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ABSTRACT

Recent advancements in protein design have leveraged diffusion models to gener-
ate structural scaffolds, followed by a process known as protein inverse folding,
which involves sequence inference on these scaffolds. However, these methodolo-
gies face significant challenges when applied to hyper-variable structures such as
antibody Complementarity-Determining Regions (CDRs), where sequence infer-
ence frequently results in non-functional sequences due to hallucinations. Distin-
guished from prevailing protein inverse folding approaches, this paper introduces
IgSeek, a novel structure-retrieval framework that infers CDR sequences by re-
trieving similar structures from a natural antibody database. Specifically, IgSeek
employs a simple yet effective multi-channel equivariant graph neural network
to generate high-quality geometric representations of CDR backbone structures.
Subsequently, it aligns sequences of structurally similar CDRs and utilizes struc-
turally conserved sequence motifs to enhance inference accuracy. Our experi-
ments demonstrate that IgSeek not only proves to be highly efficient in structural
retrieval but also outperforms state-of-the-art approaches in sequence recovery for
both antibodies and T-Cell Receptors, offering a new retrieval-based perspective
for therapeutic protein design.

1 INTRODUCTION

Antibodies, known for their high specificity and affinity, have emerged as pivotal therapeutic agents
in the treatment of complex diseases, including cancer (Adams & Weiner, 2005), autoimmune disor-
ders (Feldmann & Maini, 2003), and infectious diseases (Abraham, 2020). In 2023, the global best-
selling drug was Keytruda, a cancer treatment antibody, with sales reaching $25 billion, surpassing
Humira, another antibody used for treating rheumatoid arthritis, which had dominated the market
for the past decade (Dunleavy, 2024). Traditionally, the discovery of antibodies has predominantly
relied on immunizing animals with antigens (Van Wauwe et al., 1980) or employing various display
techniques such as phage (MacCallum et al., 1996) and yeast displays (Chao et al., 2006). However,
these approaches face significant challenges when dealing with structurally intricate proteins, which
are difficult to express in a soluble and functional form. Additionally, even when numerous candi-
date antibodies are generated through these techniques, they may not necessarily bind to the desired
domain or exhibit therapeutic efficacy.

To overcome these limitations, deep learning models have been introduced to design synthetic an-
tibodies by learning from natural antibody-antigen complexes (Luo et al., 2022; Jin et al., 2022;
Kong et al., 2023b;a; Bennett et al., 2024). Despite significant strides in protein design (Dauparas
et al., 2022; Hsu et al., 2022; Notin et al., 2024), antibodies present a distinct challenge for deep
learning due to the high flexibility of their binding regions, known as complementarity-determining
regions (CDRs). Encouraged by the success of RFdiffusion (Watson et al., 2023) in monomeric pro-
tein and binder designs, Bennett et al. (2024) fine-tuned the RFdiffusion model using structural data
of antibody-antigen complexes to design antibodies targeting predetermined antigen epitopes. Al-
though functional assays and structural determination experiments confirmed that this method could
produce antibodies binding to predetermined epitopes, the success rate was extremely low.

One reason for the low success rate of AI-designed antibodies is the occurrence of hallucinations
during sequence inference given the backbone structure, also known as the protein inverse folding
problem (Dauparas et al., 2022; Hsu et al., 2022; Gruver et al., 2023; Gao et al., 2023b). The amino
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Table 1: Settings of Different Antibody (Ab) Design Tasks.

Category Input Output

Ab Framework Ab CDR Antigen CDR Structure CDR Sequence

Antibody Co-design ! ! ! ! !

Antibody Inverse Folding ! ! % % !

Antibody Sequence Design % ! % % !

acid sequences inferred through methods like ProteinMPNN (Dauparas et al., 2022) and ESM-IF1
(Hsu et al., 2022) may not fold into the desired structures in real biological systems. More criti-
cally, there are currently no effective computational methods to reduce these hallucinations, aside
from conducting time-consuming, labor-intensive, and expensive wet-lab experiments for validation.
Typically, using independent structure prediction models to fold and verify the inferred sequences
cannot effectively eliminate non-functional sequences caused by hallucinations. That is because
even state-of-the-art models exhibit structural deviations of 1 to 3 Å and have low confidence in
predicting the structures of antibody CDRs.

To deal with the challenge of hallucinations arising from previous models, we propose an antibody
CDR sequence design framework from a novel perspective of similar structure retrieval. Our frame-
work, named as IgSeek (Ig for Immunoglobulin, a.k.a. antibody), is enlightened by a noteworthy
empirical discovery made 25 years ago, which revealed that antibodies exhibit a limited set of canon-
ical structures within 5 out of 6 CDRs despite the vast diversity in sequences, and that certain CDR
conformations are scaffolded by a few highly conserved residues (Chothia et al., 1989). Further
inspired by retrieval-augmented prediction for hallucination reduction in protein structure predic-
tion (Jumper et al., 2021), and natural language generation (Gao et al., 2023a), IgSeek leverages
neural retrieval in an antibody database to retrieve structurally similar sequence templates of CDR,
and ensembles the queried templates for sequence prediction. In summary, the contributions of this
paper are as follows:

• We propose a novel framework, IgSeek, that utilizes antibody structure retrieval to enhance the
accuracy and reliability of AI-driven antibody design.

• IgSeek employs a Multi-channel Equivariant Graph Neural Network to construct an antibody
structure database for isomorphic structure retrieval, where the structural representation is invari-
ant to E(3) transformations.

• Our extensive experiments demonstrate that IgSeek substantially outperforms state-of-the-art
competitors by a large margin regarding sequence recovery rate and inference speed.

2 RELATED WORK

Protein Structure Retrieval. With the growth of the volume of protein structures, structure retrieval
has become a critical task in protein data management. AlphaFind (Procházka et al., 2024) is a web
tool designed to identify structurally similar proteins in AlphaFold Database (Varadi et al., 2022) by
compressing data from ∼23 TB to ∼20 GB using vector embeddings, narrowing down candidates
with a neural network. The similarity of the search result is evaluated by US-align (Zhang et al.,
2022). Another state-of-the-art method, FoldSeek (Van Kempen et al., 2024), accelerates protein
structure searches by representing tertiary amino acid interactions as sequences over a 3D interaction
structural alphabet, which derives from vector quantization by VQ-VAE (van den Oord et al., 2017).
However, the representation only models the structure of two contiguous residues in a chain.

Protein Inverse Folding. Protein inverse folding aims to predict diverse sequences that can fold into
a given protein structure. ProteinMPNN (Dauparas et al., 2022) is a deep learning–based method
for protein sequence design that excels in both in silico and experimental evaluations. By leveraging
a message-passing neural network with enhanced input features and edge updates, ProteinMPNN is
capable of designing monomers, cyclic oligomers, protein nanoparticles, and protein-protein inter-
faces, rescuing previously failed designs generated by Rosetta (Adolf-Bryfogle et al., 2018; Baek
et al., 2021) or AlphaFold (Jumper et al., 2021). ESM-IF1 (Hsu et al., 2022) employs a sequence-
to-sequence Transformer to predict protein sequences from backbone atom coordinates.
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Antibody Inverse Folding. AbMPNN (Dreyer et al., 2023) inherits the model architecture of Pro-
teinMPNN, and trains an antibody-specific variant for antibody design. It outperforms generic
protein design models in sequence recovery and structure robustness, especially for hyper-variable
CDR-H3 loops. AntiFold (Høie et al., 2024) is an antibody-specific inverse folding model, which is
fine-tuned on ESM-IF1, with both solved and predicted antibody structures. However, it should be
emphasized that Antifold infers CDR sequences based on the structure of the variable domain and
the sequence of the framework regions. Consequently, the accuracy of CDR sequence inference is
influenced not only by the structure of the CDRs but also by the sequence and structural information
of the framework regions. Previous studies utilizing antibody sequence language models without
structural information have demonstrated that the sequence of the framework regions can partially
predict the CDR sequences, particularly for relatively conserved residues. As a result, the require-
ment for the framework sequence as input complicates the inference of CDR sequences that can
bind to different antigens while maintaining an identical framework.

Antibody Co-Design. In recent years, deep learning models have emerged as powerful data-driven
approaches for antibody design. RefineGNN (Jin et al., 2022) is the first structure sequence co-
design method that alternatively predicts the atom coordinates and residue types in CDRs by auto-
regression. DiffAb (Luo et al., 2022) and IgGM (Wang et al., 2024) utilize diffusion models to
generate the structure and sequence of CDRs based on the framework regions and the target antigen,
with DiffAb oriented for specific antigens. MEAN (Kong et al., 2023b) and dyMEAN (Kong et al.,
2023a) employ graph neural networks to predict the structure and sequence of CDRs. Table 1
presents a comparative analysis of various antibody design task configurations.

3 PRELIMINARIES AND PROBLEM FORMULATION

Antibodies are special Y-shape proteins, whose binding specificity is characterized by CDRs in the
variable regions (refer to Appendix A). We represent the 3D structure of a CDR as a geometric graph
G = (V,E) with node set V and edge set E (Jing et al., 2021; Jin et al., 2022; Zhang et al., 2023).
Each node vi ∈ V denotes an amino acid residue, associated with a multi-channel 3D coordinate
matrix Xi ∈ Rc×3, where c is the channel size, i.e., the number of atoms in the residue vi. In this
paper, we consider the four backbone atoms {N, Cα, C, O} that are independent to residue type,
i.e., c = 4. Each edge eij ∈ E denotes an interaction between vi and vj , if the Euclidean distance
between their Cα atoms is within a threshold θ. The neighborhood of a node vi, denoted as Ni,
consists of the adjacency nodes of vi, that is, {vj |(vi, vj) ∈ E}.
CDR sequence design. Given the structure G = (E, V ) of a CDR and the multi-channel 3D
coordinate of each residue, in this paper, we aim to reconstruct the corresponding sequence of the
CDR, denoted as s = {s(i)|i ∈ [1, · · · , |V |]}, where s(i) is the amino acid type of residue vi.

E(3) Equivalence is an important property in modeling the 3D structures (Fuchs et al., 2020; Batzner
et al., 2022; Liao & Smidt, 2023). Formally, letX and Y be two vector spaces, with TX (g) : X → X
and TY(g) : Y → Y representing two sets of transformations for the abstract group g ∈ E(3). A
function ϕ : X → Y is E(3) Equivariant to g if it satisfies the following condition:

ϕ({TX (g)xi,hi}ni=1) = TY(g)ϕ({xi,hi}ni=1), (1)

where xi ∈ R3 denotes the input 3D coordinates and hi ∈ Rd is the d-dimensional features of
a node, respectively. This inductive bias guarantees that ϕ preserves equivariant transformation
regarding transformation of the coordinate system in E(3) group (Satorras et al., 2021; Huang et al.,
2022; Liao & Smidt, 2023). A typical example for this transformation operation in the space X is
given by TX (g)x

(0)
i = Rx

(0)
i + b, where R ∈ R3×3 is an orthogonal matrix and b is the bias term.

To achieve equivalence, equivariant graph neural networks are proposed (Satorras et al., 2021;
Huang et al., 2022; Kong et al., 2023a;b), which follows a general message-passing framework
as shown in Eq. 2-4. Here, m

(l)
j→i denotes the messages propagated from node vj to vi, and

d
(l−1)
ij = dist(vi, vj) denotes the Euclidean distance between vi and vj , and x

(l−1)
ij denotes co-
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Figure 1: The Framework of IgSeek: (a) Pre-train an MEGNN encoder by a self-supervised learning
task. (b) Construct a CDR vector database. (c) Sequence generation by K-NN search.

ordinate differences between vi and vj at the (l − 1)-th layer.

m
(l)
j→i = ψ1

(
h
(l−1)
i ,h

(l−1)
j ,x

(l−1)
ij , d

(l−1)
ij

)
, (2)

h
(l)
i = ψ2

h
(l−1)
i ,

∑
vj∈Ni

m
(l)
j→i

 , (3)

x
(l)
i = ψ3

x
(l−1)
i ,x

(l−1)
ij

∑
j

ψ4

 ∑
vj∈Ni

m
(l)
j→i

 . (4)

The functions {ψ1, ψ2, ψ3, ψ4} are equivariant transformations, typically implemented as Multi-
Layer Perceptrons (MLPs) to leverage the universal approximation (Funahashi, 1989; Cybenko,
1989; Hornik, 1991). In this process, the feature h

(l)
i remains E(3) invariant, while the coordinate

x
(l)
i is E(3) equivariant.

4 IGSEEK: OUR METHODOLOGY

In this section, we present our retrieval-based CDR sequence design framework, IgSeek. The gist of
IgSeek for structure-to-sequence generation is isomorphic structure retrieval, which allows for the
exploration of a large and diverse antibody CDR structure database. Fig. 1 illustrates the framework
of IgSeek. Given an antibody CDR database where both structures and sequences are available,
IgSeek first constructs a CDR vector database, where vector embeddings index the structural prox-
imity of the CDRs. In this offline stage, we pre-train a Multi-channel Equivariant Graph Neural
Network (MEGNN) to encode the structure of CDR loops into fixed-length vectors within the CDR
database. Specifically, MEGNN aligns the spatial structure distance between pairs of CDRs with
equal lengths and similar conformations. Subsequently, for a CDR structure G whose sequence is
to be predicted, we first deploy the pre-trained MEGNN to generate an embedding hG for G. hG

then serves as the search key to query the K-nearest neighbors (K-NN) structurally similar CDR
loops in the vector database. Finally, the K-NN results, associated with their corresponding residue
sequences, are collected for predicting the sequence of G by ensemble and Bernoulli sampling. In
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the following, we will present the model design of the MEGNN encoder in Section 4.1, discuss
the learning objective and the sequence prediction in Section 4.2, followed by model analysis in
Section 4.3.

4.1 MULTI CHANNEL EQUIVARIANT ENCODER

Recall that each amino acid residue vi is represented by its four backbone atoms, thereby we extend
the general single-channel EGNN layer (Satorras et al., 2021; Huang et al., 2022) to a multi-channel
layer, with each channel corresponding to a specific atom. Unlike existing approaches (Kong et al.,
2023a; Høie et al., 2024) that leverage domain knowledge of the well-conserved antibody backbone
structure, our MEGNN encoder generates CDR embeddings exclusively based on the antibody CDR
structure, without relying on any prior backbone knowledge.

For a 3D CDR structureG, the MEGNN encoder takes the initial features of each residue vi, denoted
as h(0)

i ∈ Rd, along with the perturbed coordinates X̂i ∈ Rc×3 as input. Here, c denotes the number
of atoms, which is set to c = 4, and h

(0)
i is initialized by a uniform distribution. X̂i = Xi +

N (0, σ), where N (0, σ) denotes a small Gaussian noise. This perturbation introduces variability
that enhances the robustness of the model.

Multi-channel Equivariant Message Passing. The l-th layer of MEGNN updates both the node
features h(l)

i and coordinates X(l)
i by Eq. 5-8, where ρ is a distance computation function, ϕe, ϕX

and ϕh are neural network transformations. The update process is defined as follows:

X
(l−1)
ij , z

(l−1)
ij = ρ

(
X

(l−1)
i ,X

(l−1)
j , eij

)
, (5)

h(l)
eij = ϕe

(
CONCAT

(
h
(l−1)
i ,h

(l−1)
j , z

(l−1)
ij

))
, (6)

X
(l)
i = ϕX

(
X

(l−1)
i , {h(l)

eij ,X
(l−1)
ij |vj ∈ Ni}

)
, (7)

h
(l)
i = ϕh

(
h
(l−1)
i , {h(l)

eij |vj ∈ Ni}
)
. (8)

Specifically, MEGNN first computes the coordinate differences X
(l−1)
ij and the square distance

z
(l−1)
ij between each pair of backbone atoms among different residues in ρ (Eq. 5) as below:

X
(l−1)
ij = X

(l−1)
i −X

(l−1)
j , z

(l−1)
ij = (X

(l−1)
ij )⊤X

(l−1)
ij .

Subsequently, an edge module ϕe generates the edge feature h
(l)
eij for each edge eij = (vi, vj) ∈ E.

In Eq. 6, the node features of vi and vj , i.e., h(l−1)
i , h(l−1)

j , along with the fattened coordinate

difference (z(l−1)
ij ), are concatenated and transformed by an MLP, generating the output edge feature

for the l-th layer. Next, the coordinate module ϕX updates the node coordinates X
(l)
i using the

updated edge feature h
(l)
eij and the coordinate differences X

(l−1)
ij in Eq. 7. Specifically, for each

node vi, ϕX first computes the message mj→i propagated from its neighbor vj , and then updates
the coordinates X(l)

i of vi by aggregating the messages from its neighborhood:

mj→i = MLP
(
h(l)
eij

)
·X(l−1)

ij , X
(l)
i = X

(l−1)
i +

1

|Ni|
∑

vj∈Ni

mj→i.

Finally, the node module ϕh updates the node representation h
(l)
i by Eq. 8. For each node vi, ϕh

aggregates the features of the adjacent edges into h
(l)
aggi and combines the node representation h

(l−1)
i

from the (l − 1)-th layer with the aggregated feature using a residual connection (He et al., 2016):

h(l)
aggi =

∑
j∈Ni

h(l)
eij , h

(l)
i = h

(l−1)
i + MLP

(
CONCAT(h(l−1)

i ,h(l)
aggi)

)
.

CDR Embedding Generation. After the equivariant message passing through an L-layer MEGNN,
we employ a READOUT function to aggregate the final node features to generate the representation

5
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of CDR G that consists of n nodes (amino acids) as Eq. 9,

hG = READOUT({h(L)
i }

n
i=1). (9)

The READOUT function can be a permutation invariant function, e.g. summation and element-wise
mean pooling functions. In our implementation, we set the READOUT function as element-wise
mean pooling by default.

4.2 LEARNING OBJECTIVE AND SEQUENCE GENERATION

We train the MEGNN encoder by a self-supervised distance prediction task that explicitly aligns
pairs of similar CDR in a given database. The goal is to align the structural representation of similar
CDR pairs. For a CDR database B = {G1, G2, · · · , Gn}, we construct a training dataset T =
{(Gi, Gj), · · · } containing pairs of fixed-length CDRs whose TM-Score, calculated by TM-align
(Zhang & Skolnick, 2005), exceeds a specified threshold. Given a pair of CDRs (Gi, Gj), we
first generate their representations using MEGNN, denoted as hGi

and hGj
, respectively. Next,

we predict the Root Mean Square Deviation (RMSD) of the two CDR structures by feeding the
concatenation of hGi

and hGj
into an MLP decoder as Eq. 10:

d̂(Gi, Gj) = MLP
(
CONCAT

(
hGi

,hGj

))
. (10)

Loss Function. The learning objective is to minimize the Mean Square Error between the predicted
distance d̂(Gi, Gj) and the actual distance d(Gi, Gj) in the training dataset T :

L =
1

|T |
∑

(Gi,Gj)∈T

∥d̂(Gi, Gj)− d(Gi, Gj)∥2. (11)

Here, the actual distance d(Gi, Gj) is computed as the RMSD of the two CDRs for their backbone
atoms. Since we do not have prior knowledge of the CDR cluster labels, our approach can be
interpreted as an unsupervised geometric learning model. By minimizing the loss function defined
in Eq. 11, the model effectively generates CDR embeddings that reflect the structural relationships
among the CDRs in the dataset.

CDR Sequence Generation. Once the model training is complete, we establish a CDR vector
database Z , where each CDRi is represented by a triplet (si, Gi,hGi

) consisting of amino acid
sequence si, its backbone structure graph Gi and its embedding hGi

generated by the MEGNN
encoder via Eq. 9. IgSeek is then able to infer the amino acid sequence of a CDR by querying
its backbone structure in the database Z . Let sq denote the query CDR sequence with a length
of L. At each position l ∈ {1, · · · , L}, the residue sq(l) is selected from one of the 20 amino
acids, denoted as ai for i ∈ {1, · · · , 20}. Then, the inference of the CDR sequence sq given
its backbone structure Gq follows four steps: (i) first, the MEGNN encoder generates the em-
bedding of Gq , denoted as hGq . (ii) Second, the embedding hGq is used as the search key to
perform a K-NN search in the database Z , obtaining a set of K CDRs of equal length L, de-
noted as Zq = {(s1, G1,hG1

), (s2, G2,hG2
), · · · , (sK , GK ,hGK

)}. (iii) Given the K sequences
Sq = {s1, · · · , sK}, we derive the probability of amino acid ai occurring at position l of the pre-
dicted sequence ŝq as follows:

p (ŝq(l) = ai|Sq) =
1

K

∑
sk∈Sq

I(sk(l), ai),

where I(sk(l), ai) ∈ {0, 1} is a binary indicator that equals 1 if the amino acid ai occurs at the
position l of sequence sk, and 0 otherwise. (iv) To derive the final inferred sequence ŝq , we sample
the amino acid at each position l according to the generated probability distribution:

ŝq(l) ∼ p (ŝq(l)|Sq) .

4.3 ANALYSIS

Model Complexity. Given a 3D CDR structure represented by G = (V,E), the initialized coordi-
nates, node features, and the graph structure contribute a space complexity of O(|V | · d+ |V | · c+

6
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Figure 2: Comparison of IgSeek vs. FoldSeek in CDR Retrieval.

|E|) = O(|V | ·d+ |E|), where d denotes the hidden dimension of features and c denotes the channel
size. In MEGNN, the space complexity is dominated by the edge features, which have a complexity
of O(|E| · d), and square distance z with a complexity of O(|E| · c2). Consequently, the overall
space complexity is O(|E| · d), which is linear to the input graph size. Regarding the computational
complexity of MEGNN, the dominant component is the edge module ϕe introduced in Eq. 6, which
has a time complexity of O(|E| · (2d+ 3c)2 + |E| · d2 + 3c) = O(|E| · d2).
Coordinate Equivariance and Representation Invariance. The following theorem shows that
MEGNN is E(3) equivariant with respect to the initial coordinate X

(0)
i and E(3) invariant with

respect to the representations h of the input CDR, respectively.

Theorem 1. For any transformation g ∈ E(3), we have hi, TY(g)X
(L)
i =

MEGNN
(
h
(0)
i , TX (g)X

(0)
i , G

)
, where TX and TY := RX + b denotes the transformation

of X in the input space X (resp. output space Y), R is an orthogonal matrix, and b is the bias.

The theorem indicates that MEGNN can be generalized to arbitrary E(3) group operations (refer
to Section 3), which showcases the data efficiency of MEGNN. The formal proof of Theorem 1 is
provided in Appendix C.

5 EXPERIMENTAL STUDIES

In this section, we give the test setting in Section 5.1 and report our comprehensive experiments in
the following facets: (1) Compare IgSeek with structure retrieval approach (Section 5.2) (2) Com-
pare IgSeek with sequence design approaches (Section 5.3) (3) Investigate the CDR structure repre-
sentations encoded by MEGNN by visualization (Section 5.4) (4) Study the sequence generation by
a case study (Section 5.5).

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate our IgSeek and other baselines using both solved and predicted antibody
structures. The training set consists of CDR pairs sampled from 11, 023 solved CDR loops in the
Structural Antibody Database (SAbDab) (Dunbar et al., 2013; Schneider et al., 2021). To construct
the CDR vector database, we utilize 24, 479 solved CDR loops from SAbDab before January 1,
2024 (SAbDab-before-2024). In addition, 4, 449 solved CDR loops released between January 3,
2024 and May 29, 2024 from SAbDab (SAbDab-2024) serve as the test set to evaluate the perfor-
mance of IgSeek and its competitors. In addition to the solved antibody structures from SAbDab,
we also conduct experiments on 5, 111 CDR loops from the Structural T-Cell Receptor Database
(STCRDab) (Leem et al., 2018) to evaluate the model generalization ability. Furthermore, we eval-
uate the model efficiency using 5, 000 predicted CDR-H3 loops from the Observed Antibody Space
(OAS-H3) (Kovaltsuk et al., 2018; Olsen et al., 2022). More details of each dataset can be found in
Appendix B.

Competitors. We compare our IgSeek against 5 state-of-the-art models. More details can be found
in Appendix F.
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Figure 3: The Comparison of Average AAR and Inference Speed. (a) AAR in SAbDab-2024
Dataset. (b) AAR in STCRDab. (c) Inference Speed
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Retrieved Sequences
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Figure 4: Case study using 8W8R CDR-L1 as an example.

• Structure retrieval model: FoldSeek (Van Kempen et al., 2024).

• Protein and antibody sequence design model: ProteinMPNN (Dauparas et al., 2022), ESM-IF1
(Hsu et al., 2022), AbMPNN (Dreyer et al., 2023), and AntiFold (Høie et al., 2024).

Parameters. To ensure a fair comparison, we obtain the source code of all competitors from GitHub
and use the default parameter settings suggested by their authors. The implementation details of
IgSeek can be found in Appendix D. Additionally, we incorporate a variant of IgSeek that uses
RMSD as a secondary sorting metric, denoted as IgSeek+Kabsch.

5.2 CDR STRUCTURE RETRIEVAL

In this set of experiments, we compare IgSeek with the state-of-the-art structure searching model,
FoldSeek, by examining the quality of the retrieved isomorphic structures. Specifically, for a given
query CDR q, the retrieved CDR r is considered a positive instance if their RMSD is less than
1 Å. To ensure the robustness of our evaluation, we omit any query CDR for which there are no
candidates in the CDR database with a distance of less than 1 Åfrom the query. This strategy allows
us to focus on instances where meaningful comparisons can be made, thereby enhancing the result
reliability.

Fig. 2 presents the experimental results of IgSeek and FoldSeek, illustrating the model performance
on the retrieved sequences using the AUROC metric. As we can observe, IgSeek outperforms Fold-
Seek on four types of CDR loops while maintaining comparable performance on CDR-H3 and CDR-
L1, indicating its capability of identifying structurally similar CDRs across diverse CDR loops. It
is worth noting that IgSeek achieves a 2.6x speed-up in structure retrieval time compared to Fold-
Seek. Since this improvement in speed does not come at the cost of accuracy, it demonstrates that
IgSeek strikes a superior trade-off between efficiency and accuracy. The ability to quickly retrieve
high-quality structural matches can greatly enhance workflows in antibody design, as we will show
in Section 5.3.
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Figure 5: Embeddings of CDRs in the SAbDab-before-2024 datasets projected onto 2D Space.

5.3 CDR SEQUENCE DESIGN

Sequence Recovery. In the first set of experiments, the MEGNN in IgSeek is trained on the
the SAbDab-before-2024 dataset to construct the CDR vector database. Subsequently, the trained
MEGNN is utilized to generate embeddings for the CDRs in the SAbDab-2024 dataset. For each
query CDR in the SAbDab-2024 dataset, we retrieve the top-10 nearest neighbors from the SAbDab-
before-2024 dataset in the CDR vector database, ensuring that the lengths of the retrieved sequences
match that of the query. Finally, we proceed to sample the amino acids for each position in the CDR
sequences to generate the predicted result for the query CDR. Following ProteinMPNN, we generate
two samples for each query and select the one that exhibits the better alignment with the ground-truth
as the final result. Average amino acid recovery (AAR) is utilized to evaluate model performance,
which quantifies the accuracy of the predicted sequences. For a query CDR q, the AAR is defined
as the ratio of overlapping positions between the predicted sequence ŝq and ground-truth sequence
sq: AAR (ŝq, sq) =

1
L

∑L
l=1 I(ŝq(l), sq(l)).

Fig. 3 (a) illustrates the average AAR for each model on the SAbDab-2024 dataset. As we can
observe, Antifold and AbMPNN achieve much better results compared to ProteinMPNN and ESM-
IF1, highlighting the advantages of fine-tuning pre-trained protein design models specifically on
the antibody dataset. Additionally, IgSeek outperforms its competitors by at least 2.9% on light
chain CDR loops (CDR-L) and achieves results comparable to state-of-the-art methods on heavy
chain CDR loops (CDR-H). Notably, IgSeek+Kabsch consistently outperforms all baselines across
six types of CDR loops, highlighting the effectiveness of our retrieval-based strategy. The marked
advantage of IgSeek+Kabsch on CDR-H3 loops is particularly noteworthy, as this type of CDR
loops is often considered one of the most hypervariable regions.

Remark. We observe a performance degradation in AntiFold and AbMPNN on the SAbDab-2024
dataset compared to the results reported by Høie et al. (2024). One possible reason for this dis-
crepancy is that these two models heavily depend on antibody backbone structures as auxiliary
information, while only the structures of CDRs are given in our settings.

Generalization Performance. Next, we evaluate the model inference performance on the
STCRDab dataset without any further model training. To conduct this evaluation, we randomly
draw around 80% of the CDR loops to generate selection templates, while the remaining 20% are
used as queries. Fig. 3 (b) displays the average AAR of each model on the STCRDab dataset. As we
can see, IgSeek takes the lead by at least 30% on CDR loops from chain A and chain B, respectively.
These impressive results further underscore the potential of structure retrieval approaches in mitigat-
ing hallucinations during sequence inference, demonstrating that IgSeek can effectively generalize
to unseen data while maintaining high accuracy in sequence recovery.

Efficiency Evaluation. We evaluate the model efficiency using the OAS-H3 dataset. Fig. 3 (c)
reports the inference time of IgSeek compared with other baseline models, all without any model
retraining. As we can observe, IgSeek achieves at least 20x speed-up compared to baseline meth-
ods, which demonstrates that our IgSeek achieves a better trade-off between effectiveness and effi-
ciency. This enhanced inference speed is particularly beneficial in practical applications like high-
throughput antibody design where rapid sequence generation is crucial.
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5.4 VISUALIZATION

To investigate the representation generated by MEGNN, we conduct a visualization analysis on the
SAbDab-before-2024 dataset by T-SNE (Van der Maaten & Hinton, 2008).

Fig. 5 presents the visualization results of top-60 CDR representations in each cluster, where PyIg-
Classify cluster labels (Adolf-Bryfogle et al., 2015) (refer to Appendix B) are utilized in this set
of experiments. As Fig. 5 illustrates, IgSeek produces a high-quality visualization that clearly or-
ganizes the embeddings of CDR loops from distinct clusters into separate groups with minimal
overlaps. Furthermore, the visualization not only demonstrates the effectiveness of IgSeek in distin-
guishing CDRs among different clusters but also highlights its ability to capture structural informa-
tion inherent in CDR loops. This visual clarity and distinct grouping underscore the robustness and
discriminative capability of IgSeek in embedding isomorphic CDR structures closer together while
ensuring distinct clusters remain well-separated, which facilitates the identification and retrieval of
CDR loops based on their structural characteristics.

5.5 CASE STUDY: PDB 8W8R

In this section, we use the 8W8R CDR-L1 as an example to illustrate the query and generation
process of IgSeek. Step 1: given the backbone structure of the 8W8R CDR-L1 loop, we employ the
pre-trained MEGNN to generate its embeddings. Step 2: we retrieve the top-10 nearest neighbors of
the 8W8R CDR-L1 loop from the CDR vector database Z . Step 3: we utilize the aligned sequences
from the retrieved records to generate the residue probability distribution at each position. Step 4:
Finally, we sample the output result from this distribution. In this example, we observe that the AAR
of the sequence generated by IgSeek outperforms other competitors by at least 0.27, demonstrating
the effectiveness of our approach.

6 CONCLUSION

In this paper, we propose an antibody sequence framework, IgSeek, from a new learning-based
structure retrieval perspective. Specifically, IgSeek first constructs a CDR vector database using a
multi-channel equivariant graph neural networks. It then predicts CDR sequences from templates
retrieved from isomorphic structures in the database. Extensive experiments demonstrate the effec-
tiveness and efficiency of IgSeek, providing insights into de novo antibody sequence design and can
inspire further investigatino in this direction.
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Clemens Meyer, Simon AA Kohl, Andrew J Ballard, Andrew Cowie, Bernardino Romera-
Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Se-
bastian Bodenstein, David Silver, Oriol Vinyals, Andrew W Senior, Koray Kavukcuoglu, Push-
meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with alphafold.
nature, 596(7873):583–589, 2021. doi: https://doi.org/10.1038/s41586-021-03819-2.

Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

Xiangzhe Kong, Wenbing Huang, and Yang Liu. End-to-end full-atom antibody design. In ICML,
pp. 17409–17429, 2023a.

Xiangzhe Kong, Wenbing Huang, and Yang Liu. Conditional antibody design as 3d equivariant
graph translation. In ICLR, 2023b.

Aleksandr Kovaltsuk, Jinwoo Leem, Sebastian Kelm, James Snowden, Charlotte M Deane, and
Konrad Krawczyk. Observed antibody space: a resource for data mining next-generation se-
quencing of antibody repertoires. J. Immunol., 201(8):2502–2509, 2018. doi: https://doi.org/10.
4049/jimmunol.1800708.

Jinwoo Leem, Saulo H P de Oliveira, Konrad Krawczyk, and Charlotte M Deane. Stcrdab: the
structural t-cell receptor database. Nucleic acids research, 46(D1):D406–D412, 2018. doi: https:
//doi.org/10.1093/nar/gkx971.

Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d atomistic
graphs. In ICLR, 2023.

Shitong Luo, Yufeng Su, Xingang Peng, Sheng Wang, Jian Peng, and Jianzhu Ma. Antigen-specific
antibody design and optimization with diffusion-based generative models for protein structures.
NeurIPS, 35:9754–9767, 2022.

12

https://arxiv.org/abs/2405.03370
https://arxiv.org/abs/2405.03370


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Robert M MacCallum, Andrew CR Martin, and Janet M Thornton. Antibody-antigen interactions:
contact analysis and binding site topography. Journal of molecular biology, 262(5):732–745,
1996. doi: https://doi.org/10.1006/jmbi.1996.0548.

Benjamin North, Andreas Lehmann, and Roland L Dunbrack Jr. A new clustering of antibody cdr
loop conformations. Journal of molecular biology, 406(2):228–256, 2011. doi: https://doi.org/
10.1016/j.jmb.2010.10.030.

Pascal Notin, Nathan Rollins, Yarin Gal, Chris Sander, and Debora Marks. Machine learning for
functional protein design. Nature biotechnology, 42(2):216–228, 2024. doi: https://doi.org/10.
1038/s41587-024-02127-0.

Tobias H Olsen, Fergus Boyles, and Charlotte M Deane. Observed antibody space: A diverse
database of cleaned, annotated, and translated unpaired and paired antibody sequences. Protein
Science, 31(1):141–146, 2022. doi: https://doi.org/10.1002/pro.4205.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
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APPENDIX

A ANTIBODY

FR1 CDR-H1 FR2 CDR-H2 FR3 CDR-H3 FR4

FR1 CDR-L1 FR2 CRD-L2 FR3 CDR-L3 FR4

Variable Domains

Figure 6: Antibody Structure

Protein is composed by one or multiple chains of amino acid residues which can be twenty different
types. An antibody is a special Y-shaped protein with two identical sets of chains, as illustrated in
Fig. 6. Each set contains a heavy chain and a light chain, and both of them consist of segments
of constant regions and variable regions. The constant regions keep relatively consistent across
different antibodies, whereas the variable regions are different to provide different binding regarding
the antigen epitope. The variable domains are further separated into alternating fragments of four
framework regions (FRs) and three complementarity determining regions (CDRs). The CDRs play
critical roles in antibody-antigen binding, which is the focus of antibody design.

B DATASETS AND LABELS

Datasets. We selected all experimentally solved antibody structures released in the SAbDab an-
tibody database (Dunbar et al., 2013; Schneider et al., 2021) before January 1, 2024, to sample
our training set. We remove CDR sequences that are identical to those in the dataset to eliminate
redundancy in the dataset. Following FoldSeek (Van Kempen et al., 2024), for each CDR in the
SAbDab-before-2024 dataset, we randomly sample equal-length CDRs with TM-score large than
0.6 to generate training pairs. The final training set consisted of 45, 043 antibody CDR pairs. After
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Table 2: Profile of Datasets

SAbDab #CDR-H1 #CDR-H2 #CDR-H3 #CDR-L1 #CDR-L2 #CDR-L3

# Data (before-2024) 4,464 4,466 4,463 3,693 3,696 3,897
# Query (2024) 809 823 513 580 607 578

STCRDab #CDR-A1 #CDR-A2 #CDR-A3 #CDR-B1 #CDR-B2 #CDR-B3

# Data 680 680 680 741 741 741
# Query 138 140 120 158 154 138

finishing model training, all 24, 479 unique CDR structures in the SAbDab-before-2024 dataset are
utilized to construct the CDR vector database. The test set of SAbDab-2024 include experimentally
solved antibody released in SAbDab antibody database between January 3, 2024 and May 29, 2024.
This process resulted in 4, 449 test CDR samples that are completely unseen during the model train-
ing process. The sequence similarity distribution between the training set and test set is illustrated
in Figure 7. As we can observe, the average sequence similarity for each CDR region in the training
and test set is around 0.3 to 0.5, which shows that there is no potential data leakage issue in this
data split strategy. In addition, we utilize a T-cell receptor dataset released in the structural T-cell
receptor database (Leem et al., 2018) to construct a test set with 5, 111 receptors, referred to as
STCRDab. To evaluate the model efficiency, we utilize 5, 000 predicted CDR-H3 loops from the
Observed Antibody Space (OAS) (Olsen et al., 2022), denoted as OAS-H3. Redundant CDR loops
are removed from the test set. Statistics of these datasets are listed in Table 2.

Labels. PyIgClassify cluster labels (North et al., 2011; Adolf-Bryfogle et al., 2015) are employed
as ground-truth labels to assess the retrieval performance of antibody CDR regions. For each PDB
structure containing an identified antibody heavy or light chain, PyIgClassify categorizes the con-
formations of CDRs using a three-tier strategy: chain and position, length, and the similarity of
dihedral angles. For instance, the cluster ID L1-10-1 denotes a CDR-L1 with a length of 10 amino
acids, where the subcluster 1 is determined based on the similarity of dihedral angles using the
affinity propagation clustering method (Frey & Dueck, 2007).
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Figure 7: Sequence similarity between SAbDab train/test set.

C PROOFS OF THEOREM 1

In this section, we prove that our MEGNN is E(3) equivariant on coordinate X and E(3) invariant
on representations h for any transformation operation g ∈ E(3), more formally:

hi, TY(g)X
(L)
i = MEGNN

(
h
(0)
i , TX (g)X

(0)
i , G

)
.
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Table 3: Hyperparameters of IgSeek.

Hyperparameter Value Description

Input

noise ratio 0.15 Ratio of the input coordinates with added Gaussian noise.
noise scale 1 The standard deviation σ in the Gaussian noise.

θ 10 Å The Euclidean distance threshold when constructing the graph G.

MEGNN

learning rate 5× 10−3 Learning rate of MEGNN.
weight decay 1× 10−4 Weight decay factor of the optimizer.
hidden dim 256 Size of hidden feature dimension in MEGNN.

emb dim 128 Size of output embedding dimension in MEGNN.
n layer 4 Number of layers in MEGNN.
epoch 50 Number of the iterations during training

batch size 8 Number of batch size in MEGNN.
drop out 0.1 Number of dropout rate in MEGNN.

Retrieval

k 10 Number of nearest neighbor retrieved in the CDR vector database.
n sample 2 Number of generated samples for each query.

Proof. We assume that h(0)
i is invariant to E(3) transformation operations on the coordinate X

(0)
i ,

since h
(0)
i is generated from uniform distribution and no absolute information of X(0)

i is encoded
into h

(0)
i . Then, for the E(3) transformation g := RX + b, where orthogonal matrix R ∈ O(3) and

bias b ∈ R3, we have:

RX
(l−1)
i + b− (RX

(l−1)
j + b) = RX

(l−1)
ij ,

(RX
(l−1)
ij )⊤RX

(l−1)
ij = z

(l−1)
ij .

Therefore, the output z(l−1)ij of Eq. 5 is E(3) invariant to transformation g.

As for Eq. 6, since hi, hj , and z(l−1)ij are invariant to E(3) transformation operations, we can derive

that h(l)
eij is E(3) invariant.

Next, we will prove Eq. 7 is E(3) equivariant.

RX
(l−1)
i + b+

1

|Ni|
∑

vj∈Ni

MLP
(
h(l)
eij

)
·RX

(l−1)
ij = R

X
(l−1)
i +

1

|Ni|
∑

vj∈Ni

mj→i

+ b

= RX
(l)
i + b.

Therefore, we have proven that any E(3) transformation operations on X
(l−1)
i leads to the same E(3)

transformation operations on X
(l)
i using Eq. 7.

Finally, it is easy to verify that Eq. 8 is E(3) invariant as h(l−1)
i and h

(l)
eij are E(3) invariant.

In conclusion, for an L-layer MEGNN model, any transformation g ∈ E(3) on the input coordinate
X(0) will lead to the same E(3) transformation operations on the output coordinate X(L) while the
representations h(L) still remain E(3) invariant:

hi, TY(g)X
(L)
i = MEGNN

(
h
(0)
i , TX (g)X

(0)
i , G

)
.

This finishes the proof.

D IMPLEMENTATION DETAILS

In this section, we introduce the implementation details of our IgSeek. The MEGNN model intro-
duced in Section 4 consists of three key learnable functions:
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Algorithm 1: Multi-channel Equivariant Graph Neural Network (MEGNN)

Input: Antibody CDR Structure G = (V,E), initial features h(0)
i and coordinates X(0)

i for
each node vi ∈ V

Output: Antibody CDR representation hG

1 Initialize coordinates X̂i ←Xi +N (0, σ);
2 for layer l = 1 to L do
3 for vi ∈ V do
4 for vj ∈ Ni do
5 Calculate the coordinate differences: X(l−1)

ij ←X
(l−1)
i −X

(l−1)
j ;

6 Calculate the square distance: z(l−1)
ij ← (X

(l−1)
ij )⊤X

(l−1)
ij ;

7 Update the edge feature: h(l)
eij ← ϕe

(
CONCAT

(
h
(l−1)
i ,h

(l−1)
j , z

(l−1)
ij

))
;

8 Derive the propagated information: mj←i ← MLP
(
h
(l)
eij

)
·X(l−1)

ij ;

9 Update the coordinate: X(l)
i ←X

(l−1)
i + 1

|Ni|
∑

vj∈Ni
mj→i;

10 Derive the aggregated edge feature: h(l)
aggi ←

∑
j∈Ni

h
(l)
eij ;

11 Update the node representation: h(l)
i ← h

(l−1)
i + MLP

(
CONCAT(h(l−1)

i ,h
(l)
aggi)

)
;

12 Generate the representation of input CDR structure: hG ← READOUT({h(L)
i }ni=1) ;

13 Return hG;

• The edge module ϕe (refer to Eq. 6) consists of a two-layer MLP with two Leaky Rectified Linear
Unit (LeakyReLU) activation functions (Xu et al., 2015). Besides, a dropout function (Srivastava
et al., 2014) with 0.1 dropout rate is employed on the output of ϕe:

CONCAT(Features)→ Input→ {LinearLayer()→ LeakyReLU()→ LinearLayer()
→ LeakyReLU()} → Dropout→ Output.

• The coordinate module ϕX (refer to Eq. 7) contains a two-layer MLP that shares weights with
the MLP in the edge module ϕe.

• The node module ϕh (refer to Eq. 8) is a two-layer MLP with one LeakyReLU activation function:

CONCAT(Features)→ Input→ {LinearLayer()→ LeakyReLU()→ LinearLayer()} → Output.

In our experiments, we train the MEGNN model in IgSeek using PyTorch (Paszke et al., 2019)
with an Adam optimizer (Kingma & Ba, 2015) on 4 NVIDIA Tesla A100 GPUs. Table 3 lists the
hyperparameters of IgSeek.

E ALGORITHM

In Section 4, we provide a comprehensive overview of the IgSeek framework. We first introduce the
MEGNN encoder in Section 4.1, followed by a discussion of the MEGNN decoder and the sequence
prediction process utilized by IgSeek. Here, we provide the algorithms of IgSeek as complementary
details. Specifically, Algorithm 1 summarizes the forward pass of MEGNN, Algorithm 2 outlines the
training process, and Algorithm 3 presents the antibody CDR sequence design process, respectively.

F BASELINES

The first category is structure retrieval model:

• FoldSeek (Van Kempen et al., 2024) represents tertiary amino acid interactions using 3D in-
teraction (3Di) structural alphabet, achieving 4 to 5 orders of magnitude speed-up compared
to traditional iterative or stochastic structure retrieval methods like CE (Shindyalov & Bourne,
1998), Dali (Holm, 2020), and TM-align (Zhang & Skolnick, 2005). Official code is available at:
https://github.com/steineggerlab/foldseek.
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Algorithm 2: CDR Vector Database Construction

Input: Training set T = {(Gi1, Gi2)}|T |i=1, training epoch T , CDR database B = {(sj , Gj)}|B|j=1

Output: CDR vector database Z
1 for t = 1 to T do
2 for i = 1 to |T | do
3 Initialize feature matrices Hi1 of Gi1 and feature matrices Hi2 of Gi2, respectively
4 Generate graph representation for the i-th training CDR pair:

hGi1
← MEGNN(Gi1,Hi1,Xi1), hGi2

← MEGNN(Gi2,Hi2,Xi2)
5 Predict the RMSD between hGi1

and hGi2
:

d̂(Gi1, Gi2)← MLP (CONCAT (hGi1
,hGi2

))

6 Compute the loss function: L ← 1
|T |

∑
(Gi1,Gi2)∈T ∥d̂(Gi1, Gi2)− d(Gi1, Gi2)∥2

7 Update the model weights W to minimize L using ∂L
∂W

8 for j = 1 to |B| do
9 Generate graph representation Gj ← MEGNN(Gj ,Hj ,Xj)

10 Add the triplet (sj , Gj ,hGj ) into Z
11 Return vector database Z

Algorithm 3: Sequence Generation
Input: Query structure Gq , MEGNN ϕ, CDR vector database Z
Output: Predicted sequence ŝq

1 Initialize feature matrix Hq and coordinates Xq

2 Generate graph representation Gq ← MEGNN(Gq,Hq,Xq)
3 Retrieve the K-nearest neighbors of hG in the database Z as Zq

4 Derive the probability of amino acid a at the l-th position:
p (ŝq(l) = ai|Sq) =

1
K

∑
sk∈Sq I(sk(l), ai)

5 Sample the amino acid ŝq(l) at the l-th position using the probability p (ŝq(l)|Sq)
6 Return ŝq

The second category is protein and antibody design models:

• ProteinMPNN (Dauparas et al., 2022) is a deep learning–based method for protein sequence
design that excels in both in silico and experimental evaluations, achieving a sequence recovery
of 52.4% on native protein backbones, compared to 32.9% for Rosetta (Adolf-Bryfogle et al.,
2018; Baek et al., 2021). By leveraging a message-passing neural network with enhanced input
features and edge updates, ProteinMPNN is capable of designing monomers, cyclic oligomers,
protein nanoparticles, and protein-protein interfaces, rescuing previously failed designs generated
by Rosetta (Baek et al., 2021) or AlphaFold (Jumper et al., 2021). Official code is available at:
https://github.com/dauparas/ProteinMPNN.

• ESM-IF1 (Hsu et al., 2022) employs a sequence-to-sequence Transformer to predict protein se-
quences from backbone atom coordinates, which is pre-trained on structures of 12M protein se-
quences. It achieves 51% native sequence recovery and 72% for buried residues. Official code is
available at: https://github.com/facebookresearch/esm/tree/main/examples/inverse folding.

• AbMPNN (Dreyer et al., 2023) fine-tunes ProteinMPNN on the SAbDab (Dunbar et al., 2013;
Schneider et al., 2021) dataset for antibody design, outperforming generic protein models in se-
quence recovery and structure robustness, especially for the hypervariable CDR-H3 loop. The
profile of model weights is available at: https://zenodo.org/records/8164693.

• AntiFold (Høie et al., 2024) is an antibody-specific inverse folding model fine-tuned from ESM-
IF1 (Hsu et al., 2022) on solved antibody structures from the SAbDab dataset (Dunbar et al.,
2013; Schneider et al., 2021) and predicted antibody structures from the OAS dataset (Kovaltsuk
et al., 2018; Olsen et al., 2022). AntiFold excels in sequence recovery and structural similarity
while also demonstrates stronger correlations in predicting antibody-antigen binding affinity in a
zero-shot manner. Official code is available at: https://github.com/oxpig/AntiFold.
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Figure 8: The Comparison of Average AAR on the SAbDab-2024 Dataset using CDRs with exten-
sions of 1 to 3 amino acids on each side in the flanking regions.

Table 4: The Comparison of Average AAR with varying K in SAbDab-2024.

K 5 10 20 50 100

CDR-L1 0.660 0.658 0.645 0.620 0.593

CDR-L2 0.580 0.580 0.573 0.573 0.550

CDR-L3 0.586 0.586 0.576 0.574 0.564

CDR-H1 0.560 0.561 0.560 0.553 0.537

CDR-H2 0.440 0.435 0.432 0.429 0.430

CDR-H3 0.473 0.464 0.455 0.447 0.441

G ADDITIONAL EXPERIMENTS

CDR with extensions. In this set of experiments, we compare IgSeek with protein and antibody
design baselines using the SAbDab-2024 dataset. We focus on CDRs with backbone extensions of
n amino acids on each side in the flanking regions. Fig. 8 illustrates the results for varying values
of n = 0, 1, 2, 3. As we can observe, the performance of IgSeek improves with the inclusion of
additional amino acids in the given structure, , which aligns with the fact that more input structural
information can be encoded into the CDR representation. In contrast, other baseline models are
adversely affected by hallucinations stemming from conserved backbone structures. Notably, when
n = 3, IgSeek consistently outperforms its competitors by at least 5% and 18% for heavy chain
and light chain CDR loops, respectively. This further demonstrates that the retrieval-based strategy
employed by IgSeek effectively mitigates hallucinations during CDR sequence generation.

Influence of value K. In this set of experiments, we conduct experiments on the SAbDab-2024
dataset to evaluate the impact of varying parameter K in IgSeek. Table 4 reports the average AAR
of IgSeek across different values of K on the SAbDab-2024 dataset. As we can observe, the perfor-
mance of IgSeek exhibits a decline as K increases. In our implementation, we set K = 10 rather
than 5 as IgSeek achieves comparable results while preserving enhanced sequence diversity.
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