Under review as a conference paper at ICLR 2026

TOWARDS BETTER GENERALIZATION VIA DISTRIBU-
TIONAL INPUT PROJECTION NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

As overparameterized models become increasingly prevalent, training loss alone
offers limited insight into generalization performance. While smoothness has
been linked to improved generalization across various settings, directly enforcing
smoothness in neural networks remains challenging. To address this, we introduce
Distributional Input Projection Networks (DIPNet), a novel framework that projects
inputs into learnable distributions at each layer. This distributional representation
induces a smoother loss landscape with respect to the input, promoting better
generalization. We provide theoretical analysis showing that DIPNet reduces both
local smoothness measures and the Lipschitz constant of the network, contributing
to improved generalization performance. Empirically, we validate DIPNet across a
wide range of architectures and tasks, including Vision Transformers (ViTs), Large
Language Models (LLMs), ResNet and MLPs. Our method consistently enhances
test performance under standard settings, adversarial attacks, out-of-distribution
inputs, and reasoning benchmarks. We demonstrate that the proposed input projec-
tion strategy can be seamlessly integrated into existing models, providing a general
and effective approach for boosting generalization performance in modern deep
learning.

1 INTRODUCTION

Overparameterization has become a defining feature of modern deep learning. From vision trans-
formers to large language models, today’s networks often possess far more parameters than training
examples. While this overparameterization enables remarkable expressivity and optimization ease, it
is of great importance to identify models with strong generalization performance (i.e, the excellent
performance on unseen test data).

Recent work has sought to characterize generalization through various geometric and functional
properties of the learned models. Notably, Johnson & Zhang| (2023)) argue that the generalization
gap can be largely attributed to two components: inconsistency and instability, with the latter being
closely related to the Lipschitz continuity of the learned function. In parallel, another prominent line
of research focuses on sharpness, typically quantified via the spectral norm of the Hessian. Building
on this perspective, [Foret et al.|(2020) proposed Sharpness-Aware Minimization (SAM), a technique
aimed at locating flatter regions of the loss landscape. SAM has been successfully applied in diverse
domains including computer vision (Chen et al.,[2021)), natural language processing (Bahri et al.|
2021)), and bi-level optimization (Abbas et al., 2022).

However, enforcing low sharpness, or low Lipschitz constants during training remains a significant
challenge—particularly without sacrificing generalization. For instance, there is no guarantee that a
model with low Lipchitz on the training distribution will remain a low Lipschitz on the test distribution.
Adversarial training (Madry et al.,|2017) and Random Smoothing (Cohen et al.,|2019) have proven
effective in reducing the Lipschitz constant and improving robustness, but often introduces a trade-off
between robustness and standard generalization performance (Tsipras et al., 2018;|Zhang et al.,|2019;
Javanmard et al.,2020; Donhauser et al., 2021} Dobriban et al.| 2023} [Hao & Zhang| [2024). Likewise,
while SAM can find flatter regions of the landscape, it does not always yield true minimizers, even in
sufficiently flat neighborhoods (Yue et al.,[2023)).

An increasingly promising direction involves promoting smoothness in the learned models. Some
recent works (Johnson & Zhang, 2023 Shen & Meinshausen, 2023)) suggest that smoother input-

Under review as a conference paper at ICLR 2026

1 Distillation
Output: y1 Output: yk
Structure of DiPNet Layer DiPNet Layer
Model Layer
x K times
Generate random
variable. o DiPNet Layer

o |0

DiPNet Layer

Project input o
learnable distribution

Input: x

Figure 1: Pipeline of Distributional Input Projection Network.

output mappings lead to improved robustness and generalization. Smoothness mitigates the model’s
sensitivity to small input perturbations, thereby enhancing stability across data distributions. Nonethe-
less, directly enforcing smoothness in deep networks remains difficult due to their nonlinear and
high-dimensional nature.

In this paper, we introduce Distributional Input Projection Networks (DIPNet)—a novel architectural
framework that improves generalization by implicitly promoting smoothness. Rather than passing
deterministic inputs through the network, DIPNet projects inputs into learnable distributions at
each layer, enabling the model to reason over localized neighborhoods in the input space. This
structured stochasticity acts as a form of regularization, smoothing the loss landscape and mitigating
sensitivity to input variation. As shown in Figure[I] the proposed framework consistently improves
generalization across a wide range of datasets and model architectures, with particularly notable gains
under adversarial attacks and distribution shifts.

Moreover, DIPNet is broadly applicable and can be integrated into existing architectures with minimal
overhead. Its distributional nature also draws inspiration from variational inference, which motivates
our efficient training procedure with a stability-promoting penalty.

Our main contributions are as follows:

1. We introduce DIPNet, a novel architectural framework that enhances smoothness by projecting
inputs into learnable distributions at each layer of the network.

2. We develop an efficient training method for DIPNet, inspired by variational inference, which also
incorporates a stability penalty to promote robustness and regularization.

3. We provide theoretical guarantees showing that DIPNet reduces function smoothness measures
and Lipschitz constants, offering insight into its generalization benefits.

4. We conduct extensive experiments across a diverse set of tasks and architectures—including ViTs,
LLMs, MLPs, ResNets, adversarial robustness settings, out-of-distribution (OOD) generalization,
and reasoning benchmarks—demonstrating consistent improvements in test-time performance.
Such improvements are particularly significant under adversarial attacks or distribution shifts.

2 RELATED WORK

Generalization performance. From the input covariates perspective, aligning with the conventional
smoothness viewpoint, Johnson & Zhang| (2023)) recently suggested different indicators to measure
generalization, i.e, “inconsistency” (Nakkiran & Bansal, [2020; Jiang et al 2021} [Kirsch & Gall
2022) and “instability” (Bousquet & Elisseeft], [2002; [Shalev-Shwartz et al., 2010), with the latter
being related to the Lipschitz norm of the output models. While adversarial training (Madry et al.,
2017}, |Cohen et al., 2019} Salman et al., [2019; [Lecuyer et al., 2019} |Gowal et al.l |2020; Wang
et al., 20215 Zou et al.,|2021)) can control the Lipschitz norm, it often involves a trade-off between

Under review as a conference paper at ICLR 2026

generalization performance and adversarial robustness (Lipschitz) (Tsipras et al 2018} Zhang et al.|
2019; Javanmard et al., 2020; [Donhauser et al., [2021; [Dobriban et al.,|2023; Hao & Zhang, |2024)). In
contrast, our proposed method enhances generalization performance by projecting the input into a
learnable distribution, thereby avoiding such trade-off typically observed with other approaches.

Smoothing methods. Prior work has explored enhancing smoothness through perturbation-based
sampling in various contexts. For example, Shen & Meinshausen| (2023) proposed Engression, a
method that learns distributions via pre-additive perturbations. Similarly, diffusion models (Ho et al.,
20205 [Song et al.l 2020; |Dhariwal & Nichol, 2021} |Saharia et al., [2022; Rombach et al.| 2022) can be
interpreted as techniques for modeling sample distributions from Gaussian noise. Another related
line of research focuses on improving model robustness. In particular, certified robustness methods
(Cohen et al.,2019;|Salman et al.| 2019} [Lecuyer et al.|[2019} Yang et al.,|2020) aim to ensure stability
under perturbations by injecting noise from specific distributions during training. Gaussian noise
injection has also been widely used in data augmentation (Moreno-Barea et al., |2018)) to enhance
generalization by artificially expanding the training set. While our method also seeks to promote
smoothness, it differs in two key ways: (i) Rather than treating noise injection as a training-only
technique, we incorporate distributional projection directly into the model architecture, applying it
consistently during both training and inference. This architectural integration enables theoretical
guarantees for improved generalization. (ii) Instead of limiting perturbations to the input layer, we
project the input into a learnable distribution at every layer of the network. This layerwise control
provides enhanced stability and helps mitigate issues such as gradient explosion during training.

3 PROBLEM FORMULATION AND VARIATIONAL INFERENCE

In this section, we formally define the problem. Our goal is to learn a model parameterized by 6 that
minimizes the negative log-likelihood loss for prediction tasks:

L£(0) = —E; InP(y|x,0).

Derivation of distributional input. Inspired by Shen & Meinshausen| (2023), on each layer of the
model, we consider to project input z € RP into a distribution NV (z, Y), where X is the learnable
variance, to take a better prediction. With a training set containing n samples {z;, y; }?_,, we can
assume there exists an unobserved variable 7 ~ N (0,v1},), such that

P(ylz, n,0) = Pylz +n,0). (M
Following the standard variational-inference derivation, we obtain the bound for £(6) as:

L(0) = — Zlnp(yﬂxi,@) =- ZlnEnP(yi,ﬂ%ﬁ) = —ZlnEn (P(yi|xi +n,0)P(n))
=1 i=1

i=1
< - ZEWNQ(U) I P(y;|z; +n,0) + InP(n) —Ing(n)],
i=1

for any distribution ¢(n), where the third equality is from Eq. (I}, and the last inequality is from
ELBO lower boun<ﬂ For simplicity, we constrain ¢(7) to be a Gaussian distribution:

q(n) :=N(0,%), where X =diag{\1,...,\p},

then the lower bound should be:

_ply WX Ty nTEln]

_ Z E,n(0,5) {ln P(y;|x; +n,0) 5 > 9% 9

i=1

n
=— Z E,on0,5) [hl P(y:|xi +n,0)

i=1

_ plny n Z§=1 In \; B Z?:l Aj n p
2 2 2y 2

"Here is an upper bound as we consider the negative log-likelihood function.

Under review as a conference paper at ICLR 2026

Based on this formulation, to achieve accurate predictions, we minimize the following loss function:

n p p

min —Eﬁnwm,mlnp@i\mi+n,e>+a§2Aj—ﬂzllnxj : &)
1= J= Jj=

with uning parameter «, 8 > 0.

Remark 1. The term o Z§=1 Aj— B Z?Zl In\; can be regarded as a special penalty term to
prevent the corresponding parameters {1, . .., A\, } shrinking to zero during training process.

4 DIPNET: DISTRIBUTIONAL INPUT PROJECTION NETWORK

Building on the framework above, we propose a new algorithm—Distributional Input Projection
Network (DIPNet), which projects the input into a learnable distribution at each layer of the neural
network. An overview of the DIPNet pipeline is presented in Figure [IL We describe the key
components and implementation details in this section.

4.1 LEARNING DISTRIBUTIONAL INPUT LAYERWISE TO MINIMIZE LOSS FUNCTION

Motivated by enhancing generalization performance, DIPNet can switch the standard multi-layer
neural network into a distributional input projection framework. To be specific, on each layer of the
model, denoting the output of the previous layer as v, DIPNet performs the following steps:

1. Project v into a learnable Gaussian distribution A/ (v, X);
2. Sample a particle u from N (v, X);

3. Use u as the input to the current layer and compute its output.

Since each layer introduces stochasticity through distributional projection, the final output becomes
inherently random. To ensure stable and reliable predictions, this input-output procedure is repeated
k times. The final output is then obtained by taking average over all & sampled trajectories.

Adding a stability penalty. While DIPNet can enforce smoothness by distributional projection, it
induces instability on model output f(z,n1,...,n5,8) (L is the number of model layers). To address
this issue, we propose to penalizing the variance of the model output. To be specific, based on Eq. (2)),
we now formulate the loss function as:

min L, 5(0,%X1,...,2L) == min {—ZIE,MWWLlnIP’(yi|xi,771,...,r]L,@)

07{21}{“:1 9,{2[}11‘:1 i=1
L m Lo n 3)
H+ad SN =B D WA +AD Vi [F@im, e 0)]
=1 j=1 =1 j=1 i=1

stability penalty

where) is a regularization parameter, and for each [€ [L], we have i; ~ N(0,}), and X} =
diag{\}, ...,)\ﬁ,l }. With a proper choice of A, adding such penalty in training process can avoid
extremely instable model output, thereby benefits generalization (Johnson & Zhang, 2023).

Unbiased estimation on loss function. Before introducing the training algorithm formally, we first

formulate the true loss function we use in practice:

n o m L

pu L m
- %ZZlnP(yJﬂ?“ {nl,i,j}lL:he) + OéZZ/\é - ﬂZZIH)\é

i=1 j=1 =1 j=1 =1 j=1

A n
+ mlm —1) S0 @i g e 0) = F@i g, Y 0113,

i=11<j1<j2<m

“

Under review as a conference paper at ICLR 2026

where {7, ; ;} are i.i.d. sampled from A/ (0, X;), and m is the number of sample times. This leads to
the unbiased estimator for Eq. (3). We now formally introduce the Distributional Input Projection
Network (DIPNet) algorithm, which is summarized in Algorithm|[T}

Algorithm 1 Distributional Input Projection Network (DIPNet)

Input: Initial parameter {0°, X7, ..., X9}, training samples {x;, y; } /1, forecasting input ', output model
f, layer number L, repeating time in training m, repeating time in prediction k, epochs T, regularization
{a, B, A} and step size &.

fort=1,...,7T do
4: For each sample {z;, y; }, repeat Algorithmm times, to receive its corresponding output { f} (z;)}72 ;.
Update parameter {0, X1, ..., X1} based on Eq (@) via gradient descent.
6: end for
> Prediction process:
8: Perform Algorithmwith input x’, then receive its corresponding output f(z").
Output: Final prediction f(z').

Model distillation in DIPNet. During prediction, repeated sampling in Algorithm [2|incurs high
time costs. To improve efficiency while maintaining accuracy, we adopt model distillation as described
in Algorithm 3]

Comparing with other methods. Injecting Gaussian noise is a widely used technique in data
augmentation (Moreno-Barea et al., 2018 and adversarial training (Cohen et al.| 2019) to improve
generalization. In contrast, our proposed method goes beyond traditional augmentation in two key
ways: (i) Rather than treating noise injection as a training-only strategy, we incorporate distributional
projection directly into the model architecture, applying it consistently during both training and
inference. This architectural integration enables theoretical guarantees for improved generalization.
(ii) Instead of injecting noise at the input level only, we project the input into a learnable distribution
at each layer, providing layerwise control over perturbations. This design offers better stability and
helps prevent issues such as gradient explosion during training.

4.2 THEORETICAL RESULTS

We provide some theoretical guarantees on why our approaches improve the Lipschitz and smoothness
of the original model. Our analysis is focusing on functio h(-,0) : R? — R. Denoting n ~ P, the
distributional input projection function is denoted as

9p(2.0) = [o+ 0.0 (n)dn,
where pp is the probability density function of P.

Lipschitz norm. Johnson & Zhang|(2023)) proposed that there are two terms, i.e., “instability” term
and “inconsistency” term, which are strongly predictive of the generalization gap (the difference
between the performance on the training data and unseen data). Following Theorem 1 in Johnson
& Zhang|(2023)), the “instability” term is related to the function Lipschitz. The following theorems
demonstrate that our distributional input projection methods can reduce the function’s Lipschitz
norm compared to the original function, contributing to improved generalization (The proofs are in

Appendix [B.T|and [B.Z).

Theorem 1 (Improvement under bounded condition). Assume that ||h(z, 0)||s < 400, there will be

max [|Vagp (2, 0)|l2 < [[h(z, 0)[l«lIVirlc.,

where we denote ||V up||z, == [||Vipp(t)]2dt.

2For simplicity, here we only consider one-dim output, and the analysis for multiple dimension output
function is similar.

Under review as a conference paper at ICLR 2026

Theorem |1| shows that even if the original function h(-) is non-Lipschitz, our method can still
guarantee a Lipschitz function gp (-) under the mild condition that the output space of A (-) is bounded.
Furthermore, Theorem [2| demonstrates that even when h(-) is already Lipschitz, DIPNeT can reduce
its Lipschitz norm, thereby improving generalization:

Theorem 2 (Improvement under Lipschitz condition). Denote

b:=max ||V, h(z,0)|2 < +oo, B(c):={x € RP|||Vih(z,0)]]2 > c- b},

forany 0 < ¢ < 1. If there exists some constant ¢ such that ;1(B(c)) < 4o00. We will obtain that
inf Va .0 <c-b.
it s [9,0m 0+ 0.0 < ¢

Smoothness. It has been widely observed that lower function smoothness is often associated with
better generalization performance in neural networks. Our proposed methods can also enforce the
smoothness condition using a simple technique, as demonstrated in Theorem [3}

Theorem 3 (Improvement under smoothness condition). Denote

5 1= max V2h(z,0)|]2 < +oo, S(c):={z € RP||V2h(z,0)|]2 > c- s},

forany 0 < ¢ < 1. If there exist some constant ¢ such that ;(S(c)) < +oo. We will obtain that
it {max 1920 4 000 < .

The proof is in Appendix [B.3] The results indicate that DIPNet can reduce the smoothness of models.
In the sequel, we will show how this leads to better generalization performance.

Algorithm 2 DIPNet: Practical Implementation

Input: Model parameter {6, X1, ..., X}, input z, output model f, layer number L.
2: Initialize the input as vg.

forl=1,...,Ldo
4: Sample a particle u; from N (v;—1, X2}).

Take u; as the input of Layer-/.

6: Receive the output on Layer-/, and denote it as v;.

end for
8: Output: vr,.

Algorithm 3 DIPNet: Model Distillation Prediction

Input: Model parameter 6, input x, output model f, layer number L.
2: Initialize the input as vg.
forl=1,...,Ldo
4: Take v;_1 as the input of Layer-I.
Receive the output on Layer-/, and denote it as v;.
6: end for
Output: vy,.

5 EXPERIMENT

We evaluate our proposed method against standard training as well as several baselines, including
generalization methods—Sharpness-Aware Minimization (SAM) (Foret et al.,|2020) and Randomized
Smoothing (RS) (Cohen et al.,|2019); data augmentation techniques—Mixup (Zhang et al., |2018)),
CutMix (Yun et al.| 2019), and AugMix (Hendrycks et al.,|2020); and masking-based regularization
methods—Cutout (DeVries & Taylor, 2017) and Cutoff (Shen et al.,[2020). Additional experiment
explorations and additional ablation studies are in Appendix D}

Under review as a conference paper at ICLR 2026

5.1 EXPLORATION ON VISION TRANSFORMERS UNDER ADVERSARIAL ATTACKS

Compared to general non-perturbation methods, DIPNet achieves higher accuracy under adversarial
attacks in training process, indicating their robustness. Here we consider two types of training-time
attacks:

+ Randomized Gaussian noise: we sample 17 ~ A (0, o21) for some o > 0, and attack the input via
r — x + 1) to simulate natural distribution shifts during training.

* Fast Gradient Sign Method (FGSM) adversarial noise (Goodfellow et al.,|[2014): we attack
examples by z — = + € - sgn (V. L(6, z,y)). This single-step attack efficiently approximates the
worst-case attacks within an ¢, -ball of radius e.

By injecting either type of attack into the training inputs, we can evaluate adversarial robustness
by showing the accuracy on clean test data. We evaluate our method in Vision Transformers
(ViTs) (Dosovitskiy et al., 2020), a popular architecture in computer vision known for its strong
performance across classification, detection, and segmentation tasks.

Setup. We train three ViT backbones—ViT-Tiny (5.5M parameters), ViT-Small (21.7M parameters),
and ViT-Base (85.8M parameters)—on the CIFAR-100 dataset (Krizhevsky, |[2009), an image clas-
sification dataset which contains 100 distinct classes of small-scale images. Each model is started
from a checkpoint pretrained on ImageNet-21k and fine-tuned on ImageNet-1k, using a patch size of
16 and an input resolution of 224 x 224. During training, we inject either additive Gaussian noise
(o = 0.2) or FGSM adversarial attacks (¢ = 0.2) into the training inputs. At evaluation, we report
accuracy on clean test sets. Additional implementation details are provided in Appendix [D.4]

Results. Table[I|reports the performance of ViT models under three training-time attack settings.

Under the clean setting (no attack), our proposed method (DIPNet) consistently outperforms the
Standard baseline across all ViT backbones, demonstrating improved generalization capabilities.
In contrast, RS, which injects Gaussian perturbations randomly at the input layer, and AugMix,
which relies on strong data augmentations, both significantly hurt clean accuracy—particularly
evident on ViT-Tiny (65.45% and 62.34% vs. 84.71% for Standard). Under Gaussian noise, most
baselines perform similarly to the Standard with only marginal changes, whereas DIPNet delivers
clear robustness gains on ViT-Tiny and ViT-Small and remains comparable to the baseline for ViT-
Base. Further details on the ViT-Base Gaussian scenario are in Appendix [D.7.3] Under FGSM,
DIPNet improves over Standard and surpasses other baselines on ViT-Tiny and ViT-Small, remaining
competitive on ViT-Base. See Appendix [D.4]for training and validation curves.

Overall, DIPNet both maintains high accuracy under the None-attack setting and provides strong
robustness against both Gaussian and FGSM attacks, consistently achieving the best average perfor-
mance across all three ViT backbones.

5.2 EXPLORATION ON LLM REASONING

We extend our method to large-scale language models (LLMs), which often contain billions of param-
eters and now power a wide range of applications—from machine translation and summarization to
dialogue systems and deep thinking. In particular, mathematical reasoning tasks like GSM8K (Cobbe
et al.;2021) have recently attracted significant attention for assessing an LLM’s ability to perform
precise arithmetic and logical reasoning. We hypothesize that our method will help LLMs form
smoother latent representations, improving both generalization to new problems and robustness
against prompt variations.

Setup. We use the official OpenAl GSMS8K dataset, which consists of 1,319 grade-school math
word problems requiring several reasoning steps and an exact numerical answer, replacing the
original “#### <answer>" marker with “The answer is <answer>". To test our method
across diverse architectures, we select six popular open-source models: Qwen2.5-3B and Qwen2.5-
7B (Yang et al.}2024)), Llama-3.2-3B and Llama-3.1-3B (Dubey et al.|[2024), and Gemma-3-4B and
Gemma-3-12B (Farabet & Warkentin, [2025)). Due to computational constraints, we fine-tune each
model with LoRA for a single epoch—using a learning rate of 5 x 10~%, Then we evaluate on the

Under review as a conference paper at ICLR 2026

Table 1: Test accuracy (%) on CIFAR-100 under different training-time attacks.

Method None Gaussian FGSM 3 Average
Standard 84.71 46.31 20.89 50.64
Sharpness-Aware Minimization (SAM) | 84.46 46.04 22.63 51.04
Randomized Smoothing (RS) 65.45 47.04 23.22 45.24
ViT-Tiny thout 85.39 43.47 21.64 50.17
Mixup 85.54 46.34 23.55 51.81
CutMix 85.36 42.77 20.33 49.49
AugMix 62.34 52.11 33.84 49.43
DIPNet 85.45 52.22 28.18 55.28
Standard 89.59 75.65 65.64 76.96
Sharpness-Aware Minimization (SAM) | §89.72 74.22 66.86 76.93
Randomized Smoothing (RS) 84.84 74.31 65.55 74.90
ViT-Small CL}tout 90.17 74.54 67.15 77.29
Mixup 90.64 70.74 63.45 74.94
CutMix 90.42 74.36 63.61 76.13
AugMix 87.14 78.71 69.17 78.34
DIPNet 90.14 78.07 69.65 79.29
Standard 92.46 69.13 70.75 77.45
Sharpness-Aware Minimization (SAM) | 92.68 69.28 70.34 77.43
Randomized Smoothing (RS) 88.32 68.74 77.30 78.12
ViT-Base Cgtout 93.16 65.39 76.97 78.51
Mixup 92.53 71.23 63.04 75.60
CutMix 92.75 62.17 71.75 75.56
AugMix 89.12 69.60 74.40 77.71
DIPNet 92.87 69.23 74.20 78.75

Notes. Bold indicates the best performance, and underlined indicates the second best.
Table 2: Accuracy (%) on GSM8K.

Method | Qwen2.5-3B Llama-3.2-3B Gemma-3-4B Qwen2.5-7B Llama-3.1-8B Gemma-3-12B
SFT 70.96 32.15 44.05 78.92 52.99 72.78
RS 72.10 32.68 44.43 78.84 54.36 73.31
SAM 68.84 32.83 45.11 78.09 54.13 72.10
Cutoff 69.75 31.92 44.28 78.77 54.51 72.93
DIPNet 7217 33.06 46.32 79.61 54.74 74.22

Notes. Bold indicates the best performance, and underlined indicates the second best.

GSMSK test set using zero-shot CoT prompting, and use Math-Verify to validate the generation ﬂ
Additional implementation details are provided in Appendix

Results. Table [2]reports the accuracy of DIPNet and several baselines. Our method consistently
outperforms other baselines on all models, yielding nontrivial gains. Across different model types,
we observe larger improvements for the Gemma-3 series. The results demonstrate that our method
successfully improves LLMs’ performance by enhancing the smoothness during training. And our
method is still promising for models with parameters > 10 Billion.

5.3 ABLATION ON EFFICIENT INFERENCE

To improve inference efficiency, we consider model distillation as an alternative to repeated sampling.
Specifically, we compare distilled inference against the original method, which performs the inference
process in Algorithm [2] & times and averages the outputs as the final prediction. Results on ViT-Tiny
under Gaussian attack are reported in Figure[2a] and results on the Llama-3.2-3B model are shown in
Figure 2b] For ViT models, distillation achieves performance comparable to multi-sample averaging,
but the latter is far less efficient, especially for large models. For example, on ViT-B, sampling 50
times achieves similar accuracy but requires about 80 x more inference time than distillation. See

Shttps://github.com/huggingface/Math-Verify

https://github.com/huggingface/Math-Verify

Under review as a conference paper at ICLR 2026

Appendix for detailed experimental results. In Figure[2b] increasing the number of samples k
generally improves performance; however, even with 50 samples, the accuracy lags behind that of
distillation while incurring prohibitive inference costs. These results suggest that distillation provides
a more efficient alternative, delivering competitive or superior accuracy while significantly reducing
inference time.

Accuracy & Inference Time vs Sampling Times (ViT-Tiny Gaussian) Accuracy & Inference Time vs Sampling Times (Llamas3.2-3b)

DIPNet Accuracy DIPNet Accuracy
Baseline Accuracy Baseline Accuracy
Inference Time (seconds) Inference Time (minutes) || o

Distillation 1 2 10 50 Distillation 1 2 10 50
sampling Times. sampling Times.

(a) ViT-Tiny under Gaussian Attack (b) Llama3.2-3B

Figure 2: Accuracy & Inference Time vs Sampling times & and time cost using (a) ViT-Tiny under
Gaussian attack and (b) Llama3.2-3B, compared with Distillation and baselines.

5.4 ABLATION ON HYPERPARAMETER TUNING

We study the sensitivity of DIPNet to the scalar hyperparameters—a, 3, and A—which balance the
distributional projection penalty and the stability term in the training objective, using the grid in
Table[3] For ViT-Tiny under Gaussian attack, varying («,) € {0.05, 0.10,0.50} x {0.10, 0.20,0.50}
yields only minor accuracy changes when) is fixed. The best results are generally obtained around
moderate values, indicating that DIPNet is not overly sensitive to small perturbations of («, 8) and
that a mid-range setting provides a stable and reliable default. In practice, we recommend starting
with (a, 8) = (0.1,0.2) and adjusting S relative to « only if stronger or weaker regularization is
desired.

By contrast, A exhibits a stronger influence. Table [3|shows A = 0 consistently achieves the best
accuracy across different («, 8) combinations. However, when training ViTs from scratch (see details
in Appendix [D.6.2), introducing a small A (e.g., A = 0.05) can improve performance over the A = 0
baseline, suggesting that the penalty acts as an effective regularizer during early training.

Table 3: Detailed experimental results for ViT-Tiny under Gaussian attack.

A\ (a,8)] (0.050.1) (0.05,0.2) (0.050.5) (0.1,0.1) (0.1,02) (0.1,05) (0.50.1) (0502 (0.5,0.5)

0 51.99 52.05 51.86 52.13 52.10 52.16 5222 52.09 52.21
0.001 51.12 51.10 51.28 51.33 51.40 51.23 51.11 51.22 51.17
0.01 46.39 46.32 46.33 46.33 46.34 46.33 46.36 46.34 46.33

6 CONCLUSION

In this work, we proposed Distributional Input Projection Networks (DIPNet), a novel architectural
framework designed to enhance generalization by projecting inputs into learnable distributions at
each layer. This approach implicitly enforces smoothness and reduces the Lipschitz constant of the
network, supported by both theoretical analysis and extensive empirical validation. Across a wide
range of models and tasks, DIPNet consistently improves test performance in standard, adversarial,
and out-of-distribution settings. Our results demonstrate that DIPNet offers a broadly applicable and
effective strategy for improving generalization in overparameterized deep networks. We consider
extending this framework to more complex reasoning tasks and reinforcement learning as a promising
direction for future work.

Under review as a conference paper at ICLR 2026

REFERENCES

Momin Abbas, Quan Xiao, Lisha Chen, Pin-Yu Chen, and Tianyi Chen. Sharp-maml: Sharpness-
aware model-agnostic meta learning. In International conference on machine learning, pp. 10-32.
PMLR, 2022.

Dara Bahri, Hossein Mobahi, and Yi Tay. Sharpness-aware minimization improves language model
generalization. arXiv preprint arXiv:2110.08529, 2021.

Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine Learning
Research, 2:499-526, 2002.

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets
without pre-training or strong data augmentations. arXiv preprint arXiv:2106.01548, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In international conference on machine learning, pp. 1310-1320. PMLR, 2019.

Terrance DeVries and Graham W. Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780-8794, 2021.

Edgar Dobriban, Hamed Hassani, David Hong, and Alexander Robey. Provable tradeoffs in adversar-
ially robust classification. IEEE Transactions on Information Theory, 2023.

Konstantin Donhauser, Alexandru Tifrea, Michael Aerni, Reinhard Heckel, and Fanny Yang. Interpo-
lation can hurt robust generalization even when there is no noise. Advances in Neural Information
Processing Systems, 34:23465-23477, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Hadi Fanaee-T and Joao Gama. Event labeling combining ensemble detectors and background
knowledge. Progress in Artificial Intelligence, 2:113-127, 2014.

Clement Farabet and Tris Warkentin. Introducing gemma 3: The most capable model you can run on
a single gpu or tpu. https://blog.google/technology/developers/gemma—-3/,
2025.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli. Uncovering
the limits of adversarial training against norm-bounded adversarial examples. arXiv preprint
arXiv:2010.03593, 2020.

Yifan Hao and Tong Zhang. The surprising harmfulness of benign overfitting for adversarial
robustness. arXiv preprint arXiv:2401.12236, 2024.

10

https://blog.google/technology/developers/gemma-3/

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. Augmix: A simple data processing method to improve robustness and uncertainty. In
International Conference on Learning Representations (ICLR), 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Sepp Hochreiter and Jiirgen Schmidhuber. Flat minima. Neural computation, 9(1):1-42, 1997.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Av-
eraging weights leads to wider optima and better generalization. arXiv preprint arXiv:1803.05407,
2018.

Adel Javanmard, Mahdi Soltanolkotabi, and Hamed Hassani. Precise tradeoffs in adversarial training
for linear regression. In Conference on Learning Theory, pp. 2034-2078. PMLR, 2020.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
generalization measures and where to find them. arXiv preprint arXiv:1912.02178, 2019.

Yiding Jiang, Vaishnavh Nagarajan, Christina Baek, and J Zico Kolter. Assessing generalization of
sgd via disagreement. arXiv preprint arXiv:2106.13799, 2021.

Rie Johnson and Tong Zhang. Inconsistency, instability, and generalization gap of deep neural
network training. arXiv preprint arXiv:2306.00169, 2023.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Andreas Kirsch and Yarin Gal. A note on" assessing generalization of sgd via disagreement". arXiv
preprint arXiv:2202.01851, 2022.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009. Technical Report.

Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana. Certified
robustness to adversarial examples with differential privacy. In 2019 IEEE symposium on security
and privacy (SP), pp. 656-672. IEEE, 2019.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Andrey Malinin, Neil Band, German Chesnokov, Yarin Gal, Mark JF Gales, Alexey Noskov, Andrey
Ploskonosov, Liudmila Prokhorenkova, Ivan Provilkov, Vatsal Raina, et al. Shifts: A dataset of
real distributional shift across multiple large-scale tasks. arXiv preprint arXiv:2107.07455, 2021.

Andrey Malinin, Andreas Athanasopoulos, Muhamed Barakovic, Meritxell Bach Cuadra, Mark JF
Gales, Cristina Granziera, Mara Graziani, Nikolay Kartashev, Konstantinos Kyriakopoulos, Po-
Jui Lu, et al. Shifts 2.0: Extending the dataset of real distributional shifts. arXiv preprint
arXiv:2206.15407, 2022.

Francisco J Moreno-Barea, Fiammetta Strazzera, José M Jerez, Daniel Urda, and Leonardo Franco.
Forward noise adjustment scheme for data augmentation. In 2018 IEEE symposium series on
computational intelligence (SSCI), pp. 728-734. IEEE, 2018.

Preetum Nakkiran and Yamini Bansal. Distributional generalization: A new kind of generalization.
arXiv preprint arXiv:2009.08092, 2020.

Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and Garrison Cottrell. A

dual-stage attention-based recurrent neural network for time series prediction. arXiv preprint
arXiv:1704.02971, 2017.

11

Under review as a conference paper at ICLR 2026

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684—10695, 2022.

Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David Fleet,
and Mohammad Norouzi. Palette: Image-to-image diffusion models. In ACM SIGGRAPH 2022
conference proceedings, pp. 1-10, 2022.

Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien Bubeck, and
Greg Yang. Provably robust deep learning via adversarially trained smoothed classifiers. Advances
in neural information processing systems, 32, 2019.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Learnability, stability
and uniform convergence. The Journal of Machine Learning Research, 11:2635-2670, 2010.

Dinghan Shen, Mingzhi Zheng, Yelong Shen, Yanru Qu, and Weizhu Chen. A simple but tough-
to-beat data augmentation approach for natural language understanding and generation. arXiv
preprint arXiv:2009.13818, 2020.

Xinwei Shen and Nicolai Meinshausen. Engression: Extrapolation for nonlinear regression? arXiv
preprint arXiv:2307.00835, 2023.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. arXiv preprint arXiv:1805.12152, 2018.

Saverio Vito. Air Quality. UCI Machine Learning Repository, 2016. DOI:
https://doi.org/10.24432/C59KSF.

Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quanquan Gu. On the
convergence and robustness of adversarial training. arXiv preprint arXiv:2112.08304, 2021.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Greg Yang, Tony Duan, J] Edward Hu, Hadi Salman, Ilya Razenshteyn, and Jerry Li. Randomized
smoothing of all shapes and sizes. In International Conference on Machine Learning, pp. 10693—
10705. PMLR, 2020.

Yun Yue, Jiadi Jiang, Zhiling Ye, Ning Gao, Yongchao Liu, and Ke Zhang. Sharpness-aware
minimization revisited: Weighted sharpness as a regularization term. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3185-3194, 2023.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In IEEE
International Conference on Computer Vision (ICCV), 2019.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International conference on
machine learning, pp. 7472-7482. PMLR, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations (ICLR), 2018.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In The Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Conference, volume 35, pp.
11106-11115. AAAI Press, 2021.

Difan Zou, Spencer Frei, and Quanquan Gu. Provable robustness of adversarial training for learning
halfspaces with noise. In International Conference on Machine Learning, pp. 13002-13011.
PMLR, 2021.

12

Under review as a conference paper at ICLR 2026

A ADDITIONAL RELATED WORK

Influential factors on generalization performance. In real-world scenarios, over-parameterized
neural networks often find solutions that perform optimally or near-optimally on training data, but
these solutions do not always generalize well to test data. Given the significant challenges associated
with generalization performance in deep neural networks, many studies have aimed to identify the
key factors influencing generalization. From the parameter perspective, a considerable body of
research has focused on the relationship between function sharpness and generalization (Hochreiter
& Schmidhuber, (1997} Keskar et al.| [2016; Izmailov et al., 2018} Jiang et al., 2019; |Foret et al.,
2020). For instance, [Foret et al.| (2020) intrtoduced a method named sharpness-aware-minimization
(SAM), which could reduce the sharpness of output model and subsequently improves generalization.
However, even if the solution of SAM always aligns with flat loss landscape, it may not be optimal
(Yue et al.,|2023). From the input covariates perspective, aligning with the conventional smoothness
viewpoint, Johnson & Zhang|(2023) recently suggested different indicators to measure generalization,
i.e, “inconsistency” (Nakkiran & Bansal,2020; Jiang et al.| 2021} |Kirsch & Gall,|2022)) and “instability”
(Bousquet & Elisseeff, 2002; [Shalev-Shwartz et al.,[2010), with the latter being related to the Lipschitz
norm of the output models. While adversarial training (Madry et al.,[2017;|Cohen et al.,|2019;|Salman
et al., 2019; Lecuyer et al.l 2019;|Gowal et al., 2020; |Wang et al., [2021; Zou et al.;,2021) can control
the Lipschitz norm, it often involves a trade-off between generalization performance and adversarial
robustness (Lipschitz) (Tsipras et al., 2018; Zhang et al., 2019; Javanmard et al., |2020; Donhauser|
et al.;2021; Dobriban et al., 2023; |Hao & Zhang| 2024). In contrast, our proposed method enhances
generalization performance by projecting the input into a learnable distribution, thereby avoiding
such trade-off typically observed with other approaches.

B THEORETICAL ANALYSIS

B.1 PROOF OF THEOREM[I]

Consider the expression of function g, for any x € RP, we have

gp(z,0) = /h(:c +n,0)up(n)dn

= /h(t,@),up(t — x)dt.

So we could obtain the gradient norm of g(x, 0) as

IVagr (. 0)]]2 = || V. / h(t, 6)pp(t — x)dt

2

_ H/h(t,@)vxup(t —)t

2

< [Iht 00 opp(c —)l
< (@, 0) o - / IV 0pi (1) .

B.2 PROOF OF THEOREM[2|

For any 0 < € < 1, we can choose ¢ > ¢!, and denote u(B(c)) = C < +oo. Then we consider
‘P as a uniform distribution on RP, which is supported on a set with measurement (C', then we can
obtain that

1By Vah(z +n,0)[I3 < Eyl|Vah(z +n,0)]3
=E, [[IVah(z +n,0)[3[1(z + 1 € B(c)] P(B(c))
+Ey [Vah(z +n,0)l31(z +n & B(c))] P((B(c))°)
1 1
< C—C(C~b+CC'cb) —cb+gb< (c+€)b.

Sending € — 0, we can finish the proof.

13

Under review as a conference paper at ICLR 2026

B.3 PROOF OF THEOREM[3]

The proof is similar to the proof for Theorem |2l For any 0 < ¢ < 1, we can choose { > €1,
and denote ;1(S(c)) = C < +oo. Then we consider P as a uniform distribution on RP, which is
supported on a set with measurement (C', then we can obtain that

1B, Vih(z +n,0)[3 < Ey|[Vh(z +1n,0)|3
=E, [|Vih@ +0.0)[511(z +n € S(e)] P(S(e)
+E, [IV2h(z +n,0)[311(z +n & S(c))] P((S(c))°)
)

1 1
<—(C-s+CC-cs)=cs+=-s<(c+¢€)s.
5 (Crs+CCes) et Ts <

Sending € — 0, we can finish the proof.

C DATASET DESCRIPTION

C.1 TABULAR DATASET FOR MLP

* Air Quality. (Vito, 2016) The Air Quality dataset comprises 15 features derived from hourly
averaged responses of an array of 5 metal oxide chemical sensors embedded in an Air Quality
Chemical Multisensor Device in an Italian city, collected from March 2004 to February 2005.
In this study, we use 9 of these features, with “PT08.S3(NOx)” as the response variable and the
remaining 8 features as input variables.

e ETD. (Zhou et al.|[2021) The ETD dataset is related to the electronic data distribution hourly data
recordings. It contains 8 features, including the date of the point, 6 different types of external power
load features and the predictive value “oil temperature”.

* Sharing Bike. (Fanaee-T & Gama,|2014)) This dataset aims to understand the factors influencing
the demand for shared bikes in the American market, with hourly data recorded from January 2011
to December 2012. For this analysis, we consider 4 features, i.e., weather, temperature, humidity,
and feeling temperature, to predict the total count of rental bikes.

* NASDAQ100. (Qin et al.,2017) It contains stock prices of 81 corporations under NASDAQ 100
and the index value of NASDAQ 100. The frequency of the data collection is one-minute. Here

we consider the stock prices of different corporations as input variables, and the index value of
NASDAQ 100 as predictive variable.

Table 4: Overview of tabular dataset. Table 5: Overview of OOD tabular dataset.

Dataset | AirQuality ETD Sharing Bike NASDAQI00 Dataset | VPowers VPower, Weather
input vector vector vector vector input vector vector vector
task reg. reg. reg. reg. task reg. reg. reg.

samples 8991 17420 17379 40560 # samples 546543 554642 436733

C.2 OOD DATASET

To assess robustness under distribution shift, we use the Shifts vessel power estimation dataset
(Malinin et al., 2022) and the Shifts Weather Prediction dataset (Malinin et al.| [2021) in OOD
situations (see details in Table[5]and Figure [3).

« Vessel Power Estimationf| The Shifts Vessel Power Prediction dataset contains 11 different features
and one scalar target (energy utilization of cargo ships). And it contains two types of data: one is
synthetic dataset (V Power;), the other is real dataset (V Power;.).

¢ Weather Predictiorﬂ The Shifts Weather Prediction dataset (Malinin et al.,2021) provides a scalar
regression task to forecast the air temperature. The dataset contains 127 features and a single
regression target, spanning an entire year, i.e, from September 1st, 2018, to September 1st, 2019.

“Notice that this is a developing dataset and it only contains the training data and valid data recently. So here
we use the ID valid dataset to take validation, and the OOD valid dataset is used for testing.
>More details can be found inhttps://github.com/Shifts-Project/shifts,

14

https://github.com/Shifts-Project/shifts

Under review as a conference paper at ICLR 2026

Time partitioning
~ TIME

15ep2018 8Apr2019 14May2019 8112019 15ep2019
[train
Wind interval 1 4 evalin Unused

\ devin

Tropical

train

Wind interval 2 Unused eval in Unused

Dry

unusED

devin

train
eval in Unused

Mild Temperate UNUseD.

CUMATE

Wind interval 3

[
|
\
L

devin

Dev Snow dev_out

Wind nterval 4 | Unused & Eval Out

Unsed Polar

Wind speed partitioning

unusep. evalout

e

uNusED

Notes. The figure on the left side is about the Shifts vessel power estimation dataset, and the figure on the right
right is about the Shifts Weather Prediction dataset. “train”, “dev” and “eval” refer to training data, validation
data and test data respectively. As public access to canonical “test” of vessel power dataset is restricted, here we
valid on “dev-in” and use “dev-out” to test the model performance.

Figure 3: OOD dataset descriptions

D SUPPLEMENT EXPERIMENTS

D.1 EXPLORATIONS ON MLP

Here we compare the generalization performance of our method and a standard non-perturbation
output model by evaluating them on various datasets and different neural network architectures.

To measure the generalization performance of different methods, we take explorations on four tabular
datasets and detailed description could be found in Appendix [C]

Specifically, we test different settings, including various proportions of training and test data, the
number of hidden layers, and the number of neurons in each layer. Using gradient descent on the ¢
loss, we summarize the results in Table E], indicating that both the standard errors and the adversarial
errors on DIPNet are consistently smaller than those for standard networks. This further verifies the
benefits of our proposed method.

Table 6: Standard and Adversarial MSE on MLP.

Dataset | Test proposition | Method | St(2+100) Adv(2+100) | St(4+100) Adv(4+100) | St(4+400) Adv(4+400)

03 Standard | 0.0858 240112 | 00677 37.1026 | 00628 205767
: DIPNet | 0.0822 1114 0.0576 209601 | 0.0526 20.5601

Al Quality 03 Standard | 0.1033 13.8045 00873 49.1966 | 0.0823 17.7776
DIPNet | 0.0964 9.6509 0.0794 5.8675 0.0748 12.9039

o Standard | 0.0084 16.6161 00938 244145 | 0.0910 145242

: DIPNet | 0.0901 4.8616 0.0844 6.6429 0.0853 10.1404

03 Standard | 0.1845 47174 0.1693 5.1239 0.1635 45290

: DIPNet | 0.1787 3.6371 0.1604 3.7268 0.1578 29117

51D 03 Standard | 0.1905 6.1011 0.1724 13385 0.1668 35335

: DIPNet | 0.1831 3.5267 0.1648 33667 0.1632 31108

o Standard | 0.2023 5.0696 0.19T3 62199 0.1867 51136

: DIPNet | 0.1947 43076 0.1776 29721 01757 2.9267

03 Standard | 0.7221 25177 0.7208 2.0264 0.7216 2.1557

: DIPNet | 0.7188 2.0034 0.7186 1.8647 0.7182 1.8732

Sharing Bike 03 Standard | 0.7108 33387 0.7107 2.3030 07118 18314
DIPNet | 0.7084 1.7799 0.7082 1.8780 0.7089 17272

o Standard | 0.7075 1.7905 0.7057 1.8397 0.7068 17931

: DIPNet | 0.7050 17353 0.7043 17941 0.7056 17785

03 Standard | 3.576e-5 06066 | 3.538e5 05447 | 2779%-5 0.5303

: DIPNet | 2.757¢-5 05824 | 2.511e-5 0.5628 | 2.158e-5 0.5195

Standard | 3.60Te5 05901 | 3671c5 0.5364 | 291665 0.5389

NASDAQ100 05 DIPNet | 2.890e-5 0.5866 | 2.642¢-5 05805 | 2.266e-5 0.5244
o Standard | 6.14665 05813 | 8.08565 05506 | 36125 0.5455

: DIPNet | 3.122e5 05812 | 2.886e-5 0.5428 | 2.532-5 0.5336

Notes. “St” ,“Adv” refer to standard loss and adversarial loss respectively. “2+100”, “4+100”, “4+400” refer to
the network architecture (e.g, “2+100” means the two layer network which each layer contains 100 neurons).

15

Under review as a conference paper at ICLR 2026

Comparison of Standard vs DIPNet on ID and OOD MSE (Weather Dataset)

ID MSE (Lower is Better) 00D MSE (Lower is Better)

0.035

0.030

0.025

0.020

MSE

0.015

0.010

7
= Standard (2+100) #m DIPNet (4+100)
= DIPNet (2+100) Standard (4+400)
= Standard (4+100) %% DIPNet (4+400)

2
== Standard (2+100) e DIPNet (4+100)
== DIPNet (2+100) Standard (4+400)
== Standard (4+100) % DIPNet (4+400)

0.005

100% 100%

9% Training Data % Training Data

Figure 4: ID and OOD MSE on Weather Dataset.

Notes. Here we train on the ID dataset, validate on both ID and OOD datasets, and test the model performance
on both ID and OOD datasets (with the test OOD environment differing from the validation OOD environment).

D.2 OuUT-OF-DISTRIBUTION (OOD) EVALUATION

We also explore the generalization performance on OOD tasks. We conduct experiments on tabular
datasets using different neural network architectures, further validating the advantages of our proposed
methods in both In-Distribution (ID) and Out-Of-Distribution (OOD) generalization performance.

Setup. To assess robustness under distribution shift, we use the Shifts vessel power estimation
dataset (Malinin et al.l [2022) and the Shifts Weather Prediction dataset (Malinin et al.] 2021) in
OQD situations. For each dataset, we train three MLP architectures—2 layers with 100 neurons
per layer (2+100), 4 layers with 100 neurons per layer (4+100), and 4 layers with 400 neurons per
layer (4+400)—using standard stochastic gradient descent on the MSE loss. We compare against
the non-perturbed baseline (Standard). We vary the fraction of training data (100%, 66%, 33%) and
evaluate the same three MLP architectures under each split.

Results. Tables [7] [8] and Figure [present both ID and OOD test MSEs. The results shows that
comparing with standard non-perturbation method, DIPNet consistently improve ID performance,
and enhance OOD generalization significantly.

Table 7: OOD MSE on Vessel Power dataset.

% Train 100 % 66 % 33%
Dataset | Method | 2+100 44100 4+400 | 2+100 4+100 44400 | 2+100 4+100 4+400
Standard | 0.0212 0.0231 0.0288 | 0.0401 0.0533 0.0601 | 0.0539 0.0498 0.0420
Vpowers, | DIPNet | 0.0195 0.0206 0.0212 | 0.0232 0.0305 0.0298 | 0.0298 0.0318 0.0324
Standard | 0.0400 0.0560 0.0895 | 0.0439 0.0401 0.0730 | 0.0944 0.0947 0.0859
Vpower, | DIPNet | 0.0363 0.0439 0.0555 | 0.0345 0.0383 0.0412 | 0.0581 0.0534 0.0593

Notes. “2+100”, “4+100”, “4+400” refer to the network architecture (e.g, “2+100” means the two layer network
which each layer contains 100 neurons).

Table 8: ID and OOD MSE on Weather dataset.

% Train | Method | ID(2+100) ID(4+100) ID(4+400) | OOD(2+100) OOD(4+100) OOD(4+400)
Standard 0.0360 0.0330 0.0291 0.0640 0.0647 0.0576
100 % DIPNet 0.0344 0.0322 0.0280 0.0562 0.0528 0.0547
Standard 0.0364 0.0329 0.0315 0.0898 0.0723 0.0822
66 % DIPNet 0.0354 0.0324 0.0295 0.0558 0.0552 0.0569
Standard 0.0364 0.0341 0.0325 0.0741 0.0599 0.0662
33 % DIPNet 0.0361 0.0337 0.0320 0.0519 0.0549 0.0627

Notes. Here we train on the ID dataset, validate on both ID and OOD datasets, and test the model performance
on both ID and OOD datasets (with the test OOD environment differing from the validation OOD environment).
“241007, “4+1007, “4+400” refer to the network architecture (e.g, “2+100” means the two layer network which
each layer contains 100 neurons). “ID” means test data on ID environment , and “OOD” means test data on
OOD environment.

16

Under review as a conference paper at ICLR 2026

D.3 EXPLORATIONS ON RESNET

Furthermore, we extend our methods to ResNet architecture. To examine its performance compared
to the standard non-perturbation ResNet, we conducted experiments on CIFAR10 and CIFAR100
using different ResNet structures. We then compared the classification accuracy (in percentage) on
the test data for each method. The results, summarized in Table 0] demonstrate the benefits of DIPNet
in improving generalization performance. These findings highlighting the extended potential of our
proposed methods.

Table 9: Result classification accuracy (%) on ResNet.

Method \ resl8-cifar10 res34-cifarl0 res50-cifar10 wideres-cifar10 wideres-cifar100

Standard 90.96 93.52 93.37 96.14 80.77
DIPNet 91.72 93.56 93.89 96.53 81.73

D.4 DETAILS FOR VIT EXPERIMENTS

All Vision Transformer experiments are conducted on a single NVIDIA A100-40G GPU. Check-
points are loaded via the t imm library. Our implementation is adapted from the publicly available
repositoryﬂ using default hyperparameters, enabling Apex O2 mixed-precision training (FP16).

For the two baselines—SAM and RS—we first perform a hyperparameter sweep on the ViT-Tiny
model, then scale the optimal settings to larger backbones. Specifically, SAM’s perturbation radius
p is searched over {0.01, 0.03, 0.05}, yielding p = 0.05; RS’s noise level o is searched over
{0.001, 0.005, 0.01, 0.05, 0.1}, yielding o = 0.01. For the remaining four baselines, we follow the
recommended settings in their papers on CIFAR-100. Specifically, Cutout randomly masks out a
square region covering 50% of the image area. Mixup and CutMix both sample mixing ratios from a
Beta distribution with parameter av = 1.0. For AugMix, we adopt the default configuration of severity
= 3, width = 3, and depth uniformly sampled from {1, 3}.

Representative training and validation curves can be found in Figure [3 [6] [7]and

D.5 DETAILS FOR LLM EXPERIMENTS

All language-model experiments are conducted on a single NVIDIA A6000 GPU. We apply LoRA
with rank 8, alpha 16, dropout 0.1, targeting the modules ["q_proj", "v_proj"].

Training arguments include a batch size of 64, 1 epoch, weight decay of 0.01, warmup ratio of
0.03, and a fixed seed of 42. We search peak learning rates in {7 x 107°, 1 x 1074, 2 x 1074, 3 x
1074, 5 x 10~*}, which yields 5 x 10~ for all the DIPNet models.

Evaluation is performed on the GSMS8K task with 0-shot CoT prompting.

For the two baselines—SAM and RS—we conduct hyperparameter sweeps and report the best-
performing accuracy. In this case, SAM’s p is searched over {0.01, 0.02, 0.05} and RS’s o over
{0.01, 0.02, 0.05}.

D.6 DETAILED EXPERIMENTAL RESULTS

D.6.1 ABLATION ON EFFICIENT INFERENCE

Detailed experimental results can be found in Table[T0]and [TT}

D.6.2 ABLATION ON HYPERPARAMETER TUNING

Detailed experimental results can be found in Table

17

Under review as a conference paper at ICLR 2026

Model Attack Type \ Model Distillation 1 2 10 50
None 85.45 8536 8540 8544 8542
ViT-Tiny Gaussian 52.22 51.62 5228 5237 5235
FGSM 28.18 27.19 2721 2744 2745
None 90.14 90.06 90.10 90.12 90.12
ViT-Small Gaussian 78.07 7821 7833 7831 78.36
FGSM 69.65 69.17 69.21 6925 69.17
None 92.87 92.84 9287 92.88 92.86
ViT-Base = Gaussian 69.23 69.31 69.26 6924 69.19
FGSM 74.20 74.17 7416 74.18 74.18

Table 10: Accuracy (%) under different sampling times k.

Model Model Distillation 1 2 10 50
ViT-Tiny 7s 10s 14s 59s Sm
ViT-Small 10s 18s 32s 2m33s 12m37s
ViT-Base 27s 52s 1m42s 8ml9s 41m37s

Table 11: Inference time under different sampling times k.

D.7 ADDITIONAL ABLATION STUDY
D.7.1 ABLATION STUDY ON LAYERWISE DISTRIBUTIONAL INPUT PROJECTION

To assess how the depth of distributional input projections affects robustness, we compare four
configurations of Layerwise DIPNet: taking the distributional input projection only at the first layer
(“1-Layer™), at the first two layers (‘“2-Layer”), at every layer (“Full-Layer”), and the original model
without any distributional projection (“Standard”).

As Table[I3a] shows, taking the distributional input projection at only a single layer (“1-Layer”) yields
little to no generalization benefit—and can even lead to a slight drop in accuracy. In contrast, the
“2-Layer” configuration delivers a clear generalization boost, outperforming Standard across all ViT
scales, and on both ViT-Tiny and ViT-Base it even edges out the “Full-Layer” configuration—most
notably pushing ViT-Base to 71.78 %. Overall, taking the distributional input projection at multiple
depths delivers substantial gains, although the optimal number of layers can vary by model scale.

D.7.2 ABLATION STUDY ON LEARNABLE DISTRIBUTIONAL INPUT PROJECTION

We then explore different strategies for the learnable parameter coe f—which controls the magnitude
of the distributional projection added at each layer—in DIPNet: fixing coef to a constant (0.5, 1.0
or 1.2) or the optimal value obtained from a learnable run (“Fixed-Learned”), or treating coef as a
trainable parameter initialized randomly (“Learnable”). In the “Fixed-Learned” setting, we initialize
coef to the value obtained from “Learnable” setting (1.4121 for ViT-Tiny, -1.4141 for ViT-Small,
and 1.4141 for ViT-Base). As Table[I3b]shows, fixing coef to a small constant produces an accuracy
comparable to that of the “Learnable” setting, even though the “Learnable” setting itself starts from a
random small value and grows to a larger optimum. However, choosing a larger fixed coef leads
to a clear drop in performance, even when that constant remains below the final magnitude learned
by the “Learnable” setting. This contrast highlights the advantage of a learnable coe f, which can
flexibly adjust perturbation strength to the ideal level for all input layers.

D.7.3 ABLATION STUDY ON LEARNABLE DISTRIBUTIONAL INPUT PROJECTION ON
NOISE-LEVEL: GAUSSIAN CORRUPTION EFFECTS ACROSS MODEL SIZES

To quantify the impact of our DIPNet module under varying gaussian noise levels, we evaluate
both ViT-Base and ViT-Tiny corrupted by additive Gaussian noise with standard deviation o €
{0.2,0.5,1.0}. Table reports test accuracy for the standard (baseline) training and for our method.

®https://github.com/jeonsworld/ViT-pytorch

18

https://github.com/jeonsworld/ViT-pytorch

Under review as a conference paper at ICLR 2026

Table 12: Accuracy (%) of ViT backbones trained from scratch on CIFAR-100.

Model | Standard | @A =010 | (@BA=01,02 | (@p)=0.105)
\ |A=0 A=005 A=01|A=0 A=005 A=01[A=0 X=005 A=0.1
Small 16 38.28 3791 39.42 38.53 34.87 38.77 38.79 38.69 37.75 38.08
Small 32 31.57 31.16 31.85 31.74 31.10 30.54 31.79 31.06 32.97 30.65

Base 16 38.71 38.94 39.51 3379 | 36.42 36.72 37.16 | 36.74 36.28 40.58
Base 32 31.69 31.10 30.75 2542 | 3043 32.80 2547 | 3042 29.73 30.05

Notes. Model refers to backbone size + patch size (e.g., “Base 32 denotes ViT-Base with patch size 32). Bold

indicates the best performance, and underlined indicates the second best.

Table 13: Ablation studies on ViT under Gaussian attack. This table reports test accuracy (%) on
the CIFAR-100 dataset. “Standard” is the baseline ViT without any distributional input projection;
“Full-Layer” (in a) and “Learnable” (in b) are the same learnable full distributional projection-at-
every-layer setting.

(a) Depth Ablation (Layerwise DIPNet).

Method ViT-Tiny ViT-Small ViT-Base

Standard 46.31 75.65 69.13
1-Layer 50.39 75.55 68.81
2-Layer 51.90 75.99 71.78
Full-Layer 51.62 78.21 69.31

(b) Perturbation Coefficient Ablation (Learnable vs. Fixed DIPNet).

Method ViT-Tiny ViT-Small ViT-Base
Standard 46.31 75.65 69.13
Fixed-0.5 51.91 77.02 69.95
Fixed-1.0 48.94 75.97 67.23
Fixed-1.2 47.44 75.24 65.93
Fixed-Learned 45.24 72.29 64.82
Learnable 51.62 78.21 69.31

For larger model, DIPNet yields consistent gains over the baseline at all noise levels. The gap widens
as noise increases, demonstrating that DIPNet effectively enhances robustness to heavy corruption.
For smaller model, while DIPNet brings large relative gains at low to moderate noise, the absolute
accuracy remains low. This indicates that ViT-Tiny’s limited capacity leads to underfitting when faced
with strong noise, and suggests that further architectural capacity or noise-specific regularization may
be required. These ablation results confirm that DIPNet consistently improves noise robustness, but
also highlight the interaction between module efficacy and backbone capacity under severe corruption.

Table 14: Evaluation under Gaussian Noise Levels (o € {0.2,0.5,1.0}).

Model Method 0.2 0.5 1.0

Standard 69.13 54.81 35.02
DIPNet 69.23 5495 36.08

Standard 46.31 2699 15.93
DIPNet 5222 32.75 17.63

ViT-Base

ViT-Tiny

E LLM USAGE STATEMENT

We used LLMs to aid in polishing the writing of this paper. Specifically, LLMs were employed as a
general-purpose assistant to improve clarity, grammar, and style, and to suggest alternative phrasings
for technical explanations. They were not used to generate novel research ideas, design experiments,

19

Under review as a conference paper at ICLR 2026

train/avg_loss val/loss
= cifar100-t-DIPNet = cifar100-t-Standard = cifar100-t-RS = cifar100-t-SAM s — cifar100-t-DIPNet — cifar100-t-Standard = cifar100-t-RS = cifar100-t-SAM £
35
N
25 I
2
15
1
- Step
2k 4k 6k 8k 10k
(a) Training Loss (b) Validation Loss
train/avg_accuracy val/accuracy
= cifar100-t-DIPNet = cifar100-t-Standard = cifar100-t-RS = cifar100-t-SAM s — cifar100-t-DIPNet — cifar100-t-Standard = cifar100-t-RS = cifar100-t-SAM £
08 B - o
0.7 /
|
0.6
0.5
0.4 '
03 /
Step
2k 4k 6k 8k 10k 2k 4k 6k 8k 10k
(c) Training Accuracy (d) Validation Accuracy
Figure 5: Training and validation curves on ViT-Tiny without any attacks.
train/avg_loss val/loss
= cifar100-b-f-DIPNet = cifar100-b-f-Standard = cifar100-b-f-RS s = cifar100-b-f-DIPNet = cifar100-b-f-Standard = cifar100-b-f-RS s

2
1
1
2k 4k 6k 8k 10k
(a) Training Loss (b) Validation Loss
train/avg_accuracy val/accuracy
= cifar100-b-f-DIPNet = cifar100-b-f-Standard = cifar100-b-f-RS s = cifar100-b-f-DIPNet = cifar100-b-f-Standard = cifar100-b-f-RS]
0.8
0.7
0.6
0.5
0.4
0.3
02 Step
2k 4k 6k 8k 10k
(c) Training Accuracy (d) Validation Accuracy

Figure 6: Training and validation curves on ViT-Base under FGSM adversarial attacks.

or produce results. The authors take full responsibility for all content, including text refined with the
assistance of LLMs.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

train/avg_loss val/loss
— Cifar100-t-g-DIPNet — cifar100-t-g-Standard — cifar100-t-g-SAM — cifar100-t-g-RS — Cifarl00-tg DIPNet — Cifar100-tg Standard — Cifarl00-t-gSAM — cifar100-tg-RS s

-

W

200 400 600 800 1

200 400 600 800 1k

(a) Training Loss (b) Validation Loss

train/avg_accuracy val/accuracy
— cifar100-t-g-DIPNet — cifar; dard = cif = — cifar100-tg-DIPNet — cifarl00-t-g-Standard — cifarl00-t-g-SAM — cifar100-tg-RS s

-

200 400 600 800 1k 200 400 600 800 1k

(c) Training Accuracy (d) Validation Accuracy

Figure 7: Training and validation curves on ViT-Tiny under Gaussian noise.

train/avg_loss val/loss
= Cifarl00-4-£DIPNet = cifar100-t-Standarde = cifar100-tf-SAN — cifar100-t-RS ¢ = Cifarl00-4£-DIPNet = cifar100-t-Standarde = Cifarl00-t--SAM = cifarl00-t--RS ¢+
4 42
4
35
38
3 36
34
25
32
Step
200 400 600 800 1k 200 400 600 800 1k

(a) Training Loss (b) Validation Loss

train/avg_accuracy val/accuracy
— Cifarl00-tf-DIPNet = cifar100-t-Standard @ — cifar100-tf-SAM — cifarl00-t--RS ¢ = Cifarl00-4--DIPNet = cifar100-t-Standarde = Cifarl00-t--SAM — Cifarl00-4--RS ¢+

= N by =

° °
° 2 ° I
= & 9 b

Step Step

200 400 600 800 1

200 400 600 800 1k

(c) Training Accuracy (d) Validation Accuracy

Figure 8: Training and validation curves on ViT-Tiny under FGSM adversarial attacks.

21

	Introduction
	Related work
	Problem Formulation and Variational Inference
	DIPNet: Distributional Input Projection Network
	Learning Distributional Input Layerwise to Minimize Loss Function
	Theoretical Results

	Experiment
	Exploration on Vision Transformers under Adversarial Attacks
	Exploration on LLM Reasoning
	Ablation on Efficient Inference
	Ablation on Hyperparameter Tuning

	Conclusion
	Additional Related Work
	Theoretical Analysis
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Dataset Description
	Tabular Dataset for MLP
	OOD Dataset

	Supplement Experiments
	Explorations on MLP
	Out‑Of‑Distribution (OOD) Evaluation
	Explorations on ResNet
	Details for ViT Experiments
	Details for LLM Experiments
	detailed experimental results
	Ablation on Efficient Inference
	Ablation on Hyperparameter Tuning

	Additional Ablation Study
	Ablation Study on Layerwise Distributional Input Projection
	Ablation Study on Learnable Distributional Input Projection
	Ablation Study on Learnable Distributional Input Projection on Noise‑Level: Gaussian Corruption Effects Across Model Sizes

	LLM Usage Statement

