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Abstract
The existing definitions of graph convolution, ei-
ther from spatial or spectral perspectives, are in-
flexible and not unified. Defining a general con-
volution operator in the graph domain is chal-
lenging due to the lack of canonical coordinates,
the presence of irregular structures, and the prop-
erties of graph symmetries. In this work, we
propose a novel and general graph convolution
framework by parameterizing the kernels as con-
tinuous functions of pseudo-coordinates derived
via graph positional encoding. We name this
Continuous Kernel Graph Convolution (CKG-
Conv). Theoretically, we demonstrate that CK-
GConv is flexible and expressive. CKGConv
encompasses many existing graph convolutions,
and exhibits a stronger expressiveness, as pow-
erful as graph transformers in terms of distin-
guishing non-isomorphic graphs. Empirically,
we show that CKGConv-based Networks out-
perform existing graph convolutional networks
and perform comparably to the best graph trans-
formers across a variety of graph datasets. The
code and models are publicly available at https:
//github.com/networkslab/CKGConv.

1. Introduction
Recent advances in applying Transformer architectures in
computer vision ignited a competition with the predomi-
nant Convolutional Neural Networks (ConvNets) (He et al.,
2016a; Tan & Le, 2019). This rivalry started when Vision
Transformers (ViTs) (Dosovitskiy et al., 2021; Wang et al.,
2021; Liu et al., 2021; 2022a) exhibited impressive empir-
ical gains over the best ConvNet architectures of the time.
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Figure 1. Continuous Kernel Graph Convolution (CKGConv)

However, several recent ConvNet variants (Liu et al., 2022b;
Woo et al., 2023) achieve performance comparable to that
of ViTs by incorporating innovative designs such as larger
kernels and depthwise convolutions (Chollet, 2017).

In contrast, the appeal of Convolutional Graph Neural Net-
works (GNNs) seems to be diminishing; Graph Transform-
ers (GTs) demonstrate elevated efficacy on many challeng-
ing graph learning tasks (Ying et al., 2021; Rampášek
et al., 2022; Zhang et al., 2023; Ma et al., 2023). One rea-
son might be that, unlike convolutions in Euclidean space,
most existing definitions of graph convolution are inflex-
ible and not unified. Message-passing Neural Networks
(MPNNs) (Gilmer et al., 2017; Veličković, 2022) are de-
fined in the spatial domain and limited to a one-hop neigh-
borhood; Spectral GNNs (Bruna et al., 2014) are defined
from a graph-frequency perspective and require careful de-
signs (e.g., polynomial approximation (Defferrard et al.,
2016; Wang & Zhang, 2022) or a sophisticated transformer-
encoder (Bo et al., 2023)) to generalize to unseen graphs.

Unlike the general Euclidean convolution operators, there
is no convolution operator for graphs that permits flexible
determination of the support. Defining a general convolu-
tion operator in the graph domain is challenging due to the
characteristics of a graph: the lack of canonical coordinates,
the presence of irregular structures, and graph symmetries.
These aspects are fundamentally different from Euclidean
spaces. By addressing the aforementioned challenges, we
generalize the continuous kernel convolution (Romero et al.,
2022) to graph domain, and propose a general convolution
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framework, namely Continuous Kernel Graph Convolution
(CKGConv, as shown in Fig. 1). This subsumes several com-
mon convolutional GNNs, including non-dynamic1 MPNNs,
polynomial spectral GNNs, and diffusion-enhanced GNNs.
We propose three designs to address the challenges of the
graph domain: (1) pseudo-coordinates for graphs via po-
sitional encoding (addressing the lack of canonical coor-
dinates and handling symmetries); (2) numerically stable
scaled-convolution (compensating for irregular structure);
(3) adaptive degree-scalers (mitigating the impact of sym-
metries).

CKGConv is endowed with several desirable properties.
It exhibits immunity against over-smoothing and over-
squashing. It encompasses Equivariant Set Neural Net-
works (Segol & Lipman, 2020) as a special case for the
setting where there is no observed graph. Furthermore, we
theoretically prove that CKGConv with generalized distance
(GD) can be as powerful as Generalized Distance Weisfeiler-
Lehman (GD-WL) (Zhang et al., 2023) in graph isomor-
phism tests (and is thus more powerful than 1-WL). Our
experiments demonstrate the effectiveness of the proposed
framework. CKGConv ranks among the best-performing
models in a variety of graph learning benchmarks and sig-
nificantly outperforms existing convolutional GNNs.

Our contributions are summarized as follows:

• We propose a novel graph convolution framework based
on pseudo-coordinates of graphs and continuous convolu-
tion kernels.

• We demonstrate theoretically and empirically that our
proposed graph convolution is expressively powerful, out-
performing existing convolutional GNNs and achieving
comparable performance to the state-of-the-art graph
transformers.

• Various exploratory studies illustrate that CKGConv dis-
plays different and potentially complementary behavior
from graph transformers that employ attention mecha-
nisms. This motivates the combination of CKGConv and
attention mechanisms as a potential direction towards de-
signing more powerful graph models.

2. Related Work
Message-Passing Neural Networks MPNNs (Gilmer et al.,
2017; Veličković, 2022) are a class of GNNs widely used
in graph learning tasks. To update the representation of
a node i, MPNNs aggregate the features from the direct
neighbors of i. In most cases, the message-passing mech-
anisms can be viewed as convolution with kernels locally
supported on a one-hop neighborhood. The kernels may

1We use the term dynamic to denote filters/kernels, generated
dynamically conditioned on an input (Jia et al., 2016). Filter and
kernel are used interchangeably in this work.

be fixed (Kipf & Welling, 2017; Xu et al., 2019; Hamil-
ton et al., 2017), learnable (Monti et al., 2017), or dy-
namic (Veličković et al., 2018; Bresson & Laurent, 2018).
Recent Graph Rewiring techniques extend MPNNs beyond
one-hop by introducing additional edges, guided by curva-
ture (Topping et al., 2022), spectral gap (Arnaiz-Rodrı́guez
et al., 2022), geodesic distance (Gutteridge et al., 2023), or
positional encoding (PE) (Gabrielsson et al., 2023). Despite
some similarity to our work, the usage of PE by Gabrielsson
et al. (2023) is constrained by the MPNN framework and
lacks flexibility.

Spectral and Polynomial Graph Neural Networks In
contrast to MPNNs, Spectral Graph Neural Networks de-
fine graph filters in the spectral domain. The pioneering
approach by Bruna et al. (2014) cannot generalize to an
unseen graph with a different number of nodes. Follow-up
works, constituting the class of Polynomial Spectral Graph
Neural Networks, address this by (approximately) parameter-
izing the spectral filters by a polynomial of the (normalized)
graph Laplacian (Defferrard et al., 2016; He et al., 2021;
Liao et al., 2022; Wang & Zhang, 2022). Similarly, Diffu-
sion Enhanced Graph Neural Networks extend spatial filters
beyond one-hop by a polynomial of diffusion operators
(e.g., adjacency matrix, random walk matrix) (Gasteiger
et al., 2019b;a; Chien et al., 2021; Zhao et al., 2021; Frasca
et al., 2020; Chamberlain et al., 2021), exhibiting strong
connections to spectral GNNs. Notably, besides the polyno-
mial approach, recent works endeavor to generalize spectral
GNNs by introducing extra graph-order invariant operations
on eigenfunctions of graph Laplacian (Beani et al., 2021;
Bo et al., 2023).

Graph Transformers GTs are equipped with the trans-
former architecture (Vaswani et al., 2017), consisting of self-
attention mechanisms (SAs) and feed-forward networks. Di-
rectly migrating the transformer architecture to graph learn-
ing tasks cannot properly utilize the topological information
in graphs and leads to poor performance (Dwivedi & Bres-
son, 2021). Modern graph transformer architectures address
this by integrating message-passing mechanisms (Kreuzer
et al., 2021; Chen et al., 2022; Rampášek et al., 2022) or
incorporating graph positional encoding (PE) (Kreuzer et al.,
2021; Ying et al., 2021; Zhang et al., 2023; Ma et al., 2023).
Appendix B provides more detail about graph PE.

Expressiveness of Graph Neural Networks Graph iso-
morphism tests have been widely used to measure the the-
oretical expressiveness of GNNs in terms of their ability
to encode topological patterns. Without additional ele-
ments, MPNNs’ expressive power is bounded by first-order
Weisfeiler-Lehman (1-WL) algorithms (Xu et al., 2019).
Polynomial spectral GNNs are as powerful as 1-WL algo-
rithms; it is not known if this is a bound (Wang & Zhang,
2022). Higher-order GNNs (Morris et al., 2019) can reach
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the same expressive power as K-WL with a cost of O(NK)
computational complexity. Recently, Zhang et al. (2023)
demonstrate that, under the O(N2) complexity constraint,
Graph Transformers with generalized distance (GD) can go
beyond 1-WL but are still bounded by 3-WL.

Continuous Kernel Convolution in Euclidean Spaces In
order to handle irregularly sampled data and data at dif-
ferent resolutions, Romero et al. (2022) and Knigge et al.
(2023) propose learning a convolution kernel as a continu-
ous function, parameterized by a simple neural network, of
the coordinates (relative positions), resulting in Continuous
Kernel Convolution. This enables the convolution to gen-
eralize to any arbitrary support size with the same number
of learnable parameters. Driven by different motivations,
several works have explored similar ideas for point cloud
data (Hermosilla et al., 2018; Wu et al., 2019; Xu et al.,
2018; Hua et al., 2018). From a broader perspective, con-
tinuous kernels can be viewed as a subdomain of Implicit
Neural Representation (Mildenhall et al., 2020; Sitzmann
et al., 2020; Tancik et al., 2020), where the representation
targets are the convolution kernels. Note that these tech-
niques rely on canonical coordinates in Euclidean spaces
and cannot be directly applied to non-Euclidean domains
like graphs.

3. Methodology
3.1. Preliminary: Continuous Convolution Kernels

Let x : Z → R and ψ : Z → R be two scalar-valued real
sequences sampled on the set of integers Z, where x[k] and
ψ[k] denote the signal and filter impulse response (kernel)
at time k, respectively. The discrete convolution between
the signal and the kernel at time k is defined as follows:

(x ⋆ ψ)[k] :=
∑
ℓ∈Z

x[ℓ]ψ[k − ℓ] , (1)

In most cases, the kernel is of finite width nψ , i.e., ψ[k] = 0
if k < 0 or k ⩾ nψ. The convolution sum in Eq. (1) is
accordingly truncated at ℓ /∈ [k − nψ + 1, k]. However,
learning such fixed support, discrete kernels cannot be gen-
eralized to arbitrary widths (i.e., different nψ) with the same
set of parameters.

To address this shortcoming, Romero et al. (2022) propose
to learn convolutional kernels by parameterizing ψ[k] via a
continuous function of k, implemented using a small neural
network (e.g., multi-layer perception (MLP)). This is termed
Continuous Kernel Convolution (CKConv). This formula-
tion allows CKConv to model long-range dependencies and
handle irregularly sampled data in Euclidean spaces.

3.2. Graph Convolution with Continuous Kernels

In the graph domain, convolution operators are required to
handle varying sizes of supports, due to a varying number of
nodes and the irregular structures. We explore the potential
of continuous kernels for graphs and propose a general
graph convolution framework with continuous kernels.

The generalization of continuous kernels to graph domain is
not trivial due to the following characteristics: (1) the lack
of canonical coordinates (Bruna et al., 2014) makes it dif-
ficult to define the relative positions between non-adjacent
nodes; (2) the irregular structure requires the kernel to gen-
eralize to different support sizes while retaining numerical
stability (Veličković et al., 2020; Corso et al., 2020); (3) the
presence of graph symmetries demands that the kernel can
distinguish between nodes in the support without introduc-
ing permutation-sensitive operations (Hamilton et al., 2017)
or extra ambiguities (Lim et al., 2023).

These challenges drive us to propose a general graph con-
volution framework with continuous kernels, namely CK-
GConv. Our overall design consists of three innovations:
(1) we use graph positional encoding to derive the pseudo-
coordinates of nodes and define relative positions; (2) we
introduce a scaled convolution to handle the irregular struc-
ture; (3) we incorporate an adaptive degree-scaler to im-
prove the representation of structural graph information.

3.2.1. GRAPH POSITIONAL ENCODING AS
PSEUDO-COORDINATES

In contrast to Euclidean spaces, the graph domain is known
to lack canonical coordinates. Consequently, it is not trivial
to define the relative distance between two non-adjacent
nodes. Pioneering work (Monti et al., 2017) attempted to de-
fine pseudo-coordinates for graphs, however, the definition
was restricted to one-hop neighborhoods.

In this work, we reveal that pseudo-coordinates can be natu-
rally defined by graph positional encoding (PE), allowing
us to specify relative positions for continuous kernels be-
yond the one-hop neighborhood constraint. Specifically,
we use Relative Random Walk Probabilities (RRWPs) (Ma
et al., 2023), which have been demonstrated to be one of
the most expressive graph positional encodings (Black et al.,
2024). Let A ∈ RN×N be the adjacency matrix of a graph
G = (V, E) with N nodes, and let D be the diagonal degree
matrix, Di,i =

∑
j∈V Ai,j . The random walk matrix is

M := D−1A. Entry Mij is then the probability of a move
from node i to node j in one step of a simple random walk.
The (top) K-RRWP for each pair of nodes i, j ∈ V con-
sists of zeroth to (K−1)th powers of random walk matrix,
defined as:

Pi,j = [I,M,M2, . . . ,MK−1]i,j ∈ RK , (2)

3



CKGConv: General Graph Convolution with Continuous Kernels

where I ∈ RN×N denoting the identity matrix. We add an
extra re-scaling on RRWP to remove the dependency on
graph-orders (details in Appendix A.2).

RRWP is not the only choice for constructing pseudo-
coordinates. One can use other graph positional encodings
such as shortest-path-distance (SPD) (Ying et al., 2021) and
resistance distance (RD) (Zhang et al., 2023).

3.2.2. NUMERICALLY STABLE GRAPH CONVOLUTION

When applying a kernel to different nodes in graphs, the sup-
port size can vary remarkably. To ensure numerical stability
and the ability to generalize, it is crucial to avoid dispropor-
tionate scaling of different node representations (Veličković
et al., 2020).

Therefore, we introduce a scaling term to perform scaled
convolution in CKGConv. We consider a kernel function
ψ : Rr → R. For a graph G = (V, E) with node-signal
function χ : V → R, CKGConv is defined as:2

(χ⋆ψ)(i) :=
1

| suppψ(i)|
∑

j∈suppψ(i)

χ(j)·ψ(Pi,j)+b . (3)

Here b ∈ R is a learnable bias term; the set suppψ(i) is the
predefined support of kernel ψ for node i (i.e., | suppψ(i)|
denotes the kernel size); and Pi,j ∈ RK is the relative
positional encoding.

Owing to the flexibility of CKGConv, we can set suppψ(i)
to be the K-hop neighborhood3 of node i, with K being
an arbitrary positive integer. Alternatively, we can choose
the support to be the entire graph, thereby constructing a
global kernel. This flexibility arises because the construc-
tion of pseudo-coordinates is decoupled from the evaluation
of the convolution kernel. We show that the globally sup-
ported variant is endowed with several desired theoretical
properties (Sec. 3.3 and Sec. 4.2).

3.2.3. DEPTHWISE SEPARABLE CONVOLUTION

We extend the scalar-valued definition of CKGConv (shown
in Eq. (3)) to vector-valued signals (χ : V → Rd and (χ ⋆
ψ)(i) : V → Rd′ ) via the Depthwise Separable Convolution

2In the Euclidean domain, conventional convolution involves
reversal and shifting of the filter (kernel). The meaning of reversal
is not obvious in the graph domain. Although there is no explicit
reversal in our procedure, the kernel ψ is a mapping from a pos-
itive relative positional encoding Pi,j . For each node i, we can
thus view it as a symmetric filter with respect to a corresponding
absolute positional encoding (that we do not specify), and rever-
sal would not change the filtering coefficient for a node j. We
therefore retain the usage of the terminology convolution in this
work.

3The K-hop neighborhood of node i is the set of nodes whose
shortest-path distance from node i is smaller than or equal to K.

(DW-Conv) architecture (Chollet, 2017),

(χ⋆ψ)(i) := W
(

1
| suppψ(i)|

∑
j∈suppψ(i)

χ(j)⊙ψ(Pi,j)
)
+b .

(4)
Here ψ : RK → Rd is a kernel function acting on a vector;
W ∈ Rd′×d and b ∈ Rd′ are the learnable weights and
bias, respectively, shared by all nodes; and ⊙ stands for
elementwise multiplication.

We can alternatively extend Eq. (3) to multiple channels via
grouped convolution (Krizhevsky et al., 2012), multi-head
architectures (Vaswani et al., 2017), or even MLP-Mixer
architectures (Tolstikhin et al., 2021; Touvron et al., 2023).
We select DWConv because it provides a favorable trade-off
between expressiveness and the number of parameters.

3.2.4. MLP-BASED KERNEL FUNCTION

In this work, as an example, we introduce kernel functions
parameterized by multi-layer perceptrons (MLPs), but the
proposed convolution methodology accommodates many
other kernel functions. Each MLP block consists of fully
connected layers (FC), non-linear activation (σ), a normal-
ization layer (norm) and a residual connection, inspired by
ResNetv2 (He et al., 2016b):

MLP(x) := x+ FC ◦ σ ◦ Norm ◦ FC ◦ σ ◦ Norm(x) . (5)

Here ◦ denotes function composition; FC(x) := Wx+ b,
with learnable weight matrix, W ∈ Rr×r, and bias, b ∈ Rr;
and we use GELU (Hendrycks & Gimpel, 2023) as the
default choice of σ.

The overall kernel function ψ is defined as:

ψ(Pi,j) := FC ◦ Norm ◦ MLP ◦ · · · ◦ MLP(Pi,j) , (6)

where the last FC : Rr → Rd maps to the desired number
of output channels.

3.2.5. DEGREE SCALER

As a known issue in graph learning, the scaled convolu-
tions and mean-aggregations cannot properly preserve the
degree information of nodes (Xu et al., 2019; Corso et al.,
2020). Therefore, we introduce a post-convolution adaptive
degree-scaler into the node representation to recover such
information, following the approach proposed by Ma et al.
(2023):

x′
i := xi ⊙ θ1 +

(
d
1/2
i · xi ⊙ θ2

)
∈ Rd . (7)

Here di ∈ R is the degree of node i, and θ1,θ2 ∈ Rr are
learnable weight vectors.

As an alternative, we also introduce a variant that injects
the degree information directly into the RRWP, Pi,j ∈ Rr,
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before applying the kernel function ψ:

P̂i,j :=Pi,j⊙θ1+
(
(d

1/2
i ⊙ θ2)⊙Pi,j ⊙ (d

−1/2
j ⊙ θ3)

)
,

(8)
where θ1,θ2,θ3 ∈ Rr are learnable parameters and P̂i,j

is used instead of Pi,j in other parts. This variant enjoys
several desired theoretical properties as discussed in Sec. 4.3.
However, in practice, we did not observe any significant
differences in empirical performance, and use Eq. (7) in our
experiments due to its computational efficiency.

3.2.6. OVERALL ARCHITECTURE OF CKGCN

The overall multi-layer architecture of the proposed model,
denoted by Continuous Kernel Graph Convolution Net-
work (CKGCN), consists of L CKGConv-blocks as the
backbone, together with task-dependent output heads (as
shown in Fig. 3 in Appendix A). Each CKGConv block
consists of a CKGConv layer and a feed-forward network
(FFN), with residual connections and a normalization layer:

CKGConvBlock(·) :=norm◦FFN◦norm◦CKGConv(·) . (9)

We use BatchNorm (Ioffe & Szegedy, 2015) in the main
branch as well as in the kernel functions. Using Layer-
Norm (Ba et al., 2016) has the potential to cancel out the
degree information (Ma et al., 2023). Appendix E.4 presents
additional architectural details. The input node/edge at-
tributes (x′

i ∈ Rdh and e′i,j ∈ Rde ) and the absolute/relative
positional encoding (RRWP) are concatenated: xi =
[x′
i∥P′

i,i] ∈ Rdh+K and Pi,j = [e′i,j∥P′
i,j ] ∈ Rde+K ,

where P′
i,j denotes the input PE. A linear projection (a stem)

maps to the desired dimensions before the backbone. If the
data does not include node/edge attributes, zero-padding is
used. For a fair comparison, we use the same task-dependent
output heads as previous work (Rampášek et al., 2022).

3.3. Theory: CKGCN Is as Expressive as Graph
Transformers

Zhang et al. (2023) prove that Graph Transformers with
generalized distance (GD) can be as powerful as GD-WL
with a proper choice of attention mechanisms, thus going
beyond 1-WL and bounded by 3-WL. We provide a similar
constructive proof, demonstrating that CKGConv with GD
is as powerful as GD-WL. It achieves the same theoretical
expressiveness as SOTA graph transformers (Zhang et al.,
2023; Ma et al., 2023), with respect to the GD-WL test.

Proposition 3.1. A Continuous Kernel Graph Convolution
Network (CKGCN), stacking feed-forward networks (FFNs)
and globally supported CKGConvs with generalized dis-
tance (GD) as pseudo-coordinates, is as powerful as GD-
WL, when choosing the proper kernel ψ.

The proof is provided in Appendix E.1.

4. Relationship with Previous Work
4.1. Beyond the Limitations of MPNNs

Despite being widely used, MPNNs are known to exhibit cer-
tain limitations: (1) over-smoothing; (2) over-squashing and
under-reaching; (3) expressive power limited to 1-WL. By
contrast, CKGConv inherently addresses these constraints.
Over-smoothing (Li et al., 2018; Oono & Suzuki, 2020)
arises because most MPNNs apply a smoothing operator (a
blurring kernels or low-pass filter). CKGConv can generate
sharpening kernels, and thus does not suffer from over-
smoothing, as illustrated in a toy example in Appendix D.1.
Over-squashing (Alon & Yahav, 2020; Topping et al.,
2022) is mainly due to the local message-passing within
the one-hop neighborhood. The kernels in CKGConv can
have supports beyond one-hop neighborhoods. Both the
empirical performance on the Long-Range Graph Bench-
mark (Dwivedi et al., 2022c) shown in Table 2 and the
ablation study in Appendix D.3 showcase the effect of ex-
panding the supports and indicate the necessity to go beyond
local message-passing.
Regarding the expressiveness (Xu et al., 2019; Morris et al.,
2019; Loukas, 2020), we have demonstrated in Sec. 3.3 that
CKGConv can reach expressive power equivalent to GD-
WL, thus going beyond 1-WL algorithms. The empirical
experiments also validate the capacity of CKGConv.

4.2. Equivariant Set Neural Networks

In general, graphs can be viewed as a set of nodes with
observed structures among them. Here, we demonstrate
that when the pseudo-coordinates do not encode any graph
structure, CKGConv can naturally degenerate to the general
form of a layer in an Equivariant Set Network (Segol &
Lipman, 2020). This matches the natural transition between
graph data and set data. The following proposition states
that when we use 1-RRWP (i.e., an Identity matrix) as the
pseudo-coordinate (and thus ignore any graph structure),
CKGConv is equivalent to a layer of an equivariant set
network.

Proposition 4.1. With 1-RRWP P = [I], CKGConv with
a globally supported kernel can degenerate to the follow-
ing general form of a layer in an Equivariant Set Network
(Eq. (8) in Segol & Lipman (2020)):

(χ ⋆ ψ)(i) =γ · χ(i) + β ·
( 1

|V|
∑
j∈V

χ(j)
)
+ b . (10)

Here γ, β, b ∈ R are learnable parameters. This can be
directly generalized to vector-valued signals.

The proof is provided in Appendix E.2.
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4.3. Polynomial Spectral and Diffusion Enhanced GNNs

Polynomial spectral GNNs approximate spectral convolution
by fixed-order polynomial functions of the symmetric nor-
malized graph Laplacian matrix L̃ = I−D−1/2AD−1/2 ∈
Rn×n. Similarly, diverse Diffusion Enhanced GNNs use
polynomial parameterization with the diffusion operator Ã
or M replacing the graph Laplacian.

The following proposition states that CKGConv can repre-
sent any polynomial spectral GNN or diffusion-enhanced
GNN of any order with suitable injections of the node de-
grees.

Proposition 4.2. With K-RRWP Pi,j ∈ RK as pseudo-
coordinates, CKGConv with a linear kernel ψ can represent
any Polynomial Spectral GNN or any Diffusion Enhanced
GNNs of (K−1)th order exactly, regardless of the specific
polynomial parameterization, if degree d1/2i and d−1/2

j are
injected to Pi,j properly.

The proof is presented in Appendix E.3. If K → ∞, CK-
GConv can closely approximate a full spectral GNN. This
also highlights the relationship between RRWP and graph
spectral wavelets (Hammond et al., 2011).

Note that CKGConv is strictly more expressive than previous
polynomial spectral GNNs and diffusion-enhanced GNNs.
While polynomial spectral GNNs and diffusion-enhanced
GNNs are constrained by the linear combinations of powers
of Laplacian/diffusion operators, CKGConv, equipped with
non-linear kernels ψ such as MLPs, can construct more gen-
eral convolution kernels. Since MLPs are universal function
approximators (Hornik et al., 1989), CKGConv can repre-
sent a considerably richer class of functions. The ablation
study on the kernel functions (in Appendix D.4) also veri-
fies the importance of introducing kernel functions beyond
linear transformations.

4.4. Fourier Features of Graphs

As mentioned in Proposition 4.2, RRWP can be viewed as a
set of bases for a polynomial vector space, which approxi-
mates the full Fourier basis of graphs (i.e., eigenvectors of
the Laplacian). Therefore, RRWP can be viewed as a set
of (approximate) Fourier features under certain transforma-
tions. Likewise in the Euclidean space, Tancik et al. (2020)
propose to construct Fourier features from coordinates to
let MLPs better capture high-frequency information.

Another existing approach broadly related to our work is
the Specformer (Bo et al., 2023), which generates graph
spectral filters via transformers, given a sampled collec-
tion of Fourier bases4 in the spectral domain. Specformer
approximates the full Fourier bases from the spectral per-

4Operating on the full Fourier bases has O(N3) computational
complexity, where N is the number of nodes in the graph.

spective, whereas CKGConv performs an approximation in
the spatial domain. In a similar fashion to the contrast be-
tween the Fourier transform and the wavelet decomposition,
Specformer achieves better localization on frequencies, and
CKGConv exhibits better localization spatially.

4.5. Graph Transformers

As shown in Sec. 3.3, with the same generalized distances
(e.g., SPD, RD, RRWP) as relative positional encoding or
pseudo-coordinates, CKGConv can reach the same theoreti-
cal expressive power as Graph Transformers, with respect
to graph isomorphism tests.

From a filtering perspective, self-attention in (Graph) Trans-
formers can be viewed as a dynamic filter (Park & Kim,
2021). However, the filter coefficients are constrained to be
positive, and thus self-attention can only perform blurring or
low-pass filtering. In contrast, CKGConv is a non-dynamic
filter, but has the flexibility to include positive and negative
coefficients simultaneously and thus can generate sharpen-
ing kernels.

In this work, we do not claim that CKGConv is better than
Graph Transformers, or vice versa. We emphasize that each
approach has its own advantages. The contrasting strengths
of dynamic and sharpening, present an intriguing possibility
of developing architectures that combine the strengths of
graph transformers and continuous convolution. Exploratory
experiments in Sec. 5.4 highlight the behavioral differences
between graph transformers and CKGCNs, and examine the
performance of a preliminary, naive combination.

5. Experimental Results
5.1. Benchmarking CKGCN

We evaluate our proposed method on five datasets from
Benchmarking GNNs (Dwivedi et al., 2022a) and another
two datasets from Long-Range Graph Benchmark (Dwivedi
et al., 2022c). These benchmarks include diverse node-
and graph-level learning tasks such as node classification,
graph classification, and graph regression. They test an al-
gorithm’s ability to focus on graph structure encoding, to
perform node clustering, and to learn long-range dependen-
cies. The statistics of these datasets and further details of
the experimental setup are deferred to Appendix C.

Baselines We compare our methods with

• SOTA Graph Transformer: GRIT (Ma et al., 2023);
• Hybrid Graph Transformer (MPNN+self-attention):

GraphGPS (Rampášek et al., 2022);
• Popular Message-passing Neural Networks: GCN (Kipf

& Welling, 2017), GIN (Xu et al., 2019) and
its variant with edge-features (Hu et al., 2020),
GAT (Veličković et al., 2018), GatedGCN (Bresson &
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Table 1. Test performance in five benchmarks from (Dwivedi et al., 2022a; Ma et al., 2023; Bo et al., 2023). Shown is the mean ± s.d. of
4 runs with different random seeds. Highlighted are the top first, second, and third results. # Param under 500K for ZINC, PATTERN,
CLUSTER and ∼ 100K for MNIST and CIFAR10.

Model ZINC MNIST CIFAR10 PATTERN CLUSTER

MAE↓ Accuracy↑ Accuracy↑ W. Accuracy↑ W. Accuracy↑
GCN 0.367± 0.011 90.705± 0.218 55.710± 0.381 71.892± 0.334 68.498± 0.976
GIN 0.526± 0.051 96.485± 0.252 55.255± 1.527 85.387± 0.136 64.716± 1.553
GAT 0.384± 0.007 95.535± 0.205 64.223± 0.455 78.271± 0.186 70.587± 0.447
GatedGCN 0.282± 0.015 97.340± 0.143 67.312± 0.311 85.568± 0.088 73.840± 0.326
GatedGCN-LSPE 0.090± 0.001 − − − −
PNA 0.188± 0.004 97.94± 0.12 70.35± 0.63 − −
GSN 0.101± 0.010 − − − −
DGN 0.168± 0.003 − 72.838± 0.417 86.680± 0.034 −
Specformer 0.066± 0.003 - - - -

CIN 0.079± 0.006 − − − −
CRaW1 0.085± 0.004 97.944± 0.050 69.013± 0.259 − −
GIN-AK+ 0.080± 0.001 − 72.19± 0.13 86.850± 0.057 −
SAN 0.139± 0.006 − − 86.581± 0.037 76.691± 0.65
Graphormer 0.122± 0.006 − − − −
K-Subgraph SAT 0.094± 0.008 − − 86.848± 0.037 77.856± 0.104
EGT 0.108± 0.009 98.173± 0.087 68.702± 0.409 86.821± 0.020 79.232± 0.348
Graphormer-URPE 0.086± 0.007 − − − −
Graphormer-GD 0.081± 0.009 − − − −
GPS 0.070± 0.004 98.051± 0.126 72.298± 0.356 86.685± 0.059 78.016± 0.180
GRIT 0.059± 0.002 98.108± 0.111 76.468± 0.881 87.196± 0.076 80.026± 0.277

CKGCN 0.059± 0.003 98.423± 0.155 72.785± 0.436 88.661± 0.143 79.003± 0.140

Laurent, 2018), GatedGCN-LSPE (Dwivedi et al., 2022b),
and PNA (Corso et al., 2020);

• Other Graph Transformers: Graphormer (Ying et al.,
2021), K-Subgraph SAT (Chen et al., 2022), EGT (Hus-
sain et al., 2022), SAN (Kreuzer et al., 2021), Graphormer-
URPE (Luo et al., 2022), and Graphormer-GD (Zhang
et al., 2023);

• SOTA Spectral Graph Neural Networks: Specformer (Bo
et al., 2023) and DGN (Beani et al., 2021); and

• Other SOTA Graph Neural Networks: GSN (Bouritsas
et al., 2022), CIN (Bodnar et al., 2021), CRaW1 (Tönshoff
et al., 2023), and GIN-AK+ (Zhao et al., 2022).

Benchmarks from Benchmarking GNNs In Table 1, we re-
port the results on five datasets from (Dwivedi et al., 2022a):
ZINC, MNIST, CIFAR10, PATTERN, and CLUSTER. We
observe that the proposed CKGConv achieves the best per-
formance for 3 out of 5 datasets and is ranked within the
three top-performing models for the other 2 datasets. Com-
pared to the hybrid transformer, GraphGPS, consisting of
an MPNN and self-attention modules (SAs), CKGCN out-
performs on all five datasets, indicating the advantage of
the continuous convolution employed by CKGConv over
MPNNs, even when enhanced by self-attention. GRIT and
CKGConv achieve comparable performance but exhibit ad-
vantage in different datasets. CKGConv outperforms on

MNIST and PATTERN while GRIT performs better on CI-
FAR10 and CLUSTER. This suggests that the capability to
learn dynamic kernels and sharpening kernels might have
different impact and value on the empirical performance
depending on the nature of the dataset. Notably, CKG-
Conv exhibits superior performance compared to all other
convolution-based GNNs for four of the five datasets. The
only exception is CIFAR10, where CKGConv is slightly
worse than DGN, although the difference is not statistically
significant. 5

Long-Range Graph Benchmark (LRGB) Graph trans-
formers demonstrate advantages over MPNNs in modeling
long-range dependencies. Here, we verify the capacity of
CKGConv to model long-range dependencies. We conduct
experiments on two peptide graph datasets from the Long-
Range Graph Benchmark (LRGB) (Dwivedi et al., 2022c).
The obtained results are summarized in Table 2. On both
datasets, CKGConv obtains the second-best mean perfor-
mance. Based on a two-sample one-tailed t-test, the perfor-
mance is not significantly different from the best-performing
algorithm (GRIT). There is, however, a statistically signifi-
cant difference between CKGConv’s performance and the
third-best algorithm’s performance for both datasets. This
demonstrates that our model is able to learn long-range

5According to a two-sided t-test at the 5% significance level.
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Table 2. Test performance on two benchmarks from long-range
graph benchmarks (LRGB) (Dwivedi et al., 2022c). Shown is the
mean ± s.d. of 4 runs with different random seeds. Highlighted
are the top first, second, and third results. # Param ∼ 500K.

Model Peptides-func Peptides-struct

AP↑ MAE↓
GCN 0.5930± 0.0023 0.3496± 0.0013
GINE 0.5498± 0.0079 0.3547± 0.0045
GatedGCN 0.5864± 0.0035 0.3420± 0.0013
GatedGCN+RWSE 0.6069± 0.0035 0.3357± 0.0006

Transformer+LapPE 0.6326± 0.0126 0.2529± 0.0016
SAN+LapPE 0.6384± 0.0121 0.2683± 0.0043
SAN+RWSE 0.6439± 0.0075 0.2545± 0.0012

GPS 0.6535± 0.0041 0.2500± 0.0012
GRIT 0.6988± 0.0082 0.2460± 0.0012

CKGCN 0.6952± 0.0068 0.2477± 0.0018

interactions, on par with the SOTA graph transformers.

5.2. The Flexible Kernels of CKGConv

Convolutional kernels with both negative and positive coef-
ficients have a long history. Such kernels are widely used to
amplify the signal differences among data points, e.g., signal
sharpening and edge detection in image processing. Here,
we highlight that CKGConv has the flexibility to generate
kernels that include negative and positive coefficients.

5.2.1. CKGCONV KERNEL VISUALIZATION

We show that CKGConv can learn positive and negative
kernel coefficients from the data, without being forced to
generate negative kernel coefficients. Therefore, we vi-
sualize the learned kernels of CKGConv from real-world
graph learning tasks. Specifically, we visualize two selected
learned kernels from the depthwise convolution of CKG-
Conv for each of the two graphs from the ZINC datasets,
as shown in Fig. 2. Several learned kernels in CKGConv
indeed generate both positive and negative coefficients.

5.2.2. ABLATION STUDY ON FLEXIBLE KERNELS

To showcase the importance of the flexible kernels in CKG-
Conv on graph learning tasks, we conduct an ablation study
on ZINC and PATTERN, comparing CKGCN to its blurring-
kernel variant, which is constrained to generate all-positive
coefficients by incorporating a Softmax operation.

From Table 3, constraining CKGCN to generate blurring
kernels leads to remarkable performance deterioration. In
addition, GRIT with self-attention (SA) mechanisms, which
can be viewed as dynamic blurring kernels (Park & Kim,
2021), outperforms CKGCN-Blurring. This observation
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Figure 2. Adjacency matrices and learned continuous kernels
across multiple channels for two graphs from the ZINC dataset.

Table 3. Effect of different kernel types on ZINC and PATTERN.

Model ZINC PATTERN Dynamic Flexible
MAE↓ W. Acc.↑

GRIT 0.059± 0.002 87.196± 0.076 ✓ ✗
CKGCN 0.059± 0.003 88.661± 0.143 ✗ ✓
-Blurring 0.073± 0.003 87.000± 0.002 ✗ ✗

indicates that both dynamic and flexible properties are bene-
ficial to graph learning and hints at the potential combination
of CKGConvs and SAs for graph learning.6

5.3. Sensitivity Study on the Choice of Graph PEs

In this paper, we demonstrate the efficacy of CKGConv with
RRWP to avoid PE becoming the bottleneck of the model
performance. However, CKGConv is not constrained to
working with a specific graph PE. As depicted in Propo-
sition E.1, the choices of PE affect the expressive power
of CKGConv, depending on the structural/positional infor-
mation encoded. Therefore, in this section, we study the
impact of using different graph PEs, and demonstrate that
CKConv can reach a competitive performance with other
well-designed and expressive PEs besides RRWP.

We conduct the sensitivity study on ZINC datasets with four
typical graph PEs: RRWP (Ma et al., 2023), Resistance
Distance (RD) (Zhang et al., 2023), Shortest-path distance
(SPD) (Ying et al., 2021), and “Pair-RWSE”, which is con-
structed as relative PE by concatenating the Random Walk
Structural Encoding (RWSE) (Dwivedi et al., 2022b) for
each node-pair. We add RWSE as the absolute PE to the
node attribute when using other PEs, mimicking RRWP.
The experimental setup follows the main experiment and
the results of 4 runs are reported in Table 4.

The results of SPD and Pair-RWSE show that a sub-optimal

6Note that attention mechanisms typically require the incorpo-
ration of Softmax to stabilize the attention scores.
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Table 4. The sensitive study of CKGCN on the choices of graph
PEs. Shown is the mean ± s.d. of 4 runs.

CKGCN RRWP RD SPD Pair-RWSE

MAE ↓ 0.059 0.062 0.072 0.081
± 0.003 ± 0.004 ± 0.003 ± 0.002

PE design leads to worse performance of CKGCN. How-
ever, with an expressive PE, CKGCN demonstrates stable
performance: CKGCN with either RD or RRWP achieves
competitive performance that is statistically indistinguish-
able from the state-of-the-art.7

5.4. CKGCN and GTs Behave Differently

Motivated by the observation in Sec. 5.2.2 and previous
work on ViT (Park & Kim, 2021), in this section, we aim
to demonstrate that CKGCNs and graph transformers learn
complementary features in graph learning. Thus, we con-
duct an ensembling experiment on ZINC to examine the
effects of naively combining a SOTA graph transformer
GRIT with CKGCN.

In Table 5, we report the mean and standard deviation of
MAE (employing bootstrapping) of an ensemble of GRIT
models, an ensemble of CKGConv models, and a mixed
ensemble using both of these models. In each case, the
total ensemble size is 4 (two of each model for the mixed
ensemble). We observe that constituting the ensemble using
both CKGConv and SAs offers a statistically significant
advantage compared to either homogeneous ensemble.

Table 5. Effect of ensembling on ZINC.

Model GRIT-Ens. CKGConv-Ens. Mixed-Ens.

MAE ↓ 0.054±0.001 0.054±0.002 0.051±0.001*

Based on the observation, we hypothesize that both CKG-
Convs and SAs have their own merits, and it can be further
advantageous to suitably combine them in the model archi-
tecture. Similar efforts have been undertaken in computer
vision (Park & Kim, 2021; Xiao et al., 2021).

5.5. Further Analyses: Anti-Oversmoothing,
Edge-detection, Support Sizes and Kernel Functions

We include the results of additional experiments to further
analyse the performance and behavior of CKGConv in Ap-
pendix D. Specifically, we include:

• Two toy examples that demonstrate the advantages of
(positive and) negative kernel coefficients.
– Appendix D.1 showcases that CKGConv effectively

counters oversmoothing.

7According to a two-sided t-test at the 5% significance level.

– Appendix D.2 demonstrates the efficacy of CKGConv
for edge-detection.8

• Two ablation/sensitivity studies on the kernel designs.
– Appendix D.3 studies the impact of the support size,

which demonstrates the utility of localized kernels
and highlights the importance of going beyond local
message-passing.

– Appendix D.4 analyzes the impact from the number of
MLP blocks in the kernel functions, which indicates the
necessity of non-linear kernel functions.

6. Limitations
On the computational side, a naive implementation of CK-
GConv with global support has O(|V|2) complexity, the
same as graph transformers. A more efficient alternative
implementation is provided in Appendix C.7, which might
prevent the usage of some operators such as BatchNorm.
The localized CKGConv can benefit from lower computa-
tion complexity but with weaker theoretical expressiveness.

7. Conclusion
Motivated by the lack of a flexible and powerful convolu-
tion mechanism for graphs, we propose a general graph
convolution framework, CKGConv, by generalizing contin-
uous kernels to graph domains. These can recover most
non-dynamic convolutional GNNs, from spatial to (poly-
nomial) spectral. Addressing the fundamentally different
characteristics of graph domains from Euclidean domains,
we propose three theoretically and empirically motivated de-
sign innovations to accomplish the generalization to graphs.
Theoretically, we demonstrate that CKGConv possesses
equivalent expressive power to SOTA Graph Transformers
in terms of distinguishing non-isomorphic graphs via the
GD-WL test (Zhang et al., 2023). We also provide theoreti-
cal connections to previous convolutional GNNs. Empiri-
cally, the proposed CKGConv architecture either surpasses
or achieves performance comparable to the SOTA across
a wide range of graph datasets. It outperforms all other
convolutional GNNs and achieves performance compara-
ble to SOTA Graph Transformers. A further exploratory
experiment suggests that CKGConv can learn non-dynamic
sharpening kernels and extracts information complementary
to that learned by the self-attention modules of Graph Trans-
formers. This motivates a potential novel avenue of combin-
ing CKGConv and SAs in a single architecture. Further-
more, the success of CKGConv motivates the generalization
of continuous kernel convolutions to other non-Euclidean
geometric spaces based on pseudo-coordinate designs.

8Edge-detection refers to detecting signal discontinuities in
signal processing.
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A. Model Architecture and Implementation Details
A.1. Model Architecture

In order to combine all the building blocks into one clear visualization, we provide an overview of the CKGCN in Figure 3.
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Figure 3. (a) Detailed Architecture of CKGCN with L CKGConv blocks and task-dependent output head, (b) the detailed design of each
CKGConv-block.

A.2. Rescaling of RRWP

The expected values of random walk based graph PEs, e.g., RRWP, are dependent on the graph orders. For a graph with
N nodes, RRWP has the property that

∑
j∈V Pi,j = 1⇒ Ej∼V [Pi,j ] = 1/N . Empirically, we found that removing this

dependency is beneficial to CKGConv. Therefore, we introduce an extra re-scaling for RRWP by setting Pi,j ← N ·Pi,j .
For other graph PEs without such dependencies, e.g,. RD and SPD, this re-scaling is not necessary.

Following the approaches in GraphGPS (Rampášek et al., 2022), we introduce an extra BatchNorm (Ioffe & Szegedy, 2015)
on the input RRWP to further normalize the input values.

B. Additional Related Work
Graph Positional Encoding In recent years, positional and/or structural encoding has been widely studied to enhance
the performance of MPNNs (You et al., 2019; Ma et al., 2021; Li et al., 2020; Zhang et al., 2021; Loukas, 2020; Dwivedi
et al., 2022b; Lim et al., 2023; Wang et al., 2022; You et al., 2021; Velingker et al., 2023; Bouritsas et al., 2022). Due
to the inherent properties of attention mechanisms (Vaswani et al., 2017; Lee et al., 2019), Graph Transformers rely on
positional/structural encoding even more excessively. Disparate designs have been proposed by previous works, from
absolute ones (Dwivedi & Bresson, 2021; Kreuzer et al., 2021; Kim et al., 2022) to relative ones (Ying et al., 2021; Zhang
et al., 2023; Ma et al., 2023; Mialon et al., 2021; Hussain et al., 2022; Park et al., 2022). A recent work (Zhou et al., 2023)
has also explored the potential of computing positional encoding on higher-order simplicial complexes instead of on nodes.
Positional encodings prioritize distance/affinity measures and structural encodings focus on structural patterns, but most
encodings incorporate both positional and structural information (Srinivasan & Ribeiro, 2020).

C. Experimental Details
C.1. Description of Datasets

Table 6 provides a summary of the statistics and characteristics of datasets used in this paper. The first five datasets are from
Dwivedi et al. (2022a), and the last two are from Dwivedi et al. (2022c). Readers are referred to Rampášek et al. (2022) for
more details about the datasets.
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Table 6. Overview of the graph learning datasets involved in this work (Dwivedi et al., 2022a;c; Irwin et al., 2012).

Dataset # Graphs Avg. # nodes Avg. # edges Directed Prediction level Prediction task Metric

ZINC 12,000 23.2 24.9 No graph regression Mean Abs. Error
MNIST 70,000 70.6 564.5 Yes graph 10-class classif. Accuracy
CIFAR10 60,000 117.6 941.1 Yes graph 10-class classif. Accuracy
PATTERN 14,000 118.9 3,039.3 No inductive node binary classif. Weighted Accuracy
CLUSTER 12,000 117.2 2,150.9 No inductive node 6-class classif. Weighted Accuracy

Peptides-func 15,535 150.9 307.3 No graph 10-task classif. Avg. Precision
Peptides-struct 15,535 150.9 307.3 No graph 11-task regression Mean Abs. Error

C.2. Dataset splits and random seed

We conduct the experiments on the standard train/validation/test splits of the evaluated benchmarks, following previous
works (Rampášek et al., 2022; Ma et al., 2023). For each dataset, we execute 4 runs with different random seeds (0,1,2,3)
and report the mean performance and standard deviation.

C.3. Optimizer and Learning Rate Scheduler

We use AdamW (Loshchilov & Hutter, 2019) as the optimizer and the Cosine Annealing Learning Rate scheduler (Loshchilov
& Hutter, 2017) with linear warm up.

C.4. Hyperparameters

Due to the limited time and computational resources, we did not perform an exhaustive search or a grid search for the
hyperparameters. We mostly follow the hyperparameter settings of GRIT (Ma et al., 2023), and make slight changes to
adjust the number of parameters to match the commonly used parameter budgets.

We follow the most commonly used parameter budgets: up to 500k parameters for ZINC, PATTERN, CLUSTER, Peptides-
func and Peptides-struct; and around 100k parameters for MNIST and CIFAR10.

The final hyperparameters are presented in Table 7 and Table 8.

C.5. Significance Test

We conduct a two-sample one-tailed t-test to verify the statistical significance of the difference in performance. The baselines’
results are taken from (Ma et al., 2023).

The statistical tests are conducted using the tools available at https://www.statskingdom.com/140MeanT2eq.
html.

C.6. Runtime

We provide the runtime and GPU memory consumption of CKGCN in comparison to GRIT on ZINC as reference (Table 9).
The timing is conducted on a single NVIDIA V100 GPU (Cuda 11.8) and 20 threads of Intel(R) Xeon(R) Gold 6140 CPU
@ 2.30GHz.

C.7. Efficient Implementation

A more efficient implementation is achievable for CKGConv with global support when the graph order is large. Based on
the following derivation, we can implement an algorithm with O(|V|S) complexity, where S := Ei∼V [|{Pi,j ̸= 0}|]. The
complexity thus depends on the order of the RRWP and the graph structure. .
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Table 7. Hyperparameters for five datasets from BenchmarkingGNNs (Dwivedi et al., 2022a).

Hyperparameter ZINC MNIST CIFAR10 PATTERN CLUSTER

# CKGConv-Block 10 4 3 10 16
- Hidden dim 64 48 56 64 54
- Dropout 0 0 0 0 0.01
- Norm. BN BN BN BN BN

Graph pooling sum mean mean − −
PE dim (K-RRWP) 21 18 18 21 32

Kernel Func.
- # MLP Block 2 2 2 2 2
- Norm. BN BN BN BN BN
- Kernel dropout 0.5 0.5 0.5 0.5 0.5
- MLP dropout 0.1 0.2 0. 0.2 0.5

Batch size 32 16 16 16 16
Learning Rate 0.001 0.001 0.001 0.001 0.001
# Epochs 2000 200 200 200 200
# Warmup epochs 50 5 5 10 10
Weight decay 1e− 5 1e− 5 1e− 5 1e− 5 1e− 5
Min. lr. 1e− 6 1e− 4 1e− 4 1e− 4 1e− 4

# Parameters 433,663 102,580 105,320 438,143 499,754

Let Si := {j ∈ V : Pi,j ̸= 0}, then ignoring the bias term, Eq. (3) can be written as

(χ ⋆ ψ)(i) =
1

|V|

∑
j∈Si

χ(j)|V| · ψ(Pi,j) +
∑

j′∈V\Si

χ(j) · ψ(0)

 , (11)

=
1

|V|

∑
j∈Si

χ(j)|V| ·
(
ψ(Pi,j)− ψ(0)

)+
1

|V|

∑
j∈V

χ(j) · ψ(0)

 , (12)

=
1

|V|

∑
j∈Si

χ(j)|V| ·
(
ψ(Pi,j)− ψ(0)

)+ ψ(0) · 1

|V|

∑
j∈V

χ(j)

 . (13)

The second term of Eq. (13) can be computed by global-average pooling of graphs shared by all nodes in O(|V|), and the
first term requires O(|V| · S) computation on average, where S = 1

|V|
∑
i∈V |Si|.

D. Additional Experiments: Toy Examples, Sensitivity Study, and Ablation Study

Node Signals

0 1 0

1 0 1

Figure 4. The toy example for Anti-
oversmoothing.

Node Signals

1 1 0 0

1 1 0 0

Node Labels

0 1 1 0

0 1 1 0

Figure 5. The toy example for Edge Detection.
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Table 8. Hyperparameters for two datasets from the Long-range Graph Benchmark (Dwivedi et al., 2022c).

Hyperparameter Peptides-func Peptides-struct

# CKGConv-Block 4 4
- Hidden dim 96 96
- Dropout 0 0.05
- Norm. BN BN

Graph pooling mean mean

PE dim (K-RRWP) 24 24

Kernel Func.
- # MLP Block 2 2
- Norm. BN BN
- Kernel dropout 0.5 0.2
- MLP dropout 0.2 0.2

Batch size 16 16
Learning Rate 0.001 0.001
# Epochs 200 200
# Warmup epochs 5 5
Weight decay 0 0
Min. lr. 1e-4 1e-4

# Parameters 421,468 412,253

D.1. Toy Example: CKGConv Can Mitigate Oversmoothing

With the ability to generate both positive and negative coefficients, CKGConv can learn sharpening kernels (a.k.a. high-pass
filters), which amplify the signal differences among data points to alleviate oversmoothing. Here, we provide a toy example
to better illustrate CKGConv’s capability to prevent oversmoothing.

We consider a simple graph with node signals as shown in Fig. 4, and train 2-layer and 6-layer GCNs and CKGCNs, with
5-RRWP, to predict labels that match the node signals. In this toy example, we remove all normalization layers, dropouts, as
well as residual connections. All models are trained for 200 epochs with the Adam optimizer (initial learning rate 1e-3) to
overfit this binary classification task. We report the results of 5 trials with different random seeds in Table 10.

As shown in the results, both the 2-layer GCN and 2-layer CKGCN can overfit the toy example and reach 100% accuracy.
However, a 6-layer GCN fails to reconstruct the node signals. Applying 6 smoothing convolutions (all-positive filter
coefficients) in this small network leads to the aggregated representation at each node being very similar. This is a typical
oversmoothing effect. The network predicts all nodes to have the same label, resulting in 50% accuracy in the toy example.
In contrast, a 6-layer CKGCN not only reaches 100% accuracy but also achieves a lower BCE loss, showcasing its strong
capability in mitigating oversmoothing.

Table 9. Runtime and GPU memory for GRIT (Ma et al., 2023) and CKGCN (Ours) on ZINC with batch size 32. The timing is conducted
on a single NVIDIA V100 GPU (Cuda 11.8) and 20 threads of Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz.

ZINC CKGConv GRIT

GPU Memory 2146 MB 1896 MB
Training time 35.9 sec/epoch 39.7 sec/epoch
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Table 10. Toy Example for Anti-oversmoothing (Fig. 4): Training performance for reconstruction of node signals. Shown is the mean ±
s.d. of 5 runs with different random seeds.

Train 2-Layer GCN 6-Layer GCN 2-Layer CKGCN 6-Layer CKGCN

BCE Loss 0.071 ± 0.044 0.693 ± 2e-05 4e-05± 2e-05 0.0 ± 0.0
Accuracy (%) 100 ± 0 50 ± 0 100 ± 0 100 ± 0

D.2. Toy Example: CKGConv Can Do Edge-Detection

Analogous to edge-detection in signal processing, in the graph domain, kernels with positive and negative coefficients can
be used to detect the nodes with cross-community-connection (the border nodes). In such a setting, it is essential that the
sign of the filter coefficient for the central node is opposite to those of the first-hop neighbors, in order to detect differences
in attributes.

We introduce a toy example to demonstrate it as shown in Fig. 5: given a graph with simple scalar node signals that match
the “community” of a node (0 or 1), the goal is to identify the border nodes with node labels as 1,

In this study, we consider single-channel convolution kernels. We compare CKGConv with three all-positive kernels:
GCNConv (Kipf & Welling, 2017), CKGConv+Softmax (attention-like), and CKGConv+Softplus. CKGConv and its
variants use 5-RRWP with the hidden dimension of 5 in the kernel function. CKGCN+Softmax (sum-aggregation) and
CKGCN+Softplus (mean-aggregation) apply Softmax and Softplus on the kernel coefficients, respectively, to constrain the
kernels to have positive coefficients only.

We aim to verify the upper bounds for the expressivity of the convolutions by training them to overfit the task. Each
convolution operator is trained for 200 epochs with the Adam optimizer (learning rate 1e-2) using binary cross entropy loss
(BCE loss). We report the last training BCE loss and accuracy from 5 trials with different initializations, in Table 11.

Table 11. Toy Example for Edge-detection (Fig. 5): Training performance for reconstruction of node signals. Shown is the mean ± s.d. of
5 runs with different random seeds.

Train CKGConv GCNConv CKGConv+Softmax CKGConv+Softplus

BCE Loss 2e-4 ± 1e-05 0.693 ± 0.001 0.693 ± 0 0.687 ± 0.049
Accuracy (%) 100 ± 0 50 ± 0 50 ± 0 60 ± 12.25

From the results, it is obvious that only convolution kernels with negative and positive values (regular CKConv) can reach
100% accuracy and achieve a low BCE loss. All other convolution kernels, with only positive values, fail to identify the
border nodes.

This toy example explains why negative coefficients are advantageous in graph learning tasks, which require the detection of
signal differences among data points. Similar tasks include ridge-detection and learning on heterophilic graphs.

D.3. Sensitivity study on kernel support sizes of CKGConv

The CKGConv framework allows for kernels with pre-determined non-global supports, analogous to the regular convolution
in Euclidean spaces. In this section, we study the effect of different pre-determined support sizes based on K-hop
neighborhoods on ZINC datasets. The sensitivity study follows the same experimental setup as the main experiments. The
timing is conducted on a single a single NVIDIA V100 GPU (Cuda 11.8) and 20 threads of Intel(R) Xeon(R) Gold 6140
CPU @ 2.30GHz.

From the results in Table 12, with the same order of RRWP, larger support sizes usually lead to better empirical performances
as well as greater GPU memory consumption. On the one hand, the results showcase the stability in performance of
CKGConv, since all CKGCN variants with K>1 hops reach competitive performance among the existing graph models,
outperforming all existing GNNs and most Graph Transformers. On the other hand, the results justify the necessity of
introducing graph convolutions beyond the one-hop neighborhood (a.k.a., message-passing), since the one-hop CKGCN

18



CKGConv: General Graph Convolution with Continuous Kernels

Table 12. The sensitivity study of the support sizes (K-hop neighborhoods) for CKGConv kernels with 21-RRWP.

ZINC MAE ↓ Run-Time (sec/epoch) GPU-Mem (MB)

1-hop 0.073 ± 0.005 33.1 1186
3-hop 0.063 ± 0.002 33.6 1522
5-hop 0.061 ± 0.004 35.2 1624
11-hop 0.063 ± 0.002 33.2 2128
21-hop 0.060 ± 0.002 34.8 2148
Full 0.059 ± 0.003 35.4 2148

is significantly worse than the other variants with larger kernels. Furthermore, the sensitivity study also highlights the
flexibility of CKGConv framework in balancing the computational cost and the capacity to model long-range dependencies,
by effortlessly controlling the kernel sizes like the Euclidean convolutions. Note that the kernel sizes are not necessarily tied
with the order of RRWP or the counterparts of other graph PEs in CKGConv.

D.4. Ablation study on the kernel functions.

As depicted in Sec. 4.3, polynomial-based GNNs can be viewed as CKGCN with linear kernel functions. However, allowing
kernel functions with non-linearity is important, since multilayer perceptions (MLPs) with non-linear activations can be
universal function approximators (Hornik et al., 1989) while linear functions cannot.

To better understand the effects of the choices of kernel functions, we conduct an ablation study on ZINC and PATTERN
datasets, following the experimental setup of the main experiments. We compare different CKGCN variants, using kernel
functions with 0, 1, and 2 MLP-blocks (as shown in Eq. (5)). The width of each variant is adjusted to reach the parameter
budget under 500 K. Note that 0 MLP-blocks is equivalent to a linear kernel function and 2 MLP-blocks setting is the default
in CKGCN.

Table 13. The ablation study on # MLP blocks in the kernel function of CKGConv.

# MLP ZINC PATTERN

Blocks MAE ↓ # param. W.Accuracy ↑ # param.

0 0.074 ± 0.005 487 K 87.355 ± 0.230 495 K
1 0.065 ± 0.005 438 K 88.955 ± 0.251 444 K
2 0.059 ± 0.003 434 K 88.661 ± 0.142 438 K

From the results of the ablation study (as shown in Table 13), CKGCNs with linear kernel functions under-perform the
variants with non-linear kernel functions on both ZINC and PATTERN datasets, even with more learnable parameters. This
observation matches our hypothesis on the indispensability of the non-linearity in kernel functions. It also justifies the
advantage of CKGConv framework over the previous polynomial GNNs which can only introduce linear kernel functions.

E. Theory and Proof
E.1. The Expressiveness of CKGConv Is Equivalent to GD-WL

We use a Weisfeiler-Lehman (WL)-like graph isomorphism framework to analyze theoretical expressiveness. Specifically,
we consider the Generalized Distance WL (GD-WL) test, which is based on updating node colors incorporating graph
distances proposed by Zhang et al. (2023).

For a graph G = (V, E), the iterative node color update in GD-WL test is defined as:

χℓG(v) = hash({{(dG(v, u), χℓ−1
G (u)) : u ∈ V}}) . (14)

where dG(v, u) denotes a distance between nodes v and u, and χ0
G(v) is the initial color of v. The multiset of final node

19



CKGConv: General Graph Convolution with Continuous Kernels

colors {{χLG(v) : v ∈ V}} at iteration L is hashed to obtain a graph color.

Our proof for the expressiveness of CKGConv employs the following lemma provided by Xu et al. (2019).

Lemma E.1. (Lemma 5 of Xu et al. (2019)) For any countable set X , there exists a function f : X → Rn such that
h(X̂ ) :=

∑
x∈X̂ f(x) is unique for each multiset X̂ ∈ X of bounded size. Moreover, for some function ϕ, any multiset

function g can be decomposed as g(X̂ ) = ϕ(
∑
x∈X̂ f(x)).

Proof of Proposition 3.1. In this proof, we consider shortest-path distance (SPD) as an example of generalized distance
(GD). This is denoted as dSPD

G and is assumed to construct the pseudo-coordinates in CKGConv. The proof holds with other
GDs such as the resistance distance (RD) (Zhang et al., 2023) and RRWP (Ma et al., 2023), and the choice of GD determines
the practical expressiveness of GD-WL.

We consider all graphs with at most n nodes to distinguish in the isomorphism tests. The total number of possible values of
dG is finite and depends on n (upper bounded by n2). We define

Dn = {dSPD
G (u, v) : G = (V, E), |V| ⩽ n, u, v ∈ V} , (15)

to denote all possible values of dSPD
G (u, v) for any graphs with at most n nodes. We note that since Dn is a finite set, its

elements can be listed as Dn = {dG,1, · · · , dG,|Dn|}.

Then the GD-WL aggregation at the ℓ-th iteration in Eq. (14) can be equivalently rewritten as (See Theorem E.3 in Zhang
et al. (2023)):

χℓG(v) := hash
(
χℓ,1G (v), χℓ,2G (v), · · · , χℓ,|Dn|G (v)

)
,

where χℓ,kG (v) := {{χℓ−1
G (u) : u ∈ V, dG(u, v) = dG,k}} . (16)

In other words, for each node v, we can perform a color update by hashing a tuple of color multisets. We construct the k-th
multiset by injectively aggregating the colors of all nodes u ∈ V at a distance dG,k from node v.

Assuming the color of each node χtG(v) is represented as a vector x(l)
v ∈ RC , and setting the bias b to 0 for simplicity, the

l-th CK-GConv layer with a global support (as shown in Eq. (4)) can be written as

x̂(l)
v :=

1

|V|
∑
u∈V

(Wx(l)
u )⊙ψ

(
dG(u, v)

)
. (17)

where ψ : R→ RC and W ∈ RC×C is the learnable weight. Then, we will show that with certain choices of the kernel
function, a CKGCN is as powerful as GD-WL.

First, we define the kernel function ψ as a composition of H sub-kernel functions {ψh : R → RF }h=1,...,H such that
ψ(d) = [ψ1(d)∥ . . . ∥ψH(d)] ∈ RC ,∀d ∈ Dn, where [·∥·] denotes the concatenation of vectors and C = H · F .

Then Eq. (17) can be written as

x̂(l),h
v :=

1

|V|
∑
u∈V

(Whx(l)
u )⊙ψh

(
dG(u, v)

)
, (18)

x̂(l)
v =[x̂(l),1

v ∥ · · · ∥x̂(l),H
v ] , (19)

where W ∈ RC×C is partitioned as [W1⊺, · · · ,WH⊺
]⊺ so that each Wh ∈ RF×C .

We construct ψh(d) := I(d = dG,h) · 1, where I : R → R is the indicator function, dG,h ∈ Dn is a pre-determined
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condition, and 1 ∈ RF . Then, the convolution by each sub-kernel (Eq. (18) can be written as

x̂(l),h
v :=

1

|V|
∑
u∈V

(Whx(l)
u )⊙ψh

(
dG(u, v)

)
,

=
1

|V|
∑
u∈V

(Whx(l)
u )⊙ (I(dG(u, v) = dG,h) · 1

)
,

=
1

|V|
∑
u∈V

(Whx(l)
u ) · I(dG(u, v) = dG,h) ,

=
1

|V|
∑

dG(u,v)=dG,h

Whx(l)
u .

(20)

Note that W can be absorbed as the last layer of the feed-forward network (FFN) in the previous layer. Because x
(l)
u is

processed by the FFN in the previous layer, we can invoke Lemma E.1 to establish that each sub-kernel ψh (as in Eq. (20))
can implement an injective aggregating function for {{χt−1

G (u) : u ∈ V, dG(u, v) = dG,h}}. The concatenation in Eq. (19) is

an injective mapping of the tuple of multisets
(
χt,1G , · · · , χt,|Dn|G

)
. When any of the linear mappings has irrational weights,

the projection will also be injective. Therefore, one CKGConv followed by the FFN can implement the aggregation formula
(Eq. (16)), with a sufficiently large number of different ψh. Thus, the CKGCN can perform the aggregation of GD-WL.
Therefore, with a sufficiently large number of layers, CKGCN is as powerful as GD-WL in distinguishing non-isomorphic
graphs, which concludes the proof.

E.2. CKGConv and Equivariant Set Neural Networks

Proof of Proposition 4.1. We prove the proposition for scalar-valued signals, which can be directly generalized to vector-
valued signals.

For a globally supported CKGConv, given the 1-RRWP after the re-scaling (Appendix A.2) Pi,i = |V| and Pi,j = 0,∀i, j ∈
V, i ̸= j, denoted as P0 and P1 for simplicity. Considering ψ : R → R that ψ(x) = γ · x + β γ, β ∈ R, Eq. (3) can be
written as

(χ ⋆ ψ)(i) =
1

|V|

χ(i)(|V| · γ + β) +
∑

j∈V;j ̸=i

χ(j)β

+ b ,

=
1

|V|
χ(i)(|V| · γ + β − β) + 1

|V|
∑
j∈V

χ(j)β + b ,

= γ · χ(i) + β ·
( 1

|V|
∑
j∈V

χ(j)
)
+ b .

(21)

This is the general form of a layer in an Equivariant Set Network (Eq. 8 in Segol & Lipman (2020)). This general form can
cover a wide range of set neural networks (Zaheer et al., 2017; Qi et al., 2017).

E.3. CKGConv, Polynomial Spectral GNNs and Diffusion Enhaned GNNs

Lemma E.2. Let A ∈ Rn×n denotes the adjacency matrix of an undirected graph G and the diagonal matrix
D ∈ Rn×n, [D]i,i =

∑
j∈V [A]i,j is the degree matrix, the k-power of symmetric normalized adjacency matrix

Ã := D−1/2AD−1/2 and random walk matrix M := D−1A, satisfy that

Ãk = D1/2MD−1/2,∀k = 1, 2, · · · (22)

Proof of Lemma E.2. For arbitrary k ≥ 1, we have

Ãk = (D1/2MD−1/2)k

= (D1/2MD−1/2)(D1/2MD−1/2) · · · (D1/2MD−1/2) ,k times

= D1/2M · · ·MD−1/2

= D1/2MkD−1/2 .

(23)
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Proof of Proposition 4.2. Irrespective of the specific polynomial parameterization that is employed, any K−1 order Polyno-
mial Spectral Graph Neural Network can be defined in a general form with L̃ = I−D−1/2AD−1/2 ∈ Rn×n, parameterized
by a learnable vector θ = [θ0, · · · , θK−1]

⊺ ∈ RK×1 for the filtering of an input graph signal x ∈ Rn×1 to obtain an output
graph signal y ∈ Rn×1, as follows:

y = gθ(L̃)x ,

=

K−1∑
k=0

θkL̃
kx ,

=

K−1∑
k=0

θk

k∑
r=0

(
k

r

)
(−1)rÃrx ,

=

K−1∑
k=0

θ′kÃ
kx . (24)

Here Ã = D−1/2AD−1/2 and θ′k =
∑K−1
r=k

(
r
k

)
(−1)kθr. Therefore, the spectral filter gθ(L̃) can be represented by a linear

combination of a collection of polynomial bases {I, Ã1, Ã2, · · · , ÃK−1}. In other words,

[gθ(L̃)]i,j = ψ([I, Ã1, Ã2, · · · , ÃK−1]i,j) ,

= ψ(d
1/2
i [I,M1,M2, · · · ,MK−1]i,jd

−1/2
j ) , using Lemma E.2

= d
1/2
i ψ([I,M1,M2, · · · ,MK−1]i,j)d

−1/2
j , as ψ is a linear projection

= d
1/2
i ψ(Pi,j)d

−1/2
j ,

=
1

S
· d1/2i ψ(S ·Pi,j)d

−1/2
j .

(25)

Here ψ : RK → R is a linear projection; di = Di,i ∈ R is the degree of node i; and S ∈ R is the scaling term in the
scaled-convolution design and the RRWP rescaling.

In other words, with the K-RRWP as pseudo-coordinates, CKGConv with a linear kernel ψ can recover most polynomial
spectral GNNs in the form of Eq. (24) irrespective of the specific polynomial parameterization that is used, if d1/2i and d−1/2

j

are injected properly, for all i, j ∈ V . The result trivially holds for other Laplacian normalizations (e.g., row-normalized,
max-eigenvalue normalized), where different constant multipliers are injected via adaptive degree scalers to Pi,j .

Similarly, Polynomial Diffusion Enhanced Graph Neural Networks employing polynomials of Ã or its variants also can be
represented by Eq. (24). Hence, the result follows.

E.4. Degree Information and Normalization Layers

Normalization layers are essential for deep neural networks. Ma et al. (2023) provide a thorough discussion on the impact of
normalization layers on the explicit injected degree information via sum-aggregation or degree scalers, which motivates our
choice of BatchNorm (Ioffe & Szegedy, 2015) over LayerNorm (Ba et al., 2016).

Proposition E.3. (Ma et al., 2023) Sum-aggregated node representations, degree-scaled node representations, and mean-
aggregated node representations all have the same value after the application of a LayerNorm on node representations.

Proof of Proposition E.3. Regardless the linear transformation in MPNN shared by nodes, we can write the output rep-
resentation for a node i from a sum-aggregator as xsum

i = di · xmean
i , where di ∈ R is the degree of node i and

xmean
i = [xi1, . . . xiF ]

⊤ ∈ RF is the node representation from a mean-aggregator. The layer normalization statistics
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for a node i over all hidden units are computed as follows:

µsum
i =

1

F

F∑
j=1

xsum
ij =

1

F

F∑
j=1

di · xmean
ij =

di
F

F∑
j=1

xmean
ij = di · µmean

i

σsum
i =

√√√√ 1

F

F∑
j=1

(xsum
ij − µsum)2 =

√√√√d2i
F

F∑
j=1

(xmean
ij − µmean)2 = di · σmean

i

(26)

Therefore, regardless of the elementwise affine transforms shared by all nodes, each element of the normalized representation

x̃sum
ij =

(xsum
ij − µsum

i )

σsum
i

=
(di · xmean

ij − di · µmean
i )

di · σmean
i

=
(xmean
ij − µmean

i )

σmean
i

= x̃mean
ij , ∀i ∈ V,∀j = 1, . . . , F, (27)

is the same for both sum-aggregation and mean-aggregation.

The same conclusion can be seen for degree scalers, by simply changing di to f(di) in the proof, where f : R→ R>0.

Note that, BatchNorm does not have such an impact on degree information, since the normalization statistics are computed
across all nodes (with different degrees) in each mini-batch per channel.
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