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Abstract

Multitask learning is widely used in practice to train a low-resource target task by augmenting
it with multiple related source tasks. Yet, naively combining all the source tasks with a
target task does not always improve the prediction performance for the target task due to
negative transfers. Thus, a critical problem in multitask learning is identifying subsets of
source tasks that would benefit the target task. This problem is computationally challenging
since the number of subsets grows exponentially with the number of source tasks; efficient
heuristics for subset selection does not always capture the relationship between task subsets
and multitask learning performances. In this paper, we introduce an efficient procedure to
address this problem via surrogate modeling. In surrogate modeling, we sample (random)
subsets of source tasks and precompute their multitask learning performances; Then, we
approximate the precomputed performances with a linear regression model that can also be
used to predict the multitask performance of unseen task subsets. We show theoretically and
empirically that fitting this model only requires sampling linearly many subsets in the number
of source tasks. The fitted model provides a relevance score between each source task and the
target task; We use the relevance scores to perform subset selection for multitask learning by
thresholding. Through extensive experiments, we show that our approach predicts negative
transfers from multiple source tasks to target tasks much more accurately than existing task
affinity measures. Additionally, we demonstrate that for five weak supervision datasets, our
approach consistently improves upon existing optimization methods for multi-task learning.

1 Introduction

Multitask learning (MTL) is an approach to combining several tasks together and learning one model for all
tasks simultaneously (Caruana, 1997). The premise is that by combining the data samples of several tasks
together, the dataset size of each task increases, thus improving the learning performance for every task.
However, naively using all the source tasks may worsen performance compared to single-task learning (STL)
for target tasks if there exist source tasks that are unrelated to them. This problem is commonly referred to
as negative transfers in the literature but is challenging to predict for many tasks (Rosenstein et al., 2005).

The importance of developing a better understanding of multiple learning performance is well recognized.
In the seminal work of Caruana (1997, Chapter 3), heuristics for judging “task-relatedness” in several
applications are discussed; For instance, tasks that share many input features are more likely to be related to
each other. A classical result by Ben-David et al. (2010) introduces an H-divergence notion that quantifies
the distance between two label distributions and relates the bias of source domains to this notion. MTL
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Sampling Random Subsets Computing MTL Performance Using Relevance Scores to Select Source Tasks

Step 1. Constructing the Model: !𝜃 = argmin
!

𝑛"#∑$%#& 𝑔!(𝑆$) − 𝑓 𝑆$
'

Step 2. Selecting Source Tasks: 𝑆⋆ = 𝑖: !𝜃$ < 𝜸 ∀ 𝑖 = 1,2, … , 𝑘}

𝑆# 𝑆'

1

2

3

…

𝑘

1

𝑘

1

3

2

𝑘

2

𝑆&

… ………
{

{

{ { {

{ { {

2

3

…

𝜸

!𝜃!

!𝜃"

!𝜃#
!𝜃$

…

…

Figure 1: Our approach involves two steps, as shown in the figure above. In the first step, we sample n random
subsets of source tasks among k source tasks. Let these random subsets be denoted as S1, S2, . . . , Sn. For i
from 1 up to n, we train an MTL model using the combined data of all the tasks in Si and the target task.
We evaluate the loss of this MTL model on an evaluation set from the target task and denote the evaluation
loss as f(Si). Then, we train a linear regression model to estimate the relevance scores θ1, θ2, . . . , θk, by
minimizing the mean squared error between gθ(Si) =

∑
j∈Si

θj and f(Si), as shown on the left. Let the
estimated scores be denoted as θ̂ = [θ̂1, θ̂2, . . . , θ̂k]. To predict the MTL performance of any unseen subset S,
we compute gθ̂(S) =

∑
i∈S θ̂i. In the second step, we perform subset selection by choosing any task whose

relevance score is below a threshold γ; We choose this selection criterion by examining the subset S that
minimizes gθ̂(S) =

∑
j∈S θ̂j , as shown in the right figure.

may perform worse than STL if the bias is too large. In weakly-supervised learning, several programmatic
labeling functions are used to annotate a corpus of unlabeled data, and each labeling function can be treated
as a source task (Ratner et al., 2016). The task labels can be highly noisy, causing negative transfer during
training even though the tasks share the same input features (Ratner et al., 2019). In multitask learning
of text prediction tasks, negative transfers are observed between different categories of tasks (e.g., question
answering vs. sequence labeling) and different sizes of datasets (Vu et al., 2020).

Motivated by the need to reduce negative transfers between different tasks, researchers have developed
optimization methods for multi-task learning from various fields. The most thorough approach to addressing
these issues is to train all possible combinations of source tasks with the target task and find which subset of
source tasks improves performance on the main target task. If there are k source tasks, then this approach
requires training 2k MTL models. This is impractical (e.g., when k ≥ 20). A more efficient solution is to
train combinations of every single source task with the target task to determine if one task helps and then
merge the helpful tasks together. This approach captures pairwise transfers, which measures first-order task
affinities from one source task to another task (Fifty et al., 2021). Regarding higher-order transfers from
multiple source tasks to another task, approximation techniques such as averaging the first-order affinity
scores of each source task have been explored (Standley et al., 2020).

This paper designs and analyzes a scalable approach to identify negative transfers from multiple source tasks
to one target task. The key idea is to construct a surrogate model to approximate the MTL performance
of a subset of source tasks combined with the target task. Compared with prior works that measure
task-relatedness based on either gradient similarity (Yu et al., 2020) or feature space alignment of neural
networks (Nguyen et al., 2020; Raghu et al., 2020; Wu et al., 2020), our approach can be used to identify
negative transfers from a set of tasks to another task. It also differs from existing discrepancy notions (e.g.,
H-divergence) between source and target domains, which are difficult to measure for deep neural networks.
Our approach builds on a recent paper that designs datamodels to predict the predictions of deep neural
networks trained on a subset of training data (Ilyas et al., 2022). Unlike their work that focuses on single-task
learning, we build surrogate models for multi-task learning with deep neural networks.

The first step of our approach involves learning a relevance score between every source task and the target
task while accounting for the presence of the other source tasks. Let θi denote the relevance score of task i,
for i from 1 to k, where k is the total number of source tasks. Conceptually, θi is analogous to the important
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score of a feature in random forests when hundreds of other features are available. To estimate the relevance
scores, we introduce a surrogate model gθ(S), parametrized by the relevance scores θ, to approximate MTL
performances. Given any subset of source tasks S, let f(S) be a loss function that measures the performance
of combining S and the target task to train an MTL model and then evaluated on the target task. The value
of f(S) provides a relevance measure between S and the target task. Recall that θi measures the relevance of
task i to the target task. Thus, a lower value of θi indicates a higher relevance of task i to the target task.

We specify a linear surrogate model as gθ(S) =
∑

j∈S θj (parametrized by the relevance scores) and minimize
the mean squared error between gθ(Si) and f(Si) over n random subsets, for i from 1 to n. In particular,
we precompute the values of f(S1), f(S2), . . . , f(Sn) by training one MTL model for each subset. We use
such a linear specification of θ because computing the performance of each subset requires training an MTL
model, which is not scalable unless n grows almost linearly in k. In addition, we take inspiration from the
recent work on datamodels (Ilyas et al., 2022), which shows that a linear regression model can extrapolate the
predictions of deep neural networks for subsets of training data. We rigorously analyze the sample complexity
of our approach in Theorem 2.1. After fitting θ, we predict the performance of an unseen subset S as gθ(S)
and compare it with the STL performance of the target task to determine if S provides a negative transfer.

The second step of our approach involves selecting a subset of source tasks by choosing any source task whose
relevance score is below a threshold γ. We derive this selection criterion by examining the minimum of the
surrogate model gθ(S) over all possible subsets S. We analyze this algorithm in a setting that includes one
group of source tasks closer to the target task and another group further from the target task. The analysis
reveals that for each task i, its relevance score θi is proportional to the sum of the MTL performances of all
subsets that include i. Moreover, these performances preserve the distance gaps from the source tasks. See
Theorem 3.1 for the precise result. In practice, we pick γ via cross-validation; See Section 4 for the range of γ
that we validate on in the experiments. Taken together, our approach provides an efficient pipeline to predict
and optimize multitask learning performances for task subsets. See Figure 1 for an illustration.

Experimental Results. We conduct extensive experiments to validate our approach in numerous data
modalities and performance metrics. We summarize a list of our results as follows:

• The runtime for constructing surrogate models until convergence scales linearly in k, and the predicted
performances accurately fit the true MTL performances of unseen subsets, measured by Spearman’s
correlation (0.8 averaged among 16 evaluations). Our approach achieves 4 times higher accuracy for
predicting positive vs. negative transfers than known approximation schemes, measured by the F1-score.

• By selecting source tasks based on the predicted MTL performances and only using the selected source
tasks, we observe consistent benefits over existing optimization methods. We evaluate our approach on
many datasets, including weak supervision, NLP, and multi-group fairness. In addition, we apply our
approach to different MTL encoders, including BERT and multi-layer perceptrons. Notably, we consider
a weak supervision dataset with as many as 164 labeling functions (Zhang et al., 2021). By selecting
labeling functions with our approach and then applying MTL, we obtain up to 3.6% absolute accuracy
lift compared with existing methods.

• We further visualize the tasks selected by our approach and find a separation between the selected tasks
in terms of their labeling accuracies. Besides, our approach can also be used in scenarios where multiple
groups of heterogeneous subpopulations are present. We are interested in the fairness and robustness of
the learned model, measured as the performance of the worst-performing group. We apply our MTL
framework as an augmentation to expand the dataset size of the worst-performing group and show
consistent empirical performance in the worst-group accuracy metric.

Summary of Contributions. To summarize, this paper makes three contributions to studying negative
transfers in multi-task learning. First, we study the higher-order task relationships from a set of source tasks
to another task. We meta-learn such relationships using a linear regression method that can also predict an
unseen subset’s MTL performance. Second, we design a subset selection criterion for multi-task learning,
which adjusts a threshold on the averaged MTL performances of subsets of tasks. Compared with the existing
literature, our approach is better at predicting higher-order task relationships (See Figure 3 in Section 3 for
the detailed result). Third, we validate our approach with extensive theoretical and experimental results.
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Organization. We describe the problem setup and the surrogate model in Section 2. In Section 3, we
use the relevance scores to perform subset selection for multitask learning. We present the experiments in
Section 4. Then, we discuss the related works in Section 5. Lastly, we summarize the paper in Section 6. The
appendix provides complete proof of our theoretical results and omitted results from the experiments.

2 Predicting Multitask Learning Performances Using Surrogate Models

This section describes the design and analysis of surrogate models for multitask learning. We begin by
defining the problem setup. Then, we describe the construction of surrogate models and the estimation of
the relevance scores. Lastly, we analyze the sample complexity of the construction procedure.

2.1 Preliminaries

Problem Setup. Let t = 0 denote the main target task of interest. Suppose the task’s features and labels
are drawn from an unknown distribution, denoted as Dt. Let X denote the feature space. Let the set of all
possible labels be denoted as Y . We are given a dataset, which includes a list of examples drawn independently
from Dt. Besides, we are also given k datasets from related source tasks, which are all supported on X × Y.

A naive approach to optimize MTL is combining all the datasets and evaluating the trained model on the
target task. However, this might result in worse performance than single-task learning. Thus, it is crucial
to identify if a source task would help or hurt. The most thorough solution for addressing this question is
by enumerating all possible combinations of source tasks, leading to a total of 2k combinations. For each
combination of source tasks, train a multitask model using the selected source tasks and the main task. While
this procedure optimizes the performance of MTL, it is too slow for large k.

How can we optimize the performance of MTL efficiently? Relatedly, given a set of source tasks, can we
predict their transfer effects upon the target task efficiently? Below, we define two common transfer effects.

Positive vs. Negative Transfer. Consider any multitask learning algorithm, denoted as A, which trains
a joint model given any set of tasks. For any subset S ⊆ {1, 2, . . . , k}, we say that S provides a negative
transfer to t if the performance of A(S ∪ {t}) is worse than A({t}) (e.g., in terms of higher loss values).
Likewise, we say that S provides a positive transfer to t if the performance of A(S ∪ {t}) is better than
A({t}). We aim to design a scalable method to predict such positive and negative transfer effects.

It is worth highlighting that both types of transfers are often observed in practice. To give an example, we
consider a binary classification dataset that involves a total of 51 tasks. We pick one of them as the target
task, use the rest as source tasks, and consider the case where |S| = 1. This leads to training 50 models for
each target task, one for every combination of one source task and the target task. The results are shown in
Figure 2, which provides illustrations for four different target tasks. The y-axis corresponds to the accuracy
difference between the MTL and STL results. We consistently find a mix of positive and negative transfers
for all four target tasks.

Surrogate Models. A recent paper by Ilyas et al. (2022) designs a linear regression method to predict
the predictions of deep neural networks trained on a subset of training data. Surprisingly, an empirical
finding from that paper is that this linear regression model provides a very good fit on a number of popular
benchmark datasets such as CIFAR. This finding is later explored by another recent paper (Saunshi et al.,
2022). We defer further discussions to the related works in Section 5. Both of these works focus on single-task
supervised learning. Next, we will apply this idea of linear surrogate models to multi-task learning.

2.2 Constructing the Linear Surrogate Model

First, we construct a surrogate model to fit multitask learning performances. Let ϕ be an encoder that is
shared by all tasks. For any input features x ∈ X , the encoder ϕ maps x into a feature vector. For every source
task in S and the target task, there is a separate prediction layer for each of them. Let ψ0, ψ1, ψ2, . . . , ψk

denote the prediction layers, which map the feature vectors to the output.
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Figure 2: Illustration of mixed outcomes in multitask learning: In each figure, we train 50 multitask models
based on one fixed target task and one source task from 50 source tasks. x axis: Each bar represents one
source task from 50 source tasks. y axis: Test accuracy of MTL with one source task minus the test accuracy
of STL with the target task alone. For further description of the experiment setup, see Section 4.1.

Given any subset S, we train ϕ and ψi, for i ∈ S ∪ {0}, by minimizing the average loss over the combined
training data along with the target task. Let ϕ(S) and ψ

(S)
i , for i ∈ S ∪ {0}, be the trained model. We

evaluate its loss on the target task’s validation dataset. Let D̃t = {(x1, y1), . . . , (xm, ym)} denote a set of m
independent samples from Dt, which is used as a validation set for the target task. Let ℓ be a non-negative
loss such as the cross-entropy loss. We define multitask learning performances as:

f(S) = 1
m

m∑
i=1

ℓ
(
ψ

(S)
0
(
ϕ(S)(xi)

)
, yi

)
, for any S ⊆ {1, 2, . . . , k}. (1)

Our main idea is to construct a surrogate model, parametrized by a relevance score θi for each source task i.
We use a linear specification inspired by recent work of Ilyas et al. (2022)1

gθ(S) =
∑
i∈S

θi, where θi is the i-th entry of θ, for any i = 1, 2, . . . , k. (2)

The procedure for estimating θ is as follows. First, sample n subsets of source tasks from {1, 2, . . . , k}, denoted
as S1, S2, . . . , Sn. We sample each subset from the uniform distribution over subsets with a fixed size of α;
We will justify this choice later in Section 3.2. For instance, to capture the transfer from five source tasks to
the target task, we can set α = 5. Then, compute the value of f(Si) by training one MTL model for every
i = 1, 2, . . . , n. Lastly, minimize the mean squared error (MSE) between gθ(Si) and f(Si), averaged over all i:

L̂n(θ) = 1
n

n∑
i=1

(
gθ(Si) − f(Si)

)2
. (3)

Let θ̂ denote the minimizer of the above MSE. For brevity, we refer to θ̂ as the task model. After estimating
θ̂, for an unseen subset of source tasks S, we predict its MTL performance as gθ̂(S) =

∑
i∈S θ̂i.

2.3 Sample Complexity

We show that given n = O
(
k log2(k)

)
, we can estimate θ̂ accurately. To be precise, let U denote the uniform

distribution over all subsets of size α drawn from {1, 2, . . . , k}. Let T denote an unseen subset drawn from U .
The population risk for a given θ is defined as the expected MSE between f(T ) and gθ(T ):

L(θ) = E
f
E
T

[(
f(T ) − gθ(T )

)2
]
. (4)

Let the minimizer of the above risk be denoted as θ⋆. We prove that θ̂ converges to θ⋆ using Rademacher
complexity-based arguments. Let the function class of ψt and ϕ be denoted as H. Let the loss function

1We use this specification for scalability consideration. Note that it is possible to consider more complex specifications,
such as adding quadratic variables θ1,2, θ1,3 . . . , θk−1,k. The construction procedure and the analysis is conceptually the same.
However, the sample complexity for fitting these quadratic variables is O(k2), rendering it infeasible for large k, e.g., k ≥ 100.
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class be F = {ℓ(ψt(ϕ(x)), y) | ∀ψt, ϕ from H}. Recall that D̃t = {(x1, y1), (x2, y2), . . . , (xm, ym)} refers to the
dataset used to evaluate the value of f(T ), and its size is equal to m. Let σ1, σ2, . . . , σm be m independent
Rademacher random variables, collectively as σ1:m. The Rademacher complexity of F over D̃t is defined as

Rm(F) = E
D̃t

E
σ1:m

[
sup
h∈F

1
m

m∑
i=1

σi · h
(
xi, yi

)]
, (5)

where the expectation is taken over the randomness of the empirically-drawn dataset D̃t and the Rademacher
random variables σ1:m. We follow the convention of big-O notations for stating the result. Given two functions
h(n) and h′(n), we use h(n) = O(h′(n)) or h(n) ≲ h′(n) to indicate that h(n) ≤ C · h′(n) for some fixed
constant C when n is large enough. Our result is stated formally below.

Theorem 2.1. Suppose the functions in F are all bounded from above by a fixed constant C > 0. Suppose
α is less than k/2. Let n be the number of sampled subsets and m be the size of the set used to evaluate f .
With probability at least 0.99, θ̂n converges to θ⋆ as n,m are both large enough:

∥∥∥θ̂ − θ⋆
∥∥∥ ≲ C

√(
k log2 (k))α4

n
+

√(
log(k)

)
α

m
+ Rm(F), (6)

where ∥ · ∥ denotes the Euclidean norm of a vector.

Based on the above result, it is clear from equation (6) that provided with O(k log2(k)) random samples, the
first error term relating to n shrinks to a negligible value (one may think of α as a fixed constant such as 5
or 10). There are two error terms decreasing with m, the size of D̃t used to evaluate f . The Rademacher
complexity Rm(F) is known to be of order O(m−1/2) when H represents a family of neural networks (Bartlett
et al., 2017). These two error terms are due to the variance of f since it is measured on a finite set. Lastly,
we note that the probability value of 0.99 in the above theorem statement can be adjusted to other values. In
the proofs, we state the result more generally for any probability value 1 − δ, where δ > 0; See the statements
of Lemma 2.2 and Lemma 2.3 below for details.

Proof Overview. We introduce a few notations to examine gθ(S) and the covariance of U . Let In ∈ {0, 1}n×k

be a zero-one matrix; For any i = 1, 2, . . . , n, the i-th row is 1Si
, the characteristic vector of Si. Let f̂ be a

vector in which f̂i = f(Si), for any i = 1, 2, . . . , n. The θ̂ that minimizes equation (3) is equal to

θ̂ =
(
I⊤

n In

)−1 I⊤
n f̂ . (7)

Let v = I⊤
n f̂ and let vi be the i-th entry of v, for i = 1, . . . , k. Based on the definition of In, we observe that

vi =
∑

1≤j≤n: i∈Sj

f(Sj), for any 1 ≤ i ≤ k. (8)

Next, let III ∈ {0, 1}|U|×k be a zero-one matrix, where |U| is the number of subsets in U . Each row of III
corresponds to the characteristic vector of a subset. Let fff be a vector such that each entry of this vector
corresponds to the MTL performances (cf. equation (1)) of a subset in distribution U . The population risk
minimizer θ⋆ for reducing L(θ) in equation (4) is equal to

θ⋆ =
(
III⊤III

)−1 III⊤ E [fff ].

Our proof involves two steps. First, we deal with the error due to the randomness of the random subsets. Let

θ̄ =
(
III⊤III

)−1 III⊤fff.

We state the following result, which shows that θ̂ converges to θ̄ as n increases.
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Lemma 2.2. In the setting of Theorem 2.1, conditional on f(T ) for any subset T ∈ U , with probability
1 − 2δ over the randomness of S1, S2, . . . , Sn, for any δ ≥ 0, the Euclidean distance between θ̂ and θ̄ satisfies:

∥∥∥θ̂ − θ̄
∥∥∥ ≤ 4C

√(
k log2(2kδ−1)

)
α4

n
+ 8C

√
kα2

δn
. (9)

The proof of the above result relies on a novel union bound taken over all subsets in S. Crucially, there are
at most 2k subsets. By taking the logarithm of 2k after the union bound, we get a factor of k as shown in
equation (9). Second, we prove the convergence from θ̄ to θ⋆, as m increases.

Lemma 2.3. In the setting of Theorem 2.1, for any δ > 0, with probability at least 1 − δ over the randomness
of S1, S2, . . . , Sn and f(S1), f(S2), . . . , f(Sn), the Euclidean distance between θ̄ and θ⋆ satisfies:

∥∥θ̄ − θ⋆
∥∥ ≤ Rm(F)√

2
+

√(
log
(
δ−1k

))
α

4m . (10)

Combining Lemma 2.2 and Lemma 2.3 together, we have thus proved that equation (6) holds. The proof of
the above two results can be found in Appendix B. This result justifies why we use a linear specification, as
we can scale up the sample complexity.

Remark 2.4. The proof of Theorem 2.1 uses the design of the α-sized subsets. In particular, the covariates of
these α-sized subsets are zero-one vectors, with the ones being drawn randomly. We show that the population
covariance of all the α-sized subsets is an identity matrix plus a rank-one matrix. See equation (12) in Section
3 for the derivation. This implies that the inverse of the covariance matrix is an identity matrix plus a
rank-one matrix.

3 Subset Selection for Multitask Learning

Next, we design an algorithm to optimize the performance of the target task using the relevance scores of
each source task. We analyze this algorithm in a setting where the tasks are separated into two groups, with
one group being more similar (measured by Euclidean distances) to the target task than the other group.

3.1 Using Relevance Scores to Select Source Tasks

Provided with the surrogate model, we can optimize the target task performance by using the predicted MTL
performances. A natural way is to select the subset that minimizes the value of gθ̂(S) over subset S. Due to
the linear specification of gθ̂, this is equivalent to selecting source tasks with a small θ̂i. Thus, we select a
source task i if θ̂i is below the desired threshold γ, which can be determined via cross-validation. Then, we
train a model by combining the selected source tasks with the target task. The complete procedure is shown
below. We will rigorously justify the existence of a threshold afterward.

Algorithm 1 Subset Selection for Multi-Task Learning Using Relevance Scores
Input: k source tasks; Training and validation datasets of the target task.
Require: Size of each subset α; Number of sampled subsets n; MTL algorithm f ; Task selection threshold γ.
Output: Trained model ϕ(S⋆), ψ

(S⋆)
t .

1: For i = 1, . . . , n, sample a random subset Si from {1, 2, . . . , k} with size α; evaluate f(Si) following equation (1).
2: Estimate the relevance scores θ̂ following equation (3).
3: Select source tasks based on their relevance scores: S⋆ =

{
i : θ̂i < γ | ∀ i = 1, 2, . . . , k

}
.

4: Train a model by combining S⋆ and t; denote the trained model as ϕ(S⋆), and ψ
(S⋆)
i for all i ∈ S⋆ ∪ {t}.
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3.2 Analysis of the Algorithm

We analyze the above procedure in a synthetic setting where the data is generated from a linear process.
We assume that the input features for each task are drawn from an isotropic Gaussian distribution with p
dimensions. For each task i from 0 to k, let β(i) ∈ Rp denote the linear process for task i. Given a data point
from task i with feature vector x, its label is generated as y = x⊤β(i) + ϵ, where ϵ is a random variable with
mean 0 and variance σ2. Suppose there are two groups of tasks depending on their distances to β(t), given by
a, b such that b > a > 0. For every i = 1, . . . , k, task i is called a good task if ∥β(i) − β(t)∥ ≤ a; On the other
hand, i is a bad task if ∥β(i) − β(t)∥ ≥ b. We show that there exists a threshold that separates good tasks
from bad tasks, stated formally as follows.

Theorem 3.1. In the setting described above, suppose f is bounded from above by a fixed constant C > 0.
Suppose there are d ≳ k log k + p+ a4k4(a2 − b2)−2 data points from every source and target task. Suppose
n ≳ C2k2(a2 − b2)−2 and m ≳ p log p. With probability at least 0.99, there exists a threshold γ such that

• For any i = 1, 2, . . . , k, if task i is a good task, then θ̂i < γ.
• Otherwise, if task i is a bad task, then θ̂i > γ.

The intuition behind the above result is that θ̂i averages the MTL performances of all subsets involving i. If
i is a good task, the average performance will be lower, leading to a lower relevance score. Moreover, there
exists a threshold that separates the relevance scores of good tasks and bad tasks. We give a toy example to
illustrate why θ̂ can preserve the Euclidean distance gaps from β. Our experiments later also confirm the
existence of such a separation (cf. Figure 5).

Example 3.2 (One-dimensional case). Consider a one-dimensional case where p = 1 and every β is a real
value. Let β(t) = 0. Let 0 < β(i) < a if i is a good task. Let b < β(i) if i is a bad task.

• Our first observation is that θ̂i is proportional to vi (cf. equation (8)), as shown in Lemma 3.3.
• Our second observation is that vi is proportional to β(i). This is because vi is the sum of f(S) among all
S ∈ U involving i, and f(S) is the average of β(j) among j ∈ S. Thus, vi is the average of all β’s from
the n random subsets, while β(i) has a larger weight in vi than the other β’s because i is always in S.

Taken together, we conclude that the relevance scores can preserve the relative values of β in this example.

Proof Overview. We now generalize the intuition from the one-dimensional case, beginning with the first
observation. We show that the relevance scores preserve the distance gap of every pair of tasks from β.

Lemma 3.3. In the setting of Theorem 3.1, with probability 1 − δ, for any δ > 0, the following holds:∣∣∣∣ 1n (θ̂i − θ̂j) − k

αn
(vi − vj)

∣∣∣∣ ≲ log(δ−1k)√
n

, for any 1 ≤ i < j ≤ k. (11)

The above result analyzes the covariance of In, which is proportional to identity plus a constant shift. Let
Idk×k be a k by k identity matrix and e ∈ Rk be a vector whose entries are all equal to one. By the definition
of In and Woodbury matrix identity, we have

E
[

I⊤
n In

n

]
= α

k
Idk×k +α(α− 1)

k(k − 1) ee
⊤ ⇒ E

[
I⊤

n In

n

]−1

= k

α

(
Idk×k − α− 1

kα− 1ee
⊤
)
. (12)

Crucially, if we multiply v on the right-hand side of equation (12), then we will get k
α (v − α−1

kα−1 (e⊤v)e).
Recall that e is all one’s vector, which has the same entry in every coordinate after rescaling. Then, recall θ̂
from equation (3). By matrix concentration inequalities, the spectral norm of the deviation from I⊤

n
In

n to its
expectation satisfies ∥∥∥∥I⊤

n In

n
− E

[
I⊤

n In

n

]∥∥∥∥
2
≲
α log(kδ−1)√

n
. (13)
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See equation (20), Appendix B.1 for the proof. Thus, combining equations (12) and (13), we claim that θ̂
is equal to α−1kv minus a shared term for every task, modulo the deviation error of order O(n−1/2). By
subtracting θ̂i − k

αvi and θ̂j − k
αvj , we can cancel out the shared term, leading to equation (11).

Next, we formalize the second observation from the one-dimensional case. Based on equation (8), vi is a sum
of f(S) for all subsets S such that i ∈ S. We then show that f(S) is the sum of β(j) for all j ∈ S, based on
the pooling structure of our MTL model. Thus, the Euclidean distance between β(i) and β(t) will also reflect
in vi. For complete proof of Theorem 3.1 (and Lemma 3.3), see Appendix B.4. This result substantiates our
intuition that θ̂i provides the relevance score of each source task i to the target task while accounting for the
presence of other source tasks.

Remark 3.4. After identifying the related tasks from all the source tasks, we can then combine them
together with the target task for multi-task learning. Given that the distance between their β-coefficients is
small enough (i.e., a is small enough), we can show that MTL performs better than single-task learning.

4 Experiments

We apply our approach to three settings. The first setting is about applying weak supervision to unlabeled
data, and we apply our algorithm to select labeling functions for combining the weak labels of the labeling
functions. The second setting involves language prediction tasks from NLP benchmarks. Again, we use
our algorithm to select source tasks to improve the performance of target tasks. The third setting involves
learning from multiple groups of heterogeneous subpopulations, where the goal is to train a model with
robust performance across all groups. We cast this multi-group learning problem into an MTL framework
and apply our algorithm to select a subset of groups to improve the robustness of target tasks. For
all these settings, we show that surrogate models can predict negative transfers accurately and fit MTL
performances well; Moreover, our approach provides consistent benefits over various optimization methods
for multi-task learning. The code repository for reproducing our experiments can be found at https:
//github.com/NEU-StatsML-Research/Task-Modeling.

4.1 Experimental Setup

Datasets. First, we apply our approach to several text classification tasks from a weak supervision dataset
(Zhang et al., 2021). Each dataset uses several labeling functions to create labels for every unlabeled example.
The labels generated by different labeling functions may conflict with each other. We view each labeling
function as a source task. The goal is to predict an unlabeled set of examples which is viewed as the target
task. A validation dataset that includes the correct labels is available for cross-validation. We include the
dataset statistics in Table 1.

Second, we consider MTL with natural language processing tasks. We collect twenty-five datasets across a
broad range of tasks, spanning sentiment classification, natural language inference, question answering, etc.,
from GLUE, SuperGLUE, TweetEval, and ANLI. We view one task as the target and the rest as source tasks.
The goal is to select a subset of source tasks for the best MTL performance. We provide the statistics of the
twenty-five tasks in Table 4, Appendix C.1.

Third, we consider multi-group learning settings in which a dataset involves multiple subpopulation groups.
We consider income prediction tasks based on US census data (Ding et al., 2021). The goal is to predict
whether an individual’s income is above $50,000 using ten features, including the individual’s education level,
age, sex, etc. There are 51 states in this dataset; we view each state as one task. For prediction, we use
one state as the target task and the remaining fifty states as source tasks. We use the racial group of each
individual to split a state population into nine subpopulation groups. We evaluate the robustness of a model
by the worst-group accuracy. This metric measures the accuracy of the worst-performing group among all
groups. We use six states as the target task. See Table 2 for dataset statistics.

Implementation. We use a standard approach for conducting MTL, i.e., hard parameter sharing. For
text classification, we use BERT-Base as the encoder. For tabular features, we use a fully-connected layer
with a hidden size of 32. The surrogate modeling procedure requires three parameters: the size of a subset,
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Figure 3: Left: Our approach can consistently predict positive/negative transfers from up to 20 source tasks
to the target task. Right: Convergence of surrogate models as n increases up to 400, leading to an F1-score
of 0.8 for predicting positive/negative transfers from up to 20 source tasks to one target task.

the number of samples, and the loss function. We select the size from a range between 3, 5, 10, and 15. We
select the number of samples from a range between 50, 200, 400, and 800, depending on k. We also collect a
holdout set of size 100 for constructing the surrogate model. For classification tasks, we set the loss function
as the negative classification margin, i.e., the difference between the correct-class probability and the highest
incorrect-class probability. After estimating the surrogate model g from equation (3), we use g(S) as the
predicted multitask loss for an unseen subset S. We compare g(S) with the STL performance of task t to
determine whether the transfer from S to t is positive or negative. We measure the F1-score for the minority
class (between the positive and negative classes) on the holdout set.

4.2 Results for Predicting Negative Transfers

We validate that our fitted models can accurately identify positive vs. negative transfers from source tasks.
Then, we show that these models can be constructed efficiently by reporting the runtime.

Results. We test the accuracy of using surrogate models to predict positive vs. negative transfers. We first
evaluate the four examples shown in Figure 2. We set the size of α as 5 and n as 400. Using the model
to compare the MTL performances with STL performances, we can correctly predict the transfers with an
F1-score of 0.82, averaged over the four target tasks. Second, we conduct the same tests for weak supervision
and NLP tasks. Similarly, we find that task models can predict positive vs. negative transfers with F1-score
of 0.8 on average for ten different target tasks.

Furthermore, we compare these results with two baselines that either compute first-order task affinity scores or
higher-order approximations by averaging first-order affinity scores. Our approach yields much more accurate
predictions across different subset sizes of α, ranging from 5 up to 20. Figure 3 provides the illustration for
one target task, which is conducted on the US Census dataset, along with fifty source tasks.

Lastly, we measure Spearman’s correlation between the predicted performances and true performances. We
observe an average coefficient of 0.8 across 16 target tasks. See Appendix A for the details.
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Figure 4: We show that the
runtime of our approaches
scales linearly with k, the
number of source tasks.

Computational Cost. Next, we report the runtime cost collected on an
NVIDIA Titan RTX card. First, we show that the running time of our procedure
scales linearly with k, the number of source tasks. Recall that our approach
requires training n models, one for each random subset. We find that collecting
n ≤ 8k samples suffice for the fitted model to converge. The results hold for
16 target tasks shown in Figure 6 of Appendix A. We plot the number of hours
w.r.t. k in Figure 4. The results confirm our hypothesis.

Our approach is also comparable with the baseline approaches. Among them, the
most related ones compute first-order affinity scores and conduct a branch-and-
bound search algorithm over the task space, which has exponential complexity
in k (Standley et al., 2020; Fifty et al., 2021). In our experience, with more
than 20 tasks, these methods take more than 200 hours. Our approach requires
at most 145 hours. This is consistent with our theoretical predictions in Section
2. Later in Section 4.5, we elaborate on ways to speed up the training.
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Table 1: Accuracy/F1-score from surrogate modeling followed by task selection (ours), as compared with
MTL methods and weak supervision methods that use a label model to aggregate the weak labels.

Dataset (Metrics) Youtube (Acc.) TREC (Acc.) CDR (F1) Chemprot (Acc.) Semeval (Acc.)

Training 1,586 4,965 8,430 12,861 1,749
Validation 120 500 920 1,607 178
Test 250 500 4,673 1,607 600
# source tasks 10 68 33 26 164

Naive MTL 94.72±0.85 64.10±0.50 58.20±0.55 53.43±0.53 89.00±1.06
HOA 94.93±1.80 74.67±4.66 59.76±0.97 45.57±0.41 89.94±4.42
TAG 95.20±0.65 77.50±3.62 59.31±0.15 53.67±2.74 89.06±1.47
TAWT 94.53±1.05 72.40±2.36 59.85±0.30 53.76±2.96 86.83±1.78
Auto-λ 95.80±0.85 73.70±0.67 59.07±0.05 52.50±1.28 87.91±0.66
Majority voting 95.36±1.71 66.56±2.31 58.89±0.50 57.32±0.98 85.03±0.83
Probabilistic modeling 93.84±1.61 68.64±3.57 58.48±0.73 57.00±1.20 83.93±0.83
MeTaL 92.32±1.44 58.28±1.95 58.48±0.90 56.17±0.66 71.74±0.57

Alg. 1 (Ours) 97.47±0.82 81.80±1.14 61.22±0.39 57.54±0.55 93.50±0.24

4.3 Results for Improving MTL Performance

Next, we apply our approach to MTL on weak supervision and NLP tasks. We compare our approach with
the following baselines. First, we consider training by naively combining all source and target tasks. Second,
we consider bilevel optimization methods, including TAWT (Chen et al., 2022) and Auto-λ (Liu et al., 2022),
and MTL optimization methods, including HOA (Standley et al., 2020), TAG (Fifty et al., 2021). The latter
two methods use a branch-and-bound algorithm that does not scale to over 20 tasks in one dataset. To allow
for a comparison with them, we apply the thresholding procedure to their first-order task affinity scores to
select source tasks. To set the threshold γ in our algorithm, we use grid search from −0.5 to 0.5 at an interval
of 0.1. We choose this range because it covers the values of most coefficients in our experiments.

Multitask weak supervision. First, we apply our algorithm to five weak supervision datasets, which
involve text classification from multiple weak labels. We select a subset of labeling functions so that using
their weak labels to train an end model best improves performance on the target task. We also compare
against methods that use a label model to aggregate the weak labels and then train an end model on the
aggregated label. These include taking a majority vote on the weak labels, applying probabilistic modeling to
combine the noisy labels (Ratner et al., 2016), and MeTaL (Ratner et al., 2019).

Next, we compare the experimental results, shown in Table 1. Compared with naively MTL, which trains
all tasks together, our algorithm improves the test performance by 6.4% on average. Compared with MTL
optimization and weak supervision methods, our algorithm outperforms their results by up to 3.6% absolute
and 2.3% on average.
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Figure 5: We find that the selected and not-selected source
tasks are separated in terms of the number of correct labels
provided by each source task versus the number of incorrect
labels from each source task. Each dot represents one label-
ing function.

Lastly, we examine the labeling functions se-
lected by our approach. Recall that our proce-
dure places a threshold over the coefficients to
separate good and bad source tasks. Here, we
use the number of correct and incorrect labels
as a proxy of relatedness between a labeling
function and the target task. Figure 5 shows
the results, measured on two datasets, namely
Chemprot and TREC. Each dot represents one
source task. We observe a clear separation be-
tween selected and excluded source tasks when
we compare the correct/incorrect labels in each
task. This shows that our algorithm selects
more accurate labeling functions for multi-task
weak supervision.
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Table 2: Worst-group accuracies using MTL with source tasks selected by our algorithm, as compared to
STL, MTL optimization methods, and exhaustive search over combinations of up to two source tasks.

Dataset HI KS LA NJ NV SC

Training 4,638 9,484 12,400 28,668 8,884 14,927
Validation 1,546 3,161 4,133 9,556 2,961 4,976
Test 1,547 3,162 4,134 9,557 2,962 4,976
Smallest group size 67 75 58 52 61 203

GroupDRO 74.56±0.58 75.50±0.59 74.90±0.38 76.95±0.20 73.06±0.66 75.56±1.36
Correct-n-contrast 74.37±0.27 75.52±1.19 74.25±0.15 77.60±0.10 73.22±0.40 76.23±0.98
Naive MTL 73.63±0.46 75.22±0.73 73.24±1.01 77.28±0.25 73.22±1.12 76.23±0.49
HOA 74.67±0.32 75.22±1.48 73.69±0.86 77.49±0.25 73.88±0.66 76.80±0.65
TAG 74.48±0.41 75.97±1.18 73.24±1.01 77.41±0.48 74.05±0.84 76.41±0.50
TAWT 73.53±0.44 75.14±1.39 73.51±1.38 76.47±1.31 72.89±0.81 76.59±0.97
Exhaustive search (α ≤ 2) 75.10±0.37 77.03±0.76 73.60±1.02 77.40±0.24 73.21±1.10 77.16±0.21

Alg. 1 (Ours) 75.47±0.73 76.96±0.69 75.62±0.11 78.17±0.36 75.21±0.52 77.62±0.34

NLP tasks. Next, we test our approach to NLP tasks. We collect 25 datasets from GLUE, SuperGLUE,
TweetEval, and ANLI. See Table 4, Appendix C.2 for a complete list. We evaluate our approach by first
selecting source tasks and then applying MTL. We test on five target tasks: CoLA, RTE, CB, COPA, and
WSC. For each task, we use the rest 24 tasks as source tasks.

We first compare our approach with STL and naive MTL. We observe that naive MTL can perform worse
than STL, e.g., on CoLA and WSC datasets. By contrast, our approach always outperforms STL (by 5.5%)
and naive MTL (by 5.4%), on average. We then compare our approach with TAG and HOA. Our approach
shows an average improvement of 2.2% and is especially effective for tasks with a small training set.

4.4 Results for Improving Robustness in Multi-group Learning

We apply our approach to multi-group learning settings where the input distribution contains a heterogeneous
mixture of subpopulations. The objective of these problems is to learn a model that performs robustly
for all groups. In particular, we apply our approach to three performance metrics: worst-group accuracy,
democratic disparity, and equality of opportunity. We also compare against STL methods, including group
distributional robust optimization (GroupDRO, Sagawa et al. (2020)) and supervised contrastive learning
(correct-n-contrast, Zhang et al. (2022)). Table 2 presents the comparison.

Compared with single-task learning, including GroupDRO and correct-n-contrast, we find that task modeling
improves the worst-group accuracy by 1.17% on average. Compared with existing MTL optimization
methods, our approach shows a favorable gain of up to 1.9% absolute accuracy. Measured by two fairness
metrics, namely democratic disparity and equality of opportunity, our algorithm outperforms all baseline
methods by 1.8% on average. These results can be found in Table 6 of Appendix C.2.

4.5 Techniques to Speed Up Training

Lastly, we show that we can further reduce the runtime of our approach by adding two techniques. Our
objective is to achieve comparable performance results to the ones shown in Table 1, but we will speed up
the computation of f(S1), f(S2), . . . , f(Sn) using the following two simple techniques.

• First, we can reduce the size of the training set for computing f by downsampling the training data
from each task by a fixed proportion.

• Second, we can reduce the number of iterations for training each MTL model by early stopping the
training procedure.

To illustrate the benefit of these two techniques, we apply them to two weak supervision datasets. The results
are shown in Table 3. We find that by downsampling 40% of the training data and early stopping at 20% of
the training epochs, we can achieve comparable performance to fully training MTL models. In particular, the
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Table 3: Speeding up our approach by training models on sampled subsets of tasks with 20% training epochs
(early stopping) and 40% training data (downsampling). With these two speed-up techniques, we can achieve
comparable performance compared to fully computing the MTL performances.

Dataset (Metrics) CDR (Hours / F1) Chemprot (Hours / Acc.)

Alg. 1 w/o early stopping and downsampling 38.34H / 61.22±0.39 31.14H / 57.54±0.55
Alg. 1 w/ early stopping and downsampling 2.89H / 60.77±0.05 3.76H / 57.06±0.84

accuracy difference is within 0.5% for both datasets. However, we manage to reduce the training time for
computing f(S1), f(S2), . . . , f(Sn) by 12× times. In Table 7 of Appendix C.3, we report the running time
for all the baselines on these two datasets. Overall, our approach is comparable to the baseline optimization
methods in terms of efficiency.

4.6 Ablation Studies

Benefit of modeling higher-order transfers. We validate the benefit of modeling higher-order task
transfers over approaches that only precompute first-order or second-order task affinities. First, compared
with approaches that compute first-order task affinities, our approach improves the accuracy by 3.0%, as
is clear from Tables 1 and 2. Second, we precompute the MTL performance for every combination of two
source tasks. We run an exhaustive search over k(k − 1)/2 combinations to find the best combination for
MTL. We test on six target tasks with k = 50, which requires training 1, 225 MTL models with two source
tasks and one target task each time. We find that our selection procedure consistently outperforms the best
two-task subsets by 1.21% absolute accuracy. This is shown on the last two lines in Table 2.

Sensitivity of model parameters. There are three parameters that require tuning: the subset size α,
the number of samples n, and the loss function ℓ. We vary α for each dataset between {3, 5, 10, 15} via
cross-validation, on a holdout set of 100 subsets. We pick n in {50, 200, 400, 800} according to the number of
tasks k. Besides, we find that choosing ℓ as the classification margin function performs the best in practice.

The threshold γ is usually set as 0.3 or 0.4 for weak supervision datasets, which selects most of the source
tasks on average except the highly noisy labels. For instance, on the Semeval dataset with 164 source tasks,
our approach selected 160, while α is 15. For the NLP and multi-group learning tasks, γ is usually set as
−0.5. This usually selects 3 or 4 source tasks, while α is 5. Thus, there is only a small number of helpful
source tasks for a particular target task.

Lastly, we find that the selected tasks remain the same when using different random seeds to train the
surrogate model. For details, see Appendix C.4.

5 Related Work

We note that there is a vast body of work on multi-task learning from various fields. A recurring theme for
multitask learning research is inspired by a desire to imitate human intelligence as we continue to learn new
information and extrapolate the learned information to new tasks and domains (Thrun and Pratt, 1998). In
the early literature, many studies focus on MTL with linear and kernel-based models. A common approach is
to set up separate parameters for each task while adding explicit regularization to the combined parameters
(Evgeniou and Pontil, 2004; Argyriou et al., 2007; 2008). For linear models, this approach can be related
to low-rank matrix approximation (Ando and Zhang, 2005). Inspired by the development of deep learning,
recent works focus on MTL with deep neural networks (Yang and Hospedales, 2017). More broadly, see
several recent surveys (Zhang and Yang, 2021; Jiang et al., 2022) for more comprehensive references. Within
this vast literature, the contribution of our work is in the identification of negative transfers and the design of
subset selection methods. Below, we discuss several relevant topics in detail.

Understanding Black-box Predictions. Surrogate modeling is a classic technique for studying black-box
functions (Sacks et al., 1989; Ong et al., 2003), which we use as a proxy to study task relatedness. Our
approach builds on the recent work of datamodels (Ilyas et al., 2022). However, there are two major differences
between our work and their work. First, we apply the idea of surrogate models to multitask learning, whereas
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their work focuses on the single-task supervised learning setting. Second, besides empirical demonstrations,
we have also conducted a theoretical analysis of our approach to multi-task learning. Our findings reinforce
the result of Ilyas et al. (2022) that the performances of deep neural networks can be extrapolated efficiently
and accurately. Recent work has sought to explain why datamodels can perform well using harmonic analysis
(Saunshi et al., 2022). It would be interesting to see if their techniques can be used to explain the empirical
findings of our work in the context of MTL. More broadly, there is a line of work on developing techniques to
understand the influence of data in black-box models through influence functions. See Koh and Liang (2017)
and Yeh et al. (2018) for further references.

Formal Notions of Task-relatedness. There is a rich discussion about formulating notions of task-
relatedness in the literature (Ben-David and Schuller, 2003). Ben-David et al. (2010) introduces a discrepancy
notion called H-divergence, which leads to a generalization bound for minimizing the empirical risk of naive
MTL. Transfer exponents are another measure of discrepancy between two distributions (Hanneke and
Kpotufe, 2019). Geometric distance measures for linear data models have also been considered in few-shot
learning (Du et al., 2020) and meta-learning (Kong et al., 2020; Saunshi et al., 2021).

Note that none of these task-relatedness measures can be measured on deep neural networks due to the
complexity of these models. One heuristic solution is to measure the cosine similarity between the gradients
of each task’s loss functions during training (Yu et al., 2020; Dery et al., 2021; Chen et al., 2022). Another
solution is to measure the similarity of the predicted probabilities between tasks (Nguyen et al., 2020). This
leads to a noisy estimate of task-relatedness, which is best for capturing first-order transfers. Standley et al.
(2020) combines domain knowledge from visual intelligence to build a task relation taxonomy for 26 tasks.
Compared with their approach, our approach is more generic, applies to any MTL settings with little to no
domain knowledge, and efficiently captures higher-order transfer in a principled framework. Rather than
defining an explicit relatedness measure, our work uses surrogate models to measure task-relatedness. This
perspective circumvents the design of explicit task-relatedness measures for deep neural networks but is still
useful for predicting transfers and for optimizing the performance of MTL.

Optimization Methods for MTL. An empirical motivation for this paper stems from recent work using
weak supervision for training deep models (Ratner et al., 2016). We build on a multi-task weak supervision
approach (Ratner et al., 2019) while adding new capability to deal with conflicts between labeling functions
in the end model. This problem has also been studied in the rich literature about learning from noisy labels
(Liu and Tao, 2015). For example, Xia et al. (2019) and Xia et al. (2020) propose to estimate transition
matrices for multi-class prediction and use statistically-consistent weighting to integrate multiple noisy labels.
Complementary to these works, we fit a surrogate model to approximate multitask learning performances
and use the surrogate model to predict the performance of unseen task combinations.

Our approach selects source tasks for learning a target task, which has been studied in several recent works
using optimization methods (Guo et al., 2019; Chen et al., 2022). Recent work (Liu et al., 2022) optimizes a
weighted combination of per-task loss functions and jointly updates task-specific weights by the gradients of
per-task losses during training. By contrast, our approach focuses on subset selection. Besides, our approach
can separate tasks with more noisy labels when source tasks have disparate labeling precision. Our setting is
also related to the task grouping problem (Kumar and Daume III, 2012), which aims to assign tasks into
several groups, with each group of tasks learned in a separate MTL model. Unlike this problem, we select a
subset of source tasks for a particular target task.

There are also works that apply low-rank tensor factorization to the parameters of multiple linear regression
tasks (Wimalawarne et al., 2014). Along this line of research, several recent works apply low-rank regularization
methods with a block-diagonal structure on the model parameters (Nie et al., 2018; Yang et al., 2020). Yang
and Hospedales (2017) revisit the idea of tensor factorization in the context of deep neural networks. Liu
et al. (2016) provide generalization bounds for multi-task learning under a low-rank structural condition on
all the tasks. Their results shed light on when MTL would be better than STL.

Lastly, we note that task relations are characteristically different between different benchmarks due to the
nature of the data. This paper focuses on developing a methodology for predicting MTL performances using
rigorous theoretical and empirical arguments. Our extensive experiments demonstrate the usefulness of the
methodology. It would be interesting to apply our methodology to large-scale benchmarks beyond what
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we have studied (Zamir et al., 2018; Aribandi et al., 2022). Besides, it would be interesting to see if our
approach can be applied to other related settings such as federated learning (Wang et al., 2020) and multitask
reinforcement learning (Wang et al., 2022), where the problem of identifying negative transfers also arises.
Lastly, although our work focuses on subset selection for multitask learning at the task level, it would be
interesting to see if similar approaches could be applied at the feature level.

6 Conclusion

This paper studied how to efficiently predict negative transfers from multiple source tasks to one target
task. The main contribution is the design and analysis of surrogate models for predicting multi-task learning
performances. Both theoretical and empirical results show that our approach is efficient, accurate, and
advances over prior optimization methods for multi-task learning.

Our work opens up many interesting questions for future work. Although we demonstrated the empirical
strength of linear models for MTL, a rigorous explanation is lacking; Can recent analytic tools for understanding
datamodels (Saunshi et al., 2022) be used here? Can more advanced sampling techniques, such as adaptive
sampling, help speed up the training of surrogate models, which might enable the training of more powerful
models? Lastly, our experiments show that the validation set size of the target task does not need to be very
large for the approach to perform well. This is currently not explained by our Rademacher complexity-based
bound. It is possible that with a tighter generalization analysis via data-dependent bounds, one might get
a result that captures few-shot learning scenarios. This would be an interesting question for future work.
Understanding task relationships in multitask learning is a complex and challenging research question. We
hope our work inspires more principled studies in this direction.
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A Results for Constructing Surrogate Models

Section 2.3 shows that the sample complexity for learning task models is linear in the number of source tasks.
Here, we provide empirical evidence to support this result. We plot the convergence of task modeling on
sixteen target tasks from three datasets described in Section 4.1. We measure the MSE between task model
predictions and empirical training results on the holdout set of size 100, following the experimental setup
described in Section 4.2. Figure 6 shows the results. The red line shows the variance of f , measured across
five random seeds. We observe that:

• The MSE of task models consistently converges close to the variance of the prediction loss.
• The Spearman correlation coefficient between the predictions and the true performances is 0.8 on average.

Thus, we conclude that linear surrogate models can be accurately fitted with less than 8k samples, and the
fitted model can accurately predict the performances of unsampled subsets.
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Figure 6: The MSE of linear surrogate models converges close to the variance of MTL performances. (a-d)
Weak supervision tasks. (e-h) NLP tasks. (i-p) Multi-group learning tasks.

B Complete Proofs of Theoretical Results

Notations. We use f(n) = (1 + o(1))g(n) to indicate that |f(n) − g(n)|/g(n) approaches zero as n goes to
infinity. For a matrix denoted as X, denote the spectral norm (or the largest singular value) of X as ∥X∥2.
Denote the Frobenius norm of X as ∥X∥F .
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B.1 Proof of Lemma 2.2

In the first part of the proof, we prove the convergence from θ̂ to θ̄ by dealing with the randomness of
S1, S2, . . . , Sn. Recall that U is the uniform distribution over subsets of {1, 2, . . . , k} with size α. Let |U| =

(
k
α

)
denote the number of subsets from U .

Proof of Lemma 2.2. Recall the definitions of θ̂ and θ̄ from Section 2. They can be written equivalently as
follows:

θ̂ =
(

I⊤
n In

n

)−1
v

n
and θ̄ =

(
III⊤III
|U|

)−1 III⊤fff

|U|
.

We will use the triangle inequality to separate the error between θ̂ and θ̄ into two parts:∥∥∥θ̂ − θ̄
∥∥∥ =

∥∥∥∥∥
((

I⊤
n In

n

)−1

−
(

III⊤III
|U|

)−1)
v

n
+
(

III⊤III
|U|

)−1 ( v
n

− III⊤fff

|U|

)∥∥∥∥∥
≤

∥∥∥∥∥
(

I⊤
n In

n

)−1

−
(

III⊤III
|U|

)−1∥∥∥∥∥
2

·
∥∥∥ v
n

∥∥∥ (14)

+
∥∥∥∥∥
(

III⊤III
|U|

)−1∥∥∥∥∥
2

·
∥∥∥∥ vn − III⊤fff

|U|

∥∥∥∥ . (15)

We compare v
n and III⊤fff

|U| . Recall that both vectors have k coordinates, each corresponding to one task. For
any task i = 1, . . . , k, let Ei denote the difference between the i-th coordinate of v

n and the i-th coordinate of
III⊤fff
|U| :

Ei = 1
n

∑
1≤j≤n: i∈Sj

f(Sj) − 1
|U|

∑
T ∈U : i∈T

f(T ). (16)

Notice that the sampling of S1, S2, . . . , Sn is independent of the randomness in f . Therefore, we have that
the expectation of Ei is zero:

E [Ei] = 0, for any i = 1, 2, . . . , k.
Next, we apply Chebyshev’s inequality to analyze the deviation of Ei from its expectation. We consider the
variance of Ei, which is equal to the expectation of E2

i since the mean of Ei is zero:

E
[
E2

i

]
= E


 1
n

∑
1≤j≤n: i∈Sj

f(Sj) − 1
|U|

∑
T ∈U : i∈T

f(T )

2


= E

 1
n2

 ∑
1≤j≤n:i∈Sj

f(Sj)

2

− 2
n |U|

∑
1≤j≤n: i∈Sj

f(Sj)
∑

T ∈U : i∈T

f(T ) + 1
|U|2

( ∑
T ∈U : i∈T

f(T )
)2


(17)

Notice that for any T ∈ U such that i ∈ T , the probability that T is sampled in the training dataset of size n
is equal to (|U|−1

n−1
)(|U|

n

) = n

|U|
.

For any two subsets T ̸= T ′ that are both from U such that i ∈ T and i ∈ T ′, the probability that T and T ′

are both sampled in the training set (of size n) is equal to(|U|−1
n−1

)(|U|
n

) ·
(|U|−1

n−1
)(|U|

n

) = n2

|U|2
.
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Thus, by taking the expectation over the randomness of the sampled subsets in equation (17) conditional on
f , we can cancel out the cross terms for every pair of two tasks i ̸= i′, leaving only the squared terms as:

E
[
E2

i

]
= E

[(
1
n2

n

|U|
− 2
n |U|

n

|U|
+ 1

|U|2

) ∑
T ∈U : i∈T

(
f(T )

)2
]

≤ C2

n
· |T ∈ U : i ∈ T |

|U|
≤ C2

n
,

since the value of f is bounded from above by an absolute constant C. Therefore,

E

[
k∑

i=1
E2

i

]
≤ C2k

n
.

By Markov’s inequality, for any a > 0,

Pr
[

k∑
i=1

E2
i ≥ a2k

n

]
≤ C2

a2 .

Therefore, with probability at least 1 − δ, for any δ > 0, conditional on the randomness of f , we have that∥∥∥∥ vn − III⊤fff

|U|

∥∥∥∥ ≤ C

√
k

δn
. (18)

Next, we use random matrix concentration results to analyze the difference between the indicator matrix of
the sampled subsets and the indicator matrix of all subsets in U . Denote by

E = I⊤
n In

n
− III⊤III

|U|
and A = III⊤III

|U|
.

By the Sherman-Morrison formula calculating matrix inversions, we get∥∥∥∥(I⊤
n In

n

)−1
−
(III⊤III

|U|

)−1
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2
=
∥∥(E +A)−1 −A−1∥∥

2

=
∥∥∥∥A−1

(
AE−1 + Idk×k
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2
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∥∥∥∥A−1E

(
A+ E
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2

≤
(
λmin(A)

)−1 · ∥E∥2 ·
(
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≤ ∥E∥2

λmin(A)(λmin(A) − ∥E∥2) . (19)

We now use the matrix Bernstein inequality (cf. Theorem 6.1.1 in Tropp (2015)) to deal with the spectral
norm of E. Let

Xi = 1Si
1

⊤
Si

− III⊤III
|U|

, for any i = 1, . . . , n.

In expectation over U , we know that E [Xi] = 0, for any i = 1, . . . , n. Additionally, ∥Xi∥2 ≤ 2α, since it is a
linear combination of indicator vectors with α entries of ones in each indicator vector. Therefore, for all t ≥ 0,

Pr [∥E∥2 ≥ t] = Pr
[∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
2

≥ nt

]
≤ 2k · exp

(
− (nt)2/2

(2α)2n+ (2α)nt/3

)
.

With some standard calculations, this implies that for any δ ≥ 0, with probability at least 1 − δ,

∥E∥2 ≤
4α · log

(
2kδ−1)

√
n

. (20)
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By applying equation (18) into equation (14) and equation (20) into equation (15), we have shown that with
probability at least 1 − 2δ, for any δ ≥ 0,

∥∥∥θ̂ − θ̄
∥∥∥ ≤

∥∥∥ v
n

∥∥∥
2

·
4α · log

(
2kδ−1

)
√
n

+ 1(
λmin(A)

)2(
λmin(A) − ∥E∥2

) · C
√

k

δn
. (21)

Lastly, we examine the norm of v
n . Let zi be the number of subsets Sj among 1 ≤ j ≤ n such that i ∈ Sj , for

any i = 1, . . . , n. Recall that the value of f is bounded from above by an absolute constant C. Thus, based
on the definition of v from equation (8), we have:

∥∥∥ v
n

∥∥∥ ≤ 1
n

√√√√C2
k∑

i=1
z2

i ≤ C

n

(
k∑

i=1
zi

)
= Cα, (22)

since the size of each subset is strictly equal to α.

Regarding the minimum eigenvalue of A, notice that the diagonal entry of III⊤III
|U| is equal to

(
k−1
α−1
)
. The

off-diagonal entries of this matrix are equal to
(

k−2
α−2
)
. Thus, based on standard algebra, one can prove that

λmin(A) ≥ 1 −
(

k−2
α−2
)(

k−1
α−1
) = 1 − α− 1

k − 1 ≥ 1 − α

k
. (23)

Applying equations (22) and (23) back into equation (21), we conclude that with probability at least 1 − 2δ,
θ̂ the estimation error between θ̂ and θ̄ grows at a rate of

√
k
n as follows:

∥∥∥θ̂ − θ̄
∥∥∥ ≤ 4Cα2 log(2kδ−1) ·

√
k

n
+
(

1 − α

k

)−3
Cα ·

√
k

δn
.

Thus, we have proved that equation (9) holds, and the proof is complete.

B.2 Proof of Lemma 2.3

In the second part, we prove the convergence from θ̄ to θ⋆ by dealing with the randomness of f .

Proof of Lemma 2.3. Based on the definitions of θ̄ and θ⋆, their difference can be written as follows:∥∥θ̄ − θ⋆
∥∥ =

∥∥∥∥(III⊤III
)−1

III⊤(fff − E [fff ]
)∥∥∥∥ (24)

≤

∥∥∥∥∥(III⊤III
|U|

)−1 III⊤√
|U|

∥∥∥∥∥
2

·

∥∥∥∥∥fff − E [fff ]√
|U|

∥∥∥∥∥
=

√√√√(III⊤III
|U|

)−1

· ∥fff − E [fff ]∥√
|U|

≤
(

1 − α

k

)− 1
2 · ∥fff − E [fff ]∥√

|U|
. (by equation (23))

For each subset T ∈ U , recall that f(T ) is the MTL outcome of combining the datasets of all tasks of T with
the main target task. We will apply a Rademacher complexity-based generalization bound to analyze the
generalization error f(T ) − E [f(T )]. Recall the Rademacher complexity of F with m samples from Dt is
defined in equation (5). By Bartlett and Mendelson (2002, Theorem 5), with probability at least 1 − δ, we
can get:

f(T ) ≤ E [f(T )] + Rm(F)
2 +

√
log
(
1/δ
)

2m . (25)
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Similarly, one can get the result for the other directions of the error estimate. With a union bound over all
subsets T ∈ U , with probability at least 1 − δ, we get:

f(T ) ≤ E [f(T )] + Rm(F)
2 +

√
α log

(
k
δ

)
2m , for all T ∈ U , (26)

since

log
((

k
α

)
δ

)
≤ α log

(
k

δ

)
.

Let z =
√
α log

(
kδ−1

)
/(2m). Applying equation (26) back into equation (24), we have shown

∥∥θ̄ − θ⋆
∥∥ ≤

(
1 − α

k

)− 1
2

√√√√ 1
|U|

∑
T ∈U

(
Rm(F)

2 + z

)2

=
(

1 − α

k

)− 1
2

(
Rm(F)

2 + z

)
.

Thus, based on the condition that α ≤ k/2, the proof of equation (10) is complete.

Proof of Theorem 2.1. Notice that equation (6) follows by combining equation (9) from Lemma 2.2 and
equation (10) from Lemma 2.3, together with the condition that α ≤ 1/2. Thus, the proof of the theorem is
finished.

Remark. Our result depends on the Rademacher complexity of the function class. This complexity measure
can be vacuous on real data for deep neural networks. It would be interesting to incorporate data-dependent
generalization bounds in the proof (e.g., Li and Zhang (2021) and Ju et al. (2022), 2023).

B.3 Convergence of the Empirical Risk

Based on the results from Lemma 2.2 and Lemma 2.3, we can also prove the convergence of the loss values.
This is stated precisely in the following result.

Corollary B.1 (of Theorem 2.1). In the setting of Theorem 2.1, we have that

L(θ⋆) − L̂n

(
θ̂
)
≲ Cα · Rm(F) + Cα1.5

√
log(δ−1k)

m
+ C2α3.5 log

(k
δ

)√k

n
+ C2α2.5

√
k

δn
. (27)

Proof. To analyze the generalization error of θ̂, based on equation (2), we can expand the loss term as

L̂n(θ̂) = 1
n

∥∥∥Inθ̂ − f̂
∥∥∥2

= 1
n

∥∥∥∥∥Inθ̂ − Ê
f

[
f̂
]

+ Ê
f

[
f̂
]

− f̂
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2

= 1
n

∥∥∥∥∥Inθ̂ − Ê
f

[
f̂
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2

+ 2
n

⟨Inθ̂n − Ê
f

[
f̂
]
, Ê

f

[
f̂
]

− f̂⟩ + 1
n

∥∥∥∥∥Êf
[
f̂
]

− f̂

∥∥∥∥∥
2

. (28)
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Based on Lemma 2.2, the distance between θ̂ and θ⋆ is at the order of O(n−1/2) with high probability. We
will use this result to deal with the first term in equation (28) as follows:

1
n

∥∥∥∥∥Inθ̂n − Ê
f

[
f̂
]∥∥∥∥∥

2

− 1
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⋆ − Ê
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2

(29)

=
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n In, θ̂(θ̂)⊤ − θ⋆(θ⋆)⊤⟩ − 2
n

⟨Ê
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]
, θ̂ − θ⋆⟩

∣∣∣∣∣
≤
∥∥∥∥ 1
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∥∥∥∥
2

·
∥∥∥θ⋆(θ⋆)⊤ − θ̂(θ̂)⊤

∥∥∥
F

+ 2
n

∥∥∥∥∥Êf
[
f̂
]∥∥∥∥∥ ·

∥∥∥θ⋆ − θ̂
∥∥∥ (by triangle inequality)

≤α
∥∥∥θ⋆(θ⋆)⊤ − θ̂(θ̂)⊤

∥∥∥
F

+ 2Cα · e1,

where e1 denotes the right hand side of equation (6). In the last step, the first part uses the fact that I⊤
n In/n

is the average of n rank one matrix, each with spectral norm α since they have exactly α ones. The second
part uses an argument similar to equation (22) and the result of equation (6). Next,∥∥∥θ⋆(θ⋆)⊤ − θ̂n(θ̂n)⊤

∥∥∥
F

=
∥∥∥θ⋆(θ⋆ − θ̂n)⊤ + (θ⋆ − θ̂n)(θ̂n)⊤
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(by triangle inequality)

≤
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∥θ⋆∥ +
∥∥∥θ̂∥∥∥)e1. (by equation (6))

We show that the norm of θ⋆ and θ̂n are both bounded by a constant factor times
√
k. To see this,

∥θ⋆∥ =
∥∥∥(III⊤III)−1III⊤ E [fff ]
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α (by equation (23) and the condition that f is bounded by C)

Notice that the spectral norm of the difference between III⊤III/ |U| and I⊤
n In/n has been analyzed in equation

(20). Thus, with similar steps as above, we can show that

∥∥∥θ̂∥∥∥ ≤
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To wrap up our analysis above, we have shown that equation (29) is at most
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(
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4α log
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)
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√
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Next, we consider the second term in equation (28). Let e2 = Rm(F)
2 +

√
α log(k/δ)

2m be the deviation error

indicated in equation (26). Thus, every entry of f̂ − E
[
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is at most e2. Besides, each entry of Inθ̂n − E
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because ∥In∥2 ≤
√
α and f is bounded from above by C. Thus, the second term in equation (28) is less than

e4 = e2

(
√
α ·
((

1 − α

k

)−1
+

4α log
(
2kδ−1)

√
n

)
C

√
α+ C

)
.

23



Published in Transactions on Machine Learning Research (03/2023)

For the population loss L(θ⋆), notice that

L(θ⋆) = E
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(30)

We know that each entry of IIIθ⋆ − E [fff ] is at most (1 − α/k)−1√
α+C. Thus, by Hoeffding’s inequality, with

probability at least 1 − δ, we have∣∣∣∣∣ 1n
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Lastly, we consider the third term in equation (28), compared with the second term in equation (30). For
every T ∈ U , let eT = f(T ) − E [f(T )]. By equation (26), we know that eT is of order O(m−1/2), for every
T ∈ U . Therefore ∣∣∣∣∣ 1n

n∑
i=1

e2
Si

∣∣∣∣∣ ≤
(Rm(F)

2 +
√
α log(k/δ)

2m

)2
, (32)

which is of order O(m−1). Similarly, the same holds for the variance of fff in the second term of equation (30).

Comparing equations (31) and (28), we have shown that

L(θ⋆) − L̂n(θ̂) ≤
(
(1 − α/k)−1√

α+ C + C2)√ log(δ−1)
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√
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√
n

.

The above follows by incorporating the definitions of the error terms e2, e3, e4. Thus, we have proved that
equation (27) holds. The proof is now finished.

B.4 Proof of Theorem 3.1

Recall that In ∈ {0, 1}n×k is the indicator matrix corresponding to the task indices from the training dataset.
Given a set of tasks S with size α, denote their feature matrices and label vectors as (X1, Y1), (X2, Y2), . . . ,
(Xα, Yα). With hard parameter sharing (Yang et al., 2021), we minimize

ℓ(B) =
α∑

i=1
∥XiB − Yi∥2

. (33)

The minimizer of ℓ(B), denoted as B̂, is equal to the following

B̂ =
(

α∑
i=1

X⊤
i Xi

)−1( α∑
i=1

X⊤
i Yi

)
.

For isotropic covariates, by matrix concentration results, the loss of using B on the validation set of the
target task is equal to

f(S) =
∥∥∥B̂ − β(t)

∥∥∥2
+O

(√
p

m

)
.

First, we state the proof of Lemma 3.3 from Section 3.1.
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Proof of Lemma 3.3. We have that Yi = Xiβ
(i) +ϵ(i), where ϵ(i) is a random vector whose entries are sampled

independently with mean 0 and variance σ2. We have

f(S) =

∥∥∥∥∥∥
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For a task i, we know that its coefficient is equal to the i-th entry of(I⊤
n In

n

)−1 I⊤
n f̂

n
.

Let Z = I⊤
n In/n. By equation (12), for any i ̸= j, we observe that∣∣∣∣∣ θ̂i − θ̂j
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2
(1 − α/k)2 . (by equations (19), (20), (23))

The last step follows by applying equations (20) and (23) into equation (19). Thus, we have finished the
proof of equation (11).

Second, we show that provided n, and d are sufficiently large, a separation exists in the coefficients of v
between good and bad tasks.

Proof of Theorem 3.1. We calculate vi/n for all i = 1, . . . , k and compare its value between a good task and
a bad task. We first compare their expectations over the randomly sampled subsets. By equation (18), we get∣∣∣∣∣vi

n
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∑
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Therefore, by applying the triangle inequality with the above two results, we get∣∣∣∣vi − vj
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To deal with equation (35), we apply a union bound over the sample covariance matrix of every subset T in U
to show that they are close to their expectation. By Gaussian covariance estimation results (e.g., Wainwright
(2019, equation (6.12))), for a fixed T ∈ U such that T = {i1, i2, . . . , iα}, we get∣∣∣∣∣∣ 1
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∑
j∈T

X⊤
j Xj − Idp×p

∣∣∣∣∣∣ ≤ 2
√

p

αd
+ 2ϵ+

(√
p

αd
+ ϵ

)2

, (36)

with probability at least 1 − 2 exp
(

− 1
2αdϵ

2). With a union bound over all T ∈ U , we have that the above
holds with probability at least 1 − δ for all T ∈ U , for ϵ that is equal to

ϵ =
√

2αk log(2kδ−1)
αd

.
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Let ε1 denote the error term from equation (36), by inserting the value of ϵ:

ε1 = 2
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.

Let
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(j), for any T ∈ U .

One can verify that ∣∣∣f(T ) − ∥uT ∥2
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Notice that
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X⊤
j ε

(j)(ε(j))⊤Xj

 .
If j is a good task, then the expectation over ε(j) is equal to a2 Id by the assumption of Theorem 3.1. If j is
a bad task, on the other hand, then the expectation over ε(t) is equal to b2 Id.

Let s(T ) denote the number of good tasks in T , for any T ⊆ {1, 2, . . . , k}. Thus,

E
[
∥uT ∥2] =

p
(
a2s(T ) + b2(α− s(T )

))
α2d

. (37)

To argue about the deviation error of ∥uT ∥2, we use the following two estimates (see, e.g., Vershynin (2011)),
which holds with high probability:∣∣∣(ε(j))⊤

XjX
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Therefore, we get that for any T ∈ U , ∣∣∣∥uT ∥2 − E
[
∥uT ∥2

]∣∣∣ ≤ p
√
da2

d2 . (38)

To finish the proof, consider a good task i versus a bad task j. We need the gap in the expectation term
between the good/bad tasks to dominate the standard deviation from the error terms. The gap in the
expectations is based on equation (37). The standard deviation terms are upper bounded by the sum of
equations (35) and (38).

Thus, provided that

(1 − 3ε1)p(a
2 − b2)
α2d

≥ (1 + 3ε1)p
√
da2

d2 + 2Ckδ−1/2
√
n

, (39)

there must exist a threshold separating all the good tasks from the bad ones. We can verify that condition
(39) is satisfied when

n ≳ C2 · k2 · 1
(a2 − b2)2 , and

d ≳
( a2

a2 − b2

)2
k4 + k log

(2k
δ

)
+ p.

To apply Algorithm 1, we set the threshold γ as k/α times any value between the left-hand and right-hand
side of equation (39) (recall that k/α is inherited from Lemma 3.3). Thus, when n and d satisfy the condition
above, combined with Lemma 3.3, with high probability, for any i such that θ̂i < γ, i must be a good task.
When θ̂i > γ, i much be a bad task. Thus, we have finished the proof.
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C Experiment Details

We describe details that were left out of the paper’s main text. First, we describe the additional experimental
setup and the implementation specifics. Second, we present results to further validate the sample complexity
of task modeling. Third, we provide the experimental results that are omitted from Section 4, including the
results for fairness measures and ablation studies.

C.1 Implementation Details

For evaluating multitask learning with natural language processing tasks, we collect twenty-five tasks from
several benchmarks, including GLUE, SuperGLUE, TweetEval, and ANLI. Due to the computation constraint,
we did not include the tasks with a training set size larger than 100k. The collection spans numerous categories
of tasks, including sentence classification, natural language inference, and question answering. Table 4 shows
the statistics of the twenty-five tasks.

Table 4: Dataset description and statistics of twenty-five text datasets.

Task Benchmark Train. Set Dev. Set Task Category Metrics

CoLA GLUE 8.5k 1k Grammar acceptability Matthews corr.
MRPC GLUE 3.7k 1.7k Sentence Paraphrase Acc./F1
RTE GLUE 2.5k 3k Natural language inference Acc.
SST-2 GLUE 67k 1.8k Sentence classification Acc.
STS-B GLUE 7k 1.4k Sentence similarity Pearson/Spearman corr.
WNLI GLUE 634 146 Natural language inference Acc.
BoolQ SuperGLUE 9.4k 3.3k Question answering Acc.
CB SuperGLUE 250 57 Natural language inference Acc./F1
COPA SuperGLUE 400 100 Question answering Acc.
MultiRC SuperGLUE 5.1k 953 Question answering F1a/EM
WiC SuperGLUE 6k 638 Word sense disambiguation Acc.
WSC SuperGLUE 554 104 Coreference resolution Acc.
Emoji TweetEval 45k 5k Sentence classification Macro-averaged F1
Emotion TweetEval 3.2k 374 Sentence classification Macro-averaged F1
Hate TweetEval 9k 1k Sentence classification Macro-averaged F1
Irony TweetEval 2.9k 955 Sentence classification F1(i)

Offensive TweetEval 12k 1.3k Sentence classification Macro-averaged F1
Sentiment TweetEval 45k 2k Sentence classification Macro-averaged Recall
Stance (Abortion) TweetEval 587 66 Sentence classification Avg. of F1(a) and F1(f)

Stance (Atheism) TweetEval 461 52 Sentence classification Avg. of F1(a) and F1(f)

Stance (Climate) TweetEval 355 40 Sentence classification Avg. of F1(a) and F1(f)

Stance (Feminism) TweetEval 597 67 Sentence classification Avg. of F1(a) and F1(f)

Stance (H. Clinton) TweetEval 620 69 Sentence classification Avg. of F1(a) and F1(f)

ANLI (A1) ANLI 1.7k 1k Natural language inference Acc.
ANLI (A2) ANLI 4.5k 1k Natural language inference Acc.

Next, we report the results for baselines by running the open-sourced implementations from the respective
publications. We describe the hyperparameters for baselines as follows. For higher-order approximation and
task affinity grouping, we compute the task affinity scores between source and target tasks. Then, we select
m tasks with the largest task affinity scores as source tasks for each target task. m is searched between 0 and
the number of total tasks.

For gradient decomposition, we search the number of decomposition basis and auxiliary task gradient direction
parameters, following the search space in Dery et al. (2021).

For weighted training, we search the task weight learning rate in [10−2, 102]. The hyper-parameters are tuned
on the validation dataset by grid search. For each target task, we search 10 times over the hyper-parameter
space. We use the same number of trials in tuning hyper-parameters for baselines.
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Table 5: Accuracy/Correlation scores on the development set using surrogate modeling followed by thresholding
(ours), as compared with STL and MTL methods.

Dataset CoLA RTE CB COPA WSC
Metrics Matthews Corr. Accuracy Accuracy Accuracy Accuracy

Train 8500 2500 250 400 554
Validation 1000 3000 57 100 104

STL 59.38±0.70 67.94±0.74 70.36±1.82 64.00±2.19 60.00±2.76
Naive MTL 57.11±0.81 69.31±0.97 71.78±1.39 66.00±2.02 58.20±1.98
HOA 60.09±0.75 69.03±2.03 80.71±2.62 67.20±2.56 61.35±3.12

Alg. 1 (Ours) 60.43±0.79 70.83±1.97 83.57±2.43 69.20±3.71 65.38±2.31

Table 6: Violation of two fairness-related measures (demographic parity and equality of opportunity) on six
multi-group learning tasks with tabular features, averaged over ten random seeds. Lower is better.

Demographic parity HI KS LA NJ NV SC

STL 12.95±1.76 4.09±1.15 26.30±1.21 26.06±0.53 12.62±1.99 22.51±0.47
Naive MTL 8.25±1.31 4.06±1.17 21.24±0.66 27.73±0.94 13.35±0.51 18.83±0.80
HOA 8.63±2.95 6.15±3.00 22.83±0.53 26.14±0.29 13.15±0.64 19.39±1.05
TAG 8.93±2.35 3.97±0.61 20.72±0.86 25.21±0.68 12.24±0.82 18.77±0.85
TAWT 18.12±1.80 4.84±0.71 25.77±0.94 25.66±0.38 12.40±0.74 23.16±0.42

Alg. 1 (Ours) 7.63±2.12 1.06±0.62 17.25±1.13 24.96±0.63 11.34±1.31 17.66±0.80

Equality of opportunity HI KS LA NJ NV SC

STL 9.86±1.29 1.43±3.62 29.64±3.24 22.43±1.02 13.61±3.67 29.93±0.77
Naive MTL 3.86±0.84 2.03±2.11 21.26±1.35 24.43±1.49 12.14±2.21 21.22±1.75
HOA 3.55±2.85 4.34±3.18 22.88±1.72 22.98±1.18 12.92±2.23 23.31±1.77
TAG 4.27±0.25 1.18±0.97 20.66±1.43 21.89±0.69 11.66±1.58 19.89±1.10
TAWT 4.21±2.25 1.40±2.14 30.38±2.17 23.26±0.30 11.77±1.01 30.86±0.84

Alg. 1 (Ours) 0.24±1.32 0.21±1.34 14.14±2.32 21.48±0.90 9.65±3.49 18.54±1.61

C.2 Omitted Results from Section 4.3

Complete results for NLP tasks. In Table 5, we report the complete experimental results for applying
our approach to NLP tasks, as reported in Section 4.3.

Optimizing fairness-related metrics. We show that task modeling is applicable to various performance
metrics for capturing task affinity. Besides the average performance and worst-group performance discussed
in Section 4.3, we consider two fairness measures: demographic parity and equality of opportunity (Ding
et al., 2021).

The demographic parity measure is defined as:∣∣∣Pr
[
ŷ = 1 | g = black

]
− Pr

[
ŷ = 1 | g = white

]∣∣∣,
which measures the difference in the positive rates between white and African American demographic groups.

The equality of opportunity measure is defined as:∣∣∣Pr
[
ŷ = 1 | y = 1, g = black

]
− Pr

[
ŷ = 1 | y = 1, g = white

]∣∣∣,
which measures the difference in the true positive rates between the two groups.

We consider the binary classification tasks with multiple subpopulation groups. Table 6 shows the comparative
results. First, similar to the worst-group accuracy results, we find that multitask approaches (including
ours and previous methods) decrease the violation of both fairness measures compared to ERM, suggesting
the benefit of combining related datasets. Second, our approach consistently reduces both fairness measure
violations more by 1.26% and 2.31% on average than previous multitask learning approaches, respectively.
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C.3 Comparing the Running Time

We provide a comparison of the running time between our approach and the baselines in Table 7. We
notice that the running time of our approach is comparable to MTL optimization methods after adding early
stopping and downsampling to reduce the training time. Our approach is slightly slower than weak supervision
methods that directly aggregate the weak labels while achieving 5% better performance on average.

Dataset (Metrics) CDR (Hours / F1) Chemprot (Hours / Acc.)

Naive MTL 1.99 / 58.20±0.55 1.89 / 53.43±0.53
Majority voting 2.00 / 58.89±0.50 1.91 / 57.32±0.98
Probabilistic modeling 2.00 / 58.48±0.73 1.91 / 57.00±1.20
MetaL 2.00 / 58.48±0.90 1.91 / 56.17±0.66
TAWT 2.30 / 59.85±0.30 2.02 / 53.76±2.96
Auto-λ 3.46 / 59.07±0.05 3.31 / 52.50±1.28

Alg. 1 w/o early stopping and downsampling 38.34 / 61.22±0.39 31.14 / 57.54±0.55
Alg. 1 w/ early stopping and downsampling 2.89 / 60.77±0.05 3.76 / 57.06±0.84

Table 7: Running time of our approach after adding early stopping and downsampling to speed up the
computation of f(S1), f(S2), . . . , f(Sn), as compared with baseline approaches.

C.4 Ablation Studies for Constructing Surrogate Models

Loss function: We consider three choices of prediction losses, including zero-one accuracy, cross-entropy
loss, and classification margin. We observe that the classification margin is more effective than the other two
metrics. The Spearman’s correlation of using the margin is 0.86 on average over two tasks (HI and LA). In
contrast, the Spearman’s correlations of using the loss and accuracy are 0.61 and 0.34, respectively. Besides,
we compare the task selection using the three metrics in Table 8. We find that using the margin outperforms
the other two by 0.37% on average over the six target tasks in terms of worst-group accuracy.

HI KS LA NJ NV SC

f uses zero-one accuracy 75.16±0.70 76.39±1.09 75.15±0.43 77.40±0.49 74.34±1.81 77.29±0.19
f uses cross-entropy loss 75.33±0.80 75.82±0.60 74.19±1.37 77.51±0.35 74.55±1.60 77.21±0.27
f uses classification margin 75.47±0.73 76.96±0.69 75.62±0.11 78.17±0.36 75.21±0.52 77.62±0.34

Table 8: Choosing different loss functions ℓ for six target tasks in the multi-group learning setting.

Subset size: Recall that we collect training results by sampling n subsets from a uniform distribution
over subsets of a constant size. We evaluate the MSE of task models by varying α ∈ {2, 5, 10, 20}. To
control the computation budget the same, we scale the number of subsets n according to α. We train
n = 800, 400, 200, 100 models with α = 2, 5, 10, 20, respectively. We observe similar convergence results as in
Figure 7. Among them, α = 5 yields a highest Spearman’s correlation of 0.89 between f(·) and g(·).
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(a) α = 2
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(b) α = 5
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(c) α = 10
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(d) α = 20
Figure 7: Fitting surrogate models using different α evaluated on a fixed target task.

Number of sampled subsets: Lastly, we show that task selection remains stable under different values of
n. We measure the effect on two tasks (HI and LA) by comparing the 10 tasks with the smallest coefficients
estimated from n = 100, 200, 400 subsets. We observe that using 100 subsets identifies 7/10 source tasks
compared with n = 400. Increasing n to 200 further identifies 9/10 source tasks compared with n = 400.
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