demands
stateful inference-time architectures—including scratchpad prompting (Nye et al., 2021; Wei et al.,
2022), tree-structured reasoning (Yao et al., 2023b), and retrieval-augmented agents (Lewis et al.,
2020)—that can maintain and manipulate intermediate reasoning artifacts directly. However, cur-
rent techniques still operate by eliciting reasoning from fixed, opaque model parameters, limiting
both steerability (Zhou et al., 2023) and interpretability (Olah et al., 2020; Nanda et al., 2023) of the
reasoning process.

In this context, we investigate the suitability of a multi-stage evolutionary algorithm (Bäck et al.,
1997; Hansen, 2016) in which each stage executes an adversarially guided actor–critic-style (AGAC)
search (Ding et al., 2023). Unlike conventional evolutionary pipelines where each generation
is evaluated in isolation, our design shares state information—captured as the critic’s value esti-
mates—across successive evolutionary stages. This shared evaluation signal serves as a persistent
knowledge base, allowing later stages to inherit and refine the judgment of earlier stages rather
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than re-learning from scratch (Jaderberg et al., 2017; Such et al., 2017). Such cross-stage informa-
tion flow improves sample efficiency, reduces evaluation variance, and encourages coherent policy
evolution over long optimization horizons (Mouret & Clune, 2015; Salimans et al., 2017). By inte-
grating AGAC within this multi-stage framework, we can combine the exploration benefits of evo-
lutionary search with the fine-grained feedback of actor–critic learning (Konda & Tsitsiklis, 2000).
In this work, the actor–critic terminology strictly refers to inference-time reward shaping only: the
critic scores candidate tests to guide the actor, but no model parameters are updated as in traditional
reinforcement learning.

This distinction is important because our aim is not to train new policies, but to adapt inference-time
behavior for practical tasks. Unit test generation provides an ideal setting to study this: it requires
structured reasoning beyond syntax, benefits directly from persistent state, and offers measurable
signals such as coverage and mutation scores to guide search. Stateless test generation often covers
only a narrow slice of behavior, whereas maintaining state enables gradually expanding coverage
and surfacing deeper failure modes. In summary, this work introduces a training-free framework
for unit test generation that (i) maintains persistent inference-time state across search iterations,
(ii) integrates coverage, exceptions, and mutation robustness into a unified reward design, and (iii)
demonstrates consistent coverage improvements over stateless baselines on HumanEval and Test-
GenEvalMini.

2 RELATED WORK

The rapid advancement of large language models (LLMs) has enabled significant progress in AI-
assisted reasoning, code generation, and test automation. Prior research spans several domains
including code generation, test synthesis, algorithmic discovery, and scientific reasoning, yet many
approaches face limitations in adaptability, coverage, and generalization.

Multi-agent frameworks such as AI Co-scientist (Gottweis et al., 2025), AlphaEvolve (Novikov
et al., 2025b) and GEPA (Agrawal et al., 2025) demonstrate that collaborative reasoning and re-
flective prompt evolution can enhance exploration. However, these systems typically lack persistent
state and rely on ad-hoc orchestration rather than structured reward signals.

Evolutionary and search-based methods preserve high-fitness candidates and explore combinatorial
program behaviors Mühlenbein et al., 1988; Burnim & Sen, 2008. In particular, evolutionary search
explicitly manages the exploration-exploitation tradeoff, allowing the system to explore novel pro-
gram behaviors while retaining high-performing edge cases and avoiding local minima that static
or greedy methods often encounter. Other works Karten et al.; Leng et al., 2024; Wen et al., 2024
provide insights into scaling, planning, and iterative hypothesis generation, emphasizing structured
search and evaluation.

Despite these advances, prior approaches often struggle with adaptability, robust coverage, and sys-
tematic exploration of edge cases. Many LLM-based test generators operate in a feed-forward man-
ner or require fine-tuning, limiting their ability to dynamically adjust to new or evolving codebases.
Multi-agent and evolutionary approaches in prior work may fail to explore the full combinatorial
space or integrate adversarial evaluation effectively.

We address these gaps with a training-free framework that unifies (i) multi-agent reasoning, (ii)
adversarial mutation and reward shaping, and (iii) evolutionary preservation with persistent state.
An actor proposes candidate edge cases by reasoning over the program, an adversary perturbs the
code to expose hidden failure modes, and a critic integrates coverage, exceptions, and mutation
feedback to prioritize high-value test cases. A non-Markovian controller maintains memory of prior
edge cases and preserves high-fitness candidates across iterations, enabling inference-time policy
adaptation and robust exploration. This combination allows our system to dynamically adapt to
unseen codebases, produce robust edge cases, and achieve higher coverage than existing methods,
without relying on gradient-based training or domain-specific fine-tuning.
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Figure 1: Our architecture for unit test generation decomposes the task into two phases: (i) edge
case generation from source code and (ii) unit test construction from those cases. The first phase
demands deeper reasoning and is addressed through an evolutionary search (as highlighted in the
blue box) executed in a stateful manner over multiple stages (N×) by four agents—Actor, Executor,
Adversary, and Critic—coordinated by a Controller that propagates persistent state across N evo-
lutionary stages (as highlighted by the magenta line). Once the edge cases converge to sufficient
coverage and robustness, they are translated into a complete unit test file via a single-step inference
call.

3 METHODOLOGY

Our central premise is that generating syntactically correct unit tests is trivial once a set of robust
edge cases with sufficient coverage are identified, but reasoning about such edge cases requires
structured exploration, memory, and adversarial grounding.

Figure 1 shows the architecture for the unit test generation engine with the proposed stateful multi-
agent evolutionary search for the edge case generator. Given source code f , the system first runs
the stateful multi-agent evolutionary search to extract edge cases and then converts those cases into
unit tests.

Our stateful multi-agent evolutionary search is an adversarially guided actor-critic (AGAC) system
that operates entirely at inference time and does not require gradient-based learning. The Actor
issues multiple LLM inference calls to propose candidate edge cases, the Adversary perturbs the
environment to reveal robustness gaps, and the Critic assigns scalar rewards used for evolutionary
search. The Executor is an auxiliary agent that provides an execution environment to execute edge
cases, unit tests, and return coverage and robustness feedback. These four agents are orchestrated
through the Controller which maintains persistent state across stages and orchestrates the search
until convergence.

Definition 1 (State). A State is represented in Equation 1,

Sn−1 =
(
ζ1:n−1, µ1:n−1, κ1:n−1, c1:n−1, R1:n−1

)
(1)
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where ζ1:n−1 denotes the sequence of prior edge cases, µ1:n−1 is the sequence of mutation scores,
κ1:n−1 is the sequence of coverage scores, c1:n−1 is the sequence of exception signals, and R1:n−1

is the reward history from previous stages.

Definition 2 (Actor). The Actor (An) proposes candidate edge cases at each stage. At initializa-
tion (n = 1), there is no prior feedback or state information to guide generation, so the actor is
seeded deterministically (cold-start) using rule-based heuristics such as boundary partition analysis,
equivalence classes, and stress conditions. For n > 1, the actor generates candidates through large
language model in-context learning, conditioned on the persistent state Sn−1 and the source code f :

ζn = A(f, Sn−1) (2)

More details about the cold-start can be found in Appendix D

Definition 3 (Adversary). For each stage, Adversary (Dn) generates a set of mutants {f ′
n,j}Mj=1

of the source file, and evaluates whether the edge cases ζn can kill these mutants (i.e produce a
different output on f ′

n,j than they did on f ). The resulting mutation score is defined in Equation 3
and provides a robustness signal for evaluating the edge case candidates. Mutation testing promotes
robustness by checking whether tests can distinguish the true program from systematically perturbed
variants, preventing the search from optimizing toward shallow coverage gains.

µn =
Number of mutants killed by ζn

Total number of generated mutants
(3)

Definition 4 (Critic). For each stage, Critic (Cn) computes the scalar reward for the edge cases by
integrating coverage (κ), mutation robustness (µ), and exception discovery (c), given by Equation 4.

Runnormalized
n (κn, µn, cn) = [α · cn + β(κn +max(0, (κn − θ) · 0.5))]× γ · µn (4)

where α, β, θ, γ ∈ R+ are tunable hyperparameters. All rewards are normalized to [0, 1] using
min-max normalization for evolutionary comparison.

The reward combines exception discovery (cn), structural coverage (κn), and mutation robustness
(µn). The exception term encourages exploration of inputs that expose faults. The coverage term ac-
counts for the proportion of program elements exercised, with an additional bonus once a minimum
threshold θ is passed, so that progress beyond trivial coverage is reflected more strongly. Multi-
plication by the mutation score ensures that high reward is assigned only when the generated tests
are also robust to program perturbations. By shaping the critic’s reward surface using adversarial
perturbations we ground the actor’s responses and thus prevent the actor from optimizing toward
trivial coverage gains instead of exploring robust, high-value edge cases.

Definition 5 (Executor). All evaluations for coverage and mutation scoring are executed in a sand-
boxed Docker environment with a Model-Context Protocol (MCP) server. This provides: (i) Iso-
lation: Mutants and edge cases cannot harm the host system; (ii) Determinism: Results are re-
producible across runs; and (iii) Bounded resources: Memory and timeouts prevent unbounded
execution. A detailed description of the Executor architecture can be found in Appendix A.3.

Definition 6 (Controller). The controller orchestrates the interplay of Actor, Adversary, and Critic
by updating the non-Markovian state information (Equation 1) and checking for the termination
criteria as defined in Equation 5.

∑
i

Ri ≥ τ or max
i∈[n−p+1, n]

Ri − min
i∈[n−p+1, n]

Ri ≤ δ (5)

The controller applies two complementary stopping conditions. The first checks whether the reward
has crossed a predefined threshold, indicating that the search has reached a sufficient overall quality
level. The second detects a plateau in rewards over the most recent p iterations, suggesting that
further search is unlikely to yield substantial improvements. The plateau condition is evaluated only
when n ≥ p. The thresholds (τ , δ) and window size p can be tuned according to task complexity as
well as computational budget, allowing the framework to balance thoroughness and efficiency.
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A key methodological contribution is that our framework does not require training, fine-tuning, or
task-specific adaptation of large language models. Instead, it builds a training-free test-generation
agent whose intelligence emerges from:

1. Inference-time state management: The controller maintains a structured non-Markovian state,
feeding the actor with explicit histories of edge cases, coverage scores, mutation feedback, and
exceptions. Unlike conventional RL where state updates drive gradient descent, here state up-
dates directly shape the actor’s inference context. This functions as a lightweight form of policy
shaping at inference time, guided by rewards but without parameter updates.

2. Multi-agent grounding: The actor’s outputs are consistently grounded by adversarial mutations
and fitness evaluation from the critic, allowing even base LLMs without domain adaptation to be
repurposed into reasoning agents.

3. Evolutionary selection: The framework preserves a population of diverse elites, avoiding re-
liance on a single trajectory and improving robustness without requiring specialized training.

This positions our framework alongside recent agentic paradigms such as AI Co-Scientist (Gottweis
et al., 2025) and AlphaEvolve (Novikov et al., 2025a), while differing in its explicit use of evolution-
ary preservation and adversarial reward shaping to structure inference-time coordination. Algorithm
1 shows the overall computational framework that we use for multi-stage evolutionary search.

4 EXPERIMENTS

We evaluated the proposed evolutionary search algorithm on two benchmark datasets, HumanEval
and TestGenEvalMini, using three large language models (LLMs): Llama-70B, GPT-o4-mini,
and Gemma-2-27B. To assess its effectiveness, we compared our method against six inference-time
baselines—zero-shot, one-shot, and three-shot in-context learning, each with and without chain-
of-thought (CoT) prompting—under three standard test coverage metrics: line coverage, branch
coverage, and function coverage. We use coverage.py for line/branch/function metrics and Cosmic-
Ray for mutation analysis. Each run is sandboxed in a Docker/MCP environment.

HumanEval: HumanEval Chen et al., 2021 is a benchmark of 164 Python programming problems
with reference implementations. HumanEval is designed to test reasoning and correctness in code
generation. For evaluation, all examples were typeset for consistency and compatibility with au-
tomated execution frameworks, allowing precise assessment of model outputs, including edge-case
handling and exception detection.

TestGenEvalMini: Derived from the original TestGenEval dataset Zhang et al., 2024 (which is
built from SWEBench Jimenez et al., 2024), TestGenEvalLite contains real-world code and test file
pairs from 11 well-maintained Python repositories. TestGenEvalLite preserves the complexity of
real-world software engineering, including multi-parameter interactions, boundary conditions, and
exception handling. The dataset was reformatted and type-annotated for structured evaluation and
automated execution. TestGenEvalLite is a benchmark released for unit test generation tasks on
repositories which preserve the complexity of real-world software engineering. TestGenEvalMini
is a curated subset of TestGenEvalLite containing 48 representative examples across 6 repositories,
intended for rapid experimentation in constrained execution environments. Modules that trigger
multiple MCP requests in rapid succession (e.g., Django autoreload) or require complex cross-
functional dependencies were excluded to ensure stability. This mini benchmark allows researchers
to rapidly test the effectiveness of edge-case reasoning and test generation techniques in a controlled
environment before scaling to larger datasets. Importantly, while TestGenEvalMini reduces setup
overhead, our static analysis (Table 1) shows that its structural complexity remains comparable to
TestGenEvalLite. Code length, number of functions, and branching constructs span a similar range,
ensuring that TestGenEvalMini provides a representative challenge for model evaluation while being
optimized for fast execution.

Dataset Contribution: We release curated versions of both HumanEval and TestGenEvalMini,
augmented with detailed edge-case traces containing coverage, mutation, and exception metadata.
These traces enable the fine-tuning or training of reasoning models without requiring full-scale pro-
gram execution. The resulting datasets span use cases from rapid prototyping to large-scale eval-
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Algorithm 1 Adversarially Guided Actor–Critic with Evolutionary Search for Unit Test Generation
Require: Source file f
Ensure: Final Unit Test File UT

1: Initialize n← 1, S0 ← ∅, R0 ← 0
2: while not ShouldStop({R1, . . . , Rn−1}, n− 1) do
3: Actor:

ζn =

{
A(f) n = 1 (cold start: rule-based heuristics)
A(f, Sn−1) n > 1

4: Executor: Run ζn on f to obtain execution results ρn and coverage κn

5: Adversary: Mutate f into {f ′
n,1, . . . , f

′
n,M}, execute ζn, and compute

µn =
Kn

Kn + Sn

where Kn and Sn are killed and survived mutants.
6: Executor: Compute exception signals cn = ExceptionSignal(ρn)
7: Critic: Compute reward

Runnorm
n (κn, µn, cn) = [α · cn + β(κn +max(0, (κn − θ) · 0.5))]× γ · µn

Rn =
Runnorm

n −Rmin

Rmax −Rmin

8: Update archive: retain top-K edge cases from ζ1..n by reward Rn

ζ1:n ← top-K
(
ζ1:n, sorted by R1:n

)
9: Set n← n+ 1

10: Update state:
Sn = (ζ1..n, µ1..n, κ1..n, c1..n, R1..n)

11: end while
12: Synthesis: UT← LLM(f, Sn)
13: return UT
14:
15: Function ShouldStop({R1, . . . , Rn},m):

if m < p then return
( m∑

i=1

Ri ≥ τ
)

else return
( m∑

i=1

Ri ≥ τ
)
∨

(
max

i∈[m−p+1,m]
Ri − min

i∈[m−p+1,m]
Ri ≤ δ

)

Metric Lite (160 tasks, 11 repositories) Mini (48 tasks, 6 repositories)

Code LOC 906.57± 821.67, median = 584 575.79± 600.78, median = 425
Functions 46.27± 53.80, median = 31 33.81± 37.38, median = 28
Branches 79.87± 84.46, median = 52 60.06± 70.57, median = 40

Table 1: Comparison of structural complexity metrics between TestGenEvalLite and Test-
GenEvalMini.

uation, thereby supporting reproducible research in inference-time agentic reasoning for software
testing.

6
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Table 2: Final Edge Case Quality for HumanEval for Llama 70B
HumanEval Line Coverage Branch Coverage Function Coverage

SUT 90.01% 89.76% 91.51%
Zero Shot LLM 82.77% 81.92% 85.36%
Zero Shot LLM with CoT 86.90% 86.73% 87.5%
One Shot LLM 90.85% 90.70% 92.07%
One Shot LLM with CoT 87.21% 87.04% 88.41%
Three Shot LLM 89.94% 89.87% 90.09%
Three Shot LLM with CoT 88.18% 88.13% 89.33%

Table 3: Final Unit Test File Quality for TestGenEvalMini
TestGenEvalMini Line Coverage Branch Coverage Function Coverage

SUT Llama 70B 29.80% 16.55% 29.24%
SUT o4-mini 28.22% 15.28% 27.78%
SUT Gemma-2-27B 26.95% 14.88% 28.05%
Zero Shot LLM 22.59% 15.45% 24.62%
Zero Shot LLM with CoT 22.31% 16.02% 22.83%
One Shot LLM 25.22% 14.95% 26.58%
One Shot LLM with CoT 25.24% 15.22% 27.28%
Three Shot LLM 25.35% 17.40% 26.83%
Three Shot LLM with CoT 24.66% 16.21% 25.80%

5 RESULTS

5.1 HUMANEVAL

HumanEval consists of standalone, file-level implementations, where the relative advantage of ad-
vanced inference-time strategies is inherently limited. As shown in Table 2, the system-under test
(SUT) and all six inference-time baselines perform comparably, serving as a sanity check for our
proposed evolutionary search method. Our evolutionary search method achieves comparable final
edge case quality while requiring zero additional LLM calls in approximately 62% of cases. This
highlights that the cold-start stage of our system is powerful: seeded by deterministic heuristics such
as boundary partitioning and equivalence classes, it often produces high-quality edge cases without
requiring iterative refinement. Thus, HumanEval problems collapse almost entirely at initialization,
demonstrating both the efficiency of our framework and the need for stronger benchmarks such as
TestGenEvalMini to highlight the benefits of multi-agent evolutionary reasoning.

5.2 TESTGENEVALMINI

Figure 2 reports the final edge case quality achieved by our evolutionary search method compared
to six inference-time baselines. With Llama-70B, our approach consistently outperforms all base-
lines by substantial margins across line, branch, and function coverage. In contrast, this trend weak-
ens for GPT-o4-mini and Gemma-2-27B: the system under test (SUT) continues to achieve the
highest line and function coverage, but is surpassed by these models in branch coverage. This dis-
crepancy may stem from a tendency of our search to emphasize exception-heavy or assert-focused
tests, which can thoroughly exercise one control-flow path without necessarily exploring its comple-
ments. While this bias lowers measured branch coverage, it often surfaces deeper failure modes that
line and function metrics capture. We view this as a promising avenue for future refinement, where
incorporating branch-aware objectives could balance thorough path exploration with the strong ex-
ception discovery our method already provides. Remarkably, there is little difference between the
few-shot settings with and without chain-of-thought (CoT) prompting, both in terms of coverage
metrics and the number of inference calls required, highlighting the need for stateful mechanisms to
achieve reasoning without post-training.

7
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Figure 2: Final edge case quality on TESTGENEVALMINI measured in terms of line, branch, and
function coverages across three model families: GEMMA-2-27B (top-left), GPT-O4-MINI (top-
right), and LLAMA-70B (bottom). The proposed inference-time evolutionary search (SUT) con-
sistently achieves strong coverage, outperforming few-shot and chain-of-thought baselines in most
settings.

Figure 3 presents the resolution rate (blue, left axis) and average runtime (red, right axis) for two
benchmarks. The resolution rate is defined as the fraction of generated unit tests that success-
fully reach convergence. In the left subplot, HUMANEVAL shows that nearly 62% of problems are
resolved in a single iteration, with only modest runtime overhead, indicating that the majority of
tasks are relatively straightforward. In contrast, the right subplot for TESTGENEVALMINI exhibits
a markedly different profile: while the majority of problems require three or more iterations, resolu-
tion rates plateau only after extended search, with runtimes rising steeply at higher iteration counts.
Together, these results highlight the efficiency of our inference-time evolutionary search on simpler
benchmarks, while also demonstrating its ability to scale to more complex tasks at the cost of addi-
tional compute. The prompts can be found in Appendix B and an example unit test file generation
can be found in Appendix C.

Overall, our evolutionary search achieves higher coverage than inference-time baselines across Hu-
manEval and our TestGenEvalMini. While branch coverage lags slightly for GPT-o4-mini and
Gemma-2-27B, this likely reflects differences in how these models explore control-flow paths; refin-
ing branch-focused operators is an avenue for future work. For efficiency, we report representative
runs, and the patterns we observe are stable across models and subsets.

6 CONCLUSION

We introduced a stateful multi-agent evolutionary framework for unit test generation, which departs
from stateless inference by maintaining persistent reasoning state across multiple stages of search.
By combining an actor for edge-case proposal, an adversary for robustness evaluation, a critic for
reward integration, and an executor for sandboxed verification, our system achieves substantial gains
in coverage compared to few-shot and chain-of-thought baselines. Experiments on HumanEval and
TestGenEvalMini demonstrate that stateful evolutionary search enables higher coverage edge-case
discovery, scaling beyond the capabilities of conventional stateless prompting. These results high-
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Figure 3: Evolution of line coverage over iterations for the three model families. LLAMA-70B im-
proves over about four stages before stabilizing, while GPT-O4-MINI and GEMMA-2-27B plateau
earlier.

light the promise of inference-time multi-agent coordination as a training-free strategy for improving
the reasoning depth and reliability of large language models.

Nonetheless, several limitations remain. The proposed stateful multi-agent evolutionary framework
incurs higher inference-time compute costs and longer runtimes on complex tasks, potentially lim-
iting deployment in latency-sensitive settings. Future work will focus on extending the executor
to handle richer dependency contexts, developing more efficient search termination criteria, and
incorporating learned reward models to stabilize scoring. Broader evaluation across multilingual
benchmarks and industrial-scale repositories will also be critical to assess generalization. Address-
ing these challenges will enable more practical, scalable, and adaptive inference-time agents for
automated software testing.
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A APPENDIX

A.1 COMPUTATION COST (FLOPS)

We report floating-point operation counts (FLOPs) for a single evaluation iteration of our adaptive
pipeline. FLOPs provide a hardware-agnostic measure of computational demand and allow princi-
pled comparison across model sizes and ablations.

We decompose the iteration into language-model (LLM) calls and non-LLM procedures (code ex-
ecution, mutation, bookkeeping). For autoregressive transformer inference, we adopt the standard
accounting

FLOPSLLM ≈ 2Nparams · T
where Nparams is the number of model parameters and T is the total number of tokens processed
(prompt + generated). The factor 2 reflects the dominant matrix multiplications in the forward
pass. (If back-propagation were involved, a factor ≈ 3x the forward cost would be appropriate; our
pipeline uses inference only.)

Non-LLM components are counted analytically from primitive operations in the relevant procedures
(e.g., parsing, AST transforms, interpreter startup), yielding FLOPs that are negligible relative to
LLM usage but included for completeness.
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A.2 FLOPS FORMULATION

We derive the total floating point operations (FLOPs) required per iteration of our Ac-
tor–Adversary–Critic loop. Let:

• Nactor: number of parameters in the Actor LLM

• Nut: number of parameters in the UnitTest LLM

• Lsrc: source code length (tokens)

• R: number of rule variations (edge cases) generated per iteration

• Rut: maximum number of edge cases to keep for unittest generation

• M : max number of mutants (code mutations) executed per iteration

• Tothers: average tokens of system prompt, task description etc

• Tec: average tokens per edge case description

• Tut out: output length of the generated unit test suite (tokens)

• Fexec: FLOPs per code execution

• Fmut: FLOPs per mutation generation

• Fcritic: FLOPs per critic evaluation

• Fother: FLOPs for JSON parsing, string processing, and logging

1. Actor FLOPs. The Actor LLM processes both source code and accumulated context to generate
new edge cases.

Tactor in = Lsrc + (R · Tec) + Tothers

Tactor out = R · Tec

Tactor = Tactor in + Tactor out

Factor = 2 ·Nactor · Tactor

2. Unittest FLOPs. If the system makes use of an LLM to generate the final unittest file as
opposed to a Human in the Loop, then these computations also need to be taken into account.
The UnitTest LLM consumes the source and filtered edge cases to produce complete test suites.

Tut in = Lsrc + (Rut · Tec) + Tothers

Tut = Tut in + Tut out

Fut = 2 ·Nut · Tut

3. Code Execution FLOPs. Each generated mutant and the original source are executed against
all edge cases.

E = (M + 1) ·R

Fexec total = E · Fexec
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Figure 4: MCP Architecture overview

4. Mutation FLOPs. Considering an average of 30 mutants are generated in every iteration (after
which M are randomly sampled for execution).

Fmut total = 30 · Fmut

5. Critic and Other FLOPs.
Fcritic total = R · Fcritic

Fother total = Fother

6. Total System FLOPs.
Fsystem = Factor + Fut + Fexec total + Fmut total + Fcritic total + Fother total

This formulation allows us to compute FLOPs analytically for different evaluation settings, such as
TESTGENEVALMINI and HUMANEVAL, by substituting the corresponding parameter values.

Running the system on TestGenEvalMini requires 3584.0 TFLOPs per LLM Iteration, and an addi-
tional 819.2 TFLOPs for the final unit test file generation. The TFLOPs for all other computation
are negligible, including rule-based generation (which only requires an average of 36000 FLOPs.
Running the system on HumanEval requires 812.0 TFLOPs per LLM Iteration, and an additional
128.0 TFLOPs for the final unit test file generation. The TFLOPs for all other computation are
negligible, including rule-based generation (which only requires an average of 13500 FLOPs).

Category TestGenEvalMini (TFLOPs) HumanEval (TFLOPs)
LLM Iteration 3584.0 812.0
Final Unit Test Generation 819.2 128.0
Rule-based / Other Computation 0.036 0.0135

A.3 EXECUTOR

The Executor is an integral auxiliary component within our system architecture that facilitates the
Controller in managing the orchestrated flow of information. It employs a Model Context Proto-
col (MCP) Client-Server framework to ensure secure and isolated execution of all generated edge
cases and mutated code variants. To maintain strict isolation, all executions on the server side are
containerized using Docker, thereby sandboxing them from the host environment.
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A.3.1 MCP WORKFLOW

The operational workflow of the Executor is depicted in Fig. 4 and proceeds as follows:

1. The Executor receives the input source file for testing.
2. The Client Controller coordinates the process and initiates invocations of the various MCP

tools.
3. The source file is transmitted from the client to the MCP Server through a tool call directed

to the Actor.
4. The Actor module generates pertinent edge cases and executes them on the source file

within the sandboxed environment.
5. The MCP Server returns the generated edge cases, execution outcomes, and coverage met-

rics to the client.
6. The client forwards both the source file and execution results to the MCP Server through a

tool call to the Adversary.
7. The Adversary produces mutations of the source code and runs the previously generated

edge cases on these mutants, again within the sandboxed environment, ultimately comput-
ing a mutation score.

8. This mutation score is returned from the MCP Server to the client.
9. Subsequently, the client transmits the execution results, coverage data, and mutation score

to the MCP Server via a tool call to the Critic.
10. The Critic aggregates this information to compute a comprehensive reward, which it then

returns to the client.
11. Finally, the Client Controller evaluates predefined stopping criteria:

• If the criteria are satisfied, the tools are cleanly disconnected.
• Otherwise, all feedback generated during the current rollout is assimilated and for-

warded, along with the source file, back to the Actor to initiate the subsequent rollout.

A.3.2 LIMITATIONS OF THE EXECUTOR

Despite its current capabilities, the Executor exhibits several limitations:

1. The system presently supports only single source files and lacks comprehensive reposi-
tory indexing, thereby limiting its ability to handle dependencies spanning multiple files or
relative package imports.

2. Certain file types, particularly those that return complex serialized objects (e.g., pickled
files), are not currently supported.

3. Modules that initiate multiple MCP requests in quick succession, such as Django’s au-
toreload module, may cause server instability and disconnections.

4. Dependency extraction is automated using pipreqs; however, unresolved version mis-
matches and dependency conflicts occasionally arise, which pipreqs cannot resolve.

These limitations necessitate the exclusion of such cases in the present implementation. Nonetheless,
we anticipate that with a more sophisticated Executor design, our adversarially guided Actor-Critic
framework can be extended to generate tests for these more complex scenarios using the established
MCP workflow. Enhancing the Executor environment will thus substantially increase the robustness
and applicability of the overall architecture.

B PROMPTS

B.1 EDGE CASE REASONING PROMPT

B.1.1 LLM EDGE CASES SYSTEM PROMPT

def llm_edge_cases_system_prompt():
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return """
### ROLE ###
You are the **ACTOR** in an Actor{Adversary{Critic (AAC) loop
for automated code testing.

- **Actor (you):** Generate diverse, high-value test cases to maximize code
coverage and detect edge failures.
- **Adversary:** Mutates inputs to find weaknesses.
- **Critic:** Scores inputs based on coverage, exceptions,
and semantic boundaries.

### MISSION ###
Generate **new**, **distinct**, and **high-impact** edge cases for
*all* given functions.

### METHODS ###
Use techniques including Boundary Value Analysis, Equivalence Partitioning,
Scenario Testing, Random Testing, Stress Testing, Exception Triggering,
and Complex Multi-parameter Interactions.

### OUTPUT FORMAT ###
- Output **valid JSON only** in this exact format:

‘{ "function_name": [ { "param1": value, ... }, ... ] }‘
- Keys must be function names; values are arrays of parameter dictionaries.
- Values must be valid JSON literals only (number, string, boolean, null,

array, object).
- **Do NOT include any explanatory text or formatting outside of JSON.**
- **Do NOT include JavaScript expressions or comments.**

### FEEDBACK INTEGRATION ###
- Incorporate the provided feedback to improve and diversify edge cases.
- Avoid repeating previously generated edge cases.
- Ensure new cases target untested or under-tested scenarios.
"""

def llm_edge_cases_system_prompt_with_cot():
base_prompt = llm_edge_cases_system_prompt()
cot_addition = """

### REASONING INSTRUCTIONS ###
Before generating edge cases, carefully analyze the feedback,
especially focusing on:

- **Maximizing line coverage:** Identify uncovered or poorly covered lines
in the source code.
- Uncovered branches and exceptions not yet triggered.
- Parameters or code paths with low test coverage.

Think step-by-step about how to design new test cases that specifically
target these uncovered lines to increase overall coverage.

**Important:** Do NOT include your reasoning in the final output.
Output **only valid JSON** edge cases that reflect this reasoning.

"""
return base_prompt + cot_addition

B.1.2 LLM EDGE CASES USER PROMPT

def llm_rule_expander_prompt(
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function_signatures: Dict[str, List[str]],
source_code: str,
feedback_summary: str,
edge_cases_generated: str,
target_count: int

) -> str:
"""
Generate prompt for LLM to create edge cases for ALL functions at once

Args:
function_signatures: Dict mapping function names to their parameter lists
source_code: The complete source code
feedback_summary: Feedback from adversary/critic
edge_cases_generated: Previously generated edge cases
target_count: Total number of edge cases to generate across all functions

"""

# Format function signatures for the prompt
... code not included for brevity...

functions_list = "\n".join(functions_info)

prompt = f"""
SRC CODE:
‘‘‘
{source_code}
‘‘‘
FUNCTIONS:
{functions_list}

FEEDBACK FROM LAST RUN:
{feedback_summary}

TASK:
Generate {target_count} NEW and DISTINCT edge cases distributed
**evenly across all functions** above.

GUIDANCE:
- Incorporate all feedback to improve coverage and trigger new exceptions.
- Do NOT repeat previous edge cases.
- Generate valid JSON ONLY | strictly adhere to the output format.
- Focus on edge, boundary, and rare case inputs.
- Distribute edge cases fairly across functions.
- Provide no text outside the JSON.

OUTPUT EXAMPLE:
{{
"function1": [

{{"param1": "value1", "param2": 0}},
{{"param1": "value2", "param2": -1}}

],
"function2": [

{{"x": 999999, "y": -999999}},
{{"x": 0, "y": 0}}

]
}}

GENERATE JSON ONLY.
"""
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return prompt

B.2 FINAL EDGE CASES TO UNIT TEST FILE GENERATION PROMPT

B.2.1 LLM UNIT TEST GENERATION SYSTEM PROMPT

def edge_cases_to_unittest_system_prompt():
return """
You are an expert Python test generator.
Your task is to convert the given edge cases **and doctest/typical examples**
into pytest unit tests.

RULES:
1. Output ONLY valid Python 3.11 code
| no markdown, no explanations, no extra text.
2. Use EXACTLY 4 spaces per indentation level (no tabs).
3. All parentheses, brackets, and braces must be balanced.
4. Import only pytest and built-ins if needed | no extra imports.
5. Each edge case must become one complete pytest test function.
6. Test names must follow: test_<function>_<short_scenario>.
7. Use literals exactly as shown (Ellipsis → ..., Infinity → float("inf"), etc.).
8. Function parameters and variables MUST be valid Python identifiers:

- Must start with a letter or underscore
- May contain letters, numbers, or underscores
- Must NOT start with a digit (incorrect: "3_14" → correct: "val_3_14")

8a. If the edge case uses unclear or undefined variables
(e.g., threshold_3_14, Array_1000_0):

- Replace them with safe, concrete Python literals:
- Numbers: 0, 1, 3.14
- Lists: [], [0], [None] as appropriate
- Strings: ’’, ’example’
- Objects: None

9. Edge case handling:
- {"input": {...}, "expected": X} → assert function output == X
- {"input": {...}, "raises": "ExceptionType"}
→ wrap call in pytest.raises(ExceptionType)
- {"input": {...}} only → just call the function

9b. For **normal/typical inputs** (including doctests),
generate pytest functions with **assert statements** for expected results.
10. Avoid duplicates: if multiple edge cases are semantically identical,
merge them into one test function.
11. Every generated test file must pass a syntax check:

‘python -m py_compile generated_tests.py‘
12. Mentally simulate importing and running the file to confirm:

- All tests execute without NameError, TypeError, SyntaxError,
or undefined variables.

13. Always include at least one test for **valid input with assert**,
even if edge cases exist.
14. Convert all doctest-style examples (>>> lines)
into pytest assert statements.
15. Do NOT invent new literals or variable names; always use safe defaults
if input is unclear.

DO NOT OUTPUT ANYTHING OTHER THAN THE TEST CODE.

B.2.2 LLM UNIT TEST GENERATION USER PROMPT

def edge_cases_to_unittest_prompt(
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source_code: str,
edge_cases, # Can be list of dicts or JSON string

) -> str:
# Handle both list of edge cases and JSON string
import json
if isinstance(edge_cases, str):

edge_cases_repr = edge_cases
else:

# Convert list of edge cases to formatted JSON
edge_cases_repr = repr(edge_cases)

prompt = f"""
Convert the following edge cases into a complete pytest test file.

SOURCE CODE:
{source_code}

EDGE CASES (JSON):
{edge_cases_repr}

REQUIREMENTS:
- One pytest test function per edge case.
- Use the schema rules from system prompt
(expected → assert, raises → pytest.raises).
- Ensure all test functions are syntactically correct and executable.
- Absolutely no invalid parameter names (e.g., those starting with digits).
- Convert all doctest-style examples (>>> lines)
into pytest assert statements.
- For error cases, use pytest.raises to assert the correct exception is raised.
- Ensure a good mix of assert and pytest.raises statements.

Now generate the pytest test file:
"""
return prompt

B.3 BASELINES EDGE CASE REASONING PROMPT

B.3.1 BASELINES LLM EDGE CASES SYSTEM PROMPT

def edge_case_generation_system_prompt():
return """
You are a Python expert. Your job is to generate **diverse,
high-value edge cases** for given functions.

CRITICAL RULES:
1. Output ONLY valid JSON | no explanations, markdown, or extra text.
2. Format must be strictly:

{ "function_name": [ { "param1": value, ... }, ... ] }
3. Keys = function names, Values = arrays of input dictionaries.
4. JSON literals only: number, string, boolean, null, array, object.
5. Use Boundary Value Analysis, Equivalence Partitioning, Exception Triggering,
Stress Testing, and Unusual Combinations.

FORMATTING REQUIREMENTS:
- Start your response with { and end with }
- Use double quotes for all strings and keys
- Do NOT include any text before or after the JSON
- Do NOT wrap the JSON in markdown code blocks
- Ensure all brackets and braces are properly balanced
- Each function must have at least one edge case
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- Parameter values must be valid JSON types
(no Python-specific values like None, True, False
- use null, true, false instead)
"""

B.3.2 BASELINES LLM EDGE CASES USER PROMPTS

def edge_case_generation_user_prompt(
source_code: str,
function_signatures: Dict[str, List[str]],
extra_text: str = "",
cot_flag: bool = False

) -> str:
# Format function signatures for clarity
functions_info = []
for func_name, params in function_signatures.items():

if params:
functions_info.append(f" - {func_name}({’, ’.join(params)})")

else:
functions_info.append(f" - {func_name}()")

functions_list = "\n".join(functions_info)
#function_signatures_json = json.dumps(function_signatures, indent=2)

prompt = f"""
{extra_text}

SOURCE CODE:
{source_code}

FUNCTIONS TO TARGET:
{functions_list}

TASK:
Generate new, distinct, and high-impact edge cases for all listed functions.

OUTPUT FORMAT:
{{

"function_name": [
{{"param1": value, "param2": value}},
{{"param1": value2, "param2": value3}}

]
}}

REQUIREMENTS:
- Output strictly valid JSON | no text outside JSON.
- Keys must match function names exactly.
"""

if cot_flag:
prompt += "\n" + edge_case_cot_prompt()

return prompt

def edge_case_zero_shot_text() -> str:
return """

Generate diverse edge cases directly for the given functions.
"""

def edge_case_one_shot_text() -> str:
return """

Here is an example of valid edge case JSON:
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{
"divide": [

{"a": 10, "b": 2},
{"a": 10, "b": 0}

]
}

Now generate edge cases for the provided functions in the same format.
"""

def edge_case_three_shot_text() -> str:
return """

Here are examples of valid edge case JSON files:

EXAMPLE 1:
{

"sqrt": [
{"x": 4},
{"x": 0},
{"x": -1}

]
}

EXAMPLE 2:
{

"factorial": [
{"n": 5},
{"n": 0},
{"n": -3}

]
}

EXAMPLE 3:
{

"substring": [
{"text": "hello", "start": 1, "end": 3},
{"text": "hello", "start": -1, "end": 2}

]
}

Now generate edge cases for the provided functions in the same JSON format.
"""

def edge_case_cot_prompt() -> str:
return """

Think step-by-step:
1. Analyze each function signature.
2. Identify normal, boundary, extreme, and invalid input cases.
3. Ensure coverage of exceptions, corner cases, and unusual parameter combinations.
4. Then output ONLY the final JSON with those cases.
"""

B.4 BASELINES UNIT TEST GENERATION PROMPT

B.4.1 BASELINES LLM UNIT TEST GENERATION SYSTEM PROMPT

def edge_cases_to_unittest_system_prompt():
return """
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You are an expert Python test generator.
Your task is to convert the given edge cases
**and doctest/typical examples** into pytest unit tests.

RULES:
1. Output ONLY valid Python 3.11 code | no markdown,
no explanations, no extra text.
2. Use EXACTLY 4 spaces per indentation level (no tabs).
3. All parentheses, brackets, and braces must be balanced.
4. Import only pytest and built-ins if needed | no extra imports.
5. Each edge case must become one complete pytest test function.
6. Test names must follow: test_<function>_<short_scenario>.
7. Use literals exactly as shown
(Ellipsis → ..., Infinity → float("inf"), etc.).
8. Function parameters and variables MUST be valid Python identifiers:

- Must start with a letter or underscore
- May contain letters, numbers, or underscores
- Must NOT start with a digit (incorrect: "3_14" → correct: "val_3_14")

8a. If the edge case uses unclear or undefined variables
(e.g., threshold_3_14, Array_1000_0):

- Replace them with safe, concrete Python literals:
- Numbers: 0, 1, 3.14
- Lists: [], [0], [None] as appropriate
- Strings: ’’, ’example’
- Objects: None

9. Edge case handling:
- {"input": {...}, "expected": X} → assert function output == X
- {"input": {...}, "raises": "ExceptionType"}
→ wrap call in pytest.raises(ExceptionType)
- {"input": {...}} only → just call the function

9b. For **normal/typical inputs** (including doctests),
generate pytest functions with **assert statements** for expected results.
10. Avoid duplicates: if multiple edge cases are semantically identical,
merge them into one test function.
11. Every generated test file must pass a syntax check:

‘python -m py_compile generated_tests.py‘
12. Mentally simulate importing and running the file to confirm:

- All tests execute without NameError, TypeError, SyntaxError,
or undefined variables.

13. Always include at least one test for **valid input with assert**,
even if edge cases exist.
14. Convert all doctest-style examples (>>> lines)
into pytest assert statements.
15. Do NOT invent new literals or variable names;
always use safe defaults if input is unclear.

DO NOT OUTPUT ANYTHING OTHER THAN THE TEST CODE.
"""

C EXAMPLE UNIT TEST FILE GENERATION

To illustrate the workflow of our framework, we provide a concrete example drawn from Django’s
ORM internals. The source code (Figure 5) contains helper classes and functions that are invoked
when constructing SQL queries.

From these source files, our system automatically generates corresponding unit test files. The gen-
erated tests (Figure 6) are designed to cover key execution paths and boundary conditions while
consisting of runnable test cases.
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The source code and the generated unit test file are shortened and simplified for clarity, however,
they retains the essential semantics for demonstrating unit test generation.

C.1 SOURCE FILE

Figure 5 [TOP] shows the definition of the Q class. This class is a core building block for query
construction: it stores conditions in the children attribute, tracks the logical connector (AND,
OR), and exposes the combinemethod to merge query fragments. The combinemethod ensures
type-safety by restricting merges to other Q objects, handles corner cases such as empty children,
and creates a new Q object with the combined conditions.

Figure 5[BOTTOM] shows the FilteredRelation class. This class represents a relation name
with an optional condition. It validates that the relation name is non-empty and assigns a default
Q object if no condition is provided. The equality operator ( eq ) is overridden to allow seman-
tic comparison between two FilteredRelation objects based on both the relation name and
condition.

C.2 GENERATED UNIT TESTS

Our framework automatically generates the unit test file targeting the key behaviors of these source
classes.

Figure 6[BOTTOM] shows tests for FilteredRelation. The tests cover: (i) successful equal-
ity when both objects have identical fields; (ii) inequality when relation names differ; (iii) in-
equality when conditions differ; and (iv) type mismatch where equality is checked against a non-
FilteredRelation object. These cases validate both the intended semantics of the eq
method and its robustness against invalid inputs.

Figure 6[TOP] shows tests for the Q class. The generated cases systematically explore: (i) combining
with an invalid type (triggering a TypeError); (ii) combining when one side has no children; (iii)
combining when the current object is empty but the other is non-empty; and (iv) combining two
non-empty Q objects to ensure the resulting object aggregates children correctly and records the
connector string. These unit tests directly exercise the control-flow paths in combine, including
exception handling and state mutation.

D RULE-BASED ENGINE: COLD-START

At initialization, our framework requires a mechanism to seed candidate edge cases before any
feedback from coverage or mutation testing is available. We implement this cold-start stage through
a Python-specific rule-based expansion engine. The engine enumerates deterministic variants of the
input state across several dimensions:

• Numeric values: Expansion covers boundary conditions such as zero, ±1, extreme integers
(231−1, 263−1), large/small floats (e.g., 1010, 10−10), infinities, NaNs, and very large arbitrary-
precision integers.

• Strings: Variants include empty and whitespace strings, boolean-like and number-like encod-
ings, path traversal patterns, injection-style payloads, long Unicode/emoji sequences, and control
characters.

• Lists: Cases include empty lists, singleton lists, very long lists with repeated values, reversed lists,
lists containing NaN or Inf, and deeply nested structures.

• Dictionaries: Variants are created with empty values, None-filled keys, or problematic/reserved
keys (e.g., class , whitespace keys, "True").

• Python special values: Serializable forms of special objects (e.g., None, booleans, empty con-
tainers, long strings, lists of None) provide coverage of unusual runtime behaviors.

• Exception triggers: Values known to raise errors in Python (division by zero, invalid encodings,
null-byte strings, memory-exhausting lists) are injected to surface robustness gaps early.
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Figure 5: Simplified excerpt from Django ORM internals

The expansion process is designed to remain JSON-serializable and reproducible, ensuring compat-
ibility with our execution and logging infrastructure. While each individual rule is simple, together
they provide broad initial coverage of Python-specific failure modes. This makes the cold-start stage
non-trivial: even before iterative search begins, the actor is seeded with high-value candidates that
often resolve a substantial fraction of problems, as shown in our HumanEval results (Section 5.1).

E USE OF LARGE LANGUAGE MODELS

We employed a large language model (ChatGPT) in a limited capacity to refine the writing of this
manuscript. The model’s use was restricted to stylistic improvements such as clarity and concise-
ness. All scientific contributions—including the conception of ideas and algorithms, design of meth-
ods, and execution of experiments—were the sole work of the authors.
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Figure 6: Generated unit test file corresponding to Source file
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