
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS BETTER GENERALIZATION VIA DISTRIBU-
TIONAL INPUT PROJECTION NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

As overparameterized models become increasingly prevalent, training loss alone
offers limited insight into generalization performance. While smoothness has
been linked to improved generalization across various settings, directly enforcing
smoothness in neural networks remains challenging. To address this, we introduce
Distributional Input Projection Networks (DIPNet), a novel framework that projects
inputs into learnable distributions at each layer. This distributional representation
induces a smoother loss landscape with respect to the input, promoting better
generalization. We provide theoretical analysis showing that DIPNet reduces both
local smoothness measures and the Lipschitz constant of the network, contributing
to improved generalization performance. Empirically, we validate DIPNet across a
wide range of architectures and tasks, including Vision Transformers (ViTs), Large
Language Models (LLMs), ResNet and MLPs. Our method consistently enhances
test performance under standard settings, adversarial attacks, out-of-distribution
inputs, and reasoning benchmarks. We demonstrate that the proposed input projec-
tion strategy can be seamlessly integrated into existing models, providing a general
and effective approach for boosting generalization performance in modern deep
learning.

1 INTRODUCTION

Overparameterization has become a defining feature of modern deep learning. From vision trans-
formers to large language models, today’s networks often possess far more parameters than training
examples. While this overparameterization enables remarkable expressivity and optimization ease, it
is of great importance to identify models with strong generalization performance (i.e, the excellent
performance on unseen test data).

Recent work has sought to characterize generalization through various geometric and functional
properties of the learned models. Notably, Johnson & Zhang (2023) argue that the generalization
gap can be largely attributed to two components: inconsistency and instability, with the latter being
closely related to the Lipschitz continuity of the learned function. In parallel, another prominent line
of research focuses on sharpness, typically quantified via the spectral norm of the Hessian. Building
on this perspective, Foret et al. (2020) proposed Sharpness-Aware Minimization (SAM), a technique
aimed at locating flatter regions of the loss landscape. SAM has been successfully applied in diverse
domains including computer vision (Chen et al., 2021), natural language processing (Bahri et al.,
2021), and bi-level optimization (Abbas et al., 2022).

However, enforcing low sharpness, or low Lipschitz constants during training remains a significant
challenge—particularly without sacrificing generalization. For instance, there is no guarantee that a
model with low Lipchitz on the training distribution will remain a low Lipschitz on the test distribution.
Adversarial training (Madry et al., 2017) and Random Smoothing (Cohen et al., 2019) have proven
effective in reducing the Lipschitz constant and improving robustness, but often introduces a trade-off
between robustness and standard generalization performance (Tsipras et al., 2018; Zhang et al., 2019;
Javanmard et al., 2020; Donhauser et al., 2021; Dobriban et al., 2023; Hao & Zhang, 2024). Likewise,
while SAM can find flatter regions of the landscape, it does not always yield true minimizers, even in
sufficiently flat neighborhoods (Yue et al., 2023).

An increasingly promising direction involves promoting smoothness in the learned models. Some
recent works (Johnson & Zhang, 2023; Shen & Meinshausen, 2023) suggest that smoother input-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Input: x

Model Layer

DiPNet Layer

.

Project input to
learnable distribution

Generate random
variable DiPNet Layer

DiPNet Layer Structure of DiPNet Layer

Output: y1 …… Output: yk

x K times

Final output

Distillation

Figure 1: Pipeline of Distributional Input Projection Network.

output mappings lead to improved robustness and generalization. Smoothness mitigates the model’s
sensitivity to small input perturbations, thereby enhancing stability across data distributions. Nonethe-
less, directly enforcing smoothness in deep networks remains difficult due to their nonlinear and
high-dimensional nature.

In this paper, we introduce Distributional Input Projection Networks (DIPNet)—a novel architectural
framework that improves generalization by implicitly promoting smoothness. Rather than passing
deterministic inputs through the network, DIPNet projects inputs into learnable distributions at
each layer, enabling the model to reason over localized neighborhoods in the input space. This
structured stochasticity acts as a form of regularization, smoothing the loss landscape and mitigating
sensitivity to input variation. As shown in Figure 1, the proposed framework consistently improves
generalization across a wide range of datasets and model architectures, with particularly notable gains
under adversarial attacks and distribution shifts.

Moreover, DIPNet is broadly applicable and can be integrated into existing architectures with minimal
overhead. Its distributional nature also draws inspiration from variational inference, which motivates
our efficient training procedure with a stability-promoting penalty.

Our main contributions are as follows:

1. We introduce DIPNet, a novel architectural framework that enhances smoothness by projecting
inputs into learnable distributions at each layer of the network.

2. We develop an efficient training method for DIPNet, inspired by variational inference, which also
incorporates a stability penalty to promote robustness and regularization.

3. We provide theoretical guarantees showing that DIPNet reduces function smoothness measures
and Lipschitz constants, offering insight into its generalization benefits.

4. We conduct extensive experiments across a diverse set of tasks and architectures—including ViTs,
LLMs, MLPs, ResNets, adversarial robustness settings, out-of-distribution (OOD) generalization,
and reasoning benchmarks—demonstrating consistent improvements in test-time performance.
Such improvements are particularly significant under adversarial attacks or distribution shifts.

2 RELATED WORK

Generalization performance. From the input covariates perspective, aligning with the conventional
smoothness viewpoint, Johnson & Zhang (2023) recently suggested different indicators to measure
generalization, i.e, “inconsistency” (Nakkiran & Bansal, 2020; Jiang et al., 2021; Kirsch & Gal,
2022) and “instability” (Bousquet & Elisseeff, 2002; Shalev-Shwartz et al., 2010), with the latter
being related to the Lipschitz norm of the output models. While adversarial training (Madry et al.,
2017; Cohen et al., 2019; Salman et al., 2019; Lecuyer et al., 2019; Gowal et al., 2020; Wang
et al., 2021; Zou et al., 2021) can control the Lipschitz norm, it often involves a trade-off between

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

generalization performance and adversarial robustness (Lipschitz) (Tsipras et al., 2018; Zhang et al.,
2019; Javanmard et al., 2020; Donhauser et al., 2021; Dobriban et al., 2023; Hao & Zhang, 2024). In
contrast, our proposed method enhances generalization performance by projecting the input into a
learnable distribution, thereby avoiding such trade-off typically observed with other approaches.

Smoothing methods. Prior work has explored enhancing smoothness through perturbation-based
sampling in various contexts. For example, Shen & Meinshausen (2023) proposed Engression, a
method that learns distributions via pre-additive perturbations. Similarly, diffusion models (Ho et al.,
2020; Song et al., 2020; Dhariwal & Nichol, 2021; Saharia et al., 2022; Rombach et al., 2022) can be
interpreted as techniques for modeling sample distributions from Gaussian noise. Another related
line of research focuses on improving model robustness. In particular, certified robustness methods
(Cohen et al., 2019; Salman et al., 2019; Lecuyer et al., 2019; Yang et al., 2020) aim to ensure stability
under perturbations by injecting noise from specific distributions during training. Gaussian noise
injection has also been widely used in data augmentation (Moreno-Barea et al., 2018) to enhance
generalization by artificially expanding the training set. While our method also seeks to promote
smoothness, it differs in two key ways: (i) Rather than treating noise injection as a training-only
technique, we incorporate distributional projection directly into the model architecture, applying it
consistently during both training and inference. This architectural integration enables theoretical
guarantees for improved generalization. (ii) Instead of limiting perturbations to the input layer, we
project the input into a learnable distribution at every layer of the network. This layerwise control
provides enhanced stability and helps mitigate issues such as gradient explosion during training.

3 PROBLEM FORMULATION AND VARIATIONAL INFERENCE

In this section, we formally define the problem. Our goal is to learn a model parameterized by θ that
minimizes the negative log-likelihood loss for prediction tasks:

L(θ) = −Ex lnP(y|x, θ).

Derivation of distributional input. Inspired by Shen & Meinshausen (2023), on each layer of the
model, we consider to project input x ∈ Rp into a distribution N (x,Σ), where Σ is the learnable
variance, to take a better prediction. With a training set containing n samples {xi, yi}ni=1, we can
assume there exists an unobserved variable η ∼ N (0, γIp), such that

P(y|x, η, θ) = P(y|x+ η, θ). (1)

Following the standard variational-inference derivation, we obtain the bound for L(θ) as:

L(θ) = −
n∑

i=1

lnP(yi|xi, θ) = −
n∑

i=1

lnEηP(yi, η|xi, θ) = −
n∑

i=1

lnEη (P(yi|xi + η, θ)P(η))

≤ −
n∑

i=1

Eη∼q(η) [lnP(yi|xi + η, θ) + lnP(η)− ln q(η)] ,

for any distribution q(η), where the third equality is from Eq. (1), and the last inequality is from
ELBO lower bound1. For simplicity, we constrain q(η) to be a Gaussian distribution:

q(η) := N (0, Σ), where Σ = diag{λ1, . . . , λp},

then the lower bound should be:

−
n∑

i=1

Eη∼N (0,Σ)

[
lnP(yi|xi + η, θ)− p ln γ

2
+

ln |Σ|
2

− ηT η

2γ
+

ηTΣ−1η

2

]

= −
n∑

i=1

Eη∼N (0,Σ)

[
lnP(yi|xi + η, θ)− p ln γ

2
+

∑p
j=1 lnλj

2
−

∑p
j=1 λj

2γ
+

p

2

]
.

1Here is an upper bound as we consider the negative log-likelihood function.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Based on this formulation, to achieve accurate predictions, we minimize the following loss function:

min
θ,Σ

−
n∑

i=1

Eη∼N (0,Σ) lnP(yi|xi + η, θ) + α

p∑
j=1

λj − β

p∑
j=1

lnλj

 , (2)

with uning parameter α, β > 0.
Remark 1. The term α

∑p
j=1 λj − β

∑p
j=1 lnλj can be regarded as a special penalty term to

prevent the corresponding parameters {λ1, . . . , λp} shrinking to zero during training process.

4 DIPNET: DISTRIBUTIONAL INPUT PROJECTION NETWORK

Building on the framework above, we propose a new algorithm—Distributional Input Projection
Network (DIPNet), which projects the input into a learnable distribution at each layer of the neural
network. An overview of the DIPNet pipeline is presented in Figure 1. We describe the key
components and implementation details in this section.

4.1 LEARNING DISTRIBUTIONAL INPUT LAYERWISE TO MINIMIZE LOSS FUNCTION

Motivated by enhancing generalization performance, DIPNet can switch the standard multi-layer
neural network into a distributional input projection framework. To be specific, on each layer of the
model, denoting the output of the previous layer as v, DIPNet performs the following steps:

1. Project v into a learnable Gaussian distribution N (v,Σ);
2. Sample a particle u from N (v,Σ);
3. Use u as the input to the current layer and compute its output.

Since each layer introduces stochasticity through distributional projection, the final output becomes
inherently random. To ensure stable and reliable predictions, this input-output procedure is repeated
k times. The final output is then obtained by taking average over all k sampled trajectories.

Adding a stability penalty. While DIPNet can enforce smoothness by distributional projection, it
induces instability on model output f(x, η1, . . . , ηL, θ) (L is the number of model layers). To address
this issue, we propose to penalizing the variance of the model output. To be specific, based on Eq. (2),
we now formulate the loss function as:

min
θ,{Σl}L

l=1

Lα,β,λ(θ,Σ1, . . . , ΣL) := min
θ,{Σl}L

l=1

{
−

n∑
i=1

Eη1,...,ηL
lnP(yi|xi, η1, . . . , ηL, θ)

+α

L∑
l=1

pl∑
j=1

λl
j − β

L∑
l=1

pl∑
j=1

lnλl
j + λ

n∑
i=1

Vη1,...,ηL
[f(xi, η1, . . . , ηL, θ)]︸ ︷︷ ︸

stability penalty

 ,

(3)

where λ is a regularization parameter, and for each l ∈ [L], we have ηl ∼ N (0, Σl), and Σl =
diag{λl

1, . . . , λ
l
pl
}. With a proper choice of λ, adding such penalty in training process can avoid

extremely instable model output, thereby benefits generalization (Johnson & Zhang, 2023).

Unbiased estimation on loss function. Before introducing the training algorithm formally, we first
formulate the true loss function we use in practice:

− 1

m

n∑
i=1

m∑
j=1

lnP(yi|xi, {ηl,i,j}Ll=1, θ) + α

L∑
l=1

pl∑
j=1

λl
j − β

L∑
l=1

pl∑
j=1

lnλl
j

+
λ

m(m− 1)

n∑
i=1

∑
1≤j1<j2≤m

∥f(xi, {ηl,i,j1}Ll=1, θ)− f(xi, {ηl,i,j2}Ll=1, θ)∥22,
(4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where {ηl,i,j} are i.i.d. sampled from N (0, Σl), and m is the number of sample times. This leads to
the unbiased estimator for Eq. (3). We now formally introduce the Distributional Input Projection
Network (DIPNet) algorithm, which is summarized in Algorithm 1.

Algorithm 1 Distributional Input Projection Network (DIPNet)

Input: Initial parameter {θ0, Σ0
1 , . . . , Σ

0
L}, training samples {xi, yi}ni=1, forecasting input x′, output model

f , layer number L, repeating time in training m, repeating time in prediction k, epochs T , regularization
{α, β, λ} and step size ξ.

2: ▷ Training process:
for t = 1, . . . , T do

4: For each sample {xi, yi}, repeat Algorithm 2 m times, to receive its corresponding output {f t
j (xi)}mj=1.

Update parameter {θ,Σ1, . . . , ΣL} based on Eq (4) via gradient descent.
6: end for

▷ Prediction process:
8: Perform Algorithm 3 with input x′, then receive its corresponding output f(x′).

Output: Final prediction f(x′).

Model distillation in DIPNet. During prediction, repeated sampling in Algorithm 2 incurs high
time costs. To improve efficiency while maintaining accuracy, we adopt model distillation as described
in Algorithm 3.

Comparing with other methods. Injecting Gaussian noise is a widely used technique in data
augmentation (Moreno-Barea et al., 2018) and adversarial training (Cohen et al., 2019) to improve
generalization. In contrast, our proposed method goes beyond traditional augmentation in two key
ways: (i) Rather than treating noise injection as a training-only strategy, we incorporate distributional
projection directly into the model architecture, applying it consistently during both training and
inference. This architectural integration enables theoretical guarantees for improved generalization.
(ii) Instead of injecting noise at the input level only, we project the input into a learnable distribution
at each layer, providing layerwise control over perturbations. This design offers better stability and
helps prevent issues such as gradient explosion during training.

4.2 THEORETICAL RESULTS

We provide some theoretical guarantees on why our approaches improve the Lipschitz and smoothness
of the original model. Our analysis is focusing on function2 h(·, θ) : Rp → R. Denoting η ∼ P , the
distributional input projection function is denoted as

gP(x, θ) :=

∫
h(x+ η, θ)µP(η)dη,

where µP is the probability density function of P .

Lipschitz norm. Johnson & Zhang (2023) proposed that there are two terms, i.e., “instability” term
and “inconsistency” term, which are strongly predictive of the generalization gap (the difference
between the performance on the training data and unseen data). Following Theorem 1 in Johnson
& Zhang (2023), the “instability” term is related to the function Lipschitz. The following theorems
demonstrate that our distributional input projection methods can reduce the function’s Lipschitz
norm compared to the original function, contributing to improved generalization (The proofs are in
Appendix B.1 and B.2).

Theorem 1 (Improvement under bounded condition). Assume that ∥h(x, θ)∥∞ < +∞, there will be

max
x∈Rp

∥∇xgP(x, θ)∥2 ≤ ∥h(x, θ)∥∞∥∇µP∥L2 ,

where we denote ∥∇µP∥L2 :=
∫
∥∇tµP(t)∥2dt.

2For simplicity, here we only consider one-dim output, and the analysis for multiple dimension output
function is similar.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 1 shows that even if the original function h(·) is non-Lipschitz, our method can still
guarantee a Lipschitz function gP(·) under the mild condition that the output space of h(·) is bounded.
Furthermore, Theorem 2 demonstrates that even when h(·) is already Lipschitz, DIPNeT can reduce
its Lipschitz norm, thereby improving generalization:

Theorem 2 (Improvement under Lipschitz condition). Denote

b := max
x

∥∇xh(x, θ)∥2 < +∞, B(c) := {x ∈ Rp|∥∇xh(x, θ)∥2 > c · b},

for any 0 < c < 1. If there exists some constant c such that µ(B(c)) < +∞. We will obtain that

inf
P

{
max
x∈Rp

∥∇xgP(x+ η, θ)∥2
}

≤ c · b.

Smoothness. It has been widely observed that lower function smoothness is often associated with
better generalization performance in neural networks. Our proposed methods can also enforce the
smoothness condition using a simple technique, as demonstrated in Theorem 3:

Theorem 3 (Improvement under smoothness condition). Denote

s := max
x

∥∇2
xh(x, θ)∥2 < +∞, S(c) := {x ∈ Rp|∥∇2

xh(x, θ)∥2 > c · s},

for any 0 < c < 1. If there exist some constant c such that µ(S(c)) < +∞. We will obtain that

inf
P

{
max
x∈Rp

∥∇2
xgP(x+ η, θ)∥2

}
≤ c · s.

The proof is in Appendix B.3. The results indicate that DIPNet can reduce the smoothness of models.
In the sequel, we will show how this leads to better generalization performance.

Algorithm 2 DIPNet: Practical Implementation

Input: Model parameter {θ,Σ1, . . . , ΣL}, input x, output model f , layer number L.
2: Initialize the input as v0.

for l = 1, . . . , L do
4: Sample a particle ul from N (vl−1, Σl).

Take ul as the input of Layer-l.
6: Receive the output on Layer-l, and denote it as vl.

end for
8: Output: vL.

Algorithm 3 DIPNet: Model Distillation Prediction
Input: Model parameter θ, input x, output model f , layer number L.

2: Initialize the input as v0.
for l = 1, . . . , L do

4: Take vl−1 as the input of Layer-l.
Receive the output on Layer-l, and denote it as vl.

6: end for
Output: vL.

5 EXPERIMENT

We evaluate our proposed method against standard training as well as several baselines, including
generalization methods—Sharpness-Aware Minimization (SAM) (Foret et al., 2020) and Randomized
Smoothing (RS) (Cohen et al., 2019); data augmentation techniques—Mixup (Zhang et al., 2018),
CutMix (Yun et al., 2019), and AugMix (Hendrycks et al., 2020); and masking-based regularization
methods—Cutout (DeVries & Taylor, 2017) and Cutoff (Shen et al., 2020). Additional experiment
explorations and additional ablation studies are in Appendix D.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.1 EXPLORATION ON VISION TRANSFORMERS UNDER ADVERSARIAL ATTACKS

Compared to general non-perturbation methods, DIPNet achieves higher accuracy under adversarial
attacks in training process, indicating their robustness. Here we consider two types of training-time
attacks:

• Randomized Gaussian noise: we sample η ∼ N (0, σ2I) for some σ > 0, and attack the input via
x → x+ η to simulate natural distribution shifts during training.

• Fast Gradient Sign Method (FGSM) adversarial noise (Goodfellow et al., 2014): we attack
examples by x → x+ ϵ · sgn (∇xL(θ, x, y)). This single-step attack efficiently approximates the
worst-case attacks within an ℓ∞-ball of radius ϵ.

By injecting either type of attack into the training inputs, we can evaluate adversarial robustness
by showing the accuracy on clean test data. We evaluate our method in Vision Transformers
(ViTs) (Dosovitskiy et al., 2020), a popular architecture in computer vision known for its strong
performance across classification, detection, and segmentation tasks.

Setup. We train three ViT backbones—ViT-Tiny (5.5M parameters), ViT-Small (21.7M parameters),
and ViT-Base (85.8M parameters)—on the CIFAR-100 dataset (Krizhevsky, 2009), an image clas-
sification dataset which contains 100 distinct classes of small-scale images. Each model is started
from a checkpoint pretrained on ImageNet-21k and fine-tuned on ImageNet-1k, using a patch size of
16 and an input resolution of 224× 224. During training, we inject either additive Gaussian noise
(σ = 0.2) or FGSM adversarial attacks (ϵ = 0.2) into the training inputs. At evaluation, we report
accuracy on clean test sets. Additional implementation details are provided in Appendix D.4.

Results. Table 1 reports the performance of ViT models under three training-time attack settings.

Under the clean setting (no attack), our proposed method (DIPNet) consistently outperforms the
Standard baseline across all ViT backbones, demonstrating improved generalization capabilities.
In contrast, RS, which injects Gaussian perturbations randomly at the input layer, and AugMix,
which relies on strong data augmentations, both significantly hurt clean accuracy—particularly
evident on ViT-Tiny (65.45% and 62.34% vs. 84.71% for Standard). Under Gaussian noise, most
baselines perform similarly to the Standard with only marginal changes, whereas DIPNet delivers
clear robustness gains on ViT-Tiny and ViT-Small and remains comparable to the baseline for ViT-
Base. Further details on the ViT-Base Gaussian scenario are in Appendix D.7.3. Under FGSM,
DIPNet improves over Standard and surpasses other baselines on ViT-Tiny and ViT-Small, remaining
competitive on ViT-Base. See Appendix D.4 for training and validation curves.

Overall, DIPNet both maintains high accuracy under the None-attack setting and provides strong
robustness against both Gaussian and FGSM attacks, consistently achieving the best average perfor-
mance across all three ViT backbones.

5.2 EXPLORATION ON LLM REASONING

We extend our method to large-scale language models (LLMs), which often contain billions of param-
eters and now power a wide range of applications—from machine translation and summarization to
dialogue systems and deep thinking. In particular, mathematical reasoning tasks like GSM8K (Cobbe
et al., 2021) have recently attracted significant attention for assessing an LLM’s ability to perform
precise arithmetic and logical reasoning. We hypothesize that our method will help LLMs form
smoother latent representations, improving both generalization to new problems and robustness
against prompt variations.

Setup. We use the official OpenAI GSM8K dataset, which consists of 1,319 grade-school math
word problems requiring several reasoning steps and an exact numerical answer, replacing the
original “#### <answer>” marker with “The answer is <answer>”. To test our method
across diverse architectures, we select six popular open-source models: Qwen2.5-3B and Qwen2.5-
7B (Yang et al., 2024), Llama-3.2-3B and Llama-3.1-3B (Dubey et al., 2024), and Gemma-3-4B and
Gemma-3-12B (Farabet & Warkentin, 2025). Due to computational constraints, we fine-tune each
model with LoRA for a single epoch—using a learning rate of 5× 10−4, Then we evaluate on the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Test accuracy (%) on CIFAR-100 under different training-time attacks.

Method None Gaussian FGSM 3 Average

ViT-Tiny

Standard 84.71 46.31 20.89 50.64
Sharpness-Aware Minimization (SAM) 84.46 46.04 22.63 51.04
Randomized Smoothing (RS) 65.45 47.04 23.22 45.24
Cutout 85.39 43.47 21.64 50.17
Mixup 85.54 46.34 23.55 51.81
CutMix 85.36 42.77 20.33 49.49
AugMix 62.34 52.11 33.84 49.43
DIPNet 85.45 52.22 28.18 55.28

ViT-Small

Standard 89.59 75.65 65.64 76.96
Sharpness-Aware Minimization (SAM) 89.72 74.22 66.86 76.93
Randomized Smoothing (RS) 84.84 74.31 65.55 74.90
Cutout 90.17 74.54 67.15 77.29
Mixup 90.64 70.74 63.45 74.94
CutMix 90.42 74.36 63.61 76.13
AugMix 87.14 78.71 69.17 78.34
DIPNet 90.14 78.07 69.65 79.29

ViT-Base

Standard 92.46 69.13 70.75 77.45
Sharpness-Aware Minimization (SAM) 92.68 69.28 70.34 77.43
Randomized Smoothing (RS) 88.32 68.74 77.30 78.12
Cutout 93.16 65.39 76.97 78.51
Mixup 92.53 71.23 63.04 75.60
CutMix 92.75 62.17 71.75 75.56
AugMix 89.12 69.60 74.40 77.71
DIPNet 92.87 69.23 74.20 78.75

Notes. Bold indicates the best performance, and underlined indicates the second best.

Table 2: Accuracy (%) on GSM8K.

Method Qwen2.5-3B Llama-3.2-3B Gemma-3-4B Qwen2.5-7B Llama-3.1-8B Gemma-3-12B
SFT 70.96 32.15 44.05 78.92 52.99 72.78
RS 72.10 32.68 44.43 78.84 54.36 73.31
SAM 68.84 32.83 45.11 78.09 54.13 72.10
Cutoff 69.75 31.92 44.28 78.77 54.51 72.93
DIPNet 72.17 33.06 46.32 79.61 54.74 74.22

Notes. Bold indicates the best performance, and underlined indicates the second best.

GSM8K test set using zero-shot CoT prompting, and use Math-Verify to validate the generation 3.
Additional implementation details are provided in Appendix D.5.

Results. Table 2 reports the accuracy of DIPNet and several baselines. Our method consistently
outperforms other baselines on all models, yielding nontrivial gains. Across different model types,
we observe larger improvements for the Gemma-3 series. The results demonstrate that our method
successfully improves LLMs’ performance by enhancing the smoothness during training. And our
method is still promising for models with parameters > 10 Billion.

5.3 ABLATION ON EFFICIENT INFERENCE

To improve inference efficiency, we consider model distillation as an alternative to repeated sampling.
Specifically, we compare distilled inference against the original method, which performs the inference
process in Algorithm 2 k times and averages the outputs as the final prediction. Results on ViT-Tiny
under Gaussian attack are reported in Figure 2a, and results on the Llama-3.2-3B model are shown in
Figure 2b. For ViT models, distillation achieves performance comparable to multi-sample averaging,
but the latter is far less efficient, especially for large models. For example, on ViT-B, sampling 50
times achieves similar accuracy but requires about 80× more inference time than distillation. See

3https://github.com/huggingface/Math-Verify

8

https://github.com/huggingface/Math-Verify

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Appendix D.6.1 for detailed experimental results. In Figure 2b, increasing the number of samples k
generally improves performance; however, even with 50 samples, the accuracy lags behind that of
distillation while incurring prohibitive inference costs. These results suggest that distillation provides
a more efficient alternative, delivering competitive or superior accuracy while significantly reducing
inference time.

(a) ViT-Tiny under Gaussian Attack (b) Llama3.2-3B

Figure 2: Accuracy & Inference Time vs Sampling times k and time cost using (a) ViT-Tiny under
Gaussian attack and (b) Llama3.2-3B, compared with Distillation and baselines.

5.4 ABLATION ON HYPERPARAMETER TUNING

We study the sensitivity of DIPNet to the scalar hyperparameters—α, β, and λ—which balance the
distributional projection penalty and the stability term in the training objective, using the grid in
Table 3. For ViT-Tiny under Gaussian attack, varying (α, β)∈{0.05, 0.10, 0.50}×{0.10, 0.20, 0.50}
yields only minor accuracy changes when λ is fixed. The best results are generally obtained around
moderate values, indicating that DIPNet is not overly sensitive to small perturbations of (α, β) and
that a mid-range setting provides a stable and reliable default. In practice, we recommend starting
with (α, β) = (0.1, 0.2) and adjusting β relative to α only if stronger or weaker regularization is
desired.

By contrast, λ exhibits a stronger influence. Table 3 shows λ = 0 consistently achieves the best
accuracy across different (α, β) combinations. However, when training ViTs from scratch (see details
in Appendix D.6.2), introducing a small λ (e.g., λ = 0.05) can improve performance over the λ = 0
baseline, suggesting that the penalty acts as an effective regularizer during early training.

Table 3: Detailed experimental results for ViT-Tiny under Gaussian attack.

λ \ (α, β) (0.05,0.1) (0.05,0.2) (0.05,0.5) (0.1,0.1) (0.1,0.2) (0.1,0.5) (0.5,0.1) (0.5,0.2) (0.5,0.5)

0 51.99 52.05 51.86 52.13 52.10 52.16 52.22 52.09 52.21
0.001 51.12 51.10 51.28 51.33 51.40 51.23 51.11 51.22 51.17
0.01 46.39 46.32 46.33 46.33 46.34 46.33 46.36 46.34 46.33

6 CONCLUSION

In this work, we proposed Distributional Input Projection Networks (DIPNet), a novel architectural
framework designed to enhance generalization by projecting inputs into learnable distributions at
each layer. This approach implicitly enforces smoothness and reduces the Lipschitz constant of the
network, supported by both theoretical analysis and extensive empirical validation. Across a wide
range of models and tasks, DIPNet consistently improves test performance in standard, adversarial,
and out-of-distribution settings. Our results demonstrate that DIPNet offers a broadly applicable and
effective strategy for improving generalization in overparameterized deep networks. We consider
extending this framework to more complex reasoning tasks and reinforcement learning as a promising
direction for future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Momin Abbas, Quan Xiao, Lisha Chen, Pin-Yu Chen, and Tianyi Chen. Sharp-maml: Sharpness-
aware model-agnostic meta learning. In International conference on machine learning, pp. 10–32.
PMLR, 2022.

Dara Bahri, Hossein Mobahi, and Yi Tay. Sharpness-aware minimization improves language model
generalization. arXiv preprint arXiv:2110.08529, 2021.

Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine Learning
Research, 2:499–526, 2002.

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets
without pre-training or strong data augmentations. arXiv preprint arXiv:2106.01548, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In international conference on machine learning, pp. 1310–1320. PMLR, 2019.

Terrance DeVries and Graham W. Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Edgar Dobriban, Hamed Hassani, David Hong, and Alexander Robey. Provable tradeoffs in adversar-
ially robust classification. IEEE Transactions on Information Theory, 2023.

Konstantin Donhauser, Alexandru Tifrea, Michael Aerni, Reinhard Heckel, and Fanny Yang. Interpo-
lation can hurt robust generalization even when there is no noise. Advances in Neural Information
Processing Systems, 34:23465–23477, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Hadi Fanaee-T and Joao Gama. Event labeling combining ensemble detectors and background
knowledge. Progress in Artificial Intelligence, 2:113–127, 2014.

Clement Farabet and Tris Warkentin. Introducing gemma 3: The most capable model you can run on
a single gpu or tpu. https://blog.google/technology/developers/gemma-3/,
2025.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli. Uncovering
the limits of adversarial training against norm-bounded adversarial examples. arXiv preprint
arXiv:2010.03593, 2020.

Yifan Hao and Tong Zhang. The surprising harmfulness of benign overfitting for adversarial
robustness. arXiv preprint arXiv:2401.12236, 2024.

10

https://blog.google/technology/developers/gemma-3/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. Augmix: A simple data processing method to improve robustness and uncertainty. In
International Conference on Learning Representations (ICLR), 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 9(1):1–42, 1997.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Av-
eraging weights leads to wider optima and better generalization. arXiv preprint arXiv:1803.05407,
2018.

Adel Javanmard, Mahdi Soltanolkotabi, and Hamed Hassani. Precise tradeoffs in adversarial training
for linear regression. In Conference on Learning Theory, pp. 2034–2078. PMLR, 2020.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
generalization measures and where to find them. arXiv preprint arXiv:1912.02178, 2019.

Yiding Jiang, Vaishnavh Nagarajan, Christina Baek, and J Zico Kolter. Assessing generalization of
sgd via disagreement. arXiv preprint arXiv:2106.13799, 2021.

Rie Johnson and Tong Zhang. Inconsistency, instability, and generalization gap of deep neural
network training. arXiv preprint arXiv:2306.00169, 2023.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Andreas Kirsch and Yarin Gal. A note on" assessing generalization of sgd via disagreement". arXiv
preprint arXiv:2202.01851, 2022.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009. Technical Report.

Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana. Certified
robustness to adversarial examples with differential privacy. In 2019 IEEE symposium on security
and privacy (SP), pp. 656–672. IEEE, 2019.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Andrey Malinin, Neil Band, German Chesnokov, Yarin Gal, Mark JF Gales, Alexey Noskov, Andrey
Ploskonosov, Liudmila Prokhorenkova, Ivan Provilkov, Vatsal Raina, et al. Shifts: A dataset of
real distributional shift across multiple large-scale tasks. arXiv preprint arXiv:2107.07455, 2021.

Andrey Malinin, Andreas Athanasopoulos, Muhamed Barakovic, Meritxell Bach Cuadra, Mark JF
Gales, Cristina Granziera, Mara Graziani, Nikolay Kartashev, Konstantinos Kyriakopoulos, Po-
Jui Lu, et al. Shifts 2.0: Extending the dataset of real distributional shifts. arXiv preprint
arXiv:2206.15407, 2022.

Francisco J Moreno-Barea, Fiammetta Strazzera, José M Jerez, Daniel Urda, and Leonardo Franco.
Forward noise adjustment scheme for data augmentation. In 2018 IEEE symposium series on
computational intelligence (SSCI), pp. 728–734. IEEE, 2018.

Preetum Nakkiran and Yamini Bansal. Distributional generalization: A new kind of generalization.
arXiv preprint arXiv:2009.08092, 2020.

Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and Garrison Cottrell. A
dual-stage attention-based recurrent neural network for time series prediction. arXiv preprint
arXiv:1704.02971, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David Fleet,
and Mohammad Norouzi. Palette: Image-to-image diffusion models. In ACM SIGGRAPH 2022
conference proceedings, pp. 1–10, 2022.

Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien Bubeck, and
Greg Yang. Provably robust deep learning via adversarially trained smoothed classifiers. Advances
in neural information processing systems, 32, 2019.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Learnability, stability
and uniform convergence. The Journal of Machine Learning Research, 11:2635–2670, 2010.

Dinghan Shen, Mingzhi Zheng, Yelong Shen, Yanru Qu, and Weizhu Chen. A simple but tough-
to-beat data augmentation approach for natural language understanding and generation. arXiv
preprint arXiv:2009.13818, 2020.

Xinwei Shen and Nicolai Meinshausen. Engression: Extrapolation for nonlinear regression? arXiv
preprint arXiv:2307.00835, 2023.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. arXiv preprint arXiv:1805.12152, 2018.

Saverio Vito. Air Quality. UCI Machine Learning Repository, 2016. DOI:
https://doi.org/10.24432/C59K5F.

Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quanquan Gu. On the
convergence and robustness of adversarial training. arXiv preprint arXiv:2112.08304, 2021.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Greg Yang, Tony Duan, J Edward Hu, Hadi Salman, Ilya Razenshteyn, and Jerry Li. Randomized
smoothing of all shapes and sizes. In International Conference on Machine Learning, pp. 10693–
10705. PMLR, 2020.

Yun Yue, Jiadi Jiang, Zhiling Ye, Ning Gao, Yongchao Liu, and Ke Zhang. Sharpness-aware
minimization revisited: Weighted sharpness as a regularization term. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3185–3194, 2023.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In IEEE
International Conference on Computer Vision (ICCV), 2019.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International conference on
machine learning, pp. 7472–7482. PMLR, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations (ICLR), 2018.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In The Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Conference, volume 35, pp.
11106–11115. AAAI Press, 2021.

Difan Zou, Spencer Frei, and Quanquan Gu. Provable robustness of adversarial training for learning
halfspaces with noise. In International Conference on Machine Learning, pp. 13002–13011.
PMLR, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ADDITIONAL RELATED WORK

Influential factors on generalization performance. In real-world scenarios, over-parameterized
neural networks often find solutions that perform optimally or near-optimally on training data, but
these solutions do not always generalize well to test data. Given the significant challenges associated
with generalization performance in deep neural networks, many studies have aimed to identify the
key factors influencing generalization. From the parameter perspective, a considerable body of
research has focused on the relationship between function sharpness and generalization (Hochreiter
& Schmidhuber, 1997; Keskar et al., 2016; Izmailov et al., 2018; Jiang et al., 2019; Foret et al.,
2020). For instance, Foret et al. (2020) intrtoduced a method named sharpness-aware-minimization
(SAM), which could reduce the sharpness of output model and subsequently improves generalization.
However, even if the solution of SAM always aligns with flat loss landscape, it may not be optimal
(Yue et al., 2023). From the input covariates perspective, aligning with the conventional smoothness
viewpoint, Johnson & Zhang (2023) recently suggested different indicators to measure generalization,
i.e, “inconsistency” (Nakkiran & Bansal, 2020; Jiang et al., 2021; Kirsch & Gal, 2022) and “instability”
(Bousquet & Elisseeff, 2002; Shalev-Shwartz et al., 2010), with the latter being related to the Lipschitz
norm of the output models. While adversarial training (Madry et al., 2017; Cohen et al., 2019; Salman
et al., 2019; Lecuyer et al., 2019; Gowal et al., 2020; Wang et al., 2021; Zou et al., 2021) can control
the Lipschitz norm, it often involves a trade-off between generalization performance and adversarial
robustness (Lipschitz) (Tsipras et al., 2018; Zhang et al., 2019; Javanmard et al., 2020; Donhauser
et al., 2021; Dobriban et al., 2023; Hao & Zhang, 2024). In contrast, our proposed method enhances
generalization performance by projecting the input into a learnable distribution, thereby avoiding
such trade-off typically observed with other approaches.

B THEORETICAL ANALYSIS

B.1 PROOF OF THEOREM 1

Consider the expression of function g, for any x ∈ Rp, we have

gP(x, θ) =

∫
h(x+ η, θ)µP(η)dη

=

∫
h(t, θ)µP(t− x)dt.

So we could obtain the gradient norm of g(x, θ) as

∥∇xgP(x, θ)∥2 =

∥∥∥∥∇x

∫
h(t, θ)µP(t− x)dt

∥∥∥∥
2

=

∥∥∥∥∫ h(t, θ)∇xµP(t− x)dt

∥∥∥∥
2

≤
∫

∥h(t, θ)∇xµP(t− x)∥2 dt

≤ ∥h(x, θ)∥∞ ·
∫

∥∇tµP(t)∥2dt.

B.2 PROOF OF THEOREM 2

For any 0 < ϵ < 1, we can choose ζ > ϵ−1, and denote µ(B(c)) = C < +∞. Then we consider
P as a uniform distribution on Rp, which is supported on a set with measurement ζC, then we can
obtain that

∥Eη∇xh(x+ η, θ)∥22 ≤ Eη∥∇xh(x+ η, θ)∥22
= Eη

[
∥∇xh(x+ η, θ)∥22|1(x+ η ∈ B(c))

]
P(B(c))

+ Eη

[
∥∇xh(x+ η, θ)∥22|1(x+ η ̸∈ B(c))

]
P((B(c))c)

≤ 1

ζC
(C · b+ ζC · cb) = cb+

1

ζ
b < (c+ ϵ)b.

Sending ϵ → 0, we can finish the proof.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B.3 PROOF OF THEOREM 3

The proof is similar to the proof for Theorem 2. For any 0 < ϵ < 1, we can choose ζ > ϵ−1,
and denote µ(S(c)) = C < +∞. Then we consider P as a uniform distribution on Rp, which is
supported on a set with measurement ζC, then we can obtain that

∥Eη∇2
xh(x+ η, θ)∥22 ≤ Eη∥∇2

xh(x+ η, θ)∥22
= Eη

[
∥∇2

xh(x+ η, θ)∥22|1(x+ η ∈ S(c))
]
P(S(c))

+ Eη

[
∥∇2

xh(x+ η, θ)∥22|1(x+ η ̸∈ S(c))
]
P((S(c))c)

≤ 1

ζC
(C · s+ ζC · cs) = cs+

1

ζ
s < (c+ ϵ)s.

Sending ϵ → 0, we can finish the proof.

C DATASET DESCRIPTION

C.1 TABULAR DATASET FOR MLP

• Air Quality. (Vito, 2016) The Air Quality dataset comprises 15 features derived from hourly
averaged responses of an array of 5 metal oxide chemical sensors embedded in an Air Quality
Chemical Multisensor Device in an Italian city, collected from March 2004 to February 2005.
In this study, we use 9 of these features, with “PT08.S3(NOx)” as the response variable and the
remaining 8 features as input variables.

• ETD. (Zhou et al., 2021) The ETD dataset is related to the electronic data distribution hourly data
recordings. It contains 8 features, including the date of the point, 6 different types of external power
load features and the predictive value “oil temperature”.

• Sharing Bike. (Fanaee-T & Gama, 2014) This dataset aims to understand the factors influencing
the demand for shared bikes in the American market, with hourly data recorded from January 2011
to December 2012. For this analysis, we consider 4 features, i.e., weather, temperature, humidity,
and feeling temperature, to predict the total count of rental bikes.

• NASDAQ100. (Qin et al., 2017) It contains stock prices of 81 corporations under NASDAQ 100
and the index value of NASDAQ 100. The frequency of the data collection is one-minute. Here
we consider the stock prices of different corporations as input variables, and the index value of
NASDAQ 100 as predictive variable.

Table 4: Overview of tabular dataset.

Dataset Air Quality ETD Sharing Bike NASDAQ100

input vector vector vector vector
task reg. reg. reg. reg.

samples 8991 17420 17379 40560

Table 5: Overview of OOD tabular dataset.

Dataset V Powers V Powerr Weather

input vector vector vector
task reg. reg. reg.

samples 546543 554642 436733

C.2 OOD DATASET

To assess robustness under distribution shift, we use the Shifts vessel power estimation dataset
(Malinin et al., 2022) and the Shifts Weather Prediction dataset (Malinin et al., 2021) in OOD
situations (see details in Table 5 and Figure 3).

• Vessel Power Estimation4 The Shifts Vessel Power Prediction dataset contains 11 different features
and one scalar target (energy utilization of cargo ships). And it contains two types of data: one is
synthetic dataset (V Powers), the other is real dataset (V Powerr).

• Weather Prediction5 The Shifts Weather Prediction dataset (Malinin et al., 2021) provides a scalar
regression task to forecast the air temperature. The dataset contains 127 features and a single
regression target, spanning an entire year, i.e, from September 1st, 2018, to September 1st, 2019.

4Notice that this is a developing dataset and it only contains the training data and valid data recently. So here
we use the ID valid dataset to take validation, and the OOD valid dataset is used for testing.

5More details can be found in https://github.com/Shifts-Project/shifts.

14

https://github.com/Shifts-Project/shifts

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Notes. The figure on the left side is about the Shifts vessel power estimation dataset, and the figure on the right
right is about the Shifts Weather Prediction dataset. “train”, “dev” and “eval” refer to training data, validation
data and test data respectively. As public access to canonical “test” of vessel power dataset is restricted, here we
valid on “dev-in” and use “dev-out” to test the model performance.

Figure 3: OOD dataset descriptions

D SUPPLEMENT EXPERIMENTS

D.1 EXPLORATIONS ON MLP

Here we compare the generalization performance of our method and a standard non-perturbation
output model by evaluating them on various datasets and different neural network architectures.

To measure the generalization performance of different methods, we take explorations on four tabular
datasets and detailed description could be found in Appendix C.

Specifically, we test different settings, including various proportions of training and test data, the
number of hidden layers, and the number of neurons in each layer. Using gradient descent on the ℓ2
loss, we summarize the results in Table 6, indicating that both the standard errors and the adversarial
errors on DIPNet are consistently smaller than those for standard networks. This further verifies the
benefits of our proposed method.

Table 6: Standard and Adversarial MSE on MLP.

Dataset Test proposition Method St(2+100) Adv(2+100) St(4+100) Adv(4+100) St(4+400) Adv(4+400)

Air Quality

0.3 Standard 0.0858 24.0112 0.0677 37.1026 0.0628 20.5767
DIPNet 0.0822 11.14 0.0576 20.9601 0.0526 20.5601

0.5 Standard 0.1033 13.8045 0.0873 49.1966 0.0823 17.7776
DIPNet 0.0964 9.6509 0.0794 5.8675 0.0748 12.9039

0.7 Standard 0.0984 16.6161 0.0938 24.4145 0.0910 14.5242
DIPNet 0.0901 4.8616 0.0844 6.6429 0.0853 10.1404

ETD

0.3 Standard 0.1845 4.7174 0.1693 5.1239 0.1635 4.5290
DIPNet 0.1787 3.6371 0.1604 3.7268 0.1578 2.9117

0.5 Standard 0.1905 6.1011 0.1724 4.5385 0.1668 4.5335
DIPNet 0.1831 3.5267 0.1648 3.3667 0.1632 3.1108

0.7 Standard 0.2023 5.0696 0.1913 6.2199 0.1867 5.1136
DIPNet 0.1947 4.3076 0.1776 2.9721 0.1757 2.9267

Sharing Bike

0.3 Standard 0.7221 2.5177 0.7208 2.0264 0.7216 2.1557
DIPNet 0.7188 2.0034 0.7186 1.8647 0.7182 1.8732

0.5 Standard 0.7108 2.3387 0.7107 2.3030 0.7118 1.8314
DIPNet 0.7084 1.7799 0.7082 1.8780 0.7089 1.7272

0.7 Standard 0.7075 1.7905 0.7057 1.8397 0.7068 1.7931
DIPNet 0.7050 1.7353 0.7043 1.7941 0.7056 1.7785

NASDAQ100

0.3 Standard 3.576e-5 0.6066 3.538e-5 0.5447 2.779e-5 0.5303
DIPNet 2.757e-5 0.5824 2.511e-5 0.5628 2.158e-5 0.5195

0.5 Standard 3.691e-5 0.5901 3.671e-5 0.5364 2.916e-5 0.5389
DIPNet 2.890e-5 0.5866 2.642e-5 0.5805 2.266e-5 0.5244

0.7 Standard 6.146e-5 0.5813 8.085e-5 0.5506 3.612e-5 0.5455
DIPNet 3.122e-5 0.5812 2.886e-5 0.5428 2.532e-5 0.5336

Notes. “St” ,“Adv” refer to standard loss and adversarial loss respectively. “2+100”, “4+100”, “4+400” refer to
the network architecture (e.g, “2+100” means the two layer network which each layer contains 100 neurons).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

100% 66% 33%
% Training Data

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

M
SE

ID MSE (Lower is Better)

Standard (2+100)
DIPNet (2+100)
Standard (4+100)

DIPNet (4+100)
Standard (4+400)
DIPNet (4+400)

100% 66% 33%
% Training Data

0.00

0.02

0.04

0.06

0.08

M
SE

OOD MSE (Lower is Better)

Standard (2+100)
DIPNet (2+100)
Standard (4+100)

DIPNet (4+100)
Standard (4+400)
DIPNet (4+400)

Comparison of Standard vs DIPNet on ID and OOD MSE (Weather Dataset)

Figure 4: ID and OOD MSE on Weather Dataset.
Notes. Here we train on the ID dataset, validate on both ID and OOD datasets, and test the model performance
on both ID and OOD datasets (with the test OOD environment differing from the validation OOD environment).

D.2 OUT-OF-DISTRIBUTION (OOD) EVALUATION

We also explore the generalization performance on OOD tasks. We conduct experiments on tabular
datasets using different neural network architectures, further validating the advantages of our proposed
methods in both In-Distribution (ID) and Out-Of-Distribution (OOD) generalization performance.

Setup. To assess robustness under distribution shift, we use the Shifts vessel power estimation
dataset (Malinin et al., 2022) and the Shifts Weather Prediction dataset (Malinin et al., 2021) in
OOD situations. For each dataset, we train three MLP architectures—2 layers with 100 neurons
per layer (2+100), 4 layers with 100 neurons per layer (4+100), and 4 layers with 400 neurons per
layer (4+400)—using standard stochastic gradient descent on the MSE loss. We compare against
the non-perturbed baseline (Standard). We vary the fraction of training data (100%, 66%, 33%) and
evaluate the same three MLP architectures under each split.

Results. Tables 7, 8 and Figure 4 present both ID and OOD test MSEs. The results shows that
comparing with standard non-perturbation method, DIPNet consistently improve ID performance,
and enhance OOD generalization significantly.

Table 7: OOD MSE on Vessel Power dataset.

% Train 100% 66% 33%
Dataset Method 2+100 4+100 4+400 2+100 4+100 4+400 2+100 4+100 4+400

V powers
Standard 0.0212 0.0231 0.0288 0.0401 0.0533 0.0601 0.0539 0.0498 0.0420
DIPNet 0.0195 0.0206 0.0212 0.0232 0.0305 0.0298 0.0298 0.0318 0.0324

V powerr
Standard 0.0400 0.0560 0.0895 0.0439 0.0401 0.0730 0.0944 0.0947 0.0859
DIPNet 0.0363 0.0439 0.0555 0.0345 0.0383 0.0412 0.0581 0.0534 0.0593

Notes. “2+100”, “4+100”, “4+400” refer to the network architecture (e.g, “2+100” means the two layer network
which each layer contains 100 neurons).

Table 8: ID and OOD MSE on Weather dataset.

% Train Method ID(2+100) ID(4+100) ID(4+400) OOD(2+100) OOD(4+100) OOD(4+400)

100 %
Standard 0.0360 0.0330 0.0291 0.0640 0.0647 0.0576
DIPNet 0.0344 0.0322 0.0280 0.0562 0.0528 0.0547

66 %
Standard 0.0364 0.0329 0.0315 0.0898 0.0723 0.0822
DIPNet 0.0354 0.0324 0.0295 0.0558 0.0552 0.0569

33 %
Standard 0.0364 0.0341 0.0325 0.0741 0.0599 0.0662
DIPNet 0.0361 0.0337 0.0320 0.0519 0.0549 0.0627

Notes. Here we train on the ID dataset, validate on both ID and OOD datasets, and test the model performance
on both ID and OOD datasets (with the test OOD environment differing from the validation OOD environment).
“2+100”, “4+100”, “4+400” refer to the network architecture (e.g, “2+100” means the two layer network which
each layer contains 100 neurons). “ID” means test data on ID environment , and “OOD” means test data on
OOD environment.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.3 EXPLORATIONS ON RESNET

Furthermore, we extend our methods to ResNet architecture. To examine its performance compared
to the standard non-perturbation ResNet, we conducted experiments on CIFAR10 and CIFAR100
using different ResNet structures. We then compared the classification accuracy (in percentage) on
the test data for each method. The results, summarized in Table 9, demonstrate the benefits of DIPNet
in improving generalization performance. These findings highlighting the extended potential of our
proposed methods.

Table 9: Result classification accuracy (%) on ResNet.

Method res18-cifar10 res34-cifar10 res50-cifar10 wideres-cifar10 wideres-cifar100

Standard 90.96 93.52 93.37 96.14 80.77
DIPNet 91.72 93.56 93.89 96.53 81.73

D.4 DETAILS FOR VIT EXPERIMENTS

All Vision Transformer experiments are conducted on a single NVIDIA A100-40G GPU. Check-
points are loaded via the timm library. Our implementation is adapted from the publicly available
repository6, using default hyperparameters, enabling Apex O2 mixed-precision training (FP16).

For the two baselines—SAM and RS—we first perform a hyperparameter sweep on the ViT-Tiny
model, then scale the optimal settings to larger backbones. Specifically, SAM’s perturbation radius
ρ is searched over {0.01, 0.03, 0.05}, yielding ρ = 0.05; RS’s noise level σ is searched over
{0.001, 0.005, 0.01, 0.05, 0.1}, yielding σ = 0.01. For the remaining four baselines, we follow the
recommended settings in their papers on CIFAR-100. Specifically, Cutout randomly masks out a
square region covering 50% of the image area. Mixup and CutMix both sample mixing ratios from a
Beta distribution with parameter α = 1.0. For AugMix, we adopt the default configuration of severity
= 3, width = 3, and depth uniformly sampled from {1, 3}.

Representative training and validation curves can be found in Figure 5, 6, 7 and 8.

D.5 DETAILS FOR LLM EXPERIMENTS

All language-model experiments are conducted on a single NVIDIA A6000 GPU. We apply LoRA
with rank 8, alpha 16, dropout 0.1, targeting the modules ["q_proj","v_proj"].

Training arguments include a batch size of 64, 1 epoch, weight decay of 0.01, warmup ratio of
0.03, and a fixed seed of 42. We search peak learning rates in {7× 10−5, 1× 10−4, 2× 10−4, 3×
10−4, 5× 10−4}, which yields 5× 10−4 for all the DIPNet models.

Evaluation is performed on the GSM8K task with 0-shot CoT prompting.

For the two baselines—SAM and RS—we conduct hyperparameter sweeps and report the best-
performing accuracy. In this case, SAM’s ρ is searched over {0.01, 0.02, 0.05} and RS’s σ over
{0.01, 0.02, 0.05}.

D.6 DETAILED EXPERIMENTAL RESULTS

D.6.1 ABLATION ON EFFICIENT INFERENCE

Detailed experimental results can be found in Table 10 and 11.

D.6.2 ABLATION ON HYPERPARAMETER TUNING

Detailed experimental results can be found in Table 12.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Model Attack Type Model Distillation 1 2 10 50

ViT-Tiny
None 85.45 85.36 85.40 85.44 85.42
Gaussian 52.22 51.62 52.28 52.37 52.35
FGSM 28.18 27.19 27.21 27.44 27.45

ViT-Small
None 90.14 90.06 90.10 90.12 90.12
Gaussian 78.07 78.21 78.33 78.31 78.36
FGSM 69.65 69.17 69.21 69.25 69.17

ViT-Base
None 92.87 92.84 92.87 92.88 92.86
Gaussian 69.23 69.31 69.26 69.24 69.19
FGSM 74.20 74.17 74.16 74.18 74.18

Table 10: Accuracy (%) under different sampling times k.

Model Model Distillation 1 2 10 50

ViT-Tiny 7s 10s 14s 59s 5m
ViT-Small 10s 18s 32s 2m33s 12m37s
ViT-Base 27s 52s 1m42s 8m19s 41m37s

Table 11: Inference time under different sampling times k.

D.7 ADDITIONAL ABLATION STUDY

D.7.1 ABLATION STUDY ON LAYERWISE DISTRIBUTIONAL INPUT PROJECTION

To assess how the depth of distributional input projections affects robustness, we compare four
configurations of Layerwise DIPNet: taking the distributional input projection only at the first layer
(“1-Layer”), at the first two layers (“2-Layer”), at every layer (“Full-Layer”), and the original model
without any distributional projection (“Standard”).

As Table 13a shows, taking the distributional input projection at only a single layer (“1-Layer”) yields
little to no generalization benefit—and can even lead to a slight drop in accuracy. In contrast, the
“2-Layer” configuration delivers a clear generalization boost, outperforming Standard across all ViT
scales, and on both ViT-Tiny and ViT-Base it even edges out the “Full-Layer” configuration—most
notably pushing ViT-Base to 71.78 %. Overall, taking the distributional input projection at multiple
depths delivers substantial gains, although the optimal number of layers can vary by model scale.

D.7.2 ABLATION STUDY ON LEARNABLE DISTRIBUTIONAL INPUT PROJECTION

We then explore different strategies for the learnable parameter coef—which controls the magnitude
of the distributional projection added at each layer—in DIPNet: fixing coef to a constant (0.5, 1.0
or 1.2) or the optimal value obtained from a learnable run (“Fixed-Learned”), or treating coef as a
trainable parameter initialized randomly (“Learnable”). In the “Fixed-Learned” setting, we initialize
coef to the value obtained from “Learnable” setting (1.4121 for ViT-Tiny, -1.4141 for ViT-Small,
and 1.4141 for ViT-Base). As Table 13b shows, fixing coef to a small constant produces an accuracy
comparable to that of the “Learnable” setting, even though the “Learnable” setting itself starts from a
random small value and grows to a larger optimum. However, choosing a larger fixed coef leads
to a clear drop in performance, even when that constant remains below the final magnitude learned
by the “Learnable” setting. This contrast highlights the advantage of a learnable coef, which can
flexibly adjust perturbation strength to the ideal level for all input layers.

D.7.3 ABLATION STUDY ON LEARNABLE DISTRIBUTIONAL INPUT PROJECTION ON
NOISE-LEVEL: GAUSSIAN CORRUPTION EFFECTS ACROSS MODEL SIZES

To quantify the impact of our DIPNet module under varying gaussian noise levels, we evaluate
both ViT-Base and ViT-Tiny corrupted by additive Gaussian noise with standard deviation σ ∈
{0.2, 0.5, 1.0}. Table 14 reports test accuracy for the standard (baseline) training and for our method.

6https://github.com/jeonsworld/ViT-pytorch

18

https://github.com/jeonsworld/ViT-pytorch

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 12: Accuracy (%) of ViT backbones trained from scratch on CIFAR-100.

Model Standard (α, β) = (0.1, 0.1) (α, β) = (0.1, 0.2) (α, β) = (0.1, 0.5)

λ = 0 λ = 0.05 λ = 0.1 λ = 0 λ = 0.05 λ = 0.1 λ = 0 λ = 0.05 λ = 0.1

Small 16 38.28 37.91 39.42 38.53 34.87 38.77 38.79 38.69 37.75 38.08
Small 32 31.57 31.16 31.85 31.74 31.10 30.54 31.79 31.06 32.97 30.65
Base 16 38.71 38.94 39.51 33.79 36.42 36.72 37.16 36.74 36.28 40.58
Base 32 31.69 31.10 30.75 25.42 30.43 32.80 25.47 30.42 29.73 30.05

Notes. Model refers to backbone size + patch size (e.g., “Base 32” denotes ViT-Base with patch size 32). Bold

indicates the best performance, and underlined indicates the second best.
Table 13: Ablation studies on ViT under Gaussian attack. This table reports test accuracy (%) on
the CIFAR-100 dataset. “Standard” is the baseline ViT without any distributional input projection;
“Full-Layer” (in a) and “Learnable” (in b) are the same learnable full distributional projection-at-
every-layer setting.

(a) Depth Ablation (Layerwise DIPNet).

Method ViT-Tiny ViT-Small ViT-Base

Standard 46.31 75.65 69.13
1-Layer 50.39 75.55 68.81
2-Layer 51.90 75.99 71.78
Full-Layer 51.62 78.21 69.31

(b) Perturbation Coefficient Ablation (Learnable vs. Fixed DIPNet).

Method ViT-Tiny ViT-Small ViT-Base

Standard 46.31 75.65 69.13
Fixed-0.5 51.91 77.02 69.95
Fixed-1.0 48.94 75.97 67.23
Fixed-1.2 47.44 75.24 65.93
Fixed-Learned 45.24 72.29 64.82
Learnable 51.62 78.21 69.31

For larger model, DIPNet yields consistent gains over the baseline at all noise levels. The gap widens
as noise increases, demonstrating that DIPNet effectively enhances robustness to heavy corruption.
For smaller model, while DIPNet brings large relative gains at low to moderate noise, the absolute
accuracy remains low. This indicates that ViT-Tiny’s limited capacity leads to underfitting when faced
with strong noise, and suggests that further architectural capacity or noise-specific regularization may
be required. These ablation results confirm that DIPNet consistently improves noise robustness, but
also highlight the interaction between module efficacy and backbone capacity under severe corruption.

Table 14: Evaluation under Gaussian Noise Levels (σ ∈ {0.2, 0.5, 1.0}).

Model Method 0.2 0.5 1.0

ViT-Base Standard 69.13 54.81 35.02
DIPNet 69.23 54.95 36.08

ViT-Tiny Standard 46.31 26.99 15.93
DIPNet 52.22 32.75 17.63

E LLM USAGE STATEMENT

We used LLMs to aid in polishing the writing of this paper. Specifically, LLMs were employed as a
general-purpose assistant to improve clarity, grammar, and style, and to suggest alternative phrasings
for technical explanations. They were not used to generate novel research ideas, design experiments,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) Training Loss (b) Validation Loss

(c) Training Accuracy (d) Validation Accuracy

Figure 5: Training and validation curves on ViT-Tiny without any attacks.

(a) Training Loss (b) Validation Loss

(c) Training Accuracy (d) Validation Accuracy

Figure 6: Training and validation curves on ViT-Base under FGSM adversarial attacks.

or produce results. The authors take full responsibility for all content, including text refined with the
assistance of LLMs.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) Training Loss (b) Validation Loss

(c) Training Accuracy (d) Validation Accuracy

Figure 7: Training and validation curves on ViT-Tiny under Gaussian noise.

(a) Training Loss (b) Validation Loss

(c) Training Accuracy (d) Validation Accuracy

Figure 8: Training and validation curves on ViT-Tiny under FGSM adversarial attacks.

21

	Introduction
	Related work
	Problem Formulation and Variational Inference
	DIPNet: Distributional Input Projection Network
	Learning Distributional Input Layerwise to Minimize Loss Function
	Theoretical Results

	Experiment
	Exploration on Vision Transformers under Adversarial Attacks
	Exploration on LLM Reasoning
	Ablation on Efficient Inference
	Ablation on Hyperparameter Tuning

	Conclusion
	Additional Related Work
	Theoretical Analysis
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Dataset Description
	Tabular Dataset for MLP
	OOD Dataset

	Supplement Experiments
	Explorations on MLP
	Out‑Of‑Distribution (OOD) Evaluation
	Explorations on ResNet
	Details for ViT Experiments
	Details for LLM Experiments
	detailed experimental results
	Ablation on Efficient Inference
	Ablation on Hyperparameter Tuning

	Additional Ablation Study
	Ablation Study on Layerwise Distributional Input Projection
	Ablation Study on Learnable Distributional Input Projection
	Ablation Study on Learnable Distributional Input Projection on Noise‑Level: Gaussian Corruption Effects Across Model Sizes

	LLM Usage Statement

