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Abstract

In-context learning (ICL) enables transformers to adapt to new tasks through contextual examples without
parameter updates. While existing research typically studies ICL in fixed-complexity environments, language
models encounter tasks spanning diverse complexity levels. We investigate how transformers navigate hierarchical
task structures where higher-complexity categories can perfectly represent any pattern generated by simpler ones.
Specifically, we design testbeds of Markov-chain and linear-regression data that reveal transformers not only
identify the appropriate complexity level for each task but also accurately infer the corresponding parameters—even
when the in-context examples are compatible with multiple complexity hypotheses. When presented with data
generated by simpler processes, transformers consistently favor the least complex sufficient explanation. We
theoretically explain this behavior through a Bayesian framework, demonstrating that transformers effectively
implement an in-context Bayesian Occam’s razor by balancing model fit against complexity penalties.

1. Introduction

In-context learning (ICL) has emerged as a fundamental capability of large language models (LLMs), enabling them
to adapt to novel tasks through contextual examples without parameter updates (Brown et al., 2020). This remarkable
ability has drawn significant attention in interpretability research, with studies examining both commercial-scale LLMs
(Elhage et al., 2021; Wang et al., 2023; Min et al., 2022) and controlled, synthetic environments. The latter approach trains
transformers from scratch on well-defined tasks—such as linear regression (Garg et al., 2022; Akyiirek et al., 2023; von
Oswald et al., 2022; Zhang et al., 2023), discrete functions (Bhattamishra et al., 2024), and Markov processes (Edelman
et al., 2024; Rajaraman et al., 2024; Park et al., 2025)—offering precise control over training distributions and enabling
direct comparisons with known algorithms. However, these synthetic studies typically restrict analysis to tasks of fixed
complexity, diverging from real-world scenarios where LLMs encounter diverse tasks spanning multiple complexity levels.

To bridge this gap, we investigate ICL in environments featuring hierarchical task-complexity structures. We design task
categories with distinct complexity levels, where higher-complexity ones form strict supersets of lower ones: specifically, the
higher-complexity category contains hypotheses capable of perfectly emulating any pattern produced by simpler categories.
For instance, consider a transformer trained on next-token prediction for sequences generated by both 1st-order and 3rd-order
Markov chains. Since any order-1 chain can be perfectly represented as a special case of order-3, an inherent ambiguity
arises during inference: When presented with a sequence genuinely generated by a 1st-order chain, can the transformer
identify the true complexity class, or will it default to the most expressive hypothesis in its repertoire? More generally:

Can transformers effectively differentiate between tasks of varying complexity during in-context learning? When presented
with data compatible with multiple hypothesis classes, do they accurately identify the simplest sufficient hypothesis, or do
they systematically default to the most complex available hypothesis?

Our systematic investigation answers this question affirmatively. For example, Figure 1 demonstrates that at inference time,
the transformer successfully recognizes the true order of the generating chain. When presented with an order-1 chain, it
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Figure 1. We train a transformer for next-token prediction on sequences generated by random order-1 and order-3 Markov chains. During
inference, we assess its ICL ability by evaluating performance on sequences derived from unseen order-1 and order-3 chains. (Left)
shows the distance between the model’s output distribution on the last token and n-gram statistics of the context for order-1 inference, as a
function of the number of sequences seen during training. (Right) presents analogous results for order-3 inference. Notably, the trained
transformer can identify the true order (1 or 3) of the context, and then predict using either bigram or tetragram statistics accordingly.

appropriately employs bigram statistics; when presented with an order-3 chain, it switches to tetragram statistics.

Our contributions are as follows:

* We introduce a framework for studying ICL across hierarchical complexity levels, where higher-complexity tasks
form strict supersets of simpler ones, creating inherent ambiguity in hypothesis selection in context. Concretely, we
study controlled synthetic environments with well-defined tasks focusing on Markov chains Edelman et al. (2024) and
linear regression (Garg et al., 2022). Unlike prior works that focus on tasks on fixed complexity (see Appendix A), we
introduce two extensions—to systematically investigate behaviors when training on tasks spanning multiple complexity
levels. In Appendix C.1, we further verify the conclusions on a probabilistic grammar setting.

* We empirically demonstrate in both Markov chain and linear regression settings that transformers correctly identify the
simplest sufficient hypothesis rather than defaulting to more expressive models.

* We provide a theoretical justification through a Bayesian lens, showing that transformers naturally implement Bayesian
Occam’s razor in-context by balancing data likelihood against model complexity.

2. In-Context Learning Across Hierarchical Complexity Levels
2.1. Markov Chains

Modeling Tasks of Varying Complexity. We train on Markov chains of different orders (vocab size V'), where we group
all chains of a fixed order into one task category. The category of order-k; has lower complexity than any order-ko category
for ko > k; due to fewer degrees of freedom: any order-k; chain can be perfectly represented as a special case of an
order-ko chain, making higher-order categories strict supersets of lower-order ones.

For concreteness, we train the transformer model My on sequences generated from two different task categories!. We
consider order-1 and order-k categories, where £ > 1. During training, we first sample a transition matrix P, of order-s,
which is then used to generate a sequence X = [x1, Za, ..., x7] of length T. The order s is sampled uniformly at random
from the set ord = {1, k}. We train autoregressively to minimize the (expected) loss, over Markov chains of both orders
{1, k}, with cross-entropy loss ¢ (see Appendix B.1 for additional details).

At inference, we prompt the model with a sequence generated from either order-1 (simple) or order-k (complex) chain.
To evaluate the ICL ability of the model, we compare (with respect to KL divergence) the model’s output probability for
the token following the prompt to either the order-1 statistics or the order-k statistics. When prompted with an order-k
chain, the transformer must recognize the higher-order dependencies that cannot be captured by order-1 statistics. However,
when prompted with an order-1 chain, the transformer faces a more subtle decision, as any order-1 transition matrix can be
perfectly represented as a special case of an order-k transition matrix. This latter scenario directly tests whether the model
defaults to the most complex hypothesis or correctly identifies the simplest sufficient one.

"Multiple task categories can be treated similarly without further insights. We focus on two categories for simplicity of exposition.
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Transformers Distinguish Between Task Categories In-context. We train a GPT-2 type decoder-only transformer for all
the experiments (Karpathy, 2023); Appendix E for details.

In Figure 1, we train a transformer on sequences drawn from order-1 and order-3 Markov chains. We then measure the
KL divergence between the transformer’s output distribution and several well-defined statistical strategies when the input
is taken from unseen order-1 or order-3 Markov chains: uniform, bigram, trigram, tetragram statistics (k=0,...,3). We
see that with sufficient training, the transformer consistently learns to distinguish between order-1 and order-3 sequences,
applying bigram and tetragram statistics appropriately to each case. We validate this finding in Figure 3 in Appendix C
by repeating the experiment with order-1 and order-2 Markov chains, again observing that the model accurately infers the
underlying order. Crucially, in both experiments, the transformer does not default to the highest-order statistics (tetragram or
trigram) for all inputs, despite these statistics having sufficient expressive power to model order-1 sequences. Instead, it
selects the appropriate complexity level based on the in-context sequence. This demonstrates that the transformer effectively
implements Occam’s razor, identifying the simplest hypothesis adequately explaining prompt.

In Appendix C, we provide additional experiments examining how performance varies with context length.

Bayesian Interpretation of the Selection Mechanism. We adapt a Bayesian viewpoint of ICL (Panwar et al., 2024; Xie
et al., 2022; Lin & Lee, 2024) to explain how transformers choose the simplest task that explains the context. In this respect,
we assume sufficient training data such that the transformer implements the Bayes optimal minimizer. Let X = [z1,..., 7]
be an observed sequence for 7' > k. Then, the Bayes’ optimal predictive distribution for x7; given X is the mixture

plarsi=v]X) = 5 pls|X) -plara=v| X, 5), velV], (1)
—_— —— B ~—— —
model output category posterior s-gram statistics of X

where p(s | X) denotes the posterior probability of the order-s chain given the sequence. Further, p(xr41 = v | X, s)
denotes the order-s Bayes’ optimal predictive distribution. Specifically, for Dirichlet prior Dir(1)®vs it can be shown that
p(zr+1 = v|X , s) which is a smoothed version of the order-s statistics; e.g. see Edelman et al. (2024, Eq. (3)). When
T > k, where both statistics are well-defined for both orders 1 and %, the smoothing effect becomes negligible.

From Equation (1), the model’s output (LHS) when trained with chains of all orders s can be seen as a convex mixture
of what would have been the model’s output if the transformer was trained only on a single order. This means the
model’s output crucially depends on the posterior probability coefficients p(s | X), which we can express as: p(s | X) =
(X | 8)7(8) />y o P(X | 8') w(s"). Here, m(s) is the prior on orders, which is set to be uniform and thus cancels out in
the ratio, and p(X | s) is the marginal likelihood of the prompt (context) given the order s. Consequently, which category’s
statistics (s-gram) the transformer’s outputs depends on depends on which marginal likelihood p(X | s) dominates.

Asymptotics of Likelihood. For large T" > k, standard Dirichlet-multinomial conjugacy combined with a Bayesian
Information Criteria (BIC) style Laplace approximation (Schwarz, 1978; Ghosal & van der Vaart, 2017; Csiszar & Talata,
2006) gives the following useful approximation to the marginal likelihood (Schwarz, 1978):

logp(X | s) ~ Y logpx (@ | @i, .ywi—y) — LG logT. 2

Here, px denotes the empirical conditional probabilities derived from the prompt X. See Appendix B.2 for details. Thus,
the marginal likelihood decomposes into an empirical likelihood term and a model complexity penalty term.

Bayesian Occam’s Razor. Suppose the data is generated by an order-s* Markov chain, representing a simple category. We
wish to compute the ratio p(X | s)/p(X | s*) for any complex category of order-s with s > s*. Note that for 7' >> k, for
any s > s* the empirical probabilities px (x4 | T1—1, . .., x¢—s) approach the true data transition probabilities derived from
the simple category s*. Thus, the empirical likelihood terms in Eqn. ( 9) are (approximately) equal for any s > s*. However,
the model complexity penalty term being proportional to V* strongly favors the smaller s. Together, for T' > k it holds:

p(X | s)

Vs >s" 1 ——— 2~
p(X | s%)

~0 = p(st | X) a1 P plapg = | X ~ Py mosme, 3

statistics

model output conditioned on
prompt from simple category

The model implements Bayesian Occam’s razor in favor of the true lower-order model s*.
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In App. B.2, we show that the when the true process is order-k (k > 1) and 7' is large, then the posterior probability saturates
to the true order. In App. D, we construct a 2-layer transformer that can compute the empirical conditional probabilities px .

2.2. Linear Regression

Modeling Tasks of Varying Complexity. We design a similar two-category linear-regression setup with hierarchical
complexity. The complex category draws weights w = wy ~ N (0,1;) over all d features, whereas the simple category
restricts to a d/2-dimensional subspace: W = [w/2,0] with w5 ~ N(0,1;/5)?. Thus every simple task is a sparse
special case of the complex one. For training, we first sample s uniformly from the set dim = {d/2, d}, then generate
ws ~ N(0,1,) and generate the labels y; = w'x; for t € [T] where for s = d/2, we effectively use w = [w, 0]
(zero-padded to dimension d). See Appendix B.3 for details.

At inference, we generate prompts using either w, or w5 as the underlying task parameters. Given in-context examples
X = (x4, yt)thl and query X, we compare the transformer’s prediction to two least-squares (LS) benchmark estimates:

§ = xL WS, where w'S is either the full d-dimensional solution wS := Aly or the restricted d/2-dimensional solution
W5?2 = AL/Zy. Here, Aq := [x1,X2,...,x7] " is the feature matrix, y = [y1,...,yr] is the label vector, and Ay/o =

Adllgse 04 /2]T is the projection of the feature matrix onto the first d/2 dimensions. A’ denotes the Moore-Penrose
pseudoinverse. When context length T < d or T' < d/2 for the respective estimates, the LS solution corresponds to the

minimum ¢s-norm interpolating solution.

When prompted with a sequence generated by the complex regressor wy, wfis naturally provides a better fit than the

dimensionality-constrained WE%' However, the critical question arises when the data comes from wg/o: Does the

transformer default to the more expressive solution (w]gls), or does it correctly identify the simpler hypothesis? Specifically,
when d > T > d/2, both solutions perfectly interpolate the context data, yet they generally differ in their predictions.
Hence, it cleanly tests whether transformers implement a form Occam’s razor in-context.
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Figure 2. A transformer trained on 7" = 39-long sequences generated using random (a) d = 10 or (b) d = 20 dimensional regressors. We
plot (Mp([X, Xiest]) — W | Xeest)?/d for the two LS baselines w';%, w5 (Section 2). When prompted with unseen sequences of (left) d/2
or (right) d dimensional regressors, the predictions align most closely with the matching baseline. In the right panels the orange dot

(off-scale) highlights ijQ’s poor fit to w, data. See Appendix C for evaluation over train time.

Transformers Distinguish Between Task Categories In-context. Figure 2 demonstrates how transformers distinguish
between task complexities in linear regression. Given data generated from the complex regressor w, predictions follow
the full LS solution Wbs, since w]&% is under-parametrised. The key test is simple data w4, with d > T > d/2: although

w{is and Wb‘?z both interpolate the context, the model consistently favours WIC;?Q, a clear demonstration of Occam’s razor at

work. As context length increases into the 7' > d regime, we observe WI(ZS = w];l% = W2, and the transformer essentially

recovers the true regressor. In Appendix B.4, we explain the preference for the simpler hypothesis using a similar Bayesian
viewpoint as done in Section 2.1 for Markov chains.

3. Conclusion

Using simple testbeds, we show that transformers trained on hierarchical task complexity structures implement a form of
Bayesian Occam’s razor, consistently identifying the simplest sufficient hypothesis without defaulting to more expressive

?Choosing dimensionality d/2 and aligning the subspace with the coordinate axes are for simplicity, without affecting generality.
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model classes. Important questions remain open: From a mechanistic perspective, how do transformers internally implement
this complexity selection? From an optimization standpoint, how do the optimization dynamics lead to the emergence of
these Bayesian selection principles? Our findings suggest that principled hypothesis selection may be an inherent property
of transformers trained on diverse task distributions, potentially contributing to their remarkable generalization capabilities.
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In-Context Occam’s Razor in Transformers

A. Background and Related Works
A.1. Markov Chains and Linear Regression as Testbeds for ICL

ICL of Markov Chains. Markov chains were introduced as a testbed for studying ICL by Edelman et al. (2024). Specifically,
they showed that transformers trained on sequences generated from random order-1 Markov chains learn to do in-context
inference on unseen Markov chains of order 1 by learning to output bigram statistics of the context.

To establish the foundation for our study, we now formalize their key findings. Let x; denote the ¢-th symbol from a finite
vocabulary [V] = {1,...,V} of size V generated by a k-th order Markov chain, i.e., p(z; = v|zi—1,...,21) = p(z; =
v|Xt_1, .oy Tp—p41) forall v € [V] and let P € RY**V denote the row-stochastic transition matrix with these conditional
distributions as rows. Sample a transition matrix at random: for example, sample each of its rows according to a Dirichlet
prior with parameter . Generate a sequence X := X<r = [z1,%2,...,&7_1] of T >> k symbols from this transition
matrix by letting the first k entries {1, ..., 2} } be drawn uniformly at random. A transformer model M, parameterized
by 6 is trained to auto-regressively predict the next-symbol . using the previous ¢ symbols X<, by (approximately)
minimizing the expected loss, with respect to cross-entropy ¢:

T—-1
L(0) :=Ex . ppic(1)®" {thl U(Mo(X<t), Te41)| “

where Dir(1)®v denotes V' independent draws from the Dirichlet prior. At inference, draw transition matrix P ~
Dir(1)®V, and let X ~ Py denote a sequence of length 7' — 1 generated from it that is given as prompt to the model.
Edelman et al. (2024) show that the Kullback—Leibler (KL) divergence of the model’s output probability to the birgram

statistics
T-1

Zt:2 1(zi_1 =z, 24 = v)/ZiQ 1(x¢—q = 27), veE[V], 5)

averaged over many realizations of X, Py, is (almost) zero. Here, 1(-) is the indicator function that equals 1 when the
condition is true and 0 otherwise. Thus, the transformer looks back at the sequence to compute the bigram probabilities, and
predict the next token v € [V] using these probabilities.

ICL of Linear Regression. Before Markov chains, the first synthetic playground for ICL was introduced by Garg et al.
(2022), who demonstrated that a transformer trained on random examples from linear regression tasks can learn to perform
in-context inference on unseen tasks by computing the least-squares solution. In this setup, sequences consist of interleaved
input-output pairs (x,y) of the form X = [xi,y1,X2,¥2, ..., X¢, ¥¢|, with feature vectors x; € R? and labels y; € R.
The feature vectors x; are sampled i.i.d from a standard Gaussian distribution, i.e., x; ~ N(0,1;). Each sequence is
characterized by a task-specific weight vector w ~ N(0, 1), such that labels are generated as y; = w ' x;, V¢ € [T].

Similar to the Markov chain setup, the transformer My is trained to predict label 3,1 using the previous ¢ pairs (x,y) along
with the new input x; 1 (collectively denoted by X <;), by minimizing the expected loss over sequences with T" pairs:

T-1

L(0) := Ex,~N(0.,1), wA(0,14) [Z U(Mo(X<t),Yis1) ], (6)

t=1

where / is the squared loss. Garg et al. (2022) demonstrated that when presented with an inference-time sequence
X = [x1,Y1,X2, Y2, -, XT_1, Y71, XT] generated from an unseen task vector wins ~ N (0, ), the transformer effectively
infers wi,¢ from the in-context examples. Specifically, the squared error between the model’s prediction and the least-squares
prediction g s = x; ws where wig = Af y approaches zero when averaged over many realizations of X and wi,;. Here,
A € RIT=1x4d represents the feature matrix with columns [x1,Xa, ..., x7_1] T,y € RT~1 is the vector of context labels
[y1,...,yr—1], and AT denotes the Moore-Penrose pseudoinverse.

A.2. Related Work

Task Diversity: Learning vs Retrieval. In the setups investigated by Garg et al. (2022); Edelman et al. (2024), the
transformer is trained on sequences generated from fresh tasks drawn from the appropriate distributions at each optimization
iteration. Raventos et al. (2023); Park et al. (2025) have further extended this study for linear regression and Markov chains
respectively, examining scenarios where the model is trained on sequences generated from a finite number of tasks, thus
modeling and analyzing the impact of task diversity in ICL and revealing a tradeoff between two distinct modes of ICL:
task retrieval and task learning (Pan et al., 2023). See also Lu et al. (2025) for a high-dimensional statistical approach
that theoretically justifies some of these empirical findings. In this work, we focus on the learning mechanism of ICL and
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maintain the vanilla setting of training with fresh tasks at each iteration. However, in our settings these tasks will originate
from a finite number of complexity categories rather than a single one.

Theoretical Explanations: Linear Regression and Markov Chains. One of the first works investigating the theoretical
foundations of ICL is Xie et al. (2022), which proposed a Bayesian perspective that has informed numerous subsequent
studies, e.g., (Raventos et al., 2023). Most relevant to our work, Edelman et al. (2024) demonstrated that the bigram statistics
rule implemented by transformers trained on order-1 Markov chains is the Bayes’ optimal solution (given the context) under
the Dirichlet prior. Similarly, for linear regression, the least-squares solution learned by transformers is the Bayes’ optimal
predictor (given the context) under Gaussian priors in the setting of Garg et al. (2022). A complementary approach to
explaining ICL has focused on explicit weight constructions that implement functionalities observed to facilitate ICL, such
as gradient descent on the context for linear regression (Li et al., 2024; 2023; Ahn et al., 2023; von Oswald et al., 2022; Fu
et al., 2024) and statistical induction heads for Markov chains (Edelman et al., 2024; Rajaraman et al., 2024; Chen et al.,
2024). However, relatively few studies have investigated how—or whether—these weight configurations can actually be
reached during training (Zhang et al., 2023; 2024). None of these theoretical frameworks has addressed the specific setting
of multiple task categories with hierarchical complexity relationships. In this work, we extend the Bayesian viewpoint
to explain how transformers select the simplest sufficient hypothesis in both linear regression and Markov chain settings.
While these two domains differ in several respects—the format of the prompt (pairs of inputs vs. stream of symbols),
the optimization objective (squared loss vs. next-token prediction), and the underlying mechanisms (gradient descent vs.
statistical induction heads)—we investigate both settings under a unifying prism.

Algorithm Selection. Most closely related to our work are Lin & Lee (2024); Bai et al. (2023) investigating ICL regression
across multiple hypotheses. Lin & Lee (2024) considers ICL of linear regression where features x and tasks w are drawn
from Gaussian mixtures, generalizing the setting of Garg et al. (2022). This richer framework enables a principled study of
the task retrieval versus learning modes through a Bayesian perspective. Similarly, Bai et al. (2023) investigates ICL under
tasks from multiple categories, such as linear regression, noisy linear regression, and linear classification. They demonstrate
that transformers implement algorithm selection in context, applying the most appropriate algorithm for the provided context
at inference time. However, these works do not address tasks from different categories with clearly defined hierarchical
complexity relationships, where a higher-complexity category can fully explain the context generated by simpler categories.
In this particularly challenging setting, we show that algorithm selection is implemented via a form of Bayesian Occam’s
razor, allowing transformers to identify and apply the simplest sufficient hypothesis. We demonstrate this both for regression
and Markov-chain settings. More recent work by Elmoznino et al. (2025) posits that a meta objective of ICL is linked to a
prequential coding algorithm that simultaneously minimizes both algorithm complexity and prediction error on in-context
demonstrations. While this intriguing interpretation reveals a form of simplicity preference in ICL, it differs fundamentally
from our focus on hypothesis selection across explicitly defined hierarchical complexity structures.

B. Additional Details for Section 2
B.1. Markov chains: Omitted training details

The train loss is written as
T

LO) = Exppayov | D, {Mo(X<), i) ™)
s~Unif(ord)

Order-k statistics are computed as

T—1
Z (i1 =27, T4—2 = X1, ooy Tp—hy1 = TT—k, Tt = V)

T
T Dk (@1 =T, 0 = X7, Tkl = TT k)

, v E[V]. (8)

B.2. Markov chains: Omitted details for asymptotics of likelihood

Using a BIC style Laplace approximation to the marginal likelihood (Schwarz, 1978; Ghosal & van der Vaart, 2017; Csiszar
& Talata, 2006), we have
logp(X | s) = logp(X | PS) — % logT ©)

Here, P, denotes the parameters of the order-s chain that maximize the likelihood of the observed sequence X. d,
is the effective dimension of an order s chain, concretely, d; = V*(V — 1). For an order-s chain, we know that
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p(X | Ps) = [I,pp,(z¢ | 24—1,...,2¢—s), and the parameters P, that maximize this are the empirical conditional
probabilities derived from the observed sequence, i.e. pp, (¢ | Ti—1,...,T1—s) = p(z¢ | T¢—1, ..., Tt—s) for each context

* _— 2y (X
of length s. Formally, px (x4 | t—1,...,Tt—s) = nni; :il (tX) , where ng, . ., (X) denotes the number of symbol

transitions x; — ... — x; in the sequence X.

Saturation to the Higher Order. Now, suppose that the true process is of order-k, rather than (say) order-1, where k£ > 1.
The model order complexity term in Eqn. ( 9) always favors the lower order (here = 1). However, in this case the empirical
likelihood terms differ to each other when evaluated for s = k£ vs s = 1. Previous works (Ghosal & van der Vaart, 2017,
Csiszar & Talata, 2006) have shown that the per-sample improvement in log likelihood under the correct, higher-order
model accumulates linearly in 7. Concretely, for large 7" and some universal constant ¢ > 0,

k—1_ _ T>k
logp(X |s=k) —logp(X | s =1) = ¢T — V=WV jo07 T2 p(s =k | X) ~ 1.

Thus, the posterior probability correctly saturates to the true higher order once 7" is large.

B.3. Linear Regression: Omitted training details

Training sequences with 7' in-context examples are generated as follows: we first sample s uniformly from the set
dim = {d/2, d}, then generate w, ~ N(0, ). For task dimension s = d/2, we effectively use w = [wy, 0] (zero-padded
to dimension d). We then sample feature vectors x; ~ N (0,1;) and generate the labels y;, = w ' x, for t € [T, forming
sequences X<; = [X1,¥1,X2,Y2, ..., X¢, Y¢]. We use this to train a transformer My to auto-regressively predict the label
Yi+1 using the first ¢ pairs of examples X<, by minimizing the population square-loss (analogous to Eqn. ( 6)).

T

LO):= E Y UMy(X<i; Xiest), Yet1), (10)
x1.7~N(0,1a) 1=
wa~N(0,L,)
s~Unif(dim)

where / is the squared loss.

B.4. Bayesian Interpretation of the Selection Mechanism for Linear Regression
The Bayes’ optimal prediction on the test query X given the in-context demonstrations is y = wgox[est, where wgo

is the mixture: Wgo = >y cqas2, ay P(d' | Aa,y) - wh?. Here, p(d' | Aq,y) denotes the posterior probability of the

d’'-dimensional regressor given the matrix vector Ay and the labels y, and WIL;,S = [w](;,S , 0]. Using Bayes’ theorem, we
express the posterior probabilities in terms of the likelihoods (assuming a uniform prior on regressor dimensionality):
p(d | Ag,y) = p(y | Aa, d/)/Zre{d,d/Q} p(y | Ag,r). For Gaussian priors over w,s, we can derive analytical expressions
for these likelihoods. Similar to our Markov chain analysis, the likelihood incorporates a complexity penalty that favors
lower-dimensional models. Consequently, when the underlying regressor generating sequence X is w* = wg/o and
d>T > d/2, we find that p(d/2 | Aq,y) > p(d|Aq,y), resulting in wpo ~ w]é%. Conversely, when w* = wy, the

improved fit outweighs the complexity penalty, giving us wgo = w’°. This Bayesian mechanism explains why transformers
implement Occam’s razor by selecting the simplest hypothesis in-context.
B.5. Bayes’ Optimal for Linear Regression

In this section, we characterize the Bayes’ optimal parameter wgo under the mixture of regressors described in the section
above. For square loss, the Bayes optimal parameter is the posterior mean of the w conditioned on the sequence X, i.e.
wpo = E[w | A4, y], where A, is the matrix of vectors and y is the vector of labels derived from the sequence X.

In order to find this posterior mean, we need the conditional distribution p(w | A4, y). By Bayes’ rule,

pw | Agy) = P 1 Aaw)p(w)

T oy [ X, W) p(w)dw'” (11)

Under uniform prior on the regressor dimensionality, the overall prior p(w) = 3pa/2(W) + 2pa(w), where py/2(w),
pa(w) ~ N(0,14) denote the respective priors over the d/2 and d dimensional regressors. Here, p,/o(W)corresponds to a
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Gaussian NV (0, I /2) over the first d/2 components of w with zeroes in the remaining d/2. Plugging this into Equation (11),
and using the fact the W5§2 and w5 are the Bayes’ optimal solutions under their respective priors, we get a mixture of
solutions I
d/2 Ls La LS
Elw | Ag,y]|=—"—w, + ——wW >,
[ | d y] Ld/2 i Ld d/2 Ld/2 4 Ld d

where Ly = p(y|Ag, d’) denote the marginal likelihood of y under the regressor of dimensionality d’. Notice the term

ZLdL,. = p(d'|Ag, y) using Bayes’ rule and uniform prior over the dimensionality of regressor. Thus, the Bayes’ optimal is

the following posterior-weighted combination of the respective LS solutions

WBO = Z p(d' | Aa,y) - wg.
d'e{d/2, d}

Expressions for L; and L,. The marginal likelihood L, under the noiseless linear regression setting is

Ld/ = /5(y - Ad W) Pd’ (W) dw.

This can be interpreted as the “density” of y when viewed as a random variable A; w for w ~ pg. Concretely, if the

sequence generating regressor w* ~ pq(w), then Ly 5 = 0 (a.s.), as no w ~ py /9 solves y = Agw. Hence, wpo = wfis.

Bayesian Occam’s Razor. Now consider the other case when w* ~ p, /Q(W). Here, regressors from either prior can
explain” the context and will have non-zero marginal likelihood. Consider the regime d > T' > d/2, the density of y under

Ddy2 18

! 2
L - exp _1 WLS ,
/2 (27T)d/4 det(A;ir/Q Ad/2) ( 2 || d/ZH )

1
L, = exp(—% ’W]&SH2>.
(2m)T/2 \ /det(Ay AI)

As Ay has i.i.d. Gaussian entries, both AdA;i'— and AI/QAd /2 follow Wishart distributions. It is thus known (e.g., (Tulino
et al., 2004)) that

Elogdet(AgAT) = ¢r(d/2) + Tlog 2,
Elog det(Ag/gAd/Q) =1qs2(T/2) + (d/2) log 2,

where 1), is the multivariate digamma function. It further holds that

Pr(d/2) — upalT2) = iw (5—) - ﬁw (57).

where 1) is the digamma function. Using asymptotic expansions of the digamma function, an estimate for this difference
when 7" and d grow proportionally large is (Cai et al., 2015) 17 (d/2) — ¥4/2(T/2) =~ 4 log %. In fact, (Cai et al., 2015)
shows that in this regime, the log-determinants concentrate around their expectations shown above. Thus,

det(A4A7) (T)d/2
det(AT,Agp)  \d/2)

d/2
At the same time, it is easy to show that [wj®||* — [[w}%,[|* > 0. Together, Lq/s/La 2 (2m)T/2—d/4 (%) , which is
> 1 for large d and T > d/2. This implies that, p(d/2 | Agq,y) ~ 1, and wpo ~ w’g%.
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Figure 3. A transformer trained on sequences generated by random order-1 and order-2 Markov chains can infer whether the context is
order-1 or order-2, then generate predictions using the corresponding bigram or trigram statistics. (Left) shows the distance between the
model’s output distribution on the last token and well-defined context strategies for order-1 inference, as a function of the number of
sequences seen during training. (Right) presents analogous results for order-2 inference.

C. Additional Results

Training with only the complex task. We also train the transformer on fixed order-k Markov chains (following (Edelman
et al., 2024; Park et al., 2025)) to examine whether it can infer the order when presented with sequences generated from a
lower-order chain (< k) at inference time. Figure 4 explores this and shows that this is not the case. This finding is crucial,
as it suggests that a transformer trained on an order-% chain learns only the order-k statistics of the context and does not
generalize to lower-order statistics. We also do this experiment for the case of linear regression (see Figure 5) and observe a
similar behaviour.

Uniform Unigram Bigram —— Trigram —— Tetragram
Trained with order 3 Trained with order 2

= Order 1 Order 3 Order 1 Order 2
8 041 . ; 1
=
= 021 A\A 1 1 .
b
g 3 l\ k
2 004, . . : - : . . - i e —=1 4 . : . :
2 0 200 400 600 800 O 200 400 600 800 O 200 400 600 800 O 200 400 600 800
™4 Seq. Seen (in thousands) Seq. Seen (in thousands) Seq. Seen (in thousands) Seq. Seen (in thousands)

Figure 4. A transformer trained on random order-3 (left column) or order-2 (right column) Markov chains can only predict based on
order-3 (left column) or order-2 (right column) statistics, and fails to predict based on order-1 statistics when given order-1 in-context
sequences.

Testing with different context lengths. In Figures 6 and 7, we test how varying the context length affects a trained
transformer’s behaviour on sequences from different task categories in the Markov chain setting and the PCFG setting,
respectively.

Evaluation results with training time for linear regression. Figure 8 shows the how the predictions of the transformer
evolve with training time compared to the two benchmark LS solutions.

C.1. Probabilistic Grammars

Several recent works (Allen-Zhu & Li, 2024; Liu et al., 2023a;b; Ahuja et al., 2025) use formal languages to understand
language modeling. In this section, we study probabilistic context-free grammars (PCFGs), which are stochastic systems
designed to generate sequences of symbols from specified vocabularies (see ?? for a formal description), to verify our
conclusions about ICL of tasks of varying complexity.

In our setup, non-terminal symbols N := {S, A, B, C}, terminal symbols T := {a, b, eos}, where eos corresponds to the
end-of-string symbol. The ‘complex’ PCFGs use the following set of probabilistic productions:
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Figure 5. A transformer trained on X = [x1, y1, X2, Y2, ..., XT, Y¢| sequences generated using fixed complexity, random d-dimensional
regressors w (see Section 2 for details). We plot (Mp ([ X, Xiest]) — WienehXtest)>/d Where Wpench refers to two benchmark least-squares
solutions in d or d/2 dimensional space described in Section 2. We see that the transformer’s predictions align most closely with w® no
matter the type of inference-time regressor used to generate the sequences (wgq or W /2). This indicates that the transformer doesn’t learn
to estimate the lower-complexity solution wb%, unlike the case in Figure 2. Here, 7" = 39 and d = 10. Also the first curve (blue, dot) is

out of the plotted range.
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Figure 6. Figure illustrates how varying the context length affects a trained transformer’s performance when prompted with sequences
from different-order chains at inference. This transformer was trained on sequences from order-1 and order-3 chains (Figure 1). Here, we
also evaluate its performance on order-2 and order-4 sequences, which were not seen during training. Context length plays a crucial role:
while the transformer can accurately estimate the true order for order-1 and predict using bigram statistics, a longer context is required
to recognize order-3 sequences. This observation aligns with the notion of in-context “learning” versus “retrieval” noted in prior work
(Park et al., 2025; Lin & Lee, 2024; Pan et al., 2023), suggesting that for smaller context lengths, the transformer primarily “retrieves”
tasks it has seen during training, whereas longer contexts allow it to “learn” tasks that it has not previously encountered. For order-2
sequences, the transformer’s predictions lie between trigram and tetragram strategies, whereas for order-4 sequences, they most closely
match tetragram statistics. This outcome is expected because the model was not trained on order-4 sequences; it applies the strategy that
best explains the observed context at inference time.
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Figure 7. Figure illustrates the performance of a trained transformer when prompted with sequences of varying context lengths from
the two grammars. The context length during training was 50 in this case. We find that the transformer can identify the correct type of
grammar for slightly shorter context lengths, but the performance starts deteriorating for very short context lengths.

S — ABC | BAC | AAC | BBC with probabilities p1, p2, ps3, P4,
A—a, B—Db (12)
C— S|eos with probabilities g1, go.
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Figure 8. Figure illustrates the inference results across train time for d = 10 (left) and d = 20 (right) using contexts of fixed length
T =b5and T = 15, respectively. In both cases, the transformer’s predictions eventually match (closely) to the w';?z.

The ‘simple’ PCFGs are a subset of the ‘complex’ PCFGs, where we enforce p3 = py = 0.

To generate sequences from this set of PCFGs, we first draw the probabilities p; and g; randomly from a uniform Dirichlet
distribution. Then, we keep generating strings from this PCFG (starting from S and following the production rules,
till it returns eos) and concatenating them till the total sequence length matches the context length 7'. To control the
complexity of generated sequences and prevent infinite recursion, we impose a maximum derivation depth d,,x; once
this depth is reached, expansions of the nonterminal C are restricted to produce the terminal symbol eos. For generating
training sequences, we set dyax = 10, whereas for test sequences, it is set as 0, i.e., we only get strings from the set
{abeos, baeos, aaeos, bbeos} with different probabilities.
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Figure 9. A transformer trained on sequences from random ‘complex’ and ‘simple’ PCFGs (see Equation (12)) can infer the type of PCFG
the context comes from. Here, the test sequences are of the form {...,a} or {...,b}, where every string before the last element is from
the set {abeos, baeos, aaeos, bbeos}. (Left) compares the KL divergence between model output probabilities and the
probabilities of the ‘simple’ PCFG. (Right) compares the KL divergence between model output probabilities and the probabilities of the
ground truth ‘complex’ PCFG as well as those of the ‘simple’ PCFG.

In Figure 9, we train a transformer on sequences drawn from the two types of PCFGs. The test sequences are of the form
{... eos,a}or{... eos,b}. For sequences from the ‘complex’ grammar, we measure the KL divergence between the
transformer’s output distribution with the ground truth probabilities of the grammar, as well as those of the ‘simple’ PCFG.
Note that since p3 = ps = 0 for the ‘simple’ PCFG, P(ala) = P(b|b) = 0. We see that the transformer output distribution
is closer to the ‘complex’ PCFG. For sequences from the ‘simple’ grammar, we find that the output distribution closely
matches the ‘simple’ PCFG. This result shows that the transformer infers the type and parameters of the PCFG from which
the context was generated. Here, we use the same context length for train and test sequences; please see Appendix C for test
results with different context lengths.

D. Construction for Markov chains of varying complexity

Recall from Eqn. ( 1) that the model learns tasks of different complexity by implementing the Bayes optimal strategy. To
achieve this, the model must compute several key quantities, including the s-gram statistics p(- | r, ..., Z7_s4+1) and the
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category posterior.

Previous work has shown that a two-layer attention-only model with s heads in the first layer can compute the relevant
s-gram statistics for the last token (Edelman et al., 2024; Rajaraman et al., 2024). To extend those results, for order one
statistics, we demonstrate that by using V' heads in the second layer, the model can represent all the conditional distributions
p(u | v) for any pair of vocabulary tokens simultaneously. These conditional distributions are the building blocks that
produce the log-likelihood used to compute the posterior. This approach can be extended to higher-order Markov chains by
using V' heads in the second layer.

Lemma D.1. A two-layer attention-only transformer with one attention head in the first layer, and V' attention heads in the
second layer can output all the empirical conditional distributions

23;2 1(zi—1 =v,2; = u)

i L@i1 =)

p(u|v) = forany u,v € V.

for any input sequence X.

Proof. We outline how to set the transformer’s parameters so that, for each pair (v, u), the model’s final output can encode
the conditional probability p(u | v).

Recall that the input to the model is a sequence X = [z1,- -, cr] of length T with z; € [V]. Let 2, € R? be the input
embedding of the ¢-th element of the sequence x4, and Z = [z, 22, . . ., zT];X 4 be the sequence of input embeddings.

We write the two-layer transformer with V' heads in the second layer as

FX) = Wo[m(2) || -1l hv(2)],

. 2
where denotes concatenation, W, € RV x4V

attention head in the second layer. Specifically,

“|| E3

is the final linear projection, and each h, (Z) is the output of the v-th

ho(Z) = (Attny +I) o (Attn] + 1) (Z).
with
Attn(Z) = softmax(mask(A)) ZWy,
where Wy is the value matrix, and the attention map A € RT*7 is defined as
(2 Wo + 1l j01) Wi 2]
Nz .

Here W, Wk, are the key and query matrix, ry, is the relative positional embedding, and mask(-) enforces causal masking
so that position ¢ can only attend to positions 1, ..., 1.

Ay =

We will show how to choose the model’s weights so that, for each v, the embedding from the v-th head of the second layer,
hy(Z), produces vectors which—when multiplied by W,—yield the conditional distribution p(- | v) across the sequence X.
For simplicity, we will omit the superscript v in Attny from now on.

Layer 1: Isolating the previous token. We first show how to configure the weights of the first layer so that each position ¢
copies the immediately preceding token z;_. For this construction we need the embedding dimension of d = 3V'.

. . . . . . T T T
Set the embedding matrix E = [Iy, Iy, 0]y xq. In this case, the input embedding z; is = [ 2z} , 27 , 20 || =
4 4 4
e, €a,,0] " where e, is the v-th basis vector.

Now let the key, query matrix and the positional embeddings be as follows.
clvxv

0 0
Wo=0, Wg = 0 0 0|, R=ey-1",
0 0 0
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where c is a large constant. With these weights, the attention matrix A is zero for all entries except when j = ¢ — 1; that is,
A;j = 0if j # i — 1. For the entry where j =i — 1, we have A; ;_; = 1" Wk zi_1 = c. As c approaches infinity, the
softmax function saturates. In other words, if we define

S = softmax(mask(A)),

then S; ; = 1 when j = ¢ — 1 and O for all other j. This ensures that the model only attends to the previous position in the
first layer.

Now choosing

0 0 0
Wy = |0 Iyxv O],
0 0 0
we have
Attny (Z ZS Wy = 10,22, 7,0,

t=1

This extracts and carries along the “middle” V' components of the embedding at position 7 — 1. Putting things together, the
embedding of after the first layer will be

= (Attmy + 1) (2); = [ 2}, 2l + 274, 2] .

Layer 2 - v-th head: Computing conditional probabilities p(- | v). We now use V heads in the second layer to encode,
for each possible previous token v € V, how likely the next token is u € V.

In this layer, we set the relative positional embedding » = 0 and

0 0 0 0 0 0
Wo = [0 1, el— 0], Wk =c| —e e;'; €y e;'— 0
0 0 0 0 0 0

With this weight configuration, we have

¢ ifxi_1=v
Ap, = Tw, W
T’ & @ {O 0.W.

Then, as ¢ — oo,

]l(.l?i_l = 11)
St = —F
2o Lwio1 =)

Now setting

we have

T(ximg = v, 25 =
ZSTtWVzt+ Ry = Z Z ZﬂlfL' 71}) )[anaez]T*‘Z%
uelV] i-1

= Z p(u | U)[O7O761T]T +Z’/T

uelV]
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Finally, with Py 3y = [0, 0, I], setting W, as

P 0 0
0 P 0
Wo=1¢y o 0l
0 0 P
we have
FZ)=Wolh(Z) || -+ || hv(2)]

=1 pClv=De | Il Yoo |v="V)e]

E. Details of Experimental Settings

For both sets of experiments, we train GPT-2 type decoder-only transformer (Karpathy, 2023). We use AdamW (Loshchilov
& Hutter, 2019) optimizer in all experiments with a learning rate of 1e — 4. We set the batch size as 32.

Markov chains. For all Markov chain experiments, vocab size V' = 3. For the order-1 and order-3 experiments in Figure 1,
context length T for all sequences was set 300. We used a 6 layer, 6 head transformer, with embedding dimension set to 192.
For the order-1 and order-2 experiments in Figure 3, context length 7" was set to 200. We used a 2 layer transformer with 20
heads, and embedding dimension was set to 320. Additionally, we used relative position encoding in all the experiments.
For the fixed-order experiments in Figure 4, we used the setup from the corresponding variable order experiment.

Linear regression. We used a 12 layer, 8 head transformer with embedding dimension 256 similar to (Garg et al., 2022).
We set d = 10 and 20 (for Figure 2), and context length T" = 39.

PCFGs. We used a 4 layer, 4 head transformer with embedding dimension 128. We use context length of 50.

Transformer KL-Divergence: 3 Symbols Transformer KL-Divergence: 3 Symbols

— Uniform — Uniform
10 Unigram Unigram
— Bigram — Bigram
Trigram Trigram
—— Tetragram — Tetragram

°
B3

°

KL-Div(Distribution| |Model)

KL-Div(Distribution||Model)

0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000
Epochs Epochs

Figure 10. Repetition of the experiment in Figure 1 when training with context length 7" = 400 on a mixture of order-1 and order-3
chains.

F. Ablations

In this section, we experiment with different context lengths and model sizes for the Markov chain setup. In Figures 10
to 14, every epoch refers to an iteration with 32 (batch size) number of sequences.

Figure 10 shows the results for training on mixture of order-1 and order-3 chains with context length 400. The results are
consistent with those in Figure 1.
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Transformer KL-Divergence: 3 Symbols Transformer KL-Divergence: 3 Symbols
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Figure 11. Repetition of the experiment in Figure 1 when training on a mixture of order-1 and order-3 chains with a 4 layer, 4 head
architecture, and embedding dimension 96.
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Figure 12. Repetition of the experiment in Figure 1 when training on a mixture of order-1 and order-3 chains with a 4 layer, 4 head
architecture, and embedding dimension 96. Training is done with varying context length per order, with 75 = 100 * s, where T’s denotes
the context length for sequence X generated by a chain of order-s. Inference is conducted using a fixed 7' = 300.

Smaller architectures. In Figures 11 and 12, we repeat the experiment in Figure 1 on a smaller transformer model with 4
layers, 4 heads and embedding dimension 96. In Figure 11, the context length is 300 for all sequences, while in Figure 12,
we consider context lengths 100 and 300 for sequences from order-1 and order-3 chains, respectively. We find that the
smaller model is unable to learn tetragram statistics on order-3 chains and instead switches between bigram and trigram
statistics depending on the order.

2 layer architectures. In Figures 13 and 14, we repeat the experiments in Figures 1 and 3, respectively with a 2 layer
transformer model, varying the embedding dimension and number of heads in the first layer, while keeping the heads in the
second layer fixed to 1. We find that across all settings, the transformer infers the correct order from the context. We also
observe that scaling the model size speeds up convergence.
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Figure 13. Repetition of the experiment in Figure 1 when training on a mixture of order-1 and order-3 chains with a 2 layer transformer,
with n heads in the first layer, 1 head in the second layer, and embedding dimension dim.
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Figure 14. Repetition of the experiment in Figure 3 when training on a mixture of order-1 and order-2 chains with a 2 layer transformer,
with n heads in the first layer, 1 head in the second layer, and embedding dimension dim.
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