
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STATEFUL MULTI-AGENT EVOLUTIONARY SEARCH
FOR UNIT TEST GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent work explores agentic inference-time techniques to perform structured,
multi-step reasoning. However, stateless inference often struggles on multi-step
tasks due to the absence of persistent state. Moreover, task-specific fine-tuning
or instruction-tuning often achieve surface-level code generation but remain brit-
tle on tasks requiring deeper reasoning and long-horizon dependencies. To ad-
dress these limitations, we propose stateful multi-agent evolutionary search, a
training-free framework that departs from prior stateless approaches by combining
(i) persistent inference-time state, (ii) adversarial mutation, and (iii) evolutionary
preservation. We demonstrate its effectiveness in automated unit test generation
through the generation of edge cases. We generate robust edge cases using an
evolutionary search process, where specialized agents sequentially propose, mu-
tate, and score candidates. A controller maintains persistent state across gener-
ations, while evolutionary preservation ensures diversity and exploration across
all possible cases. This yields a generalist agent capable of discovering robust,
high-coverage edge cases across unseen codebases. Experiments show our stateful
multi-agent inference framework achieves substantial gains in coverage over state-
less single-step baselines, evaluated on prevalent unit-testing benchmarks such as
HumanEval and TestGenEvalMini and using three diverse LLM families—Llama,
Gemma, and GPT. These results indicate that combining persistent inference-time
state with evolutionary search materially improves unit-test generation.

1 INTRODUCTION

Despite their success on single-step tasks, most inference-time computation in large language mod-
els (LLMs) remains stateless, with each inference call discarding prior intermediate reasoning unless
explicitly re-injected into the prompt. This design choice optimizes deployment throughput but crip-
ples performance in domains that require deep, multi-stage reasoning—such as program synthesis,
theorem proving, multi-hop reasoning, deductive reasoning, and mathematical problem-solving—
where intermediate states must be persistently updated and revisited. The fixed computational depth
per transformer forward pass (Vaswani et al., 2017) and the well-documented decline in reasoning
fidelity over long logical chains (Wei et al., 2022; Anil et al., 2022) make these limitations struc-
tural rather than incidental. The autoregressive decoding process further constrains exploration by
forcing reasoning branches to unfold serially, often necessitating brittle orchestration through mul-
tiple model calls (Yao et al., 2023a; Long et al., 2024). Overcoming these constraints demands
stateful inference-time architectures—including scratchpad prompting (Nye et al., 2021; Wei et al.,
2022), tree-structured reasoning (Yao et al., 2023b), and retrieval-augmented agents (Lewis et al.,
2020)—that can maintain and manipulate intermediate reasoning artifacts directly. However, cur-
rent techniques still operate by eliciting reasoning from fixed, opaque model parameters, limiting
both steerability (Zhou et al., 2023) and interpretability (Olah et al., 2020; Nanda et al., 2023) of the
reasoning process.

In this context, we investigate the suitability of a multi-stage evolutionary algorithm (Bäck et al.,
1997; Hansen, 2016) in which each stage executes an adversarially guided actor–critic-style (AGAC)
search (Ding et al., 2023). Unlike conventional evolutionary pipelines where each generation
is evaluated in isolation, our design shares state information—captured as the critic’s value esti-
mates—across successive evolutionary stages. This shared evaluation signal serves as a persistent
knowledge base, allowing later stages to inherit and refine the judgment of earlier stages rather

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

than re-learning from scratch (Jaderberg et al., 2017; Such et al., 2017). Such cross-stage informa-
tion flow improves sample efficiency, reduces evaluation variance, and encourages coherent policy
evolution over long optimization horizons (Mouret & Clune, 2015; Salimans et al., 2017). By inte-
grating AGAC within this multi-stage framework, we can combine the exploration benefits of evo-
lutionary search with the fine-grained feedback of actor–critic learning (Konda & Tsitsiklis, 2000).
In this work, the actor–critic terminology strictly refers to inference-time reward shaping only: the
critic scores candidate tests to guide the actor, but no model parameters are updated as in traditional
reinforcement learning.

This distinction is important because our aim is not to train new policies, but to adapt inference-time
behavior for practical tasks. Unit test generation provides an ideal setting to study this: it requires
structured reasoning beyond syntax, benefits directly from persistent state, and offers measurable
signals such as coverage and mutation scores to guide search. Stateless test generation often covers
only a narrow slice of behavior, whereas maintaining state enables gradually expanding coverage
and surfacing deeper failure modes. In summary, this work introduces a training-free framework
for unit test generation that (i) maintains persistent inference-time state across search iterations,
(ii) integrates coverage, exceptions, and mutation robustness into a unified reward design, and (iii)
demonstrates consistent coverage improvements over stateless baselines on HumanEval and Test-
GenEvalMini.

2 RELATED WORK

The rapid advancement of large language models (LLMs) has enabled significant progress in AI-
assisted reasoning, code generation, and test automation. Prior research spans several domains
including code generation, test synthesis, algorithmic discovery, and scientific reasoning, yet many
approaches face limitations in adaptability, coverage, and generalization.

Multi-agent frameworks such as AI Co-scientist (Gottweis et al., 2025), AlphaEvolve (Novikov
et al., 2025b) and GEPA (Agrawal et al., 2025) demonstrate that collaborative reasoning and re-
flective prompt evolution can enhance exploration. However, these systems typically lack persistent
state and rely on ad-hoc orchestration rather than structured reward signals.

Evolutionary and search-based methods preserve high-fitness candidates and explore combinatorial
program behaviors Mühlenbein et al., 1988; Burnim & Sen, 2008. In particular, evolutionary search
explicitly manages the exploration-exploitation tradeoff, allowing the system to explore novel pro-
gram behaviors while retaining high-performing edge cases and avoiding local minima that static
or greedy methods often encounter. Other works Karten et al.; Leng et al., 2024; Wen et al., 2024
provide insights into scaling, planning, and iterative hypothesis generation, emphasizing structured
search and evaluation.

Despite these advances, prior approaches often struggle with adaptability, robust coverage, and sys-
tematic exploration of edge cases. Many LLM-based test generators operate in a feed-forward man-
ner or require fine-tuning, limiting their ability to dynamically adjust to new or evolving codebases.
Multi-agent and evolutionary approaches in prior work may fail to explore the full combinatorial
space or integrate adversarial evaluation effectively.

We address these gaps with a training-free framework that unifies (i) multi-agent reasoning, (ii)
adversarial mutation and reward shaping, and (iii) evolutionary preservation with persistent state.
An actor proposes candidate edge cases by reasoning over the program, an adversary perturbs the
code to expose hidden failure modes, and a critic integrates coverage, exceptions, and mutation
feedback to prioritize high-value test cases. A non-Markovian controller maintains memory of prior
edge cases and preserves high-fitness candidates across iterations, enabling inference-time policy
adaptation and robust exploration. This combination allows our system to dynamically adapt to
unseen codebases, produce robust edge cases, and achieve higher coverage than existing methods,
without relying on gradient-based training or domain-specific fine-tuning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Our architecture for unit test generation decomposes the task into two phases: (i) edge
case generation from source code and (ii) unit test construction from those cases. The first phase
demands deeper reasoning and is addressed through an evolutionary search (as highlighted in the
blue box) executed in a stateful manner over multiple stages (N×) by four agents—Actor, Executor,
Adversary, and Critic—coordinated by a Controller that propagates persistent state across N evo-
lutionary stages (as highlighted by the magenta line). Once the edge cases converge to sufficient
coverage and robustness, they are translated into a complete unit test file via a single-step inference
call.

3 METHODOLOGY

Our central premise is that generating syntactically correct unit tests is trivial once a set of robust
edge cases with sufficient coverage are identified, but reasoning about such edge cases requires
structured exploration, memory, and adversarial grounding.

Figure 1 shows the architecture for the unit test generation engine with the proposed stateful multi-
agent evolutionary search for the edge case generator. Given source code f , the system first runs
the stateful multi-agent evolutionary search to extract edge cases and then converts those cases into
unit tests.

Our stateful multi-agent evolutionary search is an adversarially guided actor-critic (AGAC) system
that operates entirely at inference time and does not require gradient-based learning. The Actor
issues multiple LLM inference calls to propose candidate edge cases, the Adversary perturbs the
environment to reveal robustness gaps, and the Critic assigns scalar rewards used for evolutionary
search. The Executor is an auxiliary agent that provides an execution environment to execute edge
cases, unit tests, and return coverage and robustness feedback. These four agents are orchestrated
through the Controller which maintains persistent state across stages and orchestrates the search
until convergence.

Definition 1 (State). A State is represented in Equation 1,

Sn−1 =
(
ζ1:n−1, µ1:n−1, κ1:n−1, c1:n−1, R1:n−1

)
(1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where ζ1:n−1 denotes the sequence of prior edge cases, µ1:n−1 is the sequence of mutation scores,
κ1:n−1 is the sequence of coverage scores, c1:n−1 is the sequence of exception signals, and R1:n−1

is the reward history from previous stages.

Definition 2 (Actor). The Actor (An) proposes candidate edge cases at each stage. At initializa-
tion (n = 1), there is no prior feedback or state information to guide generation, so the actor is
seeded deterministically (cold-start) using rule-based heuristics such as boundary partition analysis,
equivalence classes, and stress conditions. For n > 1, the actor generates candidates through large
language model in-context learning, conditioned on the persistent state Sn−1 and the source code f :

ζn = A(f, Sn−1) (2)

More details about the cold-start can be found in Appendix D

Definition 3 (Adversary). For each stage, Adversary (Dn) generates a set of mutants {f ′
n,j}Mj=1

of the source file, and evaluates whether the edge cases ζn can kill these mutants (i.e produce a
different output on f ′

n,j than they did on f). The resulting mutation score is defined in Equation 3
and provides a robustness signal for evaluating the edge case candidates. Mutation testing promotes
robustness by checking whether tests can distinguish the true program from systematically perturbed
variants, preventing the search from optimizing toward shallow coverage gains.

µn =
Number of mutants killed by ζn

Total number of generated mutants
(3)

Definition 4 (Critic). For each stage, Critic (Cn) computes the scalar reward for the edge cases by
integrating coverage (κ), mutation robustness (µ), and exception discovery (c), given by Equation 4.

Runnormalized
n (κn, µn, cn) = [α · cn + β(κn +max(0, (κn − θ) · 0.5))]× γ · µn (4)

where α, β, θ, γ ∈ R+ are tunable hyperparameters. All rewards are normalized to [0, 1] using
min-max normalization for evolutionary comparison.

The reward combines exception discovery (cn), structural coverage (κn), and mutation robustness
(µn). The exception term encourages exploration of inputs that expose faults. The coverage term ac-
counts for the proportion of program elements exercised, with an additional bonus once a minimum
threshold θ is passed, so that progress beyond trivial coverage is reflected more strongly. Multi-
plication by the mutation score ensures that high reward is assigned only when the generated tests
are also robust to program perturbations. By shaping the critic’s reward surface using adversarial
perturbations we ground the actor’s responses and thus prevent the actor from optimizing toward
trivial coverage gains instead of exploring robust, high-value edge cases.

Definition 5 (Executor). All evaluations for coverage and mutation scoring are executed in a sand-
boxed Docker environment with a Model-Context Protocol (MCP) server. This provides: (i) Iso-
lation: Mutants and edge cases cannot harm the host system; (ii) Determinism: Results are re-
producible across runs; and (iii) Bounded resources: Memory and timeouts prevent unbounded
execution. A detailed description of the Executor architecture can be found in Appendix A.3.

Definition 6 (Controller). The controller orchestrates the interplay of Actor, Adversary, and Critic
by updating the non-Markovian state information (Equation 1) and checking for the termination
criteria as defined in Equation 5.

∑
i

Ri ≥ τ or max
i∈[n−p+1, n]

Ri − min
i∈[n−p+1, n]

Ri ≤ δ (5)

The controller applies two complementary stopping conditions. The first checks whether the reward
has crossed a predefined threshold, indicating that the search has reached a sufficient overall quality
level. The second detects a plateau in rewards over the most recent p iterations, suggesting that
further search is unlikely to yield substantial improvements. The plateau condition is evaluated only
when n ≥ p. The thresholds (τ , δ) and window size p can be tuned according to task complexity as
well as computational budget, allowing the framework to balance thoroughness and efficiency.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

A key methodological contribution is that our framework does not require training, fine-tuning, or
task-specific adaptation of large language models. Instead, it builds a training-free test-generation
agent whose intelligence emerges from:

1. Inference-time state management: The controller maintains a structured non-Markovian state,
feeding the actor with explicit histories of edge cases, coverage scores, mutation feedback, and
exceptions. Unlike conventional RL where state updates drive gradient descent, here state up-
dates directly shape the actor’s inference context. This functions as a lightweight form of policy
shaping at inference time, guided by rewards but without parameter updates.

2. Multi-agent grounding: The actor’s outputs are consistently grounded by adversarial mutations
and fitness evaluation from the critic, allowing even base LLMs without domain adaptation to be
repurposed into reasoning agents.

3. Evolutionary selection: The framework preserves a population of diverse elites, avoiding re-
liance on a single trajectory and improving robustness without requiring specialized training.

This positions our framework alongside recent agentic paradigms such as AI Co-Scientist (Gottweis
et al., 2025) and AlphaEvolve (Novikov et al., 2025a), while differing in its explicit use of evolution-
ary preservation and adversarial reward shaping to structure inference-time coordination. Algorithm
1 shows the overall computational framework that we use for multi-stage evolutionary search.

4 EXPERIMENTS

We evaluated the proposed evolutionary search algorithm on two benchmark datasets, HumanEval
and TestGenEvalMini, using three large language models (LLMs): Llama-70B, GPT-o4-mini,
and Gemma-2-27B. To assess its effectiveness, we compared our method against six inference-time
baselines—zero-shot, one-shot, and three-shot in-context learning, each with and without chain-
of-thought (CoT) prompting—under three standard test coverage metrics: line coverage, branch
coverage, and function coverage. We use coverage.py for line/branch/function metrics and Cosmic-
Ray for mutation analysis. Each run is sandboxed in a Docker/MCP environment.

HumanEval: HumanEval Chen et al., 2021 is a benchmark of 164 Python programming problems
with reference implementations. HumanEval is designed to test reasoning and correctness in code
generation. For evaluation, all examples were typeset for consistency and compatibility with au-
tomated execution frameworks, allowing precise assessment of model outputs, including edge-case
handling and exception detection.

TestGenEvalMini: Derived from the original TestGenEval dataset Zhang et al., 2024 (which is
built from SWEBench Jimenez et al., 2024), TestGenEvalLite contains real-world code and test file
pairs from 11 well-maintained Python repositories. TestGenEvalLite preserves the complexity of
real-world software engineering, including multi-parameter interactions, boundary conditions, and
exception handling. The dataset was reformatted and type-annotated for structured evaluation and
automated execution. TestGenEvalLite is a benchmark released for unit test generation tasks on
repositories which preserve the complexity of real-world software engineering. TestGenEvalMini
is a curated subset of TestGenEvalLite containing 48 representative examples across 6 repositories,
intended for rapid experimentation in constrained execution environments. Modules that trigger
multiple MCP requests in rapid succession (e.g., Django autoreload) or require complex cross-
functional dependencies were excluded to ensure stability. This mini benchmark allows researchers
to rapidly test the effectiveness of edge-case reasoning and test generation techniques in a controlled
environment before scaling to larger datasets. Importantly, while TestGenEvalMini reduces setup
overhead, our static analysis (Table 1) shows that its structural complexity remains comparable to
TestGenEvalLite. Code length, number of functions, and branching constructs span a similar range,
ensuring that TestGenEvalMini provides a representative challenge for model evaluation while being
optimized for fast execution.

Dataset Contribution: We release curated versions of both HumanEval and TestGenEvalMini,
augmented with detailed edge-case traces containing coverage, mutation, and exception metadata.
These traces enable the fine-tuning or training of reasoning models without requiring full-scale pro-
gram execution. The resulting datasets span use cases from rapid prototyping to large-scale eval-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Adversarially Guided Actor–Critic with Evolutionary Search for Unit Test Generation
Require: Source file f
Ensure: Final Unit Test File UT

1: Initialize n← 1, S0 ← ∅, R0 ← 0
2: while not ShouldStop({R1, . . . , Rn−1}, n− 1) do
3: Actor:

ζn =

{
A(f) n = 1 (cold start: rule-based heuristics)
A(f, Sn−1) n > 1

4: Executor: Run ζn on f to obtain execution results ρn and coverage κn

5: Adversary: Mutate f into {f ′
n,1, . . . , f

′
n,M}, execute ζn, and compute

µn =
Kn

Kn + Sn

where Kn and Sn are killed and survived mutants.
6: Executor: Compute exception signals cn = ExceptionSignal(ρn)
7: Critic: Compute reward

Runnorm
n (κn, µn, cn) = [α · cn + β(κn +max(0, (κn − θ) · 0.5))]× γ · µn

Rn =
Runnorm

n −Rmin

Rmax −Rmin

8: Update archive: retain top-K edge cases from ζ1..n by reward Rn

ζ1:n ← top-K
(
ζ1:n, sorted by R1:n

)
9: Set n← n+ 1

10: Update state:
Sn = (ζ1..n, µ1..n, κ1..n, c1..n, R1..n)

11: end while
12: Synthesis: UT← LLM(f, Sn)
13: return UT
14:
15: Function ShouldStop({R1, . . . , Rn},m):

if m < p then return
(m∑

i=1

Ri ≥ τ
)

else return
(m∑

i=1

Ri ≥ τ
)
∨

(
max

i∈[m−p+1,m]
Ri − min

i∈[m−p+1,m]
Ri ≤ δ

)

Metric Lite (160 tasks, 11 repositories) Mini (48 tasks, 6 repositories)

Code LOC 906.57± 821.67, median = 584 575.79± 600.78, median = 425
Functions 46.27± 53.80, median = 31 33.81± 37.38, median = 28
Branches 79.87± 84.46, median = 52 60.06± 70.57, median = 40

Table 1: Comparison of structural complexity metrics between TestGenEvalLite and Test-
GenEvalMini.

uation, thereby supporting reproducible research in inference-time agentic reasoning for software
testing.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Final Edge Case Quality for HumanEval for Llama 70B
HumanEval Line Coverage Branch Coverage Function Coverage

SUT 90.01% 89.76% 91.51%
Zero Shot LLM 82.77% 81.92% 85.36%
Zero Shot LLM with CoT 86.90% 86.73% 87.5%
One Shot LLM 90.85% 90.70% 92.07%
One Shot LLM with CoT 87.21% 87.04% 88.41%
Three Shot LLM 89.94% 89.87% 90.09%
Three Shot LLM with CoT 88.18% 88.13% 89.33%

Table 3: Final Unit Test File Quality for TestGenEvalMini
TestGenEvalMini Line Coverage Branch Coverage Function Coverage

SUT Llama 70B 29.80% 16.55% 29.24%
SUT o4-mini 28.22% 15.28% 27.78%
SUT Gemma-2-27B 26.95% 14.88% 28.05%
Zero Shot LLM 22.59% 15.45% 24.62%
Zero Shot LLM with CoT 22.31% 16.02% 22.83%
One Shot LLM 25.22% 14.95% 26.58%
One Shot LLM with CoT 25.24% 15.22% 27.28%
Three Shot LLM 25.35% 17.40% 26.83%
Three Shot LLM with CoT 24.66% 16.21% 25.80%

5 RESULTS

5.1 HUMANEVAL

HumanEval consists of standalone, file-level implementations, where the relative advantage of ad-
vanced inference-time strategies is inherently limited. As shown in Table 2, the system-under test
(SUT) and all six inference-time baselines perform comparably, serving as a sanity check for our
proposed evolutionary search method. Our evolutionary search method achieves comparable final
edge case quality while requiring zero additional LLM calls in approximately 62% of cases. This
highlights that the cold-start stage of our system is powerful: seeded by deterministic heuristics such
as boundary partitioning and equivalence classes, it often produces high-quality edge cases without
requiring iterative refinement. Thus, HumanEval problems collapse almost entirely at initialization,
demonstrating both the efficiency of our framework and the need for stronger benchmarks such as
TestGenEvalMini to highlight the benefits of multi-agent evolutionary reasoning.

5.2 TESTGENEVALMINI

Figure 2 reports the final edge case quality achieved by our evolutionary search method compared
to six inference-time baselines. With Llama-70B, our approach consistently outperforms all base-
lines by substantial margins across line, branch, and function coverage. In contrast, this trend weak-
ens for GPT-o4-mini and Gemma-2-27B: the system under test (SUT) continues to achieve the
highest line and function coverage, but is surpassed by these models in branch coverage. This dis-
crepancy may stem from a tendency of our search to emphasize exception-heavy or assert-focused
tests, which can thoroughly exercise one control-flow path without necessarily exploring its comple-
ments. While this bias lowers measured branch coverage, it often surfaces deeper failure modes that
line and function metrics capture. We view this as a promising avenue for future refinement, where
incorporating branch-aware objectives could balance thorough path exploration with the strong ex-
ception discovery our method already provides. Remarkably, there is little difference between the
few-shot settings with and without chain-of-thought (CoT) prompting, both in terms of coverage
metrics and the number of inference calls required, highlighting the need for stateful mechanisms to
achieve reasoning without post-training.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

SUT

Zero-Shot

Zero-Shot + CoT

One-Shot

One-Shot + CoT

Three-Shot

Three-Shot + CoT

Method

0

20

40

60

80

100

C
ov

er
ag

e
(%

)
41

32 32
41

33 32 3329

50 53 50 53 53 53

23

13 15 12 15 14 15

GPT-o4-mini
Line
Branch
Function

SUT

Zero-Shot

Zero-Shot + CoT

One-Shot

One-Shot + CoT

Three-Shot

Three-Shot + CoT

Method

0

20

40

60

80

100

C
ov

er
ag

e
(%

)

37

27 28 28 28 31 2827

47 48 49 48
52

46

22

8 11 11 12 15
9

Gemma-2-27B
Line
Branch
Function

SUT

Zero-Shot

Zero-Shot + CoT

One-Shot

One-Shot + CoT

Three-Shot

Three-Shot + CoT

Method

0

20

40

60

80

100

C
ov

er
ag

e
(%

)

43

24 24 23 20 23 23

76

17 16 18 16 16 18
27

2 2 2 2 2 2

Llama-70B
Line
Branch
Function

Figure 2: Final edge case quality on TESTGENEVALMINI measured in terms of line, branch, and
function coverages across three model families: GEMMA-2-27B (top-left), GPT-O4-MINI (top-
right), and LLAMA-70B (bottom). The proposed inference-time evolutionary search (SUT) con-
sistently achieves strong coverage, outperforming few-shot and chain-of-thought baselines in most
settings.

Figure 3 presents the resolution rate (blue, left axis) and average runtime (red, right axis) for two
benchmarks. The resolution rate is defined as the fraction of generated unit tests that success-
fully reach convergence. In the left subplot, HUMANEVAL shows that nearly 62% of problems are
resolved in a single iteration, with only modest runtime overhead, indicating that the majority of
tasks are relatively straightforward. In contrast, the right subplot for TESTGENEVALMINI exhibits
a markedly different profile: while the majority of problems require three or more iterations, resolu-
tion rates plateau only after extended search, with runtimes rising steeply at higher iteration counts.
Together, these results highlight the efficiency of our inference-time evolutionary search on simpler
benchmarks, while also demonstrating its ability to scale to more complex tasks at the cost of addi-
tional compute. The prompts can be found in Appendix B and an example unit test file generation
can be found in Appendix C.

Overall, our evolutionary search achieves higher coverage than inference-time baselines across Hu-
manEval and our TestGenEvalMini. While branch coverage lags slightly for GPT-o4-mini and
Gemma-2-27B, this likely reflects differences in how these models explore control-flow paths; refin-
ing branch-focused operators is an avenue for future work. For efficiency, we report representative
runs, and the patterns we observe are stable across models and subsets.

6 CONCLUSION

We introduced a stateful multi-agent evolutionary framework for unit test generation, which departs
from stateless inference by maintaining persistent reasoning state across multiple stages of search.
By combining an actor for edge-case proposal, an adversary for robustness evaluation, a critic for
reward integration, and an executor for sandboxed verification, our system achieves substantial gains
in coverage compared to few-shot and chain-of-thought baselines. Experiments on HumanEval and
TestGenEvalMini demonstrate that stateful evolutionary search enables higher coverage edge-case
discovery, scaling beyond the capabilities of conventional stateless prompting. These results high-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7
Iteration

0

20

40

60

80

100

R
es

ol
ut

io
n

R
at

e
(%

)

HumanEval

Resolution Rate (%)
Avg Time (s)

1 2 3 4 5 6
Iteration

0

20

40

60

80

100

R
es

ol
ut

io
n

R
at

e
(%

)

TestGenEvalMini

Resolution Rate (%)
Avg Time (s)

0

500

1000

1500

2000

2500

A
ve

ra
ge

 T
im

e
(s

)

0

1000

2000

3000

4000

A
ve

ra
ge

 T
im

e
(s

)

Figure 3: Evolution of line coverage over iterations for the three model families. LLAMA-70B im-
proves over about four stages before stabilizing, while GPT-O4-MINI and GEMMA-2-27B plateau
earlier.

light the promise of inference-time multi-agent coordination as a training-free strategy for improving
the reasoning depth and reliability of large language models.

Nonetheless, several limitations remain. The proposed stateful multi-agent evolutionary framework
incurs higher inference-time compute costs and longer runtimes on complex tasks, potentially lim-
iting deployment in latency-sensitive settings. Future work will focus on extending the executor
to handle richer dependency contexts, developing more efficient search termination criteria, and
incorporating learned reward models to stabilize scoring. Broader evaluation across multilingual
benchmarks and industrial-scale repositories will also be critical to assess generalization. Address-
ing these challenges will enable more practical, scalable, and adaptive inference-time agents for
automated software testing.

REFERENCES

Lakshya A Agrawal, Shangyin Tan, Dilara Soylu, Noah Ziems, Rishi Khare, Krista Opsahl-Ong,
Arnav Singhvi, Herumb Shandilya, Michael J Ryan, Meng Jiang, Christopher Potts, Koushik
Sen, Alexandros G. Dimakis, Ion Stoica, Dan Klein, Matei Zaharia, and Omar Khattab. Gepa:
Reflective prompt evolution can outperform reinforcement learning, 2025. URL https://
arxiv.org/abs/2507.19457.

Cem Anil, James Lucas, and Roger Grosse. Exploring length generalization in large language
models. arXiv preprint arXiv:2207.04901, 2022.

Thomas Bäck, David B Fogel, and Zbigniew Michalewicz. Handbook of evolutionary computation.
CRC Press, 1997.

Jacob Burnim and Koushik Sen. Heuristics for scalable dynamic test generation. In 2008 23rd
IEEE/ACM International Conference on Automated Software Engineering, pp. 443–446. IEEE,
2008.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec

9

https://arxiv.org/abs/2507.19457
https://arxiv.org/abs/2507.19457

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code. 2021.

Rui Ding, Xuefeng He, Tianyu Chen, and Xiaotong Wang. Adversarially guided actor-critic: To-
wards sample-efficient reinforcement learning. arXiv preprint arXiv:2305.01234, 2023.

Juraj Gottweis, Wei-Hung Weng, Alexander Daryin, Tao Tu, Anil Palepu, Petar Sirkovic, Artiom
Myaskovsky, Felix Weissenberger, Keran Rong, Ryutaro Tanno, Khaled Saab, Dan Popovici,
Jacob Blum, Fan Zhang, Katherine Chou, Avinatan Hassidim, Burak Gokturk, Amin Vahdat,
Pushmeet Kohli, Yossi Matias, Andrew Carroll, Kavita Kulkarni, Nenad Tomasev, Yuan Guan,
Vikram Dhillon, Eeshit Dhaval Vaishnav, Byron Lee, Tiago R D Costa, José R Penadés, Gary
Peltz, Yunhan Xu, Annalisa Pawlosky, Alan Karthikesalingam, and Vivek Natarajan. Towards an
ai co-scientist, 2025. URL https://arxiv.org/abs/2502.18864.

Nikolaus Hansen. The cma evolution strategy: A tutorial. In arXiv preprint arXiv:1604.00772,
2016.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based train-
ing of neural networks. In arXiv preprint arXiv:1711.09846, 2017.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Seth Karten, Andy Luu Nguyen, and Chi Jin. Pokéchamp: an expert-level minimax language agent
for competitive pokémon.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in Neural Information
Processing Systems (NeurIPS), 2000.

Yan Leng, Hao Wang, and Yuan Yuan. Llm-assisted hypothesis generation and graph-based evalua-
tion. Available at SSRN 4948029, 2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Marcin Kučer, Sewon Min, Wen-tau Yih, Hannaneh Hajishirzi, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Tao Long, Wei Zheng, Jia Li, Xing Wang, Liang Zhao, Zhiyuan Liu, and Maosong Sun. Trime:
Trimming llms for efficient multi-step reasoning. arXiv preprint arXiv:2402.07644, 2024.

Jean-Baptiste Mouret and Jeff Clune. Encouraging behavioral diversity in evolutionary robotics: An
empirical study. Evolutionary computation, 23(3):493–524, 2015.

Heinz Mühlenbein, Martina Gorges-Schleuter, and Ottmar Krämer. Evolution algorithms in combi-
natorial optimization. Parallel computing, 7(1):65–85, 1988.

Neel Nanda, Lawrence Chan, Joseph Smith, Tim Lieberum, Nelson Elhage, James Johnston, Daniel
Wang, Marcin Tworkowski, Trenton Bricken, Ethan Perez, et al. Progress measures for grokking
via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian,
et al. Alphaevolve: A coding agent for scientific and algorithmic discovery. arXiv preprint
arXiv:2506.13131, 2025a.

Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco J. R. Ruiz, Abbas Mehrabian,
M. Pawan Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian
Nowozin, Pushmeet Kohli, and Matej Balog. Alphaevolve: A coding agent for scientific and
algorithmic discovery, 2025b. URL https://arxiv.org/abs/2506.13131.

10

https://arxiv.org/abs/2502.18864
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2506.13131

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Maxwell Nye, Anders Andreassen, Iddo Gur, Michael Widrich, Melanie Kambadur, Edward Grefen-
stette, Pushmeet Kohli, Thomas Kipf, and Tim Rocktäschel. Show your work: Scratchpads for
intermediate computation with language models. In Advances in Neural Information Processing
Systems (NeurIPS), 2021.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 5(3):e00024, 2020.

Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. Evolution strategies as a scalable alterna-
tive to reinforcement learning. In arXiv preprint arXiv:1703.03864, 2017.

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O Stanley, and
Jeff Clune. Deep neuroevolution: Genetic algorithms are a competitive alternative for training
deep neural networks for reinforcement learning. In arXiv preprint arXiv:1712.06567, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2017.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chen, Quoc
Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
arXiv preprint arXiv:2201.11903, 2022.

Jiaxin Wen, Jian Guan, Hongning Wang, Wei Wu, and Minlie Huang. Codeplan: Unlocking rea-
soning potential in large language models by scaling code-form planning. In The Thirteenth
International Conference on Learning Representations, 2024.

Shunyu Yao, Maarten Bosma, Zifan Zhao, Dian Yu, Jeffrey Wen, Pranav Kumar, Kevin Luu, Karthik
Narasimhan, Melanie Kambadur, Yuan Cao, et al. React: Synergizing reasoning and acting in
language models. arXiv preprint arXiv:2210.03629, 2023a.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In Ad-
vances in Neural Information Processing Systems (NeurIPS), 2023b.

Yunhua Zhang, Zhiqiang Zeng, Yujie Luo, Xiangzhe Chen, Zhenchang Liu, Zhewei Wang, Xiang
Li, Ge Li, Zhiqiang Zong, Xiaoxing Ma, and Lingming Zhang. Testgeneval: A real world unit
test generation and test completion benchmark. arXiv preprint arXiv:2410.00752, 2024.

Denny Zhou, Quoc Le, Ed Chen, Jason Wei, et al. We can steer but not explain: When interpretable
models are hard to train. arXiv preprint arXiv:2304.05366, 2023.

A APPENDIX

A.1 COMPUTATION COST (FLOPS)

We report floating-point operation counts (FLOPs) for a single evaluation iteration of our adaptive
pipeline. FLOPs provide a hardware-agnostic measure of computational demand and allow princi-
pled comparison across model sizes and ablations.

We decompose the iteration into language-model (LLM) calls and non-LLM procedures (code ex-
ecution, mutation, bookkeeping). For autoregressive transformer inference, we adopt the standard
accounting

FLOPSLLM ≈ 2Nparams · T
where Nparams is the number of model parameters and T is the total number of tokens processed
(prompt + generated). The factor 2 reflects the dominant matrix multiplications in the forward
pass. (If back-propagation were involved, a factor ≈ 3x the forward cost would be appropriate; our
pipeline uses inference only.)

Non-LLM components are counted analytically from primitive operations in the relevant procedures
(e.g., parsing, AST transforms, interpreter startup), yielding FLOPs that are negligible relative to
LLM usage but included for completeness.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A.2 FLOPS FORMULATION

We derive the total floating point operations (FLOPs) required per iteration of our Ac-
tor–Adversary–Critic loop. Let:

• Nactor: number of parameters in the Actor LLM

• Nut: number of parameters in the UnitTest LLM

• Lsrc: source code length (tokens)

• R: number of rule variations (edge cases) generated per iteration

• Rut: maximum number of edge cases to keep for unittest generation

• M : max number of mutants (code mutations) executed per iteration

• Tothers: average tokens of system prompt, task description etc

• Tec: average tokens per edge case description

• Tut out: output length of the generated unit test suite (tokens)

• Fexec: FLOPs per code execution

• Fmut: FLOPs per mutation generation

• Fcritic: FLOPs per critic evaluation

• Fother: FLOPs for JSON parsing, string processing, and logging

1. Actor FLOPs. The Actor LLM processes both source code and accumulated context to generate
new edge cases.

Tactor in = Lsrc + (R · Tec) + Tothers

Tactor out = R · Tec

Tactor = Tactor in + Tactor out

Factor = 2 ·Nactor · Tactor

2. Unittest FLOPs. If the system makes use of an LLM to generate the final unittest file as
opposed to a Human in the Loop, then these computations also need to be taken into account.
The UnitTest LLM consumes the source and filtered edge cases to produce complete test suites.

Tut in = Lsrc + (Rut · Tec) + Tothers

Tut = Tut in + Tut out

Fut = 2 ·Nut · Tut

3. Code Execution FLOPs. Each generated mutant and the original source are executed against
all edge cases.

E = (M + 1) ·R

Fexec total = E · Fexec

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 4: MCP Architecture overview

4. Mutation FLOPs. Considering an average of 30 mutants are generated in every iteration (after
which M are randomly sampled for execution).

Fmut total = 30 · Fmut

5. Critic and Other FLOPs.
Fcritic total = R · Fcritic

Fother total = Fother

6. Total System FLOPs.
Fsystem = Factor + Fut + Fexec total + Fmut total + Fcritic total + Fother total

This formulation allows us to compute FLOPs analytically for different evaluation settings, such as
TESTGENEVALMINI and HUMANEVAL, by substituting the corresponding parameter values.

Running the system on TestGenEvalMini requires 3584.0 TFLOPs per LLM Iteration, and an addi-
tional 819.2 TFLOPs for the final unit test file generation. The TFLOPs for all other computation
are negligible, including rule-based generation (which only requires an average of 36000 FLOPs.
Running the system on HumanEval requires 812.0 TFLOPs per LLM Iteration, and an additional
128.0 TFLOPs for the final unit test file generation. The TFLOPs for all other computation are
negligible, including rule-based generation (which only requires an average of 13500 FLOPs).

Category TestGenEvalMini (TFLOPs) HumanEval (TFLOPs)
LLM Iteration 3584.0 812.0
Final Unit Test Generation 819.2 128.0
Rule-based / Other Computation 0.036 0.0135

A.3 EXECUTOR

The Executor is an integral auxiliary component within our system architecture that facilitates the
Controller in managing the orchestrated flow of information. It employs a Model Context Proto-
col (MCP) Client-Server framework to ensure secure and isolated execution of all generated edge
cases and mutated code variants. To maintain strict isolation, all executions on the server side are
containerized using Docker, thereby sandboxing them from the host environment.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.3.1 MCP WORKFLOW

The operational workflow of the Executor is depicted in Fig. 4 and proceeds as follows:

1. The Executor receives the input source file for testing.
2. The Client Controller coordinates the process and initiates invocations of the various MCP

tools.
3. The source file is transmitted from the client to the MCP Server through a tool call directed

to the Actor.
4. The Actor module generates pertinent edge cases and executes them on the source file

within the sandboxed environment.
5. The MCP Server returns the generated edge cases, execution outcomes, and coverage met-

rics to the client.
6. The client forwards both the source file and execution results to the MCP Server through a

tool call to the Adversary.
7. The Adversary produces mutations of the source code and runs the previously generated

edge cases on these mutants, again within the sandboxed environment, ultimately comput-
ing a mutation score.

8. This mutation score is returned from the MCP Server to the client.
9. Subsequently, the client transmits the execution results, coverage data, and mutation score

to the MCP Server via a tool call to the Critic.
10. The Critic aggregates this information to compute a comprehensive reward, which it then

returns to the client.
11. Finally, the Client Controller evaluates predefined stopping criteria:

• If the criteria are satisfied, the tools are cleanly disconnected.
• Otherwise, all feedback generated during the current rollout is assimilated and for-

warded, along with the source file, back to the Actor to initiate the subsequent rollout.

A.3.2 LIMITATIONS OF THE EXECUTOR

Despite its current capabilities, the Executor exhibits several limitations:

1. The system presently supports only single source files and lacks comprehensive reposi-
tory indexing, thereby limiting its ability to handle dependencies spanning multiple files or
relative package imports.

2. Certain file types, particularly those that return complex serialized objects (e.g., pickled
files), are not currently supported.

3. Modules that initiate multiple MCP requests in quick succession, such as Django’s au-
toreload module, may cause server instability and disconnections.

4. Dependency extraction is automated using pipreqs; however, unresolved version mis-
matches and dependency conflicts occasionally arise, which pipreqs cannot resolve.

These limitations necessitate the exclusion of such cases in the present implementation. Nonetheless,
we anticipate that with a more sophisticated Executor design, our adversarially guided Actor-Critic
framework can be extended to generate tests for these more complex scenarios using the established
MCP workflow. Enhancing the Executor environment will thus substantially increase the robustness
and applicability of the overall architecture.

B PROMPTS

B.1 EDGE CASE REASONING PROMPT

B.1.1 LLM EDGE CASES SYSTEM PROMPT

def llm_edge_cases_system_prompt():

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

return """
ROLE
You are the **ACTOR** in an Actor{Adversary{Critic (AAC) loop
for automated code testing.

- **Actor (you):** Generate diverse, high-value test cases to maximize code
coverage and detect edge failures.
- **Adversary:** Mutates inputs to find weaknesses.
- **Critic:** Scores inputs based on coverage, exceptions,
and semantic boundaries.

MISSION
Generate **new**, **distinct**, and **high-impact** edge cases for
all given functions.

METHODS
Use techniques including Boundary Value Analysis, Equivalence Partitioning,
Scenario Testing, Random Testing, Stress Testing, Exception Triggering,
and Complex Multi-parameter Interactions.

OUTPUT FORMAT
- Output **valid JSON only** in this exact format:

‘{ "function_name": [{ "param1": value, ... }, ...] }‘
- Keys must be function names; values are arrays of parameter dictionaries.
- Values must be valid JSON literals only (number, string, boolean, null,

array, object).
- **Do NOT include any explanatory text or formatting outside of JSON.**
- **Do NOT include JavaScript expressions or comments.**

FEEDBACK INTEGRATION
- Incorporate the provided feedback to improve and diversify edge cases.
- Avoid repeating previously generated edge cases.
- Ensure new cases target untested or under-tested scenarios.
"""

def llm_edge_cases_system_prompt_with_cot():
base_prompt = llm_edge_cases_system_prompt()
cot_addition = """

REASONING INSTRUCTIONS
Before generating edge cases, carefully analyze the feedback,
especially focusing on:

- **Maximizing line coverage:** Identify uncovered or poorly covered lines
in the source code.
- Uncovered branches and exceptions not yet triggered.
- Parameters or code paths with low test coverage.

Think step-by-step about how to design new test cases that specifically
target these uncovered lines to increase overall coverage.

Important: Do NOT include your reasoning in the final output.
Output **only valid JSON** edge cases that reflect this reasoning.

"""
return base_prompt + cot_addition

B.1.2 LLM EDGE CASES USER PROMPT

def llm_rule_expander_prompt(

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

function_signatures: Dict[str, List[str]],
source_code: str,
feedback_summary: str,
edge_cases_generated: str,
target_count: int

) -> str:
"""
Generate prompt for LLM to create edge cases for ALL functions at once

Args:
function_signatures: Dict mapping function names to their parameter lists
source_code: The complete source code
feedback_summary: Feedback from adversary/critic
edge_cases_generated: Previously generated edge cases
target_count: Total number of edge cases to generate across all functions

"""

Format function signatures for the prompt
... code not included for brevity...

functions_list = "\n".join(functions_info)

prompt = f"""
SRC CODE:
‘‘‘
{source_code}
‘‘‘
FUNCTIONS:
{functions_list}

FEEDBACK FROM LAST RUN:
{feedback_summary}

TASK:
Generate {target_count} NEW and DISTINCT edge cases distributed
evenly across all functions above.

GUIDANCE:
- Incorporate all feedback to improve coverage and trigger new exceptions.
- Do NOT repeat previous edge cases.
- Generate valid JSON ONLY | strictly adhere to the output format.
- Focus on edge, boundary, and rare case inputs.
- Distribute edge cases fairly across functions.
- Provide no text outside the JSON.

OUTPUT EXAMPLE:
{{
"function1": [

{{"param1": "value1", "param2": 0}},
{{"param1": "value2", "param2": -1}}

],
"function2": [

{{"x": 999999, "y": -999999}},
{{"x": 0, "y": 0}}

]
}}

GENERATE JSON ONLY.
"""

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

return prompt

B.2 FINAL EDGE CASES TO UNIT TEST FILE GENERATION PROMPT

B.2.1 LLM UNIT TEST GENERATION SYSTEM PROMPT

def edge_cases_to_unittest_system_prompt():
return """
You are an expert Python test generator.
Your task is to convert the given edge cases **and doctest/typical examples**
into pytest unit tests.

RULES:
1. Output ONLY valid Python 3.11 code
| no markdown, no explanations, no extra text.
2. Use EXACTLY 4 spaces per indentation level (no tabs).
3. All parentheses, brackets, and braces must be balanced.
4. Import only pytest and built-ins if needed | no extra imports.
5. Each edge case must become one complete pytest test function.
6. Test names must follow: test_<function>_<short_scenario>.
7. Use literals exactly as shown (Ellipsis → ..., Infinity → float("inf"), etc.).
8. Function parameters and variables MUST be valid Python identifiers:

- Must start with a letter or underscore
- May contain letters, numbers, or underscores
- Must NOT start with a digit (incorrect: "3_14" → correct: "val_3_14")

8a. If the edge case uses unclear or undefined variables
(e.g., threshold_3_14, Array_1000_0):

- Replace them with safe, concrete Python literals:
- Numbers: 0, 1, 3.14
- Lists: [], [0], [None] as appropriate
- Strings: ’’, ’example’
- Objects: None

9. Edge case handling:
- {"input": {...}, "expected": X} → assert function output == X
- {"input": {...}, "raises": "ExceptionType"}
→ wrap call in pytest.raises(ExceptionType)
- {"input": {...}} only → just call the function

9b. For **normal/typical inputs** (including doctests),
generate pytest functions with **assert statements** for expected results.
10. Avoid duplicates: if multiple edge cases are semantically identical,
merge them into one test function.
11. Every generated test file must pass a syntax check:

‘python -m py_compile generated_tests.py‘
12. Mentally simulate importing and running the file to confirm:

- All tests execute without NameError, TypeError, SyntaxError,
or undefined variables.

13. Always include at least one test for **valid input with assert**,
even if edge cases exist.
14. Convert all doctest-style examples (>>> lines)
into pytest assert statements.
15. Do NOT invent new literals or variable names; always use safe defaults
if input is unclear.

DO NOT OUTPUT ANYTHING OTHER THAN THE TEST CODE.

B.2.2 LLM UNIT TEST GENERATION USER PROMPT

def edge_cases_to_unittest_prompt(

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

source_code: str,
edge_cases, # Can be list of dicts or JSON string

) -> str:
Handle both list of edge cases and JSON string
import json
if isinstance(edge_cases, str):

edge_cases_repr = edge_cases
else:

Convert list of edge cases to formatted JSON
edge_cases_repr = repr(edge_cases)

prompt = f"""
Convert the following edge cases into a complete pytest test file.

SOURCE CODE:
{source_code}

EDGE CASES (JSON):
{edge_cases_repr}

REQUIREMENTS:
- One pytest test function per edge case.
- Use the schema rules from system prompt
(expected → assert, raises → pytest.raises).
- Ensure all test functions are syntactically correct and executable.
- Absolutely no invalid parameter names (e.g., those starting with digits).
- Convert all doctest-style examples (>>> lines)
into pytest assert statements.
- For error cases, use pytest.raises to assert the correct exception is raised.
- Ensure a good mix of assert and pytest.raises statements.

Now generate the pytest test file:
"""
return prompt

B.3 BASELINES EDGE CASE REASONING PROMPT

B.3.1 BASELINES LLM EDGE CASES SYSTEM PROMPT

def edge_case_generation_system_prompt():
return """
You are a Python expert. Your job is to generate **diverse,
high-value edge cases** for given functions.

CRITICAL RULES:
1. Output ONLY valid JSON | no explanations, markdown, or extra text.
2. Format must be strictly:

{ "function_name": [{ "param1": value, ... }, ...] }
3. Keys = function names, Values = arrays of input dictionaries.
4. JSON literals only: number, string, boolean, null, array, object.
5. Use Boundary Value Analysis, Equivalence Partitioning, Exception Triggering,
Stress Testing, and Unusual Combinations.

FORMATTING REQUIREMENTS:
- Start your response with { and end with }
- Use double quotes for all strings and keys
- Do NOT include any text before or after the JSON
- Do NOT wrap the JSON in markdown code blocks
- Ensure all brackets and braces are properly balanced
- Each function must have at least one edge case

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

- Parameter values must be valid JSON types
(no Python-specific values like None, True, False
- use null, true, false instead)
"""

B.3.2 BASELINES LLM EDGE CASES USER PROMPTS

def edge_case_generation_user_prompt(
source_code: str,
function_signatures: Dict[str, List[str]],
extra_text: str = "",
cot_flag: bool = False

) -> str:
Format function signatures for clarity
functions_info = []
for func_name, params in function_signatures.items():

if params:
functions_info.append(f" - {func_name}({’, ’.join(params)})")

else:
functions_info.append(f" - {func_name}()")

functions_list = "\n".join(functions_info)
#function_signatures_json = json.dumps(function_signatures, indent=2)

prompt = f"""
{extra_text}

SOURCE CODE:
{source_code}

FUNCTIONS TO TARGET:
{functions_list}

TASK:
Generate new, distinct, and high-impact edge cases for all listed functions.

OUTPUT FORMAT:
{{

"function_name": [
{{"param1": value, "param2": value}},
{{"param1": value2, "param2": value3}}

]
}}

REQUIREMENTS:
- Output strictly valid JSON | no text outside JSON.
- Keys must match function names exactly.
"""

if cot_flag:
prompt += "\n" + edge_case_cot_prompt()

return prompt

def edge_case_zero_shot_text() -> str:
return """

Generate diverse edge cases directly for the given functions.
"""

def edge_case_one_shot_text() -> str:
return """

Here is an example of valid edge case JSON:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

{
"divide": [

{"a": 10, "b": 2},
{"a": 10, "b": 0}

]
}

Now generate edge cases for the provided functions in the same format.
"""

def edge_case_three_shot_text() -> str:
return """

Here are examples of valid edge case JSON files:

EXAMPLE 1:
{

"sqrt": [
{"x": 4},
{"x": 0},
{"x": -1}

]
}

EXAMPLE 2:
{

"factorial": [
{"n": 5},
{"n": 0},
{"n": -3}

]
}

EXAMPLE 3:
{

"substring": [
{"text": "hello", "start": 1, "end": 3},
{"text": "hello", "start": -1, "end": 2}

]
}

Now generate edge cases for the provided functions in the same JSON format.
"""

def edge_case_cot_prompt() -> str:
return """

Think step-by-step:
1. Analyze each function signature.
2. Identify normal, boundary, extreme, and invalid input cases.
3. Ensure coverage of exceptions, corner cases, and unusual parameter combinations.
4. Then output ONLY the final JSON with those cases.
"""

B.4 BASELINES UNIT TEST GENERATION PROMPT

B.4.1 BASELINES LLM UNIT TEST GENERATION SYSTEM PROMPT

def edge_cases_to_unittest_system_prompt():
return """

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

You are an expert Python test generator.
Your task is to convert the given edge cases
and doctest/typical examples into pytest unit tests.

RULES:
1. Output ONLY valid Python 3.11 code | no markdown,
no explanations, no extra text.
2. Use EXACTLY 4 spaces per indentation level (no tabs).
3. All parentheses, brackets, and braces must be balanced.
4. Import only pytest and built-ins if needed | no extra imports.
5. Each edge case must become one complete pytest test function.
6. Test names must follow: test_<function>_<short_scenario>.
7. Use literals exactly as shown
(Ellipsis → ..., Infinity → float("inf"), etc.).
8. Function parameters and variables MUST be valid Python identifiers:

- Must start with a letter or underscore
- May contain letters, numbers, or underscores
- Must NOT start with a digit (incorrect: "3_14" → correct: "val_3_14")

8a. If the edge case uses unclear or undefined variables
(e.g., threshold_3_14, Array_1000_0):

- Replace them with safe, concrete Python literals:
- Numbers: 0, 1, 3.14
- Lists: [], [0], [None] as appropriate
- Strings: ’’, ’example’
- Objects: None

9. Edge case handling:
- {"input": {...}, "expected": X} → assert function output == X
- {"input": {...}, "raises": "ExceptionType"}
→ wrap call in pytest.raises(ExceptionType)
- {"input": {...}} only → just call the function

9b. For **normal/typical inputs** (including doctests),
generate pytest functions with **assert statements** for expected results.
10. Avoid duplicates: if multiple edge cases are semantically identical,
merge them into one test function.
11. Every generated test file must pass a syntax check:

‘python -m py_compile generated_tests.py‘
12. Mentally simulate importing and running the file to confirm:

- All tests execute without NameError, TypeError, SyntaxError,
or undefined variables.

13. Always include at least one test for **valid input with assert**,
even if edge cases exist.
14. Convert all doctest-style examples (>>> lines)
into pytest assert statements.
15. Do NOT invent new literals or variable names;
always use safe defaults if input is unclear.

DO NOT OUTPUT ANYTHING OTHER THAN THE TEST CODE.
"""

C EXAMPLE UNIT TEST FILE GENERATION

To illustrate the workflow of our framework, we provide a concrete example drawn from Django’s
ORM internals. The source code (Figure 5) contains helper classes and functions that are invoked
when constructing SQL queries.

From these source files, our system automatically generates corresponding unit test files. The gen-
erated tests (Figure 6) are designed to cover key execution paths and boundary conditions while
consisting of runnable test cases.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

The source code and the generated unit test file are shortened and simplified for clarity, however,
they retains the essential semantics for demonstrating unit test generation.

C.1 SOURCE FILE

Figure 5 [TOP] shows the definition of the Q class. This class is a core building block for query
construction: it stores conditions in the children attribute, tracks the logical connector (AND,
OR), and exposes the combinemethod to merge query fragments. The combinemethod ensures
type-safety by restricting merges to other Q objects, handles corner cases such as empty children,
and creates a new Q object with the combined conditions.

Figure 5[BOTTOM] shows the FilteredRelation class. This class represents a relation name
with an optional condition. It validates that the relation name is non-empty and assigns a default
Q object if no condition is provided. The equality operator (eq) is overridden to allow seman-
tic comparison between two FilteredRelation objects based on both the relation name and
condition.

C.2 GENERATED UNIT TESTS

Our framework automatically generates the unit test file targeting the key behaviors of these source
classes.

Figure 6[BOTTOM] shows tests for FilteredRelation. The tests cover: (i) successful equal-
ity when both objects have identical fields; (ii) inequality when relation names differ; (iii) in-
equality when conditions differ; and (iv) type mismatch where equality is checked against a non-
FilteredRelation object. These cases validate both the intended semantics of the eq
method and its robustness against invalid inputs.

Figure 6[TOP] shows tests for the Q class. The generated cases systematically explore: (i) combining
with an invalid type (triggering a TypeError); (ii) combining when one side has no children; (iii)
combining when the current object is empty but the other is non-empty; and (iv) combining two
non-empty Q objects to ensure the resulting object aggregates children correctly and records the
connector string. These unit tests directly exercise the control-flow paths in combine, including
exception handling and state mutation.

D RULE-BASED ENGINE: COLD-START

At initialization, our framework requires a mechanism to seed candidate edge cases before any
feedback from coverage or mutation testing is available. We implement this cold-start stage through
a Python-specific rule-based expansion engine. The engine enumerates deterministic variants of the
input state across several dimensions:

• Numeric values: Expansion covers boundary conditions such as zero, ±1, extreme integers
(231−1, 263−1), large/small floats (e.g., 1010, 10−10), infinities, NaNs, and very large arbitrary-
precision integers.

• Strings: Variants include empty and whitespace strings, boolean-like and number-like encod-
ings, path traversal patterns, injection-style payloads, long Unicode/emoji sequences, and control
characters.

• Lists: Cases include empty lists, singleton lists, very long lists with repeated values, reversed lists,
lists containing NaN or Inf, and deeply nested structures.

• Dictionaries: Variants are created with empty values, None-filled keys, or problematic/reserved
keys (e.g., class , whitespace keys, "True").

• Python special values: Serializable forms of special objects (e.g., None, booleans, empty con-
tainers, long strings, lists of None) provide coverage of unusual runtime behaviors.

• Exception triggers: Values known to raise errors in Python (division by zero, invalid encodings,
null-byte strings, memory-exhausting lists) are injected to surface robustness gaps early.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 5: Simplified excerpt from Django ORM internals

The expansion process is designed to remain JSON-serializable and reproducible, ensuring compat-
ibility with our execution and logging infrastructure. While each individual rule is simple, together
they provide broad initial coverage of Python-specific failure modes. This makes the cold-start stage
non-trivial: even before iterative search begins, the actor is seeded with high-value candidates that
often resolve a substantial fraction of problems, as shown in our HumanEval results (Section 5.1).

E USE OF LARGE LANGUAGE MODELS

We employed a large language model (ChatGPT) in a limited capacity to refine the writing of this
manuscript. The model’s use was restricted to stylistic improvements such as clarity and concise-
ness. All scientific contributions—including the conception of ideas and algorithms, design of meth-
ods, and execution of experiments—were the sole work of the authors.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 6: Generated unit test file corresponding to Source file

24

	Introduction
	Related Work
	Methodology
	Experiments
	Results
	HumanEval
	TestGenEvalMini

	Conclusion
	Appendix
	Computation Cost (FLOPs)
	FLOPs Formulation
	Executor
	MCP Workflow
	Limitations of the Executor

	Prompts
	Edge Case Reasoning Prompt
	LLM Edge Cases System Prompt
	LLM Edge Cases User Prompt

	Final Edge Cases To Unit Test File Generation Prompt
	LLM Unit Test Generation System Prompt
	LLM Unit Test Generation User Prompt

	Baselines Edge Case Reasoning Prompt
	Baselines LLM Edge Cases System Prompt
	Baselines LLM Edge Cases User Prompts

	Baselines Unit Test Generation Prompt
	Baselines LLM Unit Test Generation System Prompt

	Example Unit Test File Generation
	Source File
	Generated Unit Tests

	Rule-Based Engine: Cold-Start
	Use of large language models

