
Counting in Small Transformers:
The Delicate Interplay between Attention and Feed-Forward Layers

Freya Behrens 1 Luca Biggio 2 Lenka Zdeborová 1

Abstract

Next to scaling considerations, architectural de-
sign choices profoundly shape the solution space
of transformers. In this work, we analyze the solu-
tions simple transformer blocks implement when
tackling the histogram task: counting items in se-
quences. Despite its simplicity, this task reveals
a complex interplay between predictive perfor-
mance, vocabulary and embedding sizes, token-
mixing mechanisms, and feed-forward layer ca-
pacity. We identify two theoretical counting
strategies transformers adopt, relation-based and
inventory-based counting, each defining distinct
learning regimes for the task. These strategies dic-
tate how functionality is distributed between at-
tention and feed-forward layers. We further show
that adding softmax and beginning-of-sequence
tokens allow for more robustness when embed-
ding dimensions are comparatively small. Empir-
ical introspection of trained models closely con-
firms both the learning regimes of the various
architectures and the formation of these strategies
during training. We demonstrate how a basic task
that requires only aggregation and selection is
significantly impacted by minor design changes.

1. Introduction
Transformers are the key neural network behind many recent
deep learning advances, most notably large language models
(LLMs). Their success is partly due to their versatility in
processing diverse data types, including text, images, and
video, represented as sequences of tokens (Liu et al., 2021;
Girdhar et al., 2019; Brown et al., 2020). While scale has

1Statistical Physics of Computation Laboratory, Ècole poly-
technique fédérale de Lausanne (EPFL), Lausanne, Switzer-
land 2Department of Computing Sciences, Università Boc-
coni, Milan, Italy. Correspondence to: Freya Behrens
<freya.behrens@epfl.ch>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

been a key factor in unleashing the potential of these models,
it is remarkable that their architecture still largely follows
the same simple template of the original transformer model
proposed by Vaswani et al. (2017). At its core, a single trans-
former block primarily alternates two basic components: the
token-mixing attention mechanism and a standard fully con-
nected multi-layer perceptron. At a high level, the attention
mechanism mixes the tokens, while the multi-layer percep-
tron applies a nonlinear feature transformation identically
to each token. Despite the widespread use of transformers,
there is no clear consensus on the distinct roles of their
components, how they interact, or if they can be substituted
with alternative modules (Tolstikhin et al., 2021; Dordevic
et al., 2024; Gu & Dao, 2024). In particular, the specific
contribution of each architectural element to the model’s
hypothesis space –the range of algorithms it can learn and
implement in practice– remains opaque (Weiss et al., 2021;
Delétang et al., 2023; Abbe et al., 2023; Ouellette et al.,
2023).

In this work, we investigate this question for algorithms that
compare and aggregate information from a mechanistic per-
spective (Cammarata et al., 2020; Olah et al., 2020; Elhage
et al., 2021; Michaud et al., 2023; Ouellette et al., 2023)
and focus on the histogram task (Weiss et al., 2021) as a
prototypical problem. It consists of predicting the number
of appearances of each token in the input sequence pro-
cessed by the model – counting - and solving it requires
both comparison and aggregation. Even modern language
models with up to 8B parameters currently fail to solve
this task robustly and efficiently in-weights, rather than via
chain-of-thought, (Appendix A). This failure, despite the
task’s apparent simplicity, motivates a study of the relative
role of different architectural components and their impact
on the final solutions implemented by the model in a con-
trolled setting. To this end, we focus on models following
the architectural template of primitive transformer blocks,
i.e. alternating a token-mixing attention mechanism and a
multi-layer perceptron.

In our analysis, we provide explicit theoretical constructions
(parameter configurations) for a range of such architectures
reaching perfect accuracy in a model-dependent hyperpa-
rameter regime. In a subsequent step, we compare these

1

Counting in Small Transformers: Attention and Feed-Forward Layers

algorithms with the performance and mechanistic behav-
ior of models trained from data. Our findings reveal that
this class of models is capable of implementing strikingly
different solutions for the histogram task, with a strong de-
pendence on the scale of the model’s hyperparameters and
the type of token-mixing mechanism utilized. Our main
contributions are as follows:

• We identify two algorithmic strategies for solving the his-
togram task: relation-based counting, which uses local
pairwise token comparisons, and inventory-based count-
ing, which counts all tokens in the alphabet and extracts
the desired count at a given position.

• We clarify how the emergence of these strategies depends
on the architecture-specific inductive biases. Relation-
based counting is memory and compute-efficient, leverag-
ing attention for comparisons. Inventory-based counting
relies on token-mixing for aggregation, but uses feed-
forward layers to implement a comparison to the com-
plete alphabet with higher computational demands.

• We show how the embedding size required for perfect
solutions relates to alphabet size and the maximal se-
quence length. Due to the discrete nature of the task,
near-orthogonality is sufficient in many cases. Gains
in prediction accuracy compared to models of the same
capacity can arise from the softmax operator and dot-
product attention reducing noise from linear dependence.

Our code is publicly available at https://github.com/SPOC-
group/counting-attention.

2. Background and Notation
Architecture. As inputs, we consider sequences of to-
kens x = (x1, x2, · · · , xL) ∈ T L from the alphabet T =
{1, · · · , T}. A sequence of outputs is y = (y1, · · · , yL)
has the same length as the input sequence, where each out-
put token yℓ ∈ {1, ..., C}, with C ≤ L. We analyze several
1-layer model architectures where a token-mixing mech-
anism is followed by a per-token feature transformation.
Formally, we consider a models F : T L → CL defined for
the positions ℓ = 1, · · · , L as

F (x̄)ℓ = argmax
c∈{1,··· ,C}

f(x̄′
ℓ)c ; x̄′

ℓ = x̄ℓ + [A(x̄)x̄]ℓ (1)

with the token mixing matrix A : RL×d → RL×L and
the token-wise feature transformation f : Rd → RC . The
embedding is x̄ ∈ RL×d, where x̄ℓ denotes its ℓ-th row, is
obtained by passing the input sequence x into a standard
embedding layer (learnable lookup-table) of dimension d.
We refer to the embedding associated with token t ∈ T as
et ∈ Rd or exℓ

∈ Rd for the embedding of the token xℓ at
position ℓ. We do not include positional embeddings due to

the inherent permutation equivariance of the histogram task.
We refer to the vector x̄′

ℓ, for each position ℓ = 1, · · · , L,
as the mixed token. Note that we assume that all operations
in the network are executed with infinite precision. We
comment on this assumption when it becomes problematic.

Token Mixing. We consider two types of mixing mech-
anisms A with different activation functions and a single
head. We refer to the case where the function A is con-
stant in x̄ as linear mixing (lin), e.g. Alin(x̄) = A and
Alin+sftm(x̄) = softmax(A), where A ∈ RL×L is a learn-
able matrix and the softmax operator is applied row-wise.
The number of learnable parameters is therefore L2.
As an alternative mixing structure, which we refer to as dot-
product mixing (dot), we consider the popular attention
mechanism which constructs the matrix A to be explicitly
dependent on the inputs, i.e.

Adot(x̄) =
1√
d
x̄WQW

T
K x̄T (2)

and Adot+sftm(x̄) = softmax (Adot(x̄)) where WQ and
WK are learnable d × d matrices. Note that, without loss
of generality, we assume the value matrix to be the identity.
Then the number of parameters for dot-product mixing is
2d2. In line with previous work (Weiss et al., 2021), for
architectures employing the dot-product mixing, we also an-
alyze models utilizing the so-called beginning-of-sequence
(BOS) token. This special token, indicated with the symbol
$, is appended to the original input x resulting in a new
sequence x̃ = ($, x1, x2, · · · , xL) of length L+ 1. We will
refer to the architecture that includes the BOS token as bos.

Feature Transformation. The feature transformation is a
single hidden layer perceptron with ReLU activations. The
hidden layer is of dimension p. The function f is applied
identically to every mixed token x̄′

ℓ for ℓ = 1, · · · , L, as:

f(x̄′
ℓ) = ReLU(x̄′

ℓW1 + b1)W2 + b2 (3)

where f(x̄′
ℓ) : Rd → RC and where the weights have

the appropriate dimensions to accommodate a hidden layer
of size p, i.e. W1 ∈ Rd×p, b1 ∈ Rp,W2 ∈ Rp×C and
b2 ∈ RC .

3. Experimental Setup
Task and Dataset. We consider a simple algorithmic task
that is referred to as histogram: given a sequence of to-
kens, the goal is to return a sequence of the same length
where each entry represents the number of times the corre-
sponding input token appears in the entire sequence. For
example, given x = [A,B,D,D,B,B], the output will be
y = [1, 3, 2, 2, 3, 3]. We define the count of a token t in the
sequence x at position ℓ as histx(ℓ). In our experiments,

2

https://github.com/SPOC-group/counting-attention
https://github.com/SPOC-group/counting-attention

Counting in Small Transformers: Attention and Feed-Forward Layers

we consider i.i.d. distributions of sequences of length L
from an input alphabet of size T , where L ≤ T . Our sam-
pling strategy relies on first sampling a set of partitions, and
then assigning a token to each partition (see App. D for
details). This allows for a close to uniform distribution over
the values of y.

Models and Training. We measure the performance on
the histogram task of the four different variants of the token
mixing models described in Sec. 2, i.e. lin and dot, with
or without the softmax (+sftm). The token embeddings are
jointly learned with the model parameters. We consider the
dimension of the embedded tokens d, and the hidden layer
size p of the feature transformation. We also consider the
model bos(+sftm) where every input sequence is prefixed
with the BOS token prior to entering a dot-product mixing
layer (with softmax).
Models are trained with Adam with a learning rate of 10−3

with cross-entropy loss for 500 epochs with a batch size of
32. We consider the online learning setting where for each
new epoch we generate a dataset of fresh 10, 000 samples.
The accuracy is computed from 3, 000 independent samples.

4. Learning Regimes in Counting
In order to understand the contributions of the different
architectural components, we analyze the performance of
the above-stated models with varying mixing mechanisms in
different learning regimes characterized by the embedding
dimension d and the number of hidden neurons p of the
feed-forward module.
Fig. 1 shows the accuracy attained by learned models for
sequences of length L = 10 with T = 32 different input
tokens. We observe that the models exhibit both high
and low accuracy across various parameter regimes, with
a strong dependence on the architecture. Fig. 2 further
clarifies that the parameter efficiency under different
architectures varies substantially. To investigate the
underlying mechanisms we devise theoretical constructions
and mechanistic interpretations of the learned solutions.
We delineate two regimes in each of the parameters: for
the embedding dimension d we distinguish the regime
of non-orthogonal embeddings (d < T) and of possibly
orthogonal embeddings (d ≥ T). For hidden layer size p
we distinguish the regime where models can sense only a
constant number of directions/features (p = 1) or one scal-
ing as the alphabet size (p = T). In App. E.8 we show that
a similar phenomenology persists for 2-layer transformers.

4.1. d ≥ T : Orthogonal token embeddings are separable

When the model dimension d is equal or greater than the
alphabet size T , tokens can be represented by embeddings
that are mutually orthogonal. Assuming for t ∈ T there are

such mutually orthogonal embeddings et ∈ Rd with a norm
of 1, the overlap ⟨es, et⟩ = 0 for distinct tokens t ̸= s and it
is 1 when t = s. In such a scenario, a linear combination of
token embeddings preserves magnitude (count information)
about elements from the alphabet. A weighted sum of to-
kens, denoted as e′ =

∑
t∈T αtet, can be broken down into

the original tokens using projections on the original token
embeddings, where αt = ⟨et, e′⟩/∥et∥22.

Figure 1. Accuracy on the histogram task for different 1-layer ar-
chitectures. Mean accuracy for varying embedding size d, hidden
layer size p, for fixed T = 32 and L = 10 for the different to-
ken mixing mechanisms dot, bos and lin. (Left) Models with
softmax; (Right) Models without softmax. Average over 5 runs
for every d, p ∈ {1, 2, 3, 4, 6, 8, 12, 16, 23, 32, 45, 64, 91, 128}.
Vertical and horizontal white lines indicate p = T and d = T
respectively. White stars (dots) mark a 100% (> 99%) accuracy
configuration was found for at least one of the five runs.

In the following, we use this property to theoretically con-
struct the weights for all models that solves the task when
d ≥ T . Remarkably, the constructions require different
numbers of hidden neurons p depending on the mixing

3

Counting in Small Transformers: Attention and Feed-Forward Layers

mechanism. This demonstrates the interplay of the mixing
layer and the feature transform: for some mixing mecha-
nisms, the latter needs to implement inventory-based count-
ing (IC) (requiring p ≥ T), and for others, relation-based
counting (RC) (where p ≥ 1 is sufficient).

4.1.1. RELATION-BASED COUNTING: LEVERAGING
DOT-PRODUCT MIXING

When an extra beginning-of-sequence token tBOS is avail-
able in bos, it can be used to extract information about
a token’s count histx(ℓ) in the attention layer of the net-
work through its attention score (Kazemnejad et al., 2023).
In the literature, the beginning (or end) of sequence to-
kens have been linked to model-internal computations, such
as counting. In (Weiss et al., 2021), it is shown that the
RASP language can solve the histogram task with one layer
and one attention head. We confirm empirically that bos
and bos+sftm reach (close to) 100% accuracy whenever
d > T , and we verify that a relation-based counting algo-
rithm can be theoretically implemented in these two archi-
tectures by construction.

Proposition 4.1 (RC with BOS token). For bos and
bos+sftm and a given L ≥ 2, there each exists a con-
figuration of weights that solves the histogram task at 100%
accuracy, given that d ≥ T > 2 and p = 1.

We prove this by construction in App. B.2.3-B.2.2 and we
provide the intuition of the proof in the following. For bos
we set the tBOS embedding to eBOS =

∑
t∈T et and take

the mutually orthogonal token embeddings et to have norm
1. Assuming that tBOS is at the first position of the sequence
of now length L+ 1, a simple dot-product operation in the
attention mechanism (with Q,K = d

1
4 Id) will lead to an

attention matrix with entries:

aℓm =

T if ℓ = m = 1

1 if (ℓ > 1,m = 1) or (ℓ,m > 1, xℓ = xm)

0 if ℓ,m > 1, xℓ ̸= xm

.

Projecting the mixed token x̄′
ℓ onto the tBOS we obtain

⟨x̄′
ℓ, eBOS⟩ = T + histx(ℓ) + 1, i.e. eBOS is the single

relevant direction for the prediction. Its magnitude relates
linearly to histx(ℓ). A single hidden neuron p = 1 suffices
and the output layer can transfer the count into a categor-
ical representation. For bos+sftm one needs to further
account for the non-linearity of the softmax as described in
App. B.2.2.

In the learned models, some instances in the given regime
indeed achieve 100% accuracy. While their weights do not
correspond exactly to the relation-based counting algorithm
described previously, they exhibit similar properties. In
Fig. 3, we show for bos+sftm, that tBOS indeed plays a
special role in the learned model: in the attention matrix

Figure 2. Test accuracy vs. total number of learned parameters.
The data is the same as generated for Fig. 1, every data point is the
a single experiment and we show the convex hull in solid lines.

its activation can be interpreted as a proxy for the number
of occurrences of xℓ, as it has different values for tokens
that occur a different amount of times. Other entries of the
attention matrix are comparatively low when the compared
tokens are the same and high when they are different. The
comparison operation naturally provided by the dot-product
allows the model to extract the count of the same tokens,
for each token in the sequence. We also show in Fig. 3 how
the presence of the tBOS determines the final prediction
through the application of f . Surprisingly, the dot model
(without the softmax) reaches a an empirical performance
comparable to bos in the regime d ≥ T and p = 1, even
though it does not have an extra token available.

Proposition 4.2 (RC with tagged embeddings). For dot
and a given L, T > 2, there exists a configuration of weights
that solves the histogram task at 100% accuracy, given that
d ≥ T > 2 and p = 1.

We prove this in App. B.2.1. Intuitively, the construction
uses a single common direction ecnt that is added to the
otherwise mutually orthogonal token embeddings. A dot-
product mixing then leads to aℓm = a̸= > 0 when xℓ is
different from xm, and aℓm = a= > 0 when tokens are the
same. Then, the number of counts can be easily extracted
from the dot-product ⟨ecnt, x̄

′
ℓ⟩ of the counting token with

the mixed token x̄′
ℓ, i.e. ⟨ecnt, x̄

′
ℓ⟩ ∝ 1+histx(ℓ)a=+(L−

histx(ℓ))a̸=. We can, therefore, obtain a perfect accuracy
implementation in the regime where d ≥ T with only a
single hidden neuron. This is in line with the observed
empirical performance by dot even without access to a
BOS token.

Dot-product attention with softmax fails to implement
relation-based counting. Since the dot-product mecha-
nism can naturally be used in relation-based counting, one
might expect the dot+sftm model to implement the same
mechanism. However, and maybe surprisingly so, we em-

4

Counting in Small Transformers: Attention and Feed-Forward Layers

20 0 20 40 60 80
overlap

0.00

0.05

0.10

0.15

0.20

0.25

de
ns

ity

token embeddings
overlap for t with

same t - et, et

different v - et, ev

BOS - et, eBOS

eBOS, eBOS

$ B B C B B B D E E E

$
B
B
C
B
B
B
D
E
E
E

0 10 10 11 10 10 10 8 11 11 11
46 1 1 10 1 1 1 10 10 10 10
46 1 1 10 1 1 1 10 10 10 10
33 7 7 1 7 7 7 7 7 7 7
46 1 1 10 1 1 1 10 10 10 10
46 1 1 10 1 1 1 10 10 10 10
46 1 1 10 1 1 1 10 10 10 10
33 8 8 7 8 8 8 1 7 7 7
38 9 9 9 9 9 9 9 1 1 1
38 9 9 9 9 9 9 9 1 1 1
38 9 9 9 9 9 9 9 1 1 1

attention matrix

0.0

0.2

0.4

0.6

0.8

1.0

A i
j

0.0 0.2 0.4 0.6 0.8 1.0
1

2

3

4

5

6

7

8

9

pr
ed

ict
io

n

f(eBOS + (1)eD + eB)
feedforward prediction

c
1
2
3
4
5
6
7
8
9

Figure 3. Relation-based counting with bos+sftm (T = 32, L = 10, p = 2, d = 45). This model achieves 99.9% accuracy. It
was selected as the best model from all our experiments with p = 2. (Left) The tokens overlap (cosine similarity) with the same
tokens, different tokens and the BOS all concentrate around different values. (Middle) This is reflected in the attention matrix after
the application of the row-wise softmax. The tBOS (‘$’) in the first column aℓ,0 becomes a proxy for the count of xℓ. (Right) To
demonstrate that the feedforward network is only sensitive to this direction, we show its count predictions for a mix of tokens and fix
x̄′ = αeBOS +(1−α)eD + eB . The contribution α of the BOS token to the intermediate x̄′ is varied and D,B are two specific elements
of the alphabet T , represented by their embeddings eD and eB . The y-axis shows the predicted class of the feedforward layer f(x̄′) for a
given α. We measure aℓ,0, the actual contribution of the BOS token’s for the sequence in the middle plot for the letters that occur 1, 3
and 5 times. The same experiment is repeated for different elements of the alphabet in App. E.4, showing independence of the count
prediction on the other tokens present in the sequence.

pirically observe a marked difference between dot and
dot+sftm in Fig. 1. dot+sftm only starts performing
close to 100% accuracy when both the model dimension
d and the number of hidden neurons p are larger than the
number of tokens T . To understand why it fails to learn for
p = 1, we show the attention matrix of dot+sftm in Fig. 4.
Notably, it is based on the semantics, as (Adot+sftm)ℓm is
higher when xℓ = xm than otherwise. However, the normal-
ization effect of the softmax activation prevents the develop-
ment of a meaningful counter subspace that is needed in the
relation-based algorithm. As a result of normalization, the
attention scores are

∑
m aℓm = 1, so any direction present

in all tokens (and by the symmetry of the task, it would need
to be present in all tokens) would be uninformative after the
token mixing – its weight would be one regardless of the
input sequence and would therefore not carry information
about the count. Before, the model bos+sftm circum-
vented this problem by adding the extra token with a special
functionality that does not need to be counted. Because
this is not possible for dot+sftm, the architecture fails to
perform well for p = 1 – it now needs to measure more than
one direction in the feed-forward module.
In the following, we show that a solution of the histogram
task can still be achieved through an inventory-based count-
ing algorithm with p ≥ T . We detail this in the follow-
ing section, for the example of lin. The statement for
dot+sftm is given in App. B.3.

4.1.2. INVENTORY-BASED COUNTING: MEMORIZATION
IN THE FEED-FORWARD LAYER

When the feed-forward hidden layer has one neuron for each
distinct token available in the alphabet, it can detect as many
directions. This allows the feed-forward layer to extract the
information of any token direction separately and thereby
implement a custom comparison operation that works for
all of the tokens in the alphabet. While this is less parameter
efficient and requires memorizing the complete alphabet, it
enables the model to solve the task.
Proposition 4.3 (IC with memorization in the feed-forward
layer). For lin and lin+sftm and a given L, T > 2
there exists a configuration of weights which solves the
histogram task for p ≥ T and d ≥ T .

We describe examples of such constructions in App. B.3.1
and B.3.2. Again, several solutions exist due to symmetries,
and in the following we give an intuition for one of them.
In the linear mixing layer Alin we set a constant value
a = 1/L so that the result of the mixing is simply a
position-independent linear combination of the input. The
count histx(ℓ) can be extracted after the residual connec-
tion where we add x̄′

ℓ = x̄ℓ+exℓ
. By setting the columns of

the matrix (W1)t = et we can extract the count information
up to the factor 1/a

hist
x

(ℓ) =
1

a

∑
t∈T

ReLU (⟨x̄′
ℓ, (W1)t⟩ − 1)

=
1

a

∑
t∈T

ReLU (⟨x̄′
ℓ, et⟩ − 1) =

1

a
⟨x̄ℓ, exℓ

⟩

Note that, due to the −1 bias term, only the hidden neu-

5

Counting in Small Transformers: Attention and Feed-Forward Layers

Figure 4. Inventory-based counting with dot+sftm (p = 32, d = 32) and lin+sftm (p = 64, d = 64)). We have T = 32, L = 10.
The models achieves 99.47% and 100% accuracy respectively. (Left columns) The attention matrix for two different sequences. It
differentiates between same (red squares) and different tokens for dot+sftm but is invariant to the semantics for lin. For dot+sftm,
any counting direction that could emerge in token space is not informative due to the softmax normalization, so p ≥ T is required (see
Fig. 1). (Right columns) We test the feed-forward layer f in isolation, by feeding it with an artificial mix of learned embeddings for
the three tokens B,C and D. We plot the class predicted by f for inputs constructed as x̄′ = αBeB + αCeC + αDeD + R, where
1 = αB +αC +αD and we change the residual R ∈ {eB , eC , eD} from left to right, for each of the models dot+sftm and lin+sftm.
The prediction strongly depends on the coefficient αt associated with the token t present in the residual connection and only weakly on
the others. The non-linear scaling of the decision boundaries is due to the softmax activation function.

ron for token (W1)t = et = xℓ that occurs in the residual
connection has a non-zero activation. The output layer W2

can then be designed to activate the correct output vector
corresponding to the count histx(ℓ) (see App. B.4). Since
a ∈ [0, 1] and

∑L
m=1 aℓm = 1 the same procedure can

be implemented by a matrix which is passed through the
softmax operator for lin+sftm. In practice, in this con-
struction the feed-forward module is correlated with the
complete alphabet, acting as an inventory, or look-up table.

In Fig. 4, we inspect the attention matrix Alin and the feature
transformation f which is learned for lin+sftm in the
regime where p ∼ T ∼ d. The mixing has an off-diagonal
of ∼ 0.09 and a diagonal of ∼ 0.16. Feeding the feature
transformation f with a weighted combination of 3 tokens,
B,C,D, we observe that the final prediction of the network
depends mainly on the coefficient αt corresponding to the
token embedding fed through the residual connection. This
behavior is reflected in Fig. 4 (right) and suggests that the
feature transformation must have encoded the information
of the token embedding in its weights, hence requiring at
least p = T hidden neurons.

Superpositioned and selective implementations. Some
of the models capabilities include one another. For example,
the models that can implement relation-based counting for
p = 1 can also implement the solutions for inventory-based
counting for p ≥ T . It is unclear, whether the memory-
intensive solution is preferred when the memory is available,

or if the efficient solution is learned nonetheless. Curiously,
in Fig. 1, we observe that the model dot (which is capable
of RC) witnesses a very slight decrease in maximal learned
performance from 100% accuracy to 99% despite its capac-
ity being increased to p = T when inventory-based counting
can in principle be implemented. In App. E.5 we investigate
the singular value decomposition of W1, for learned models
with ≥ 99% accuracy and p, d ≥ T . We find that the largest
T = 32 singular values are larger than the surplus singular
values when p > T for models that can implement only IC.
This behavior is less pronounced for models that can imple-
ment RC, where the largest singular value is often relatively
much larger than the following T = 32, but still show a
small dip after the T = 32 singular values. Understanding
which algorithm is implemented in this regime, or if it is a
superposition of the two, thus requires further investigation.

4.2. d < T : Non-orthogonal embeddings and the
discrete nature of counting

The scenario where d < T fundamentally differs from the
one explored in Section 4.1 because the embeddings for dif-
ferent tokens can no longer be mutually orthogonal. Some
token pairs then have a non-zero overlap due to their linear
dependence, causing the mixing of tokens to entangle count
information across different directions in the embedding
space.
This phenomenon is illustrated for dot in Fig. 5, where
learned models with smaller d tend to overcount items in

6

Counting in Small Transformers: Attention and Feed-Forward Layers

the input, and observe a less spread distribution of overlaps.
Nevertheless in Fig. 1 we observe a number of results that
empirically show almost perfect accuracy solutions with
d < T both for models with RC or IC. Indeed, the discrete
nature of the histogram task, i.e. the fact that every token
can only be mapped to L distinct counts, makes the predic-
tion inherently more robust to the effect of noise stemming
from entangled embeddings. This concept is illustrated in
Fig. 8 in App. B.4 for the dot+sftm model. As long as
the value of the logits in the final output layer falls within
the margin between two counts the model still solves the
task with perfect accuracy. The relative size of this margin
decreases when L is increased, making the task harder when
more classes need to be distinguished.

In the following, we link concepts on optimally placing
decision boundaries for noise robustness to a characteriza-
tion of this entanglement noise, measured by the mutual
coherence of the token embedding set (i.e., the maximum
absolute overlap between pairs of distinct embeddings). The
mutual coherence of a set of T vectors of dimension d is
lower bounded by the Welch bound (Welch, 1974). This
gives a means to understand the size of d a given task with
T, L requires at least.
Proposition 4.4 (Robustness via bounded mutual coher-
ence). Given L ≥ 5, T ≥ 2 and assuming that the Welch
bound is attained for a given T, d, there exists a construction
that solves the histogram task with

(lin, lin+sftm; p = T):
⌈

T (2L−3)2

T−1+(2L−3)2

⌉
≤ d,

(dot, bos; p = 1):
⌈

T (2L−3)2

T−1+(2L−3)2

⌉
+ 1 ≤ d,

(dot, bos; p = T):
⌈

T (L−1)
T−1+(L−1)

⌉
≤ d.

We provide additional background and the proofs in
App. C.2. The idea is to use constructions analogous to
the RC and IC with orthogonal embeddings, while keeping
track on how the errors of non-zero overlaps between pairs
of different embeddings propagate through the model. For
a given L and T this provides an upper bound on the maxi-
mal mutual coherence that is tolerated for a perfect solution.
This can be connected to the dimensionality d via the Welch
bound. Evaluating the bounds for the setting in Fig. 1, we
obtain, in the order of the above list, d ≥ 29, 30, 7. Gen-
erally it is hard to generate matrices that attain the Welch
bound and manually we did not succeed to find them for
d = 29, 30. However we can indeed create an explicit con-
struction a for dot and p = T which attains d = 12, as
provided in the supplementary code and in correspondence
with Fig. 1. While this bound does not reach the d as in-
dicated by the Welch bound, the mutual coherence of the
embedding matrix we use is close to the maximally allowed
value of M = 0.299 < 1/3.

The previous results apply specifically to models without
the softmax operator in the token mixing step – models with
this non-linearity can be more robust and attain even smaller
d, as clearly visible in Fig. 1. The idea is that a softmax
function with a high enough inverse temperature can non-
linearly scale down the attention scores for different token
pairs relative to those of the same tokens. Thereby, the noise
introduced in the dot-product layer through pairs of different
embeddings becomes arbitrarily close to zero after applying
the softmax.

Proposition 4.5 (Robustness via softmax error-reduction).
Given T, L > 2, there exist weight configurations that
solve the histogram task for the parameter combinations
(bos+sftm; p = 1) and (dot+sftm; p = T) with
⌈log2(T + 1)⌉+ 2 ≤ d.

Put simply, this construction requires that there are token
embeddings for t, s = 1, . . . , T and s ̸= t with ϵ > 0 such
that ⟨et, et⟩ = 1 and ⟨et, es⟩ < 1− ϵ. This is fulfilled when
every token is the binary encoding of its value, modulo mi-
nor modifications due to the RC mechanism for bos+sftm.
Setting the softmax temperature high enough as a function
of L allows for the contributions from non-equal tokens to
be decreased relative to the ones of same tokens. Evaluating
this function for Fig. 1, we obtain d = 7, which closely
corresponds to the most parameter efficient solutions of
the histogram task that we observe. As L grows, we re-
quire stronger concentration from the softmax by adjusting
its temperature. Since real-world networks execute finite
computations, computational instabilities or collapses might
occur. It is therefore not clear that this correspondence will
hold for all values of L.

In App. C.3.1 we show that this bound can be even further
improved for bos+sftm to a constant d = 4, but at the
cost of increasing the temperature further as a function of
T , in addition to L, requiring yet more accurate computa-
tions. While in practice we are able to hand construct and
code a solution for the L, T under consideration (available
in the supplementary code), these models are not learned.
However the very large numerical precision required might
lead to learning difficult learning dynamics and be the rea-
son why we do not observe any learned solutions of the
histogram task in this regime.

4.3. Extensive T, L ablations and two layer architectures

Appendix E provides a number of ablations for T = 15, 64
and L = 5, 15, 30, for different architectures and hidden
layer size p and embedding size d. Our predictions from
the theory are largely consistent with the performance for
different alphabet sizes T and small L, similarly to T = 32
and L = 10. However, for very large L = 30 it seems that
the keeping the training budget constant lead to a weaker
performance in the feasible regimes.

7

Counting in Small Transformers: Attention and Feed-Forward Layers

1 2 3 4 5 6 7 8 9
ground truth

2

4

6

8

pr
ed

ict
io

n

57.71% acc.

d = 3

1 2 3 4 5 6 7 8 9
ground truth

2

4

6

8 87.67% acc.

d = 8

1 2 3 4 5 6 7 8 9
ground truth

2

4

6

8 98.28% acc.

d = 23

10 3
10 2
10 1

5 0 5
overlap

0.0

0.5

1.0

1.5

2.0

de
ns

ity

same - et, et

different - et, es

0 50 100
overlap

0.00

0.02

0.04

0.06

0 200
overlap

0.00

0.01

0.02

0.03

Figure 5. Introspecting the regime with Entangled Embeddings
with dot (T = 32, L = 10, p = 32). We show trained instances
of dot with varying the model dimension d. (Top) The confusion
matrix of ground truth and predicted counts. (Bottom) The overlap
distribution between same and different token embeddings.

In the same section, we show that for learned 2-layer atten-
tion blocks the general phenomenology for the single layer
models from Fig. 1 is very coherent. Only in the critical
regimes along the transition from not possible to possible
transitions, there are some larger differences in average
performance. This indicates that 2-layer networks do not
necessarily operate differently in what they learned.

5. Related Work
Counting and Interpretability. The emergence of algo-
rithmic capabilities in transformers (Olsson et al., 2022;
Power et al., 2022) has led to numerous investigations
aimed at reverse-engineering trained models into human-
understandable mechanisms (Zhong et al., 2023; Nanda
et al., 2023; Quirke & Barez, 2024), including a variety of
counting scenarios (Gould et al., 2023; Chollet et al., 2020;
Ouellette et al., 2023; Cui et al., 2024; Golkar et al., 2024).
In our work, we consider the histogram task introduced via
the RASP(-L) programming language (Weiss et al., 2021;
Abbe et al., 2023). While RASP predicts that the histogram
single layer transformers with one head require a BOS to-
ken (Nye et al., 2021), we find that this is not necessary by
providing constructions. While many works in interpetabil-
ity focus on causal interventions (Vig et al., 2020; Meng
et al., 2022) to understand the computational mechanisms
of models or assign relevance scores to their components
(nostalgebraist, 2020; Elhage et al., 2021), we focus on the
hyperparameter scaling of several distinct models in relation
to their performance and explicit constructions of different
algorithms, similar to e.g. (Zhong et al., 2023; Quirke &
Barez, 2024; Nichani et al., 2025). We give precise theo-
retical conditions on the model configurations that lead to

perfect explicit constructions and link them to introspection
on learned models. In concurrent but independent work to
ours, Yehudai et al. (2024) explore a very similar version of
the histogram task, and find, as we do, that the numerical
precision limits the counting size. While they do no examine
different architectures, they find rigorous upper bounds.

Memorization and Feed-forward Layers. The role of
feed-forward layers as memorization modules is investi-
gated in the context of factual recall for language mod-
els (Geva et al., 2021; Meng et al., 2022; Chughtai et al.,
2024). Henighan et al. (2023) study a double decent phe-
nomenon where the purpose of the feed-forward layer tran-
sitions from storing data points to discovering generaliz-
ing features as a function of increasing training data di-
versity (Raventos et al., 2023). In the histogram task, we
observe a similar phenomenon as a function of the architec-
ture: the feed-forward layer acts either as a look-up table or
a feature detector for for a counting subspace.

Aligning Algorithm and Architecture. While theoretical
work has defined the computational capacity of several (au-
toregressive) neural networks (Weiss et al., 2021; Yun et al.,
2019; Delétang et al., 2023; Liu et al., 2023), hallucinations
and failure modes on seemingly trivial tasks in real-world
transformers are the rule rather than an exception. Dziri et al.
(2023) postulate that this may be due to a misalignment be-
tween the computational graph of a model and the task itself.
In this work, we show that subtle differences in components
such as the mixing type and layer width play a crucial role
in terms of algorithmic alignment. Previous work found
evidence of superimposed computational graphs in a single
model (Elhage et al., 2022); our models shed light on how
such entanglement functions in detail for non-orthogonal
embeddings.

6. Discussion & Conclusion
Limitations. Similar to other works in mechanistic inter-
pretability (Zhong et al., 2023), we focus on 1-layer trans-
formers as a simplified model for modern transformers. Our
models are not autoregressive and do not account for the im-
pact of causal masks or positional encodings. While more
complex models could lead to more intricate interdepen-
dencies between the components, potentially limiting the
applicability of our findings to such architectures, it seems
plausible that similar vector arithmetic could emerge in sub-
spaces of large transformers (Gould et al., 2023; Engels
et al., 2025). Given its specificity, it is unclear if and how
similar memory-architecture phenomena would emerge for
different simple tasks (e.g. sorting or lookup). However, the
learning regimes seem to transfer to two layer models, and
even large auto-regressive language models fail to reliably
perform well on this task, hence motivating the study of

8

Counting in Small Transformers: Attention and Feed-Forward Layers

algorithmic emergence in smaller models.

Summary. We study how different components of simple
transformer models contribute to the emergence of different
solutions to the histogram task. The feasibility of solving
the histogram task including the comparison and aggre-
gation operations depends on the mixing mechanism, its
interaction with the feed-forward transformation, and the
softmax function in the attention. Relation-based count-
ing, uses a dot product mixing mechanism and low-capacity
feed-forward transformation, and inventory-based count-
ing, which memorizes token embeddings in feed-forward
weights, requires more parameters. We characterize feasi-
bility regimes in the phase space of embedding dimension
d and feed-forward dimension p, confirming that models
converge to these mechanisms. Some regimes allow both
strategies, and experiments show features of superimposed
mechanisms. When d < T , tokens cannot form an orthog-
onal basis for linear projection. Models exhibit varying
robustness to noise from non-orthogonality. The softmax
activation minimizes token similarity in attention, reducing
non-orthogonality effects—relevant in real-world models
where T often exceeds model dimensions.

Future Directions. Examples of hallucinations and fail-
ures in LLMs are as numerous as their successes. Though
limited to one task, our analysis highlights how subtle ar-
chitectural changes can drastically impact predictive power.
We expect that similar mechanistic investigations at or close
to the regimes where models start failing will be extremely
useful to understand how and why models fail in sometimes
puzzling manners.

Acknowledgements
Luca Biggio acknowledges support from the AI for Science
postdoctoral fellowship at EPFL.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abbe, E., Bengio, S., Lotfi, A., and Rizk, K. Generalization

on the unseen, logic reasoning and degree curriculum.
In ICML, 2023. URL https://arxiv.org/abs/
2301.13105.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,

Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M.,
Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E.,
Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C.,
McCandlish, S., Radford, A., Sutskever, I., and Amodei,
D. Language models are few-shot learners. CoRR,
abs/2005.14165, 2020. URL https://arxiv.org/
abs/2005.14165.

Cammarata, N., Carter, S., Goh, G., Olah, C., Petrov, M.,
Schubert, L., Voss, C., Egan, B., and Lim, S. K. Thread:
circuits. Distill, 5(3):e24, 2020.

Chollet, F., Tong, K., Reade, W., and Elliott, J. Ab-
straction and reasoning challenge, 2020. URL
https://kaggle.com/competitions/
abstraction-and-reasoning-challenge.

Chughtai, B., Cooney, A., and Nanda, N. Summing up
the facts: Additive mechanisms behind factual recall in
LLMs, 2024. URL https://openreview.net/
forum?id=P2gnDEHGu3.

Cui, H., Behrens, F., Krzakala, F., and Zdeborova, L. A
phase transition between positional and semantic learn-
ing in a solvable model of dot-product attention. In
The Thirty-eighth Annual Conference on Neural Infor-
mation Processing Systems, 2024. URL https://
openreview.net/forum?id=BFWdIPPLgZ.

Delétang, G., Ruoss, A., Grau-Moya, J., Genewein, T., Wen-
liang, L. K., Catt, E., Cundy, C., Hutter, M., Legg, S.,
Veness, J., and Ortega, P. A. Neural networks and the
chomsky hierarchy. In 11th International Conference on
Learning Representations, 2023.

Donoho, D. L. and Elad, M. Optimally sparse represen-
tation in general (nonorthogonal) dictionaries via sup
minimization. Proceedings of the National Academy of
Sciences, 100(5):2197–2202, 2003. doi: 10.1073/pnas.
0437847100. URL https://www.pnas.org/doi/
abs/10.1073/pnas.0437847100.

Dordevic, D., Bozic, V., Thommes, J., Coppola, D., and
Pal Singh, S. Rethinking attention: Exploring shal-
low feed-forward neural networks as an alternative to
attention layers in transformers (student abstract). Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 38(21):23477–23479, Mar. 2024. doi: 10.1609/
aaai.v38i21.30436. URL https://ojs.aaai.org/
index.php/AAAI/article/view/30436.

Dziri, N., Lu, X., Sclar, M., Li, X. L., Jiang, L., Lin,
B. Y., Welleck, S., West, P., Bhagavatula, C., Le Bras, R.,
Hwang, J., Sanyal, S., Ren, X., Ettinger, A., Harchaoui,
Z., and Choi, Y. Faith and fate: Limits of transformers on
compositionality. In Oh, A., Naumann, T., Globerson, A.,

9

https://arxiv.org/abs/2301.13105
https://arxiv.org/abs/2301.13105
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://kaggle.com/competitions/abstraction-and-reasoning-challenge
https://kaggle.com/competitions/abstraction-and-reasoning-challenge
https://openreview.net/forum?id=P2gnDEHGu3
https://openreview.net/forum?id=P2gnDEHGu3
https://openreview.net/forum?id=BFWdIPPLgZ
https://openreview.net/forum?id=BFWdIPPLgZ
https://www.pnas.org/doi/abs/10.1073/pnas.0437847100
https://www.pnas.org/doi/abs/10.1073/pnas.0437847100
https://ojs.aaai.org/index.php/AAAI/article/view/30436
https://ojs.aaai.org/index.php/AAAI/article/view/30436

Counting in Small Transformers: Attention and Feed-Forward Layers

Saenko, K., Hardt, M., and Levine, S. (eds.), Advances in
Neural Information Processing Systems, volume 36, pp.
70293–70332. Curran Associates, Inc., 2023.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly,
T., DasSarma, N., Drain, D., Ganguli, D., Hatfield-
Dodds, Z., Hernandez, D., Jones, A., Kernion, J., Lovitt,
L., Ndousse, K., Amodei, D., Brown, T., Clark, J.,
Kaplan, J., McCandlish, S., and Olah, C. A math-
ematical framework for transformer circuits. Trans-
former Circuits Thread, 2021. https://transformer-
circuits.pub/2021/framework/index.html.

Elhage, N., Hume, T., Olsson, C., Schiefer, N., Henighan,
T., Kravec, S., Hatfield-Dodds, Z., Lasenby, R., Drain,
D., Chen, C., Grosse, R., McCandlish, S., Kaplan, J.,
Amodei, D., Wattenberg, M., and Olah, C. Toy models
of superposition, 2022.

Engels, J., Michaud, E. J., Liao, I., Gurnee, W.,
and Tegmark, M. Not all language model features
are one-dimensionally linear. In The Thirteenth In-
ternational Conference on Learning Representations,
2025. URL https://openreview.net/forum?
id=d63a4AM4hb.

Fickus, M. and Mixon, D. G. Tables of the existence of
equiangular tight frames, 2016. URL https://arxiv.
org/abs/1504.00253.

Geva, M., Schuster, R., Berant, J., and Levy, O. Transformer
feed-forward layers are key-value memories. In Moens,
M.-F., Huang, X., Specia, L., and Yih, S. W.-t. (eds.), Pro-
ceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 5484–5495, On-
line and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.emnlp-main.446. URL https://
aclanthology.org/2021.emnlp-main.446.

Girdhar, R., Carreira, J., Doersch, C., and Zisserman, A.
Video action transformer network. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 244–253, 2019.

Golkar, S., Bietti, A., Pettee, M., Eickenberg, M., Cranmer,
M., Hirashima, K., Krawezik, G., Lourie, N., McCabe,
M., Morel, R., Ohana, R., Parker, L. H., Blancard, B.
R.-S., Cho, K., and Ho, S. Contextual counting: A mech-
anistic study of transformers on a quantitative task, 2024.
URL https://arxiv.org/abs/2406.02585.

Gould, R., Ong, E., Ogden, G., and Conmy, A. Successor
heads: Recurring, interpretable attention heads in the
wild, 2023.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Vaughan, A., Yang, A., Fan, A., and et al. The llama 3
herd of models, 2024. URL https://arxiv.org/
abs/2407.21783.

Gu, A. and Dao, T. Mamba: Linear-time sequence modeling
with selective state spaces. In First Conference on Lan-
guage Modeling, 2024. URL https://openreview.
net/forum?id=tEYskw1VY2.

Henighan, T., Carter, S., Hume, T., Elhage, N., Lasenby,
R., Fort, S., Schiefer, N., and Olah, C. Superposition,
memorization, and double descent. Transformer Circuits
Thread, 2023.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-
A., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix,
T., and Sayed, W. E. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Jiang, Q., Li, S., Bai, H., de Lamare, R. C., and He, X.
Gradient-based algorithm for designing sensing matrix
considering real mutual coherence for compressed sens-
ing systems. IET Signal Processing, 11(4):356–363,
2017.

Jyothi, R. and Babu, P. Telet: A monotonic algorithm to
design large dimensional equiangular tight frames for
applications in compressed sensing. Signal Processing,
195:108503, 2022.

Kazemnejad, A., Padhi, I., Natesan, K., Das, P., and
Reddy, S. The impact of positional encoding on
length generalization in transformers. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=Drrl2gcjzl.

Liu, B., Ash, J. T., Goel, S., Krishnamurthy, A., and Zhang,
C. Transformers learn shortcuts to automata. In The
Eleventh International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/
forum?id=De4FYqjFueZ.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z.,
Lin, S., and Guo, B. Swin transformer: Hierarchi-
cal vision transformer using shifted windows. CoRR,
abs/2103.14030, 2021. URL https://arxiv.org/
abs/2103.14030.

Meng, K., Bau, D., Andonian, A. J., and Belinkov, Y. Lo-
cating and editing factual associations in GPT. In Oh,
A. H., Agarwal, A., Belgrave, D., and Cho, K. (eds.),
Advances in Neural Information Processing Systems,

10

https://openreview.net/forum?id=d63a4AM4hb
https://openreview.net/forum?id=d63a4AM4hb
https://arxiv.org/abs/1504.00253
https://arxiv.org/abs/1504.00253
https://aclanthology.org/2021.emnlp-main.446
https://aclanthology.org/2021.emnlp-main.446
https://arxiv.org/abs/2406.02585
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://openreview.net/forum?id=Drrl2gcjzl
https://openreview.net/forum?id=Drrl2gcjzl
https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=De4FYqjFueZ
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2103.14030

Counting in Small Transformers: Attention and Feed-Forward Layers

2022. URL https://openreview.net/forum?
id=-h6WAS6eE4.

Michaud, E. J., Liu, Z., Girit, U., and Tegmark, M. The
quantization model of neural scaling. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=3tbTw2ga8K.

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Stein-
hardt, J. Progress measures for grokking via mechanistic
interpretability. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=9XFSbDPmdW.

Nichani, E., Lee, J. D., and Bietti, A. Understanding fac-
tual recall in transformers via associative memories. In
The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.
net/forum?id=hwSmPOAmhk.

nostalgebraist. interpreting GPT: the
logit lens — LessWrong, January 2020.
URL https://www.lesswrong.
com/posts/AcKRB8wDpdaN6v6ru/
interpreting-gpt-the-logit-lens.

Nye, M. I., Andreassen, A. J., Gur-Ari, G., Michalewski,
H., Austin, J., Bieber, D., Dohan, D., Lewkowycz, A.,
Bosma, M., Luan, D., Sutton, C., and Odena, A. Show
your work: Scratchpads for intermediate computation
with language models. CoRR, abs/2112.00114, 2021.
URL https://arxiv.org/abs/2112.00114.

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov,
M., and Carter, S. Zoom in: An introduction to cir-
cuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds,
Z., Hernandez, D., Johnston, S., Jones, A., Kernion, J.,
Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark,
J., Kaplan, J., McCandlish, S., and Olah, C. In-context
learning and induction heads, 2022.

Ouellette, S., Pfister, R., and Jud, H. Counting and algo-
rithmic generalization with transformers. arXiv preprint
arXiv:2310.08661, 2023.

Petzka, H., Trimmel, M., and Sminchisescu, C. Notes on
the symmetries of 2-layer relu-networks. In Proceedings
of the northern lights deep learning workshop, volume 1,
pp. 6–6, 2020.

Power, A., Burda, Y., Edwards, H., Babuschkin, I., and
Misra, V. Grokking: Generalization beyond overfitting
on small algorithmic datasets, 2022.

Quirke, P. and Barez, F. Understanding addition in trans-
formers. In The Twelfth International Conference on
Learning Representations, 2024. URL https://
openreview.net/forum?id=rIx1YXVWZb.

Raventos, A., Paul, M., Chen, F., and Ganguli, S. Pretrain-
ing task diversity and the emergence of non-bayesian
in-context learning for regression. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=BtAz4a5xDg.

Strohmer, T. and Heath, R. W. Grassmannian frames
with applications to coding and communication.
Applied and Computational Harmonic Analysis,
14(3):257–275, 2003. ISSN 1063-5203. doi:
https://doi.org/10.1016/S1063-5203(03)00023-X.
URL https://www.sciencedirect.com/
science/article/pii/S106352030300023X.

Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai,
X., Unterthiner, T., Yung, J., Steiner, A. P., Keysers, D.,
Uszkoreit, J., Lucic, M., and Dosovitskiy, A. MLP-mixer:
An all-MLP architecture for vision. In Beygelzimer,
A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?
id=EI2KOXKdnP.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In Proceedings of the 31st International
Conference on Neural Information Processing Systems,
NIPS’17, pp. 6000–6010, Red Hook, NY, USA, 2017.
Curran Associates Inc. ISBN 9781510860964.

Vig, J., Gehrmann, S., Belinkov, Y., Qian, S., Nevo, D.,
Singer, Y., and Shieber, S. M. Causal mediation anal-
ysis for interpreting neural NLP: the case of gender
bias. CoRR, abs/2004.12265, 2020. URL https:
//arxiv.org/abs/2004.12265.

Weiss, G., Goldberg, Y., and Yahav, E. Thinking like
transformers. In Meila, M. and Zhang, T. (eds.), Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 11080–11090. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/
v139/weiss21a.html.

Welch, L. R. Lower bounds on the maximum cross
correlation of signals (corresp.). IEEE Trans. Inf.
Theory, 20:397–399, 1974. URL https://api.
semanticscholar.org/CorpusID:20783885.

Yehudai, G., Kaplan, H., Ghandeharioun, A., Geva, M., and
Globerson, A. When can transformers count to n?, 2024.

11

https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=3tbTw2ga8K
https://openreview.net/forum?id=3tbTw2ga8K
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=hwSmPOAmhk
https://openreview.net/forum?id=hwSmPOAmhk
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://arxiv.org/abs/2112.00114
https://openreview.net/forum?id=rIx1YXVWZb
https://openreview.net/forum?id=rIx1YXVWZb
https://openreview.net/forum?id=BtAz4a5xDg
https://openreview.net/forum?id=BtAz4a5xDg
https://www.sciencedirect.com/science/article/pii/S106352030300023X
https://www.sciencedirect.com/science/article/pii/S106352030300023X
https://openreview.net/forum?id=EI2KOXKdnP
https://openreview.net/forum?id=EI2KOXKdnP
https://arxiv.org/abs/2004.12265
https://arxiv.org/abs/2004.12265
https://proceedings.mlr.press/v139/weiss21a.html
https://proceedings.mlr.press/v139/weiss21a.html
https://api.semanticscholar.org/CorpusID:20783885
https://api.semanticscholar.org/CorpusID:20783885

Counting in Small Transformers: Attention and Feed-Forward Layers

Yun, C., Bhojanapalli, S., Rawat, A. S., Reddi, S. J.,
and Kumar, S. Are transformers universal approxi-
mators of sequence-to-sequence functions? CoRR,
abs/1912.10077, 2019. URL http://arxiv.org/
abs/1912.10077.

Zhong, Z., Liu, Z., Tegmark, M., and Andreas, J. The clock
and the pizza: Two stories in mechanistic explanation of
neural networks. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=S5wmbQc1We.

12

http://arxiv.org/abs/1912.10077
http://arxiv.org/abs/1912.10077
https://openreview.net/forum?id=S5wmbQc1We
https://openreview.net/forum?id=S5wmbQc1We

Counting in Small Transformers: Attention and Feed-Forward Layers

Appendices
A Counting with large language models

B Explicit Constructions for Orthogonal Embeddings d = T

B.1 Overview
B.2 Relation-based counting
B.3 Inventory-based counting
B.4 Mapping a scalar to a categorical one-hot encoding

C Explicit Constructions for Linearly Dependent Embeddings d < T

C.1 Overview
C.2 Explicit construction for bounded mutual coherence
C.3 Explicit Construction with binary representations and softmax

D Data Generation

E Additional Experiments

E.1 Best Accuracy
E.2 Variability
E.3 Model with Random but Fixed Embeddings
E.4 BOS mixing token
E.5 Singular Value Decomposition of W1

E.6 Varying the number of tokens in the alphabet
E.7 Varying the length of the sequence
E.8 Models with two layers

13

Counting in Small Transformers: Attention and Feed-Forward Layers

A. Counting with large language models
We prompt language models with 7 and 8 billion parameters to count the inputs of a list. We use the torch implementations
of mistral-7B-v0.1 (Jiang et al., 2023) and Llama-3.1-8B (Grattafiori et al., 2024) with float16 respectively
and prompt in the english language. We prompt the model to count items in different lists of ten items which stem from
groups of 12 items (letters, months, animals). The groups of items are

• letters: [’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’, ’H’, ’I’, ’J’, ’K’, ’L’]

• animals: [’dog’, ’cat’, ’donkey’, ’horse’, ’elephant’, ’giraffe’, ’lion’,
’tiger’, ’bear’, ’wolf’, ’zebra’, ’monkey’]

• months: [’january’, ’february’, ’march’, ’april’, ’may’, ’june’, ’july’,
’august’, ’september’, ’october’, ’november’, ’december’]

And the four prompt types are

1. (compare, position)
[list] By comparing all ten items in the previous list to one another, we
find that the [i’th] item of the list appears [prompt],

2. (compare, semantic)
[list] By comparing all ten items in the previous list to one another, we
find that [item] appears [prompt],

3. (summarize, position)
[list] By summarizing the occurrences of [category name] in the previous list
of ten items, we find that the [i’th] item of the list appears [prompt],

4. (summarize, semantic)
[list] By summarizing the occurrences of [category name] in the previous list
of ten items, we find that [item] appears [prompt].

When we generate data we sample the ten items from the list either uniformly at random with replacement, or as we do for
the toy model experiments as specified in appendix D.

We then sample 100 lists for each model and generate all possible queries for different items and positions. We also change
the category type and sampling strategy and report the confusion matrices of the ground truth over the predictions in Fig. 6.

We observe that the performance is not very good. Querying for a given item semantically rather than its position consistently
performs better. For the positional queries the models mainly predict the count 3. Depending on the type of object that
is counted, counting more than 5 is correct only rarely for both models. The type of item that is counted also impacts
performance. Generally Llama-3.1 seems to perform better than Mistral-7B.

14

Counting in Small Transformers: Attention and Feed-Forward Layers

Figure 6. Mistral 7B-v0.1 predictive performance on counting tasks with temperature zero. Samples of 100 lists of 10 items with each
sampling strategy, where we generate all possible queries for different items and positions for each prompt type.

Figure 7. Llama 3.1 predictive performance on counting tasks with temperature zero. Samples of 100 lists of 10 items with each sampling
strategy, where we generate all possible queries for different items and positions for each prompt type.

15

Counting in Small Transformers: Attention and Feed-Forward Layers

B. Explicit Constructions for Orthogonal Embeddings d = T

B.1. Overview

In the parameter regime where d ≥ T there is always an orthonormal basis of size T in Rd, these explicit constructions give
the correct prediction for all input token sequences. For all the models we describe below, we define the sum of the hidden
layer neurons as:

γℓ =

p∑
i=1

ReLU(zℓ,i) =

p∑
i=1

ReLU(W1x̄
′
ℓ + b1)i (4)

In many cases, a simple linear regression can map the scalar γℓ to the correct count of tokens xℓ, and we describe how to
achieve this mapping to the classification problem in Section B.4.
In the following, we characterize which parameters W1, b1 in equation 4 allow for a correct mapping in each mechanism.
Importantly, the architecture exhibits numerous symmetries due to the feed-forward ReLU network (Petzka et al., 2020). To
demonstrate feasibility, we select one specific implementation. In the main text we observe that there is no one-to-one
correspondence between our explicit constructions and the learned weights, even though both functions achieve the same
perfect accuracy. Throughout, unless otherwise specified, we assume that E ∈ Rd×T is an orthonormal basis of Rd, which
we will use to create different forms of token embeddings.

The supplementary code at https://github.com/SPOC-group/counting-attention contains executable pytorch models
that have the weight configurations that are used to prove Propositions 4.2-4.3 and B.1, which allows one to test the
devised weight configurations for fixed T, L, d in practice.

B.2. Relation-based counting

B.2.1. (DOT ; p = 1)

Proof of Proposition 4.2. We set T = d > 2 with L ≥ 2 and p = 1. We choose the embeddings of the tokens of the dot
model as

et = ẽt + ẽcnt ∀t = 1, . . . T (5)

where the set E = {ẽt}Tt=1 is an orthonormal basis of an arbitrary but fixed T -dimensional subspace of Rd, and ẽcnt =∑T
t=1 ẽt. The key and query matrix are set to the scaled identity WK = WQ = d1/4Id and hence the mixing layer Adot

can be viewed as carrying out the unmodified dot-product operation between all pairs of tokens. The first layer weights
W1, b1 ∈ Rd can be fixed as

W1 = ẽcnt/(T + 1) ; b1 = −(1 + L(T + 2)) , (6)

and the second layer weights W2, b2 ∈ RL follow the recursion

(W2)1 = −1 +
1

L+ 1
, (b2)1 = 0 ; (7)

(W2)ℓ = −1 +
ℓ

L+ 1
, (b2)ℓ = ((W2)ℓ−1 − (W2)ℓ) (ℓ− 0.5) + bℓ−1 , ∀ℓ = 2, . . . , L. (8)

Given these parameters, it holds that for tokens 1 ≤ t, s ≤ T their dot-product is

⟨et, es⟩ =

{
2 + T if t ̸= s ,

3 + T if t = s .
(9)

Because of our choice of the query and key matrices, it directly follows that for tokens xℓ, xm at positions ℓ and m from a
given sequence x, their attention score is

aℓm =

{
2 + T if xℓ ̸= xm ,

3 + T if xℓ = xm .
(10)

16

https://github.com/SPOC-group/counting-attention

Counting in Small Transformers: Attention and Feed-Forward Layers

Hence, the mixed token after applying the residual connection is

x̄′
ℓ = x̄ℓ +

∑
m:xℓ=xm

(T + 3)x̄m +
∑

m:xℓ ̸=xm

(T + 2)x̄m (11)

so that computing

x̄′
ℓW1 =

〈
x̄′
ℓ,

ẽcnt

1 + T

〉
(12)

=

〈
x̄ℓ,

ẽcnt

1 + T

〉
+

∑
m:xℓ=xm

(T + 3)

〈
x̄m,

ẽcnt

1 + T

〉
+

∑
m:xℓ ̸=xm

(T + 2)

〈
x̄m,

ẽcnt

1 + T

〉
(13)

= 1 + histx(ℓ)(T + 3) + (L− histx(ℓ))(T + 2) (14)
= histx(ℓ) + 1 + L(T + 2). (15)

Then the single hidden unit has the value γℓ = ReLU(x̄′
ℓW1+b1) = histx(ℓ). It is easy to show (analogous to Fig. 8) that the

output logits c = γℓW2 + b2 with c ∈ RL, correctly identify the count for integer values x ∈ [1, . . . , L]. This is because we
constructed our recursion such that at a given input x = ℓ we have that (W2)ℓ(ℓ−0.5)+(b2)ℓ = (W2)ℓ−1(ℓ−0.5)+(b2)ℓ−1

and (W2)ℓ > (W2)ℓ−1, so it holds that

argmax
i=1...L

ci(y) =

1 y = 1

2 y = 2

. . .

L y = L ,

(16)

which gives the correct classification output for all possible inputs, and hence solves the histogram task at 100% accuracy.

Note, however, that this weight configuration is only one example, and some symmetries in the model can lead to different
but also 100% correct algorithms. This is especially important as we compare the regime outlined in the Theorem with the
weight configurations learned.

B.2.2. (BOS+SFTM ; p = 1)

Proof of Proposition 4.1 for bos+sftm. We set T = d > 2 with L ≥ 2 and p = 1 and consider the model dot+sftm.
Note that in this model every sequence x is prefixed with tBOS before it is fed into the embedding and then the mixing
layer. Again we use mutually orthogonal embeddings. E = {ẽt}Tt=1 is an orthonormal basis of an arbitrary but fixed
T -dimensional subspace of Rd, and ẽcnt =

∑T
t=1 ẽt. We set eBOS =

∑T
t=1 Et, where et = Et and the latter is a column of

E. Analogous to the background token from Proposition 4.1 there is only one direction p = 1 to detect in the feedforward
model, so we set

W1 = eBOS; b1 = −1. (17)

For a given token xℓ we have that in the dot-product mechanism ⟨eBOS, exℓ
⟩ = 1, ⟨exℓ

, exm
⟩ = 1 if xm = xℓ and 0

otherwise. Due to the softmax, the mixing coefficient is a = e/((kxℓ
+ 1)e + (L − kxℓ

)) (where e is Euler’s number)
for comparing xℓ to tBOS and to all the tokens where xℓ = xm, and b = 1/((kxℓ

+ 1)e + (L − kxℓ
)) otherwise, where,

kxℓ
= histx(ℓ). Hence, the mixed token is:

x̄′
ℓ = aeBOS + akxℓ

x̄ℓ +
∑

xm ̸=xℓ

bx̄m + x̄ℓ. (18)

Applying W1 and b1, we obtain:

γℓ = aT + akxℓ
+ b(L− kxℓ

)

= aT + akxℓ
+ 1− a(kxℓ

+ 1)

= a(T − 1) + 1

(19)

since (kxℓ
+ 1)a + (L − kxℓ

)b = 1 by normalization via the softmax function. The value of γℓ has a dependence on kℓ
through a and can be readout into the correct classification as shown Fig. 8.

17

Counting in Small Transformers: Attention and Feed-Forward Layers

B.2.3. (BOS ; p = 1)

Proof of Proposition 4.1 - bos. We set T = d > 2 with L ≥ 2 and p = 1. The construction of the embeddings and eBOS

is analogous to the construction from Section B.2.2 for bos+sftm in the same setting. However, since no softmax is
applied, the mixing coefficients as outputs of Adot+sftm for comparing (xℓ, tBOS) or (xℓ, xm) where xℓ = xm is a = 1.
For xℓ ̸= xm it is b = 0. Then from inserting these values in equation 18 and applying W1 = eBOS and b1 = −T we obtain

γℓ = kxℓ
. (20)

This clearly allows again the single neuron to be read off to the correct result similar to the construction from equation 6.

Note that there is a simple alternative construction that uses the tagged embeddings from the constructive proof of Prop. 4.2.

Alternative Proof of Proposition 4.1 - bos. We set T = d > 2 with L ≥ 2 and p = 1. We note that by setting tBOS to zero
we can achieve equivalence to the model dot. Since according to Prop. 4.2 there exists a weight configuration for dot
which solves the histogram task, this configuration will also solve the histogram task for bos with tBOS = 0.

B.3. Inventory-based counting

B.3.1. (LIN ; p = T).

Proof of Proposition 4.3 - lin. Assume that T = d > 2 with L > 2 and p = T and the goal is to find a weight
configuration for the model lin. As embeddings we directly use the orthonormal basis with T vectors et in Rd, where
vectors are the embeddings are for the T tokens. We set

Alin =

a a · · · a
a a
...

. . .
a a

 ; W1 = E; b1 = −1, (21)

where a = 1/L. We start by writing zℓ,t for t ∈ {1, ..., p = T}, the t-th activation of the first hidden layer of the
feed-forward module

zℓ,t =

L∑
m=1

aℓm⟨exm , et⟩+ ⟨exℓ
, et⟩ − 1 . (22)

If et = exℓ
, we have

zℓ,t = kxℓ
a+ 1− 1 = akxℓ

, (23)

where, kxℓ
= histx(ℓ), applying the ReLU to this scalar keeps its value unchanged. If et ̸= exℓ

, we have

zℓ,t = aket + 0− 1 = aket − 1 ≤ 0 . (24)

The right hand side of the above equation is negative given our choice of a, hence applying the ReLU returns 0. This means
that, for each token in the input sequence, the contributions of orthogonal tokens cancel, leaving us with a single hidden
hidden neuron activated. Hence the count can be read off from γℓ. Since only one neuron is activated at a time, the readout
from the same procedure as in bos+sftm can be applied to all hidden neurons zℓ,t simultaneously, instead of only one.
This allows the model to solve the histogram task.

B.3.2. (LIN+SFTM : p = T)

Proof of Proposition 4.3 - lin+sftm. Assume that T = d > 2 with L > 2 and p = T . With the statement already proven
for lin, we note that we can construct Alin+sftm such that it is equivalent to Alin from equation 21 via

Alin+sftm =

a a · · · a
a a
...

. . .
a a

 = softmax

α α · · · α
α α
...

. . .
α α

 , (25)

where a = 1/L which implicitly defines a choice of α. This means that the construction is equivalent to lin and it follows
automatically that also lin+sftm can solve the histogram task.

18

Counting in Small Transformers: Attention and Feed-Forward Layers

B.3.3. (DOT+SFTM : p = d = T)

Proposition B.1 (IC for dot+sftm). For dot+sftm and given L, T > 2 there exists a configuration of weights which
solves the histogram task for p ≥ T and d ≥ T .

Proof for Proposition B.1. We assume L, T > 2 and p = T and d = T and we consider dot+sftm. As previously for
dot in Prop. 4.2, we set the key and query matrix to the scaled identity WK = WQ = d1/4Id. We use an orthonormal basis
of Rd to define the parameters et ∈ Rd for the the token embeddings. In Adot+sftm the pre-softmax mixing weights will be
1 for equal and 0 for different tokens due to the unit-norm token embeddings. Defining kxℓ

= histx(ℓ) for brevity, after the
softmax we have that

alm =

{
e

(L−kxℓ
)+ekxℓ

xm = xℓ,
1

(L−kxℓ
)+ekxℓ

else.
(26)

Hence, for et ̸= exℓ

⟨x̄′
ℓ, et⟩ =

ket
(L− kxℓ

) + ekxℓ

< 1, (27)

while for et = exℓ

⟨x̄′
ℓ, exℓ

⟩ = kxℓ
e

(kxℓ
e+ (L− kxℓ

))
+ 1, (28)

where the extra summand comes from the residual connection. Hence, by setting

W1 = E; b1 = −1, (29)

and applying the ReLU activation, equation 27 will be 0, while equation 28 will implicitly give us the counts as:

kxℓ
= (Lγℓ)/(−eγℓ + γℓ + e) (30)

While the final layer cannot immediately implement non-linear functions in γℓ, it can take advantage of the fact that γℓ can
take only L different values, similar to how we constructed W2 and b2 in Section B.2.1. Since eventually we need to map
the L values of γℓ to the counts [1, · · · , L] the linear output layer is sufficient to implement this non-linear discrete map.
Fig. 8 shows an example for this map for a given example. This allows the model to solve the histogram task.

The statement for p > T and d > T follows as we can simply set the surplus of parameters in the hidden layer/embeddings
to zero.

B.4. Mapping a scalar to a categorical one-hot encoding

0.0 0.2 0.4 0.6 0.8 1.0
25

26

27

28

29

30

c i

output
neuron i
1
2
3
4
5

6
7
8
9
10

Figure 8. Demonstration of a hidden neuron output γℓ which is mapped to L = 10 different neurons ci using a single output layer,
according to the decision boundaries shown by the dotted lines. After applying the argmax function to the 10 output neurons, the highest
value gives the discrete output. The solid lines mark the values a single hidden neuron would achieve for different counts in the explicit
construction of the dot+sftm model.

19

Counting in Small Transformers: Attention and Feed-Forward Layers

It is straightforward to map a single scalar γℓ to a series of neurons which activate one after another. This is needed as the
second part of the feed-forward parameters to transform the count measured by the sum of the hidden neurons γℓ to the
discrete categorical representation of the output vector. Every output logit is a linear function of the hidden neuron’s value.
Since in our constructions we only map functions, where the ground truth output logit corresponds to an interval [a, b] ∈ R,
the superposition of linear functions with increasing slope allows us to realize such a mapping. A visual sample is given in
Fig. 8 for dot+sftm. In Fig. 9 we show the outputs for the lin+sftm model with the best accuracy for T = 32 for every
p, d ran in Fig. 1. While it is possible to learn the count from one hidden neuron only using inventory-based counting for
each neuron, for some examples the count information seems to be spread out over several hidden neurons: The output
logits are non-linear in the count and can hence not rely on a single hidden neuron only.

Figure 9. The output neurons ci(xℓ) visualized for examples of a learned version of lin+sftm for several model dimensions d and hidden
layer sizes p. Note that differently from Fig. 8, in this case the x-axis shows the number of occurrences histx(ℓ = 0) = 1, . . . , L− 1 of
the token t in an input sequence x = [t, · · · , t, v, · · · , v] that contains otherwise only a token v ̸= t (and not the activation of a hidden
neuron). We show the activations ci of the final layer output neurons activations (logits) in terms of the number of occurrences of a given
token in the input. The colors represent the different output predictions and are as in the explicit construction from Fig. 8. We show
several activations for different tokens t ∈ T , where T = 32, and we highlight one of the example tokens t with a wider line. While
similar to the explicit construction from Fig. 8, the models with 100% accuracy are not necessarily linear in the count.

20

Counting in Small Transformers: Attention and Feed-Forward Layers

C. Explicit Constructions for Linearly Dependent Embeddings d < T

C.1. Overview

In this section, we discuss the scenario when d < T , i.e. when the embeddings are necessarily linearly dependent. In that
case, we can no longer assume that there exist embeddings with ⟨et, es⟩ = 0 for all t ̸= s. Nonetheless, also in this regime
for some models it is possible to provide explicit constructions of the weights that have 100% accuracy. This relies on
the fact that the prediction problem is inherently discrete, i.e. it chooses exactly one among L classes. When we examine
γℓ ∈ R from equation 4 which is mapped to the discrete class through the readout layer (see for example Fig. 8), we notice
that the class boundary (the gray dashed class borders) can be placed variably in the margin between the values that γℓ
assumes for different counts kxℓ

(solid lines). In the following explicit constructions, our goal is to design embeddings with
d < T in such a way that we maximize the aforementioned margin: there will be pairs of token embeddings in the alphabet
that have non-zero similarity ⟨et, es⟩, and in equation 4 this will create non-zero terms that will alter the value of γℓ. This
means that for every possible sequence with k occurrences of token xℓ, the hidden activation γℓ will assume values in a
certain range [γlower

ℓ (k), γupper
ℓ (k)]. If these ranges overlap for different k, the count cannot be identified. However, we

construct embeddings such that every for every k = 1, . . . , L− 1 it holds that

γupper
ℓ (k) < γlower

ℓ (k + 1) , (31)

so we can still use a construction as in Fig. 8 to correctly compute the final count. In the remainder of this section, we
introduce explicit constructions with d < T for a given L, both for the cases where we have relation-based counting
and inventory-based counting (the same argument as above transfers to zℓ,t from equation 22). Notably, for the explicit
constructions we propose, the function of the lowest achievable d(p, T, L) differs across different mixing types. To
summarize:

• For models with A constant in the inputs or models without softmax activation, our explicit construction relies on an
embedding matrix with a small mutual coherence. The mutual coherence is a concept from compressed sensing and
coding theory that ensures that the maximal similarity between pairs of vectors is small (Donoho & Elad, 2003). We
can upper bound the mutual coherence that the margins of the construction can tolerate to still achieve perfect accuracy
in terms of a given L. At the same time, the mutual coherence of a set of vectors is naturally lower bounded in terms
of the number of vectors T and their respective dimension d, known as the Welch bound (Welch, 1974). When this
bound can be attained and T, L are given, this leads to the following bounds on d for the different models, as outlined
in Prop. 4.4, as

(lin, lin+sftm; p = T):
⌈

T (2L−3)2

T−1+(2L−3)2

⌉
≤ d,

(dot, bos; p = 1):
⌈

T (2L−3)2

T−1+(2L−3)2

⌉
+ 1 ≤ d,

(dot, bos; p = T):
⌈

T (L−1)
T−1+(L−1)

⌉
≤ d.

• For bos+sftm we rely on the fact that the softmax function accentuates the largest value and thereby can drive
attention scores for equal tokens aii higher relative to attention scores of non-equal tokens aij . This distinguishes it
from the previous case, and allows us to state Prop. 4.5 for which we describe an explicit construction that solves the
histogram task with

(bos+sftm; p = 1): d ≥ ⌈log2(T + 1)⌉+ 2.
(dot+sftm; p = T): d ≥ ⌈log2(T + 1)⌉+ 2.

Notably there is no explicit dependence on L for the dimension. However, the smaller the dimension d the more
accurate computations and softmax numerical stability are required, as the softmax temperature depends on L. With
infinitely precise computations we show it is even possible to achieve perfect accuracy with d = 4, but for finite
computations this might pose a problem when L becomes too large.

C.2. Explicit construction for bounded mutual coherence

We define the mutual coherence M of a set of T unit norm vectors {v1, . . . , vT } ⊂ Rd as

M = max
i̸=j

|⟨vi, vj⟩| . (32)

21

Counting in Small Transformers: Attention and Feed-Forward Layers

This value is lower bounded for a given matrix by the Welch bound (Welch, 1974)

M ≥

√
T − d

d(T − 1)
= W(T, d) , (33)

and equality can only be attained if T < d2 (Strohmer & Heath, 2003). There is a large body of work in coding theory and
compressed sensing concerning the existence and construction of a set of vectors that attains M at or close to W(T, d).
Explicit constructions exist but are not known for every combination of T and d. A list with existing constructions for the
real space for small T, d can be found in (Fickus & Mixon, 2016), but otherwise gradient-based optimization has been used
to find good candidate matrices (Jiang et al., 2017; Jyothi & Babu, 2022).

In order to prove Prop. 4.4, we use the following idea: For a given T , L and p, we can derive an upper bound on the mutual
information of the embeddings in terms of L, which is required to obtain perfect accuracy. The form of this upper bound
depends on the precise mixing strategy and the choice of p. Through the Welch lower bound on M we can in turn obtain a
lower bound on d in terms of L and T . Note that the Welch bound cannot be attained for T < d2 and in this case the bound
on d is strict.

C.2.1. (LIN , LIN+SFTM ; p = T)

Proof of Proposition 4.4 - lin. To show the bound on d, we analyze the inventory-based construction for lin in equa-
tion 21. Given that p = T , and L > 2 is given, let us assume that there exists set of T unit norm vectors {e1, . . . , eT } ⊂ Rd

with mutual coherence M. We use these vectors as our embeddings.

The value zℓ,t for t = xℓ, with W1 = [e1, . . . , eT] and b1 = −1 is

zℓ,t = akxℓ
+ a

∑
m:xm ̸=t

⟨exm , et⟩ , (34)

and using that fact that the mutual coherence bounds the absolute value of the inner product

akxℓ
− aM(L− kxℓ

) ≤ zℓ,t ≤ akxℓ
+ aM(L− kxℓ

) . (35)

Similarly, for t ̸= xℓ and a = 1/L it still holds that

zℓ,t ≤ akt + a(L− kt)M− 1 +M ≤ 0 , (36)

provided that M < 1/(L+ 1), for the worst case where kt = L− 1. This means that the ReLU sets all hidden neurons zℓ,t
to zero when t ̸= xℓ, and are therefore no contribution to the final result. Then, defining

γlower
ℓ (k) = ak − aM(L− k) , (37)

γupper
ℓ (k) = ak + aM(L− k) , (38)

we have that indeed for a sequence where xℓ occurs k = 1, . . . , L− 1 times it holds that

0 ≤ γlower
ℓ (k) ≤ γℓ(k) ≤ γupper

ℓ (k). (39)

The first inequality is required due to the ReLU and holds when M < 1/(L− 1). From equation 31 we have the condition
that for all k = 1, . . . , L it holds that

γupper
ℓ (k) < γlower

ℓ (k + 1) , (40)
k + (L− k)M < (k + 1) + (L− k − 1)(−M) , (41)

M <
1

2(L− k)− 1
, (42)

and since we assume that there exist at least two different tokens in the sequence, minimizing the bound over k leaves for
k = 1

M <
1

2L− 3
. (43)

22

Counting in Small Transformers: Attention and Feed-Forward Layers

which is valid provided that L ≥ 2. Collecting all previous bounds on M, we conclude that when L ≥ 4 the above
construction achieves the correct counts with M < 1

2L−3 .

The Welch bound equation 33 gives an upper bound on M in terms of T, d and therefore yields the final condition

d ≥
⌈

T (2L− 3)2

T − 1 + (2L− 3)2

⌉
(44)

under which the given weight configuration is able to solve the histogram task with perfect accuracy.

For lin+sftm the construction and conditions transfer directly, when the constant Alin+sftm is constructed to match Alin

exactly.

C.2.2. (DOT , BOS ; p = 1)

Proof of Proposition 4.4 - dot, p = 1. We assume that L > 2 and T given and we use a similar idea as the relation-based
weight configuration from the proof of Prop. 4.2 for dot with p = 1. For the token embeddings, we assume that we have a
set of T unit norm vectors with {v1, . . . , vT } ⊂ Rd−1 with mutual coherence M, where d > 2. We set the entries of the T
embedding vectors et ∈ Rd to be

et =

vt
α

 . (45)

The shared counting subspace is defined on the last coordinate of the vectors via ecnt = [0, 0, . . . , 1/α]. Then

⟨et, et⟩ = 1 + α2 (46)

|⟨et, es⟩| ≤ M+ α2 (47)

The mixed token with the residual connection at position ℓ for a given input sequence is

x̄′
ℓ =

L∑
m=1

⟨exm
, exℓ

, ⟩exm
+ exℓ

(48)

and the single hidden neuron γℓ for a bias term b1 = 0 and W1 = ecnt

γℓ = ⟨ecnt, x̄′
ℓ⟩ =

L∑
m=1

⟨exm
, exℓ

, ⟩⟨exm
, ecnt⟩+ ⟨exℓ

, ecnt⟩ (49)

= kxℓ
(1 + α2) +

∑
m:xm ̸=xℓ

⟨exm , exℓ
, ⟩+ 1 (50)

So that we can achieve for a given count k the γlower
ℓ (k) ≤ γℓ(k) ≤ γupper

ℓ (k) with

0 ≤ γlower
ℓ (k) = k(1 + α2)− (L− k)(M+ α2) + 1 , (51)

γupper
ℓ (k) = k(1 + α2) + (L− k)(M+ α2) + 1 . (52)

We achieve the upper bound from zero, when M < 2/(L − 1), assuming that α is close enough to zero so that is is
negligible. Finally, the condition from equation 31 yields

M <
1

2(L− k)− 1
− 2(L− k)− 2

2(L− k)− 1
α2 (53)

under the condition that 0 < α <
√

1
2(L−k)−2 . Again, assuming there exist at least two different tokens in the sequence, the

r.h.s. of the above expression is minimized for k = 1 as

M <
1

2L− 3
− 2L− 4

2L− 3
α2 (54)

23

Counting in Small Transformers: Attention and Feed-Forward Layers

which is always positive assuming L ≥ 2. This is the relevant bound when we have a large enough L ≥ 5 and again α is
close enough to zero. Again, combining this with the Welch bound equation 33 leads to

d− 1 ≥

⌈
T (2L−3

1−(2L−4)α2)
2

T − 1 + (2L−3
1−(2L−4)α2)2

⌉
, (55)

and when we choose α > 0 close to zero, as for lin before

d ≥
⌈

T (2L− 3)2

T − 1 + (2L− 3)2

⌉
+ 1. (56)

This proof holds equivalently for bos when we set the BOS token embedding to zero.

C.2.3. (DOT , BOS ; p = T)

We can decrease the required dimension d < T even further than previously, when we have p = T and implement
inventory-based counting in the dot model (and equivalently in the bos model). In that case, the lower bound on d becomes
more loose, because we combine the ideas we saw in lin and p = T for inventory-based counting and the effects on the
margin in dot and p = 1.

Proof of Proposition 4.4 - dot, p = T . In our construction, for a given T and L, we assume that there is a set of T unit
norm vectors {e1, . . . , eT } ⊂ Rd with mutual coherence M upon which we build our embeddings. Note that the only
difference to the previous relation-based case p = 1 is that this time there is no extra counting direction. Importantly, we set
K = d1/4Id as before, but Q = 1

Ld
1/4Id. This gives an extra factor in the attention scores. Further, we set b1 = −1 and the

columns of W1 ∈ Rd×T to the embeddings et, as we did for lin. This results in a mixed token x̄′
ℓ according to equation 48.

The hidden neuron is

zℓ,t =
1

L

L∑
m=1

⟨exm
, exℓ

⟩⟨et, exm
⟩+ ⟨et, exℓ

⟩ − 1 (57)

then with t = xℓ we have

zℓ,t =
1

L

kxℓ
+

∑
m:xm ̸=t

⟨exm , et⟩2
 . (58)

Note that the square in equation 57 is what differs from the zℓ,t in equation 34. This is because the term ⟨exm , et⟩ is once
introduced through the dot-product attention and once through the dot-product via W1. Conversely, with t ̸= xℓ it becomes

zℓ,t =
1

L

kt⟨et, exℓ
⟩+

∑
m:xm ̸=t

⟨exm
, exℓ

⟩⟨exm
, et⟩

+ ⟨et, exℓ
⟩ − 1 (59)

≤ 1

L
(ktM+ (L− kt)M) + ⟨et, exℓ

⟩ − 1 (60)

≤ 2M− 1 (61)

if we set M < 0.5, which we need anyways for L ≥ 2 by the stronger upper bound on M that we derive in the following,
we finally have for t ̸= xℓ

zℓ,t < 0 . (62)

Again, negative zℓ,t are set to zero via the ReLU, and the final outcome γℓ = zℓ,t=xℓ
depends only on a single hidden neuron

equation 57. This eventually leads to

0 ≤ γlower
ℓ (k) =

k

L
, (63)

γupper
ℓ (k) =

1

L
(k +M2(L− k)) , (64)

24

Counting in Small Transformers: Attention and Feed-Forward Layers

and using the same concept as before, while minimizing over k and applying the Welch bound, to the upper bound

M <

√
1

L− 1
. (65)

The final bound is more loose than it was for p = 1 as we only require

d ≥
⌈

T (L− 1)

T − 1 + (L− 1)

⌉
. (66)

C.3. Explicit Construction with binary representations and softmax

In our final analysis we examine the key difference between the models bos+sftm and bos – the softmax activation.
In order to show Prop. 4.4 we needed to construct embeddings with a low mutual coherence, because the term ⟨et, es⟩
introduced an error on the mixed token, when t and s were not equal. Now, with the softmax activation applied to the mixing
coefficients, the model can use the non-linearity of this transform to its advantage to separate the relative error.

Recall the softmax function is

sftm(z)i =
ezi∑n
j=1 e

zj
for i = 1, 2, . . . , n , (67)

and when we compute sftm(κz)i we say it is a softmax with a inverse temperature κ > 0. When z of length L contains
only two different values, one with k and the other with L− k occurrences, then as κ → ∞ the mass concentrates only on
the larger value of the two, and sets the other to zero. We use this intuition to create token embeddings that fulfill for all
t, s = 1, . . . , T and s ̸= t

⟨et, et⟩ = 1 , (68)
⟨et, es⟩ < 1 + ϵ , (69)

where ϵ > 0.

The idea is that the softmax with a high enough inverse temperature sets the term for different tokens, ⟨et, es⟩, close enough
to zero, essentially eliminating the noise. Note that equation 68 is a weaker condition on the set of token embeddings than
for example the bound of the mutual coherence in terms of the sequence length L bos with p = 1 in Section C.2.2. It
allows us to obtain perfect accuracy with smaller d. In the following, we describe the construction of the matrix explicitly.

The supplementary code at supplementary material contains executable pytorch models that have the weight
configurations that are used to prove Propositions 4.5 and the Remark for d = 4, which allows one to test the devised
weight configurations for fixed T, L, d in practice.

C.3.1. (BOS+SFTM ; p = 1)

Proof of Proposition 4.5 - bos+sftm. For a given T, L > 2 we set the embeddings vectors to the binary representation of
the token index t = 1, . . . , T in d′ = ⌈log2(T + 1)⌉ dimensions

et =

bin(t)⟨bin(t),bin(t)⟩−1

α
0

 ; eBOS =

bin(0)⟨bin(0),bin(0)⟩−1

1/α
1

 . (70)

where bin(t) = [v1, . . . , vd′] ∈ {0, 1}d′
with t =

∑d′

i=1 vi2
i−1. We select α > 0. Then we have that

⟨et, et⟩ = 1 + α2 , (71)

α2 ≤ ⟨et, es⟩ ≤
√

1− 1

d′
+ α2 ≤ 1 + α2 − ϵ , (72)

⟨et, eBOS⟩ = 1 , (73)

25

Counting in Small Transformers: Attention and Feed-Forward Layers

where
√

d′−1
d′ = ⟨e2d′−1, e2d′−2⟩, which has the largest overlap among all possible non-equal pairs of tokens, and the lower

bound comes from all coordinates being positive. Using a readout on the direction only present in the eBOS token, namely,
W1 = [ecnt] = [0, . . . , 0, 1] ∈ Rd and b1 = 0, we construct

γℓ = ⟨ecnt, x̄′
ℓ⟩ = sftm(EET

ℓ)0⟨eBOS , ecnt⟩+
L∑

m=1

sftm(EET
ℓ)m+1⟨exm

, ecnt⟩+ ⟨exℓ
, ecnt⟩ (74)

= sftm(EET
ℓ)0 (75)

= sftm([⟨eℓ, eBOS⟩, ⟨eℓ, e1⟩, . . . , ⟨eℓ, eL⟩])0 (76)

The goal of applying the softmax function is to diminish the contributions of error equation 72, while having the final
dimension of the eBOS token be representative of the count of xℓ. The maximum error is induced when the upper bound
equation 72 is attained for all tokens in the sequence x that are not equal to xℓ. The minimum error is obtained when these
different tokens attain the lower bound. Without loss of generality on the ordering, this implies that for a given length L and
a softmax activation function with an inverse temperature κ1, we have that

γlower
ℓ (k) =

eκ1

eκ1 + keκ(1+α2) + (L− k)eκ(1+α2−ϵ)
, (77)

γupper
ℓ (k) =

eκ1

eκ1 + keκ(1+α2) + (L− k)eκα2 . (78)

We explicitly need ϵ strictly greater than zero, since otherwise there is no information about the count in γℓ when it becomes
independent of the count k. Notice, that this time it holds that γℓ that correspond to higher values correspond to smaller
counts, since a larger count corresponds to a larger denominator, i.e. a smaller γℓ. Due to this inverse relationship, for this
model, we want that for all counts k = 1, . . . , L− 1 that it holds that

γupper
ℓ (k + 1) < γlower

ℓ (k) . (79)

This can be achieved by setting the inverse temperature κ accordingly.
In the following we show that there exists a κ which fulfills equation 79 for all d′ ≥ 2 and L > 2. Observe that
γupper
ℓ (2) < γlower

ℓ (1) implies the bounds for all other k. We define the distance or margin as

dist(κ) = γlower
ℓ (1)− γupper

ℓ (2) . (80)

Since at κ = 0 both γupper
ℓ (2) = γlower

ℓ (1) = 1/(L + 1), the distance is zero. However then it becomes impossible
to distinguish k = 1 and k = 2, as they receive the same weight. We therefore need the additional condition that
γupper
ℓ (2) ̸= γlower

ℓ (1). At κ = 0, we observe that this function has a negative derivative, as

∂

∂κ
dist(κ)|κ=0 = sftm(κzlower)0

(
(zlower)0 −

L+1∑
i=0

(zlower)jsftm(κzlower)i

)
(81)

− sftm(κzupper)0

(
(zupper)0 −

L+1∑
i=0

(zupper)jsftm(κzupper)i

)
(82)

= −
(

1

L+ 1

)2 ([
(1 + α2) + (L− 1)(1 + α2 − ϵ)

]
−
[
2(1 + α2) + (L− 2)α2

])
(83)

= −
(

1

L+ 1

)2

[(L− 2)− (L− 1)ϵ] (84)

< 0 (85)

where the last bound is met when 0 < ϵ < 0.5 which is fulfilled already for d′ = 2 and when L > 2. As the distance
function is continuous, there exists a κ close to zero for which the dist(κ) < 0. Simultaneously, as κ → ∞, we have that

1In order to introduce the inverse temperature κ of the softmax in the model, we scale the query matrix. We set K = d1/4Id, but
Q = κd1/4Id.

26

Counting in Small Transformers: Attention and Feed-Forward Layers

due to the concentration of the softmax probabilities on the largest entry, which here is 1 + α2, it holds that as κ → ∞ we
have dist(κ) → 0. At the same time, the function approaches infinity from the positive regime. For large enough κ we have
γupper
ℓ (2) < γupper

ℓ (1).
When we select the smallest possible κ > 0, we avoid computing functions with large exponential terms. To find the
non-trivial root of dist(κ) numerically, we consider a simplification of equation 80. We define u = eκ. Then it holds that
we can solve

dist(κ) = 0 = (L− 1)u(1−ϵ) − u− (L− 2) (86)

numerically for κ > 0. This shows that we can find an explicit construction with 100% accuracy with p = 1 and d′ > 2 for
the bos+sftm when we have

d = ⌈log2(T + 1)⌉+ 2 . (87)

For example, for the case of L = 10 and T = 32 this allows for a dimension d = 7 with α = 0.01 (and for T = 31 with the
same settings d = 6 suffices).

Remark (d = 4). In principle, it is enough to have some ϵ > 0 that ensures that overlaps between different token embeddings
are strictly less than one. In principle, we can find an arbitrary number of tokens T that satisfy this condition for just d′ = 2.
Take for example the following construction. For t = 1, . . . , T tokens with T odd we can design the set of embeddings

vt =

 √ t
T√

T−t
T

 . (88)

Each ⟨et, et⟩ = 1 and for t ̸= s the overlap ⟨et, es⟩ ≤ ⟨e(T+1)/2, e(T−1)/2⟩ =
√
T 2 − 1/T .

This implies that ϵ → 0 as T → ∞ at a rate 1/T . Since smaller ϵ imply larger values of the temperature to solve
equation 86, this might become problematic when this exceeds the accuracy of computations. Previously, for the binary
representation construction from equation 70, we had that ϵ shrinks at a rate ∼ 1/ log2(T). For the intermediate regime
between logT (T) + 1 and log2(T) dimensions, one can generalize this principle to arbitrary bases, e.g. log3(T) > 2,
resulting in a smaller dimension but also less favorable (smaller) ϵ – this construction thus comes with a clear trade-off.

C.3.2. (DOT+SFTM ; p = T)

Proof of Proposition 4.5 - dot+sftm. For this model, the explicit construction is analogous to the previous one. Instead
of using p = 1 we use p = T . The selection of the embeddings is analogous, but instead of a counting direction we read off
all the weight directions separately with T = d. Not having a counting direction also saves the additional two dimensions
required for bos+sftm with p = 1. In the feed-forward layer with W1 the explicit construction considers again zℓ,t for
every token t ∈ T . The selection of the temperature is also analogous, with the exception that one has L terms in the
softmax instead of L+ 1.

D. Data Generation
Every sample x = (x1, · · · , xL) is generated recursively as follows, starting from size K = L and alphabet T ′ = T :

1. Sample an integer k uniformly from [1, · · · ,K].

2. Sample a token t uniformly from T ′.

3. Set xi = t for all i = k, · · · ,K.

4. Set T ′ = T ′ \ {t} and K = k.

5. If K ̸= 0, repeat from 1.

6. Set x = shuffle(x).

In contrast to sampling the elements of each sequence uniformly at random from the alphabet, this simple strategy enables
us to better control the distribution of counts in the training dataset.

27

Counting in Small Transformers: Attention and Feed-Forward Layers

E. Additional Experiments
E.1. Best Accuracy

In Fig. 10, we show the best reached accuracy during training over the five sample runs. This gives insights into the
feasibility of implementing a counting solution for a given combination of parameters T, d, p of a model.

Figure 10. Best accuracy during training. Experiments from Fig. 1 (T = 32), we show only the best accuracy during training reached
from the 5 randomly initialized runs per model/hyperparameter configuration.

E.2. Variability

In Fig. 11 we explore the influence of initialization on the performance via the variability of the final accuracy for several
runs. Especially in the p, d < T regime where bos+sftm is able to reach an accuracy relatively close to 100%, the
variability of the accuracies resulting from different initializations is quite large.

Figure 11. Variability to randomness in initial conditions and optimization. Experiments from Fig. 1 with T = 32, standard deviation
of the accuracy reached after training from the 5 randomly initialized runs per model/hyperparameter configuration.

28

Counting in Small Transformers: Attention and Feed-Forward Layers

E.3. Model with Random but Fixed Embeddings

In Fig. 12, we repeat the experiments of Fig. 1, but for embeddings that are frozen throughout training (also 5 runs). In the
regime d < T where there is no mutual orthogonality possible, the random embeddings result in worse performance than
the learned ones. Especially for bos+sftm, learning the embeddings increases the performance strongly in some regimes.
This indicated that the models indeed learn adapted embeddings here.

Figure 12. Random but fixed embeddings (not learned). The difference between learned and random embeddings for T = 32. Orange
indicates that the random embeddings perform better on average. Purple indicates that the learned embeddings perform better on average.
Experimental settings as in Fig. 1.

E.4. BOS mixing token

In Fig. 3 in the main, we describe how the tBOS is the main predictor for the count. Here, we provide more evidence by
showing how the count predictions for mixed tokens x̄′ output by the feature transform f are invariant to the type of other
token present in the mixed token. The results for four different tokens are shown in Fig. 13.

1

2

3

4

5

6

7

8

9

pr
ed

ict
io

n

f(eBOS + (1)eB + eB) f(eBOS + (1)eB + eC) f(eBOS + (1)eB + eD) f(eBOS + (1)eB + eE)

1

2

3

4

5

6

7

8

9

pr
ed

ict
io

n

f(eBOS + (1)eC + eB) f(eBOS + (1)eC + eC) f(eBOS + (1)eC + eD) f(eBOS + (1)eC + eE)

1

2

3

4

5

6

7

8

9

pr
ed

ict
io

n

f(eBOS + (1)eD + eB) f(eBOS + (1)eD + eC) f(eBOS + (1)eD + eD) f(eBOS + (1)eD + eE)

0.0 0.2 0.4 0.6 0.8 1.0
1

2

3

4

5

6

7

8

9

pr
ed

ict
io

n

f(eBOS + (1)eE + eB)

0.0 0.2 0.4 0.6 0.8 1.0

f(eBOS + (1)eE + eC)

0.0 0.2 0.4 0.6 0.8 1.0

f(eBOS + (1)eE + eD)

0.0 0.2 0.4 0.6 0.8 1.0

f(eBOS + (1)eE + eE)

c
1
2
3
4
5
6
7
8
9

Figure 13. Visualization of feature transform. For the same model as in Fig. 3, we vary the inputs to the feature transformation f to
show it is independent on the precise input sequence, but only depends on the prevalence of tBOS. We vary the inputs between the learned
tokens [B,C,D,E].

29

Counting in Small Transformers: Attention and Feed-Forward Layers

E.5. Singular Value Decomposition of W1

In Fig. 14 we show the distribution of singular values of W1 for several runs of the model to investigate whether models that
are capable of both IC and RC are implementing the more memory heavy IC or the same solution that they can find for
p = 1 with RC.

0

20

40

60

80

wi
th

 so
ftm

ax

[bos]
dot-product attention & BOS token

0

5

10

15

20

25

[dot]
dot-product attention

0

10

20

30

[lin]
linear mixing

0 25 50 75 100 125
0

5

10

15

20

25

no
 so

ftm
ax

0 25 50 75 100 125
singular value index i

0

5

10

15

20

25

0 25 50 75 100 125
0

5

10

15

20

25

30sin
gu

la
r v

al
ue

Figure 14. Singular values of W1. We show the results for all models from Fig. 1 with T = 32, where p, d ≥ T and the accuracy is at
least 99%. Some qualitative differences are visible for bos and dot.

E.6. Varying the number of tokens in the alphabet

In Fig. 15 and 16 we change the number of tokens that may occur in the alphabet from T = 32 in the experiments from the
main text to T = 15 and T = 64 respectively. The sequence length is kept fixed at L = 10.

Figure 15. Alphabet size T = 15. Experiments as in Fig. 1, except that T = 15 instead of T = 32 was used. The sequence length is
fixed to L = 10.

30

Counting in Small Transformers: Attention and Feed-Forward Layers

Figure 16. Alphabet size T = 64. Experiments as in Fig. 1, except that T = 64 instead of T = 32 was used. The sequence length is
fixed to L = 10.

E.7. Varying the length of the sequence

In Fig. 17, 18 and 19 we change the length of the sequence to L = 5, 15, 30 respectively, while keeping the number of
tokens fixed to T = 32. The sequence length is kept fixed at L = 10. Fig. 17 shows that the learned model can make use of
the discrete nature of the task especially for lin (without softmax) and for the dot-product style models with the softmax.
While L = 15 in Fig. 18 is only slightly worse than the case of L = 10 that was used as the example in the main text, the
performance L = 30 in Fig. 19 is very much deteriorated. Even in the cases without the softmax performance is far from
what would be possible theoretically. We hypothesise that the optimization with the increased number of possible inputs
becomes much harder. Interestingly, Fig. 19 even seems to show a double descent behavior along the embedding dimension
axis.

Figure 17. Sequence length L = 5. Experiments as in Fig. 1, except that L = 5 instead of L = 10 was used. The alphabet size is fixed
to T = 32.

31

Counting in Small Transformers: Attention and Feed-Forward Layers

Figure 18. Sequence length L = 15. Experiments as in Fig. 1, except that L = 15 instead of L = 10 was used. The alphabet size is
fixed to T = 32.

Figure 19. Sequence length L = 30. Experiments as in Fig. 1, except that L = 30 instead of L = 10 was used. The alphabet size is
fixed to T = 32.

E.8. Models with two layers

In this section, we look at the case where we have models that have an extra layer, i.e. instead of the logit output layer after
the feed-forward part, we add another layer with the same dimensionality d as the previous layer – the same mixing and the
same hidden layer size – to then lead into the classification. The parameters are not shared between the layers. Note that this
model does not have an extra residual in the MLP layers.

32

Counting in Small Transformers: Attention and Feed-Forward Layers

We train the model in the same setting as in the main and report the results for the different architectures, this time with 2
layers, in Fig. 20. To compare more easily with the previous set-up, we show the difference between the single and double
layer case in Fig. 21. Remarkably, the general picture does not seem to change significantly. Indeed, the two layer model is
generally better, extending the range where perfect models can be found slightly, but the general trend remains. Given this
coarse grained experiment we hypothesize, that the extra layer aids the optimization process, and improves robustness in the
regions where and the softmax is used to disentangle non-orthogonal embeddings. More generally, these results are not as
comprehensive as our previous results as they are not supported theoretically beyond a single layer. They warrant more
detailed in further work with more layers and realistic settings.

Figure 20. Two-layer performance. Experiments as in Fig. 1 with T = 32, L = 10 but for models where the attention block is repeated
twice as described in Section E.8.

Figure 21. Comparison between one and two-layer models. Difference between the accuracy of a single and two layer attention model,
for different mixing layers and hyperparameter setups. Experiments as in Fig. 1 for a single layer attention model, and as in Fig. 20 for the
two layer model.

33

